slide 2 1

Upload: javier231191p

Post on 14-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Slide 2 1

    1/3

    ( ,

    Mathematics for Computer Science

    MIT 6.042J/18.062J

    Predicates & Quantifiers

    Induction

    opyright Albert R. Meyer, 2002. L2-1.1

    Predicates

    Predicates are

    Propositions with variables

    Example:

    P(x,y) ::= x + 2 =y

    is defined to be

    Copyright Albert R. Meyer, 2002. L2-1.2

    Predicates

    2P x y) ::=x + = yx = 1 andy = 3: P(1,3) is true

    x = 1 andy = 4: P(1,4) is false

    P(1,4) is true

    opyright Albert R. Meyer, 2002. L2-1.3

    Quantifiers

    x ForALLx

    y There EXISTS somey

    Copyright Albert R. Meyer, 2002. L2-1.4

    +

    Quantifiers

    x,y range overDomain of Discourse

    x y x

  • 7/30/2019 Slide 2 1

    2/3

    r r

    r r

    Problems

    Proof by InductionClass Problems 1& 2

    opyright Albert R. Meyer, 2002. L2-1.7 Copyright Albert R. Meyer, 2002. L2-1.8

    An Example of Induction

    Suppose we have a property (say color) of

    the natural numbers:

    0, 1, 2, 3, 4, 5,

    Showing thatzero is red, and that

    thesuccessor of any red number is red,

    proves that allnumbers are red!

    opyright Albert R. Meyer, 2002. L2-1.9

    The Induction Rule

    0 and (from n to n+1)

    proves 0, 1, 2, 3,.

    R(0),n [R(n) R(n +1)]m ( ) R m

    Copyright Albert R. Meyer, 2002. L2-1.10

    Proof by Induction

    Statements in green form a template for inductive

    proofs:

    Proof: (by induction on n)

    The induction hypothesis:

    rn+1

    1P( ) ::= 1+ + 2 ++rn =

    r1n

    An Aside: Ellipses

    Ellipses () mean that the reader is supposed

    to infera pattern.

    This can lead to confusion about what isbeing stated.

    Here summation notation gives moreprecision, for example:

    n

    1+ + 2 ++rn = rii=0

    Copyright Albert R. Meyer, 2002. L2-1.12opyright Albert R. Meyer, 2002. L2-1.11

  • 7/30/2019 Slide 2 1

    3/3

    r r

    r r

    r r

    Example Induction Proof An Example Proof

    Base Case (n = 0):+ Revised Induction Hypothesis:

    2 ++r0 ? r0 1

    11+ + =

    r1

    P n) ::= 1 1+ + 2

    ++rn

    =r

    n

    r

    +1

    1

    1

    1 ( rr1= =1

    Wait: divide by zerobug!r1

    This is only true forr1opyright Albert R. Meyer, 2002. L2-1.13 Copyright Albert R. Meyer, 2002. L2-1.14

    An Example Proof An Example Proof

    HaveP(n) by assumption:Induction Step: AssumeP(n) forn 0 to

    1+ + 2 ++rn =rn+1 1proveP(n + 1): r1

    n+r 1 1+r+r2 ++rn+1 =r( 1)+1 1 Adding rn+1 to both sides: n+1

    r1 1+ + rn +rn+1 = r 1 +rn+1r1

    1rn+1 + rn+1(r1)=r1

    opyright Albert R. Meyer, 2002. L2-1.15 Copyright Albert R. Meyer, 2002. L2-1.16

    L2-1.17opyright Albert R. Meyer, 2002.

    An Example Proof

    Continued

    Which is justP(n+1)

    QED.

    1 11

    ( 1) 1

    11

    1

    1

    1

    n nn

    n

    r r rr

    r

    r

    r

    + ++

    + +

    + ++ + + =

    =

    1nn rr +

    Problems

    Class Problem 3

    Copyright Albert R. Meyer, 2002. L2-1.18