slides toulouse

66
Arthur CHARPENTIER - Nonparametric quantile estimation. Estimating quantiles and related risk measures Arthur Charpentier [email protected] Sยด eminaire du GREMAQ, Dยด ecembre 2007 joint work with Abder Oulidi, IMA Angers 1

Upload: arthur-charpentier

Post on 30-Jun-2015

317 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Estimating quantilesand related risk measures

Arthur Charpentier

[email protected]

Seminaire du GREMAQ, Decembre 2007

joint work with Abder Oulidi, IMA Angers

1

Page 2: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Agenda

โ€ข General introduction

Risk measures

โ€ข Distorted risk measuresโ€ข Value-at-Risk and related risk measures

Quantile estimation : classical techniques

โ€ข Parametric estimationโ€ข Semiparametric estimation, extreme value theoryโ€ข Nonparametric estimation

Quantile estimation : use of Beta kernels

โ€ข Beta kernel estimationโ€ข Transforming observations

A simulation based study

2

Page 3: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Agenda

โ€ข General introduction

Risk measures

โ€ข Distorted risk measuresโ€ข Value-at-Risk and related risk measures

Quantile estimation : classical techniques

โ€ข Parametric estimationโ€ข Semiparametric estimation, extreme value theoryโ€ข Nonparametric estimation

Quantile estimation : use of Beta kernels

โ€ข Beta kernel estimationโ€ข Transforming observations

A simulation based study

3

Page 4: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Risk measures and price of a risk

Pascal, Fermat, Condorcet, Huygens, dโ€™Alembert in the XVIIIth centuryproposed to evaluate the โ€œproduit scalaire des probabilites et des gainsโ€,

< p,x >=nโˆ‘i=1

pixi = EP(X),

based on the โ€œregle des partiesโ€.

For Quetelet, the expected value was, in the context of insurance, the price thatguarantees a financial equilibrium.

From this idea, we consider in insurance the pure premium as EP(X). As inCournot (1843), โ€œlโ€™esperance mathematique est donc le juste prix des chancesโ€(or the โ€œfair priceโ€ mentioned in Feller (1953)).

4

Page 5: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Risk measures : the expected utility approach

Ru(X) =โˆซu(x)dP =

โˆซP(u(X) > x))dx

where u : [0,โˆž)โ†’ [0,โˆž) is a utility function.

Example with an exponential utility, u(x) = [1โˆ’ eโˆ’ฮฑx]/ฮฑ,

Ru(X) =1ฮฑ

log(EP(eฮฑX)

).

5

Page 6: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Risk measures : Yarriโ€™s dual approach

Rg(X) =โˆซxdg โ—ฆ P =

โˆซg(P(X > x))dx

where g : [0, 1]โ†’ [0, 1] is a distorted function.

Exampleโ€“ if g(x) = I(X โ‰ฅ 1โˆ’ ฮฑ) Rg(X) = V aR(X,ฮฑ),โ€“ if g(x) = min{x/(1โˆ’ ฮฑ), 1} Rg(X) = TV aR(X,ฮฑ) (also called expected

shortfall), Rg(X) = EP(X|X > V aR(X,ฮฑ)).

6

Page 7: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Distortion of values versus distortion of probabilities

0 1 2 3 4 5 6

0.00.2

0.40.6

0.81.0

Calcul de lโ€™esperance mathรฉmatique

Fig. 1 โ€“ Expected valueโˆซxdFX(x) =

โˆซP(X > x)dx.

7

Page 8: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Distortion of values versus distortion of probabilities

0 1 2 3 4 5 6

0.00.2

0.40.6

0.81.0

Calcul de lโ€™esperance dโ€™utilitรฉ

Fig. 2 โ€“ Expected utilityโˆซu(x)dFX(x).

8

Page 9: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Distortion of values versus distortion of probabilities

0 1 2 3 4 5 6

0.00.2

0.40.6

0.81.0

Calcul de lโ€™intรฉgrale de Choquet

Fig. 3 โ€“ Distorted probabilitiesโˆซg(P(X > x))dx.

9

Page 10: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Distorted risk measures and quantiles

Equivalently, note that E(X) =โˆซ 1

0Fโˆ’1X (1โˆ’ u)du, and

Rg(X) =โˆซ 1

0Fโˆ’1X (1โˆ’ u)dgu.

A very general class of risk measures can be defined as follows,

Rg(X) =โˆซ 1

0

Fโˆ’1X (1โˆ’ u)dgu

where g is a distortion function, i.e. increasing, with g(0) = 0 and g(1) = 1.

Note that g is a cumulative distribution function, so Rg(X) is a weighted sum ofquantiles, where dg(1โˆ’ ยท) denotes the distribution of the weights.

10

Page 11: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Distortion function, VaR (quantile) โˆ’ cdf

1 โˆ’ probability level

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Distortion function, TVaR (expected shortfall) โˆ’ cdf

1 โˆ’ probability level

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Distortion function, cdf

1 โˆ’ probability level

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Distortion function, VaR (quantile) โˆ’ pdf

1 โˆ’ probability level

0.0 0.2 0.4 0.6 0.8 1.0

01

23

45

6

Distortion function, TVaR (expected shortfall) โˆ’ pdf

1 โˆ’ probability level

0.0 0.2 0.4 0.6 0.8 1.0

01

23

45

Distortion function, pdf

1 โˆ’ probability level

Fig. 4 โ€“ Distortion function, g and dg

11

Page 12: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Agenda

โ€ข General introduction

Risk measures

โ€ข Distorted risk measuresโ€ข Value-at-Risk and related risk measures

Quantile estimation : classical techniques

โ€ข Parametric estimationโ€ข Semiparametric estimation, extreme value theoryโ€ข Nonparametric estimation

Quantile estimation : use of Beta kernels

โ€ข Beta kernel estimationโ€ข Transforming observations

A simulation based study

12

Page 13: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Using a parametric approach

If FX โˆˆ F = {Fฮธ, ฮธ โˆˆ ฮ˜} (assumed to be continuous), qX(ฮฑ) = Fโˆ’1ฮธ (ฮฑ), and thus,

a natural estimator isqX(ฮฑ) = Fโˆ’1

ฮธ(ฮฑ), (1)

where ฮธ is an estimator of ฮธ (maximum likelihood, moments estimator...).

13

Page 14: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Using the Gaussian distribution

A natural idea (that can be found in classical financial models) is to assumeGaussian distributions : if X โˆผ N (ยต, ฯƒ), then the ฮฑ-quantile is simply

q(ฮฑ) = ยต+ ฮฆโˆ’1(ฮฑ)ฯƒ,

where ฮฆโˆ’1(ฮฑ) is obtained in statistical tables (or any statistical software), e.g.u = โˆ’1.64 if ฮฑ = 90%, or u = โˆ’1.96 if ฮฑ = 95%.

Definition 1. Given a n sample {X1, ยท ยท ยท , Xn}, the (Gaussian) parametricestimation of the ฮฑ-quantile is

qn(ฮฑ) = ยต+ ฮฆโˆ’1(ฮฑ)ฯƒ,

14

Page 15: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Using a parametric models

Actually, is the Gaussian model does not fit very well, it is still possible to useGaussian approximation

If the variance is finite, (X โˆ’ E(X))/ฯƒ might be closer to the Gaussiandistribution, and thus, consider the so-called Cornish-Fisher approximation, i.e.

Q(X,ฮฑ) โˆผ E(X) + zฮฑโˆšV (X), (2)

where

zฮฑ = ฮฆโˆ’1(ฮฑ)+ฮถ16

[ฮฆโˆ’1(ฮฑ)2โˆ’1]+ฮถ224

[ฮฆโˆ’1(ฮฑ)3โˆ’3ฮฆโˆ’1(ฮฑ)]โˆ’ ฮถ21

36[2ฮฆโˆ’1(ฮฑ)3โˆ’5ฮฆโˆ’1(ฮฑ)],

(3)where ฮถ1 is the skewness of X, and ฮถ2 is the excess kurtosis, i.e. i.e.

ฮถ1 =E([X โˆ’ E(X)]3)

E([X โˆ’ E(X)]2)3/2and ฮถ1 =

E([X โˆ’ E(X)]4)E([X โˆ’ E(X)]2)2

โˆ’ 3. (4)

15

Page 16: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Using a parametric models

Definition 2. Given a n sample {X1, ยท ยท ยท , Xn}, the Cornish-Fisher estimation ofthe ฮฑ-quantile is

qn(ฮฑ) = ยต+ zฮฑฯƒ, where ยต =1n

nโˆ‘i=1

Xi and ฯƒ =

โˆšโˆšโˆšโˆš 1nโˆ’ 1

nโˆ‘i=1

(Xi โˆ’ ยต)2,

and

zฮฑ = ฮฆโˆ’1(ฮฑ)+ฮถ16

[ฮฆโˆ’1(ฮฑ)2โˆ’1]+ฮถ224

[ฮฆโˆ’1(ฮฑ)3โˆ’3ฮฆโˆ’1(ฮฑ)]โˆ’ ฮถ21

36[2ฮฆโˆ’1(ฮฑ)3โˆ’5ฮฆโˆ’1(ฮฑ)],

where ฮถ1 is the natural estimator for the skewness of X, and ฮถ2 is the natural

estimator of the excess kurtosis, i.e. ฮถ1 =

โˆšn(nโˆ’ 1)nโˆ’ 2

โˆšnโˆ‘ni=1(Xi โˆ’ ยต)3

(โˆ‘ni=1(Xi โˆ’ ยต)2)3/2

and

ฮถ2 = nโˆ’1(nโˆ’2)(nโˆ’3)

((n+ 1)ฮถ โ€ฒ2 + 6

)where ฮถ โ€ฒ2 = n

โˆ‘ni=1(Xiโˆ’ยต)4

(โˆ‘ni=1(Xiโˆ’ยต)2)2 โˆ’ 3.

16

Page 17: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Parametrics estimator and error model

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

Density, theoritical versus empirical

Theoritical lognormalFitted lognormalFitted gamma

โˆ’4 โˆ’2 0 2 4

0.0

0.1

0.2

0.3

Density, theoritical versus empirical

Theoritical StudentFitted lStudentFitted Gaussian

Fig. 5 โ€“ Estimation of Value-at-Risk, model error.

17

Page 18: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Using a semiparametric models

Given a n-sample {Y1, . . . , Yn}, let Y1:n โ‰ค Y2:n โ‰ค . . .โ‰ค Yn:n denotes the associatedorder statistics.

If u large enough, Y โˆ’ u given Y > u has a Generalized Pareto distribution withparameters ฮพ and ฮฒ ( Pickands-Balkema-de Haan theorem)

If u = Ynโˆ’k:n for k large enough, and if ฮพ>0, denote by ฮฒk and ฮพk maximumlikelihood estimators of the Genralized Pareto distribution of sample{Ynโˆ’k+1:n โˆ’ Ynโˆ’k:n, ..., Yn:n โˆ’ Ynโˆ’k:n},

Q(Y, ฮฑ) = Ynโˆ’k:n +ฮฒk

ฮพk

((nk

(1โˆ’ ฮฑ))โˆ’ฮพk

โˆ’ 1

), (5)

An alternative is to use Hillโ€™s estimator if ฮพ > 0,

Q(Y, ฮฑ) = Ynโˆ’k:n

(nk

(1โˆ’ ฮฑ))โˆ’ฮพk

, ฮพk =1k

kโˆ‘i=1

log Yn+1โˆ’i:n โˆ’ log Ynโˆ’k:n. (6)

18

Page 19: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

On nonparametric estimation for quantiles

For continuous distribution q(ฮฑ) = Fโˆ’1X (ฮฑ), thus, a natural idea would be to

consider q(ฮฑ) = Fโˆ’1X (ฮฑ), for some nonparametric estimation of FX .

Definition 3. The empirical cumulative distribution function Fn, based on

sample {X1, . . . , Xn} is Fn(x) =1n

nโˆ‘i=1

1(Xi โ‰ค x).

Definition 4. The kernel based cumulative distribution function, based onsample {X1, . . . , Xn} is

Fn(x) =1nh

nโˆ‘i=1

โˆซ x

โˆ’โˆžk

(Xi โˆ’ th

)dt =

1n

nโˆ‘i=1

K

(Xi โˆ’ xh

)

where K(x) =โˆซ x

โˆ’โˆžk(t)dt, k being a kernel and h the bandwidth.

19

Page 20: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Smoothing nonparametric estimators

Two techniques have been considered to smooth estimation of quantiles, eitherimplicit, or explicit.

โ€ข consider a linear combinaison of order statistics,

The classical empirical quantile estimate is simply

Qn(p) = Fโˆ’1n

(i

n

)= Xi:n = X[np]:n where [ยท] denotes the integer part. (7)

The estimator is simple to obtain, but depends only on one observation. Anatural extention will be to use - at least - two observations, if np is not aninteger. The weighted empirical quantile estimate is then defined as

Qn(p) = (1โˆ’ ฮณ)X[np]:n + ฮณX[np]+1:n where ฮณ = npโˆ’ [np].

20

Page 21: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

0.0 0.2 0.4 0.6 0.8 1.0

24

68

The quantile function in R

probability level

quan

tile

leve

l

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

type=1type=3type=5type=7

0.0 0.2 0.4 0.6 0.8 1.0

23

45

67

The quantile function in R

probability levelqu

antil

e le

vel

โ—โ—

โ—

โ—โ—โ—

โ—โ—โ—

โ—โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—

โ—โ—โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—

โ—โ—โ—

โ—โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—

โ—โ—โ—

โ—โ—

โ—

โ—โ—

type=1type=3type=5type=7

Fig. 6 โ€“ Several quantile estimators in R.

21

Page 22: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Smoothing nonparametric estimators

In order to increase efficiency, L-statistics can be considered i.e.

Qn (p) =nโˆ‘i=1

Wi,n,pXi:n =nโˆ‘i=1

Wi,n,pFโˆ’1n

(i

n

)=โˆซ 1

0

Fโˆ’1n (t) k (p, h, t) dt (8)

where Fn is the empirical distribution function of FX , where k is a kernel and h abandwidth. This expression can be written equivalently

Qn (p) =nโˆ‘i=1

[โˆซ in

(iโˆ’1)n

k

(tโˆ’ ph

)dt

]X(i) =

nโˆ‘i=1

[IK

(in โˆ’ ph

)โˆ’ IK

(iโˆ’1n โˆ’ ph

)]X(i)

(9)

where again IK (x) =โˆซ x

โˆ’โˆžk (t) dt. The idea is to give more weight to order

statistics X(i) such that i is closed to pn.

22

Page 23: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

0.0 0.2 0.4 0.6 0.8 1.0

01

23

quantile (probability) level

Fig. 7 โ€“ Quantile estimator as wieghted sum of order statistics.

23

Page 24: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

0.0 0.2 0.4 0.6 0.8 1.0

01

23

quantile (probability) level

Fig. 8 โ€“ Quantile estimator as wieghted sum of order statistics.

24

Page 25: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

0.0 0.2 0.4 0.6 0.8 1.0

01

23

quantile (probability) level

Fig. 9 โ€“ Quantile estimator as wieghted sum of order statistics.

25

Page 26: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

0.0 0.2 0.4 0.6 0.8 1.0

01

23

quantile (probability) level

Fig. 10 โ€“ Quantile estimator as wieghted sum of order statistics.

26

Page 27: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

0.0 0.2 0.4 0.6 0.8 1.0

01

23

quantile (probability) level

Fig. 11 โ€“ Quantile estimator as wieghted sum of order statistics.

27

Page 28: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Smoothing nonparametric estimators

E.g. the so-called Harrell-Davis estimator is defined as

Qn(p) =nโˆ‘i=1

[โˆซ in

(iโˆ’1)n

ฮ“(n+ 1)ฮ“((n+ 1)p)ฮ“((n+ 1)q)

y(n+1)pโˆ’1(1โˆ’ y)(n+1)qโˆ’1

]Xi:n,

โ€ข find a smooth estimator for FX , and then find (numerically) the inverse,

The ฮฑ-quantile is defined as the solution of FX โ—ฆ qX(ฮฑ) = ฮฑ.

If Fn denotes a continuous estimate of F , then a natural estimate for qX(ฮฑ) isqn(ฮฑ) such that Fn โ—ฆ qn(ฮฑ) = ฮฑ, obtained using e.g. Gauss-Newton algorithm.

28

Page 29: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Agenda

โ€ข General introduction

Risk measures

โ€ข Distorted risk measuresโ€ข Value-at-Risk and related risk measures

Quantile estimation : classical techniques

โ€ข Parametric estimationโ€ข Semiparametric estimation, extreme value theoryโ€ข Nonparametric estimation

Quantile estimation : use of Beta kernels

โ€ข Beta kernel estimationโ€ข Transforming observations

A simulation based study

29

Page 30: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Kernel based estimation for bounded supports

Classical symmetric kernel work well when estimating densities withnon-bounded support,

fh(x) =1nh

nโˆ‘i=1

k

(xโˆ’Xi

h

),

where k is a kernel function (e.g. k(ฯ‰) = I(|ฯ‰| โ‰ค 1)/2).

If K is a symmetric kernel, note that

E(fh(0) =12f(0) +O(h)

30

Page 31: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Kernel based estimation of the uniform density on [0,1]

Dens

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Kernel based estimation of the uniform density on [0,1]

De

nsity

Fig. 12 โ€“ Density estimation of an uniform density on [0, 1].

31

Page 32: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Kernel based estimation for bounded supports

Several techniques have been introduce to get a better estimation on the border,

โ€“ boundary kernel (Muller (1991))โ€“ mirror image modification (Deheuvels & Hominal (1989), Schuster

(1985))โ€“ transformed kernel (Devroye & Gyrfi (1981), Wand, Marron &

Ruppert (1991))โ€“ Beta kernel (Brown & Chen (1999), Chen (1999, 2000)),

see Charpentier, Fermanian & Scaillet (2006) for a survey withapplication on copulas.

32

Page 33: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Beta kernel estimators

A Beta kernel estimator of the density (see Chen (1999)) - on [0, 1] is

fb(x) =1n

nโˆ‘i=1

k

(Xi, 1 +

x

b, 1 +

1โˆ’ xb

), x โˆˆ [0, 1],

where k(u, ฮฑ, ฮฒ) =uฮฑโˆ’1(1โˆ’ u)ฮฒโˆ’1

B(ฮฑ, ฮฒ), u โˆˆ [0, 1].

If {X1, ยท ยท ยท , Xn} are i.i.d. variables with density f0, if nโ†’โˆž, bโ†’ 0, thenBouzmarni & Scaillet (2005)

fb(x)โ†’ f0(x), x โˆˆ [0, 1].

This is the Beta 1 estimator.

33

Page 34: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

0.0 0.2 0.4 0.6 0.8 1.0

05

1015

Beta kernel, x=0.05

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

12

Beta kernel, x=0.10

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

Beta kernel, x=0.20

0.0 0.2 0.4 0.6 0.8 1.00

24

68

Beta kernel, x=0.45

Fig. 13 โ€“ Shape of Beta kernels, different xโ€™s and bโ€™s.

34

Page 35: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Improving Beta kernel estimators

Problem : the convergence is not uniform, and there is large second order biason borders, i.e. 0 and 1.

Chen (1999) proposed a modified Beta 2 kernel estimator, based on

k2 (u; b; t) =

k t

b ,1โˆ’t

b(u) , if t โˆˆ [2b, 1โˆ’ 2b]

kฯb(t),1โˆ’t

b(u) , if t โˆˆ [0, 2b)

k tb ,ฯb(1โˆ’t) (u) , if t โˆˆ (1โˆ’ 2b, 1]

where ฯb (t) = 2b2 + 2.5โˆ’โˆš

4b4 + 6b2 + 2.25โˆ’ t2 โˆ’ t

b.

35

Page 36: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Non-consistency of Beta kernel estimators

Problem : k(0, ฮฑ, ฮฒ) = k(1, ฮฑ, ฮฒ) = 0. So if there are point mass at 0 or 1, theestimator becomes inconsistent, i.e.

fb(x) =1n

โˆ‘k

(Xi, 1 +

x

b, 1 +

1โˆ’ xb

), x โˆˆ [0, 1]

=1n

โˆ‘Xi 6=0,1

k

(Xi, 1 +

x

b, 1 +

1โˆ’ xb

), x โˆˆ [0, 1]

=nโˆ’ n0 โˆ’ n1

n

1nโˆ’ n0 โˆ’ n1

โˆ‘Xi 6=0,1

k

(Xi, 1 +

x

b, 1 +

1โˆ’ xb

), x โˆˆ [0, 1]

โ‰ˆ (1โˆ’ P(X = 0)โˆ’ P(X = 1)) ยท f0(x), x โˆˆ [0, 1]

and therefore Fb(x) โ‰ˆ (1โˆ’ P(X = 0)โˆ’ P(X = 1)) ยท F0(x), and we may haveproblem finding a 95% or 99% quantile since the total mass will be lower.

36

Page 37: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Non-consistency of Beta kernel estimators

Gourieroux & Monfort (2007) proposed

f(1)b (x) =

fb(x)โˆซ 1

0fb(t)dt

, for all x โˆˆ [0, 1].

It is called macro-ฮฒ since the correction is performed globally.

Gourieroux & Monfort (2007) proposed

f(2)b (x) =

1n

nโˆ‘i=1

kฮฒ(Xi; b;x)โˆซ 1

0kฮฒ(Xi; b; t)dt

, for all x โˆˆ [0, 1].

It is called micro-ฮฒ since the correction is performed locally.

37

Page 38: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Transforming observations ?

In the context of density estimation, Devroye and Gyโ€™orfi (1985) suggestedto use a so-called transformed kernel estimate

Given a random variable Y , if H is a strictly increasing function, then thep-quantile of H(Y ) is equal to H(q(Y ; p)).

An idea is to transform initial observations {X1, ยท ยท ยท , Xn} into a sample{Y1, ยท ยท ยท , Yn} where Yi = H(Xi), and then to use a beta-kernel based estimator, ifH : Rโ†’ [0, 1]. Then qn(X; p) = Hโˆ’1(qn(Y ; p)).

In the context of density estimation fX(x) = fY (H(x))H โ€ฒ(x). As mentioned inDevroye and Gyorfi (1985) (p 245), โ€œfor a transformed histogram histogramestimate, the optimal H gives a uniform [0, 1] density and should therefore beequal to H(x) = F (x), for all xโ€.

38

Page 39: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Transforming observations ? a monte carlo study

Assume that sample {X1, ยท ยท ยท , Xn} have been generated from Fฮธ0 (from a famillyF = (Fฮธ, ฮธ โˆˆ ฮ˜). 4 transformations will be consideredโ€“ H = Fฮธ (based on a maximum likelihood procedure)โ€“ H = Fฮธ0 (theoritical optimal transformation)โ€“ H = Fฮธ with ฮธ < ฮธ0 (heavier tails)โ€“ H = Fฮธ with ฮธ > ฮธ0 (lower tails)

39

Page 40: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

Fig. 14 โ€“ F (Xi) versus Fฮธ(Xi), i.e. PP plot.

40

Page 41: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Est

imat

ed d

ensi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

Est

imat

ed d

ensi

ty

Fig. 15 โ€“ Nonparametric estimation of the density of the Fฮธ(Xi)โ€™s.

41

Page 42: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

0.80 0.85 0.90 0.95 1.00

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Estimated optimal transformation

Probability level

Qua

ntile

โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

0.80 0.85 0.90 0.95 1.00

12

34

5

Estimated optimal transformation

Probability level

Qua

ntile

Fig. 16 โ€“ Nonparametric estimation of the quantile function, Fโˆ’1

ฮธ(q).

42

Page 43: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

Fig. 17 โ€“ F (Xi) versus Fฮธ0(Xi), i.e. PP plot.

43

Page 44: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Est

imat

ed d

ensi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

Est

imat

ed d

ensi

ty

Fig. 18 โ€“ Nonparametric estimation of the density of the Fฮธ0(Xi)โ€™s.

44

Page 45: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

0.80 0.85 0.90 0.95 1.00

12

34

Estimated optimal transformation

Probability level

Qua

ntile

โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

0.80 0.85 0.90 0.95 1.00

12

34

Estimated optimal transformation

Probability level

Qua

ntile

Fig. 19 โ€“ Nonparametric estimation of the quantile function, Fโˆ’1ฮธ0

(q).

45

Page 46: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

Fig. 20 โ€“ F (Xi) versus Fฮธ(Xi), i.e. PP plot, ฮธ < ฮธ0 (heavier tails).

46

Page 47: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Est

imat

ed d

ensi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

Est

imat

ed d

ensi

ty

Fig. 21 โ€“ Estimation of the density of the Fฮธ(Xi)โ€™s, ฮธ < ฮธ0 (heavier tails).

47

Page 48: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

0.80 0.85 0.90 0.95 1.00

24

68

1012

Estimated optimal transformation

Probability level

Qua

ntile

โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

0.80 0.85 0.90 0.95 1.00

24

68

1012

Estimated optimal transformation

Probability level

Qua

ntile

Fig. 22 โ€“ Estimation of quantile function, Fโˆ’1ฮธ (q), ฮธ < ฮธ0 (heavier tails).

48

Page 49: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

Fig. 23 โ€“ F (Xi) versus Fฮธ(Xi), i.e. PP plot, ฮธ > ฮธ0 (lighter tails).

49

Page 50: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Est

imat

ed d

ensi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

โ—

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

Est

imat

ed d

ensi

ty

Fig. 24 โ€“ Estimation of density of Fฮธ(Xi)โ€™s, ฮธ > ฮธ0 (lighter tails).

50

Page 51: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

0.80 0.85 0.90 0.95 1.00

1.0

1.5

2.0

2.5

3.0

3.5

Estimated optimal transformation

Probability level

Qua

ntile

โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ— โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

0.80 0.85 0.90 0.95 1.00

1.0

1.5

2.0

2.5

3.0

3.5

Estimated optimal transformation

Probability level

Qua

ntile

Fig. 25 โ€“ Estimation of quantile function, Fโˆ’1ฮธ (q), ฮธ > ฮธ0 (lighter tails).

51

Page 52: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

A universal distribution for losses

BNGB considered the Champernowne generalized distribution to modelinsurance claims, i.e. positive variables,

Fฮฑ,M,c (y) =(y + c)ฮฑ โˆ’ cฮฑ

(y + c)ฮฑ + (M + c)ฮฑ โˆ’ 2cฮฑwhere ฮฑ > 0, c โ‰ฅ 0 and M > 0.

The associated density is then

fฮฑ,M,c (y) =ฮฑ (y + c)ฮฑโˆ’1 ((M + c)ฮฑ โˆ’ cฮฑ)

((y + c)ฮฑ + (M + c)ฮฑ โˆ’ 2cฮฑ)2.

52

Page 53: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

A Monte Carlo study to compare those nonparametric

estimators

As in ....., 4 distributions were consideredโ€“ normal distribution,โ€“ Weibull distribution,โ€“ log-normal distribution,โ€“ mixture of Pareto and log-normal distributions,

53

Page 54: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

5 10 15 20

0.0

00

.0

50

.1

00

.1

50

.2

00

.2

50

.3

0

Density of quantile estimators (mixture longnormal/pareto)

Estimated valueโˆ’atโˆ’risk

de

nsity o

f e

stim

ato

rs

Benchmark (R estimator)HD (Harrellโˆ’Davis)PRK (Park)B1 (Beta 1)B2 (Beta 2)

โ—

โ—

Boxโˆ’plot for the 11 quantile estimators

5 10 15 20

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ— โ—โ— โ— โ—

โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ— โ— โ— โ— โ—โ— โ— โ—

โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ— โ—โ—โ— โ— โ— โ—โ—โ— โ—โ—โ— โ— โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ— โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ— โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ— โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ— โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ— โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ— โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ— โ—โ—โ—โ—โ— โ—โ—โ—โ—โ—โ—โ— โ—โ— โ— โ— โ— โ—

MICRO Beta2

MACRO Beta2

Beta2

MICRO Beta1

MACRO Beta1

Beta1

PRK Park

PDG Padgett

HD Harrell Davis

E Epanechnikov

R benchmark

Fig. 26 โ€“ Distribution of the 95% quantile of the mixture distribution, n = 200,and associated box-plots.

54

Page 55: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ—

โ—

MSE ratio, normal distribution, HD (Harrellโˆ’Davis)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ— โ— โ— โ— โ— โ— โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, normal distribution, B1 (Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ—

โ—

โ—โ—

โ—

โ—โ—โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, normal distribution, MACB1 (MACROโˆ’Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—

โ—

โ—โ— โ—

โ—

โ—โ—โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, normal distribution, PRK (Park)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, normal distribution, B1 (Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ—

โ—

โ—โ—

โ—

โ—โ—โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, normal distribution, MACB1 (MACROโˆ’Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—

โ—

โ—โ— โ—

โ—

โ—โ—โ—

โ—

n= 50n=100n=200n=500

Fig. 27 โ€“ Comparing MSE for 6 estimators, the normal distribution case.

55

Page 56: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ—

โ—

MSE ratio, Weibull distribution, HD (Harrellโˆ’Davis)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ—

โ— โ— โ— โ—โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, Weibull distribution, MACB1 (MACROโˆ’Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, Weibull distribution, MICB1 (MICROโˆ’Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ—

โ— โ—โ—

โ—โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, Weibull distribution, PRK (Park)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0 โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, Weibull distribution, MACB1 (MACROโˆ’Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, Weibull distribution, MICB1 (MICROโˆ’Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ—

โ— โ—โ—

โ—โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

Fig. 28 โ€“ Comparing MSE for 6 estimators, the Weibull distribution case.

56

Page 57: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ—

โ—

MSE ratio, lognormal distribution, HD (Harrellโˆ’Davis)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ— โ— โ— โ— โ— โ— โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, lognormal distribution, MACB1 (MACROโˆ’Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.00.

00.

51.

01.

52.

0

โ— โ— โ—โ—

โ— โ—โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, lognormal distribution, MICB1 (MICROโˆ’Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—

โ—

โ— โ— โ—

โ—

โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, lognormal distribution, B1 (Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ— โ— โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, lognormal distribution, PRK (Park)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, lognormal distribution, MACB2 (MACROโˆ’Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ— โ— โ—

โ— โ—โ— โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, lognormal distribution, MICB2 (MICROโˆ’Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.00.

00.

51.

01.

52.

0

โ—

โ—โ— โ— โ— โ—

โ—

โ—โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, lognormal distribution, B2 (Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ— โ—

โ— โ— โ—โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

Fig. 29 โ€“ Comparing MSE for 9 estimators, the lognormal distribution case.

57

Page 58: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ—

โ—

MSE ratio, mixture distribution, HD (Harrellโˆ’Davis)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ— โ— โ— โ— โ—

โ—โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, mixture distribution, MACB1 (MACROโˆ’Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.00.

00.

51.

01.

52.

0

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, mixture distribution, MICB1 (MICROโˆ’Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ—

โ—

โ— โ—

โ— โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, mixture distribution, B1 (Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ—

โ— โ—โ—

โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, mixture distribution, PRK (Park)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ—

โ— โ—

โ—

โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, mixture distribution, MACB2 (MACROโˆ’Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ— โ— โ— โ—

โ— โ—

โ—โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, mixture distribution, MICB2 (MICROโˆ’Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.00.

00.

51.

01.

52.

0

โ— โ— โ— โ—

โ—

โ—โ—

โ—

โ—

n= 50n=100n=200n=500

โ—

โ—

MSE ratio, mixture distribution, B2 (Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

โ—โ—

โ—

โ— โ—

โ—โ—

โ—

โ—

n= 50n=100n=200n=500

Fig. 30 โ€“ Comparing MSE for 9 estimators, the mixture distribution case.

58

Page 59: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Portfolio optimal allocation

Classical problem as formulated in Markowitz (1952), Journal of Finance, ฯ‰โˆ— โˆˆ argmin{ฯ‰โ€ฒฮฃฯ‰}u.c. ฯ‰โ€ฒยต โ‰ฅ ฮท and ฯ‰โ€ฒ1 = 1

convexโ‡”

ฯ‰โˆ— โˆˆ argmax{ฯ‰โ€ฒยต}u.c. ฯ‰โ€ฒฮฃฯ‰ โ‰ค ฮทโ€ฒ and ฯ‰โ€ฒ1 = 1

Roy (1952), Econometrica,โ€œthe optimal bundle of assets (investment) forinvestors who employ the safety first principle is the portfolio that minimizes theprobability of disasterโ€.

ฯ‰โˆ— โˆˆ argmin{VaR(ฯ‰โ€ฒX, ฮฑ)}u.c. E(ฯ‰โ€ฒX) โ‰ฅ ฮท and ฯ‰โ€ฒ1 = 1

nonconvex<

ฯ‰โˆ— โˆˆ argmax{E(ฯ‰โ€ฒX)}u.c. VaR(ฯ‰โ€ฒX, ฮฑ) โ‰ค ฮทโ€ฒ,ฯ‰โ€ฒ1 = 1

59

Page 60: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Empirical data, Eurostocks

DAX (1)

โˆ’0.05 0.05

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ—โ—โ—โ— โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—โ—โ—

โ—โ—โ—

โ—

โ—โ— โ—โ—

โ—โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ— โ—โ—โ—

โ—

โ—โ—โ—โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ— โ—โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—โ—โ—โ—

โ—

โ—

โ— โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ— โ—โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—โ— โ—

โ—โ—

โ—

โ—โ—โ—โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ— โ—โ—โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ— โ—โ—

โ—โ—

โ—

โ— โ—

โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ— โ—โ— โ—โ—โ—โ—

โ—

โ—โ—

โ—โ—โ—โ—

โ—

โ—

โ—โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—โ—โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ— โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ— โ—โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ— โ—โ—โ—โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—โ—โ—

โ—โ—โ—

โ—

โ—โ—โ—โ—

โ—โ—โ—

โ—โ— โ—

โ—

โ—โ—โ—โ—โ—โ—

โ—

โ—โ—โ—โ— โ—โ—

โ—

โ—

โ—โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ— โ—โ— โ—

โ—

โ—

โ— โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ— โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ— โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—โ—โ—

โ—โ—

โ—

โ—โ—

โ—โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ— โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ— โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ— โ—

โ—

โ—โ—

โ—

โ—

โ—โ—โ—โ—โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—โ—

โ—

โ— โ—

โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—โ— โ—โ—

โ—โ—

โ—โ—

โ— โ—โ—โ—โ—

โ—

โ—โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ— โ—

โ— โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ— โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โˆ’0.05 0.05

โˆ’0.05

0.05

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ—โ—โ— โ—โ—โ—

โ—โ—โ—

โ—

โ—โ—โ—

โ—โ—โ—

โ—โ—โ—

โ—

โ—โ—โ—โ—

โ—โ—โ—

โ—โ— โ—

โ—

โ—โ—

โ—โ—โ—โ—

โ—

โ—โ—โ—โ—โ—โ—

โ—

โ—

โ—โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—โ— โ—โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ— โ—โ—โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ— โ—โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—โ— โ—

โ—โ—

โ—

โ—โ—

โ—โ— โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—โ— โ—โ—โ—โ—

โ—

โ—

โ—

โ—

โ— โ—โ—

โ—โ—

โ—

โ— โ—

โ—

โ—โ—

โ—โ—โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—โ— โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—

โ—

โ—

โ—โ—โ—

โ—โ—

โ—โ—

โ— โ—โ—โ—โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ— โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โˆ’0.05

0.05

โ—

โ—

โ—โ— โ—โ—

โ—

โ—

โ—โ—โ—โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—โ— โ—โ—โ—โ—โ—

โ—โ— โ—โ— โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—โ— โ—โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ— โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—โ—

โ—โ— โ—

โ—โ—โ—

โ— โ—โ—

โ— โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—โ—โ— โ—โ—

โ—

โ—

โ—โ—

โ—

โ— โ—โ—โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—โ— โ—

โ—โ—โ—โ—

โ—โ— โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ— โ—

โ—

โ—โ—

โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

SMI (2) โ—

โ—

โ—โ—โ—โ—

โ—

โ—

โ—โ— โ—โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ— โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ— โ—โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ—

โ— โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—โ— โ—โ— โ—

โ—โ—

โ—โ—โ— โ—โ—โ—

โ—

โ— โ—

โ—

โ—

โ—โ— โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ— โ—

โ— โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ— โ—

โ—โ— โ—

โ—โ—โ—

โ— โ—โ—โ— โ—

โ—

โ—โ— โ—โ—

โ—

โ—

โ—โ— โ—โ— โ—โ—

โ—

โ—

โ—โ—

โ—

โ—โ—โ—

โ—โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—โ— โ—

โ—โ—โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ— โ—โ—โ—

โ—โ—โ—โ—โ—โ— โ—

โ—

โ—

โ—โ—

โ—โ—โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—โ—

โ—

โ—

โ—โ—โ—โ— โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ— โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—โ—โ—

โ—โ—

โ— โ—โ— โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—

โ— โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—โ— โ—โ—โ—

โ—โ—

โ—โ—โ—โ— โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ— โ—โ—โ—

โ—โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ— โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—

โ— โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—โ—

โ— โ—โ—

โ— โ—โ—

โ— โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—โ—โ—โ—โ—โ—

โ—

โ—โ—

โ—

โ—โ—โ—

โ—โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—โ—โ—

โ—โ—โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—โ—โ—

โ— โ—โ—โ—โ—โ— โ—

โ—

โ—

โ— โ—

โ—โ—โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ— โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ— โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ— โ—โ—

โ—

โ—

โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ— โ—

โ—

โ—

โ—

โ—โ— โ—

โ—โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—

โ— โ—

โ—โ—

โ—โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ— โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ— โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—โ—โ—

โ— โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ— โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ— โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ— โ— โ—โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ— โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—โ—

โ—โ—โ—

โ—โ—

โ—

โ—โ—โ—

โ— โ—โ—

โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—โ— โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ— โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—โ—โ—โ—

โ—

โ—

โ—โ—โ—โ—โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ— โ—

โ—

โ—

โ—

โ—โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ— โ—

โ—โ—

โ—โ—โ—โ—โ—

โ—โ—โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ— โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ— โ—

โ—

โ—

โ— โ—โ—โ—

โ— โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ— โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ— โ—โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—โ—โ—โ—

โ—โ—

โ—

โ—โ—โ—

โ—โ—โ—

โ—

โ—

โ— โ—โ—โ— โ—โ— โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ— โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ— โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ—

โ— โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

CAC (3)

โˆ’0.10

0.00

0.10

โ—

โ—

โ—โ—โ—โ—

โ—

โ—

โ—โ—

โ—โ—โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—โ— โ—

โ—

โ—

โ—

โ—โ— โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ— โ—

โ—โ—

โ—โ—โ—

โ— โ—

โ—โ—

โ—โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ— โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—โ— โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ— โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ— โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ— โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ— โ—โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ— โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ— โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—โ—โ—โ—

โ—

โ—

โ— โ—โ—โ—โ—โ—โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ— โ—โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ— โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ— โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โˆ’0.05 0.05

โˆ’0.05

0.05

โ—

โ—

โ—โ—

โ—โ—โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—โ—โ—โ—

โ—

โ—โ—โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—โ—โ—โ—โ— โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—

โ— โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—โ—โ— โ—

โ— โ—

โ—

โ—โ—โ—

โ—โ—

โ—

โ—โ—โ—

โ—

โ—โ—โ—โ—

โ—โ— โ—โ—

โ— โ—โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ— โ—โ—โ— โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—โ— โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—โ—

โ—

โ—

โ— โ—โ—โ—โ—

โ—โ—

โ—

โ— โ—โ—โ—

โ—

โ—โ—โ—

โ—

โ—โ— โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—โ—โ— โ—

โ—

โ—โ—โ—

โ—

โ—โ—โ—โ—

โ—

โ—โ—

โ—โ— โ—

โ—

โ—โ—โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—โ—

โ—โ—โ—

โ—

โ—โ— โ—

โ—

โ—โ— โ—โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ— โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ— โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—โ— โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—โ—

โ—

โ—

โ—โ—โ—

โ—

โ—โ—โ—

โ—โ—

โ—

โ—โ— โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—โ—โ— โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ— โ—

โ— โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—โ—

โ—โ—

โ—โ—โ—โ—โ—

โ—โ— โ—โ—โ—

โ—

โ—โ—โ—

โ—โ—

โ—

โ—โ— โ—

โ—

โ—โ—โ—

โ—

โ— โ— โ—โ—

โ— โ— โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ—โ—โ—โ— โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—โ— โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ—โ—

โ—

โ—

โ— โ—โ—

โ—โ—โ—โ—

โ—

โ— โ—โ—โ—

โ—

โ—โ—โ—โ—

โ—โ— โ—

โ—

โ—

โ—โ—โ—

โ—โ—

โ—

โ—

โ—โ—โ—โ—โ—

โ—

โ—โ—โ—

โ—

โ—โ— โ—โ—

โ—

โ—โ—

โ—โ— โ—

โ—

โ—โ—โ—

โ—โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—

โ—

โ—โ— โ—

โ—

โ—โ—โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ— โ—

โ—โ— โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ— โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—โ— โ—

โ— โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โˆ’0.10 0.00 0.10

โ—

โ—

โ—โ—

โ—โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—โ—โ—โ—

โ—

โ—โ— โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—โ—โ— โ— โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ— โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—โ— โ—

โ—โ—

โ—โ—

โ—โ— โ—โ—โ— โ—

โ—โ—

โ—

โ—โ—โ—

โ—โ—

โ—

โ—โ— โ—

โ—

โ—โ—โ—

โ—

โ—โ—โ—โ—โ—โ—โ— โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—โ—โ—

โ—

โ—

โ—

โ— โ—โ— โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—โ—

โ— โ—โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—โ—

โ—

โ— โ—โ—โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—โ— โ—

โ—

โ—

โ— โ—โ—

โ—โ—โ—

โ—

โ—

โ— โ—โ—โ—

โ—

โ—โ—โ—

โ—

โ—โ— โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—โ—โ—โ—โ—

โ—

โ—โ—โ—โ—

โ—โ—โ—โ—

โ—

โ—โ—

โ—โ— โ—

โ—

โ—โ—โ—

โ—โ—

โ—

โ—

โ—โ—

โ—โ—

โ—โ—

โ—โ—

โ—

โ—โ—โ—

โ—

โ—โ— โ—

โ—

โ—โ—โ—โ—

โ— โ—

โ—

โ—

โ—

โ—

โ— โ—

โ— โ— โ—

โ—

โ—โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ— โ—

โ—

โ—โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—โ— โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—

โ—

โ—

โ—

โ—

FTSE (4)

Fig. 31 โ€“ Scatterplot of log-returns.

60

Page 61: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Alloca

tion (

3rd as

set)

Allocation (4th asset)

Quantile

Valueโˆ’atโˆ’Risk (75%) on the grid Valueโˆ’atโˆ’Risk (75%) on the grid

Allocation (3rd asset)

Alloc

ation

(4th

asse

t)

โˆ’3 โˆ’2 โˆ’1 0 1 2

โˆ’3โˆ’2

โˆ’10

12

Alloca

tion (

3rd as

set)

Allocation (4th asset)

Quantile

Valueโˆ’atโˆ’Risk (97.5%) on the grid Valueโˆ’atโˆ’Risk (97,5%) on the grid

Allocation (3rd asset)

Alloc

ation

(4th

asse

t)

โˆ’3 โˆ’2 โˆ’1 0 1 2โˆ’3

โˆ’2โˆ’1

01

2

Fig. 32 โ€“ Value-at-Risk for all possible allocations on the grid G (surface and levelcurves), with ฮฑ = 75% on the left and ฮฑ = 97.5% on the right.

61

Page 62: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ—

โ—

โˆ’1.0

0.00.5

1.01.5

2.0

Optimal allocation (asset 1)

Probability level (97.5%โˆ’75%)

weigh

t of a

lloca

tion

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

97.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

95%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

92.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

90%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

87.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

85%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

82.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

80%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

77.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

75%

โ—

โ—

โ—

โˆ’1.0

0.00.5

1.01.5

2.0

Optimal allocation (asset 2)

Probability level (97.5%โˆ’75%)

weigh

t of a

lloca

tion

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

97.5%

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

95%

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

92.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

90%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

87.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

85%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

82.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

80%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

77.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

75%

โ—

โ—

โ—

โˆ’1.0

0.00.5

1.01.5

2.0

Optimal allocation (asset 3)

Probability level (97.5%โˆ’75%)

weigh

t of a

lloca

tion

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—97.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

95%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

92.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

90%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

87.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

85%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

82.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

80%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

77.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

75%

โ—โ—

โ—

โˆ’1.0

0.00.5

1.01.5

2.0

Optimal allocation (asset 4)

Probability level (97.5%โˆ’75%)

weigh

t of a

lloca

tion

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

97.5%

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

95%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

92.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

90%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

87.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

85%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

82.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

80%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

77.5%

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

75%

โ—

Fig. 33 โ€“ Optimal allocations for different probability levels (ฮฑ =75%, 77.5%, 80%, ..., 95%, 97.5%), with allocation for the first asset (top left) upto the fourth asset (bottom right). 62

Page 63: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

mean 75% 77.5% 80% 82.5% 85% 87.5% 90% 92.5% 95% 97.5%

variance

asset 1 0.2277 0.222(0.253)

0.206(0.244)

0.215(0.259)

0.251(0.275)

0.307(0.276)

0.377(0.241)

0.404(0.243)

0.394(0.224)

0.402(0.214)

0.339(0.268)

asset 2 0.5393 0.550(0.141)

0.558(0.136)

0.552(0.144)

0.530(0.152)

0.500(0.154)

0.460(0.134)

0.444(0.135)

0.448(0.124)

0.441(0.121)

0.467(0.151)

asset 3 โˆ’0.2516 โˆ’0.062(0.161)

โˆ’0.083(0.176)

โˆ’0.106(0.184)

โˆ’0.139(0.187)

โˆ’0.163(0.215)

โˆ’0.196(0.203)

โˆ’0.228(0.163)

โˆ’0.253(0.141)

โˆ’0.310(0.184)

โˆ’0.532(0.219)

asset 4 0.4846 0.289(0.162)

0.319(0.179)

0.339(0.191)

0.357(0.204)

0.357(0.221)

0.359(0.205)

0.380(0.175)

0.410(0.153)

0.466(0.170)

0.726(0.200)

Tab. 1 โ€“ Mean and standard deviation of estimated optimal allocation, for differentquantile levels.

1. raw estimator Q(Y, ฮฑ) = Y[ฮฑยทn]:n

2. mixture estimator Q(Y, ฮฑ) =nโˆ‘i=1

ฮปi(ฮฑ)Yi:n, which is the standard quantile

estimate in R (see [?]),

3. Gaussian estimator Q(Y, ฮฑ) = Y + z1โˆ’ฮฑsd(Y , where sd denotes the empiricalstandard deviation,

63

Page 64: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

4. Hillโ€™s estimator, with k = [n/5], Q(Y, ฮฑ) = Ynโˆ’k:n

(nk

(1โˆ’ ฮฑ))โˆ’ฮพk

, where

ฮพk =1k

kโˆ‘i=1

logYn+1โˆ’i:n

Ynโˆ’k:n(assuming that ฮพ > 0),

5. kernel based estimator is obtained as a mixture of smoothed quantiles,derived as inverse values of a kernel based estimator of the cumulative

distribution function, i.e. Q(Y, ฮฑ) =nโˆ‘i=1

ฮปi(ฮฑ)Fโˆ’1(i/n).

64

Page 65: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

โ—

โ—โˆ’3

โˆ’2โˆ’1

01

2

Optimal allocation (asset 1)

Quantile estimator

weigh

t of a

llocatio

n โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 1raw

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 2mixture

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 3Gaussian

โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 4Hill

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 5Kernel

โ—

โ—

โ—

โˆ’3โˆ’2

โˆ’10

12

Optimal allocation (asset 2)

Quantile estimator

weigh

t of a

llocatio

n โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 1raw

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 2mixture

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—

โ—โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 3Gaussian

โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 4Hill

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 5Kernel

โ—

โ—

โ—

โˆ’3โˆ’2

โˆ’10

12

Optimal allocation (asset 3)

Quantile estimator

weigh

t of a

llocatio

n

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 1raw

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 2mixture

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—

โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 3Gaussian

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 4Hill

โ— โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 5Kernel

โ—

โ—

โ—

โˆ’3โˆ’2

โˆ’10

12

Optimal allocation (asset 4)

Quantile estimator

weigh

t of a

llocatio

n โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 1raw

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 2mixture

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—

โ—

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 3Gaussian

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 4Hill

โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—โ—

Est. 5Kernel

โ—

Fig. 34 โ€“ Optimal allocations for different 95% quantile estimators, with allocationfor the first asset (top left) up to the fourth asset (bottom right).

65

Page 66: Slides toulouse

Arthur CHARPENTIER - Nonparametric quantile estimation.

Some references

Charpentier, A. & Oulidi, A. (2007). Beta Kernel estimation forValue-At-Risk of heavy-tailed distributions. in revision Journal of ComputationalStatistics and Data Analysis.

Charpentier, A. & Oulidi, A. (2007). Estimating allocations forValue-at-Risk portfolio optimzation. to appear in Mathematical Methods inOperations Research.

Chen, S. X. (1999). A Beta Kernel Estimator for Density Functions.Computational Statistics & Data Analysis, 31, 131-145.

Gourieroux, C., & Montfort, A. 2006. (Non) Consistency of the BetaKernel Estimator for Recovery Rate Distribution. CREST-DP 2006-32.

66