slide 1 of t:/classes/bms524/lectures2000/524lec12.ppt © 1993-2007 j. paul robinson, purdue...

26
Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of Confocal Microscopy BMS 524 - “Introduction to Confocal Microscopy and Image Analysis” 1 Credit course offered by Purdue University Department of Basic Medical Sciences, School of Veterinary Medicine UPDATED March 2007 J.Paul Robinson, Ph.D. Professor of Immunopharmacology & Biomedical Engineering Director, Purdue University Cytometry Laboratories These slides are intended for use in a lecture series. Copies of the graphics are distributed and students encouraged to take their notes on these graphics. The intent is to have the student NOT try to reproduce the figures, but to LISTEN and UNDERSTAND the material. All material copyright J.Paul Robinson unless otherwise stated, however, the material may be freely used for lectures, tutorials and workshops. It may not be used for any commercial purpose.

Upload: laureen-todd

Post on 18-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Lecture 10 Applications of Confocal Microscopy

BMS 524 - “Introduction to Confocal Microscopy and Image Analysis”

1 Credit course offered by Purdue University Department of Basic Medical Sciences, School of Veterinary Medicine

UPDATED March 2007

J.Paul Robinson, Ph.D. Professor of Immunopharmacology & Biomedical Engineering

Director, Purdue University Cytometry Laboratories

These slides are intended for use in a lecture series. Copies of the graphics are distributed and students encouraged to take their notes on these graphics. The intent is to have the student NOT try to reproduce the figures, but to LISTEN and

UNDERSTAND the material. All material copyright J.Paul Robinson unless otherwise stated, however, the material may be freely used for lectures, tutorials and workshops. It may not be used for any commercial purpose.

Page 2: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 2 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Analysis of Apoptotic Cells

G0-G1

SG2-M

Fluorescence Intensity

# of

Eve

nts

PI - Fluorescence

# E

vent

s Normal G0/G1 cells

Apoptotic cells

Page 3: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 3 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

GN-4 Cell LineCanine Prostate Cancer

Conjugated Linoleic Acid 200 µM 24 hours

10 µM

Hoechst 33342 / PI Hoechst 33342 / PI

Page 4: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 4 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Differential Interference Contrast(DIC) (Nomarski)

Visible lightdetector

Specimen

Objective

1st Wollaston Prism

Polarizer

DIC Condenser

2nd Wollaston Prism

AnalyserLight path

Page 5: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 5 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Flow-karyotyping of DNA integral fluorescence (FPA) of DAPI-stained pea chromosomes. Inside pictures show sorted chromosomes from regions R1 (I+II) and R2 (VI+III and I), DAPI-stained; from regions R3 (III+IV) and R4 (V+VII) after PRINS labeling for rDNA (chromosomes IV and VII with secondary constriction are labeled)

A-B): metaphases of Feulgen-stained pea (Pisum sativum L.) root tip chromosomes (green ex), Standard and reconstructed karyotype L-84, respectively. C) and D): flow-karyotyping histograms of DAPI-stained chromosome suspensions for the Standard and L-84, respectively. Capital letters indicates chromosome specific peaks, as assigned after sorting

Page 6: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 6 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Flow Cytometry of Bacteria: YoYo-1 stained mixture of 70% ethanol fixed E.coli cells and B.subtilis (BG) spores.

mixture

BG E.coli

BG

E.coli

Sca

tter

Sca

tter

Fluorescence

Simultaneous In Situ Visualization of Seven Distinct Bacterial GenotypesConfocal laser scanning image of an activated sludge sample after in situ hybridization with 3 labeled probes. Seven distinct, viable populations can be visualized without cultivation.Amann et al.1996. J. of Bacteriology 178:3496-3500.

Page 7: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 7 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Confocal Microscope Facility at the School of Biological Sciences which is located within the University of Manchester.

These image shows twenty optical sections projected onto one plane after collection. The images are of the human retina stained with VonWillebrands factor (A) and Collagen IV (B). Capturing was carried out using a x16 lens under oil immersion. This study was part of aninvestigation into the diabetic retina funded by The Guide Dogs for the Blind.

Page 8: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 8 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Examples from Bio-Rad web site

Paramecium labeled with an anti-tubulin-antibody showing thousands of cilia and internal microtubular structures. Image Courtesy of Ann Fleury, Michel Laurent & Andre Adoutte, Laboratoire de Biologie Cellulaire, Université, Paris-Sud, Cedex France.

Whole mount of Zebra Fish larva stained with Acridine Orange, Evans Blue and Eosin. Image Courtesy of Dr. W.B. Amos, Laboratory of Molecular Biology, MRC Cambridge U.K.

Page 9: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 9 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Examples from Bio-Rad Web site

Projection of 25 optical sections of a triple-labeled rat lslet of Langerhans, acquired with a krypton/argon laser. Image courtesy of T. Clark Brelje, Martin W. Wessendorf and Robert L. Sorenseon, Dept. of Cell Biology and Neuroanatomy, University of Minnesota Medical School.

This image shows a maximum brightness projection of Golgi stained neurons.

Page 10: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 10 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Confocal Microscope Facility at the School of Biological Sciences which located within the University of

Manchester.

The above images show a hair folicle (C) and a sebacious gland (D) located on the human scalp. The samples were stained with eosin andcaptured using the slow scan setting of the confocal. Eosin acts as an embossing stain and so the slow scan function is used to collect as muchstructural information as possible. ReferencesForeman D, Bagley S, Moore J, Ireland G, Mcleod D, Boulton M3D analysis of retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy, Br.J.Opthalmol.80:246-52

hair folicle sebacious gland

Page 11: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 11 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

SINTEF Unimed NIS Norway

The above image shows a x-z section through a metallic lacquer. From this image we see the metallic particles lying about 30 microns below the lacquer surface.

The above image shows a x-y section in the same metallic lacquer as the image on the left.

http://www.oslo.sintef.no/ecy/7210/confocal/micro_gallery.html

Page 12: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 12 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

http://www.vaytek.com/

Material from Vaytek Web site

The image on the left shows an axial (top) and a lateral view of a single hamster ovary cell. The image was reconstructed from optical sections of actin-stained specimen (confocal fluorescence), using VayTek's VoxBlast software.

Image courtesy of Doctors Ian S. Harper, Yuping Yuan, and Shaun Jackson of Monash University, Australia. (see Journal of Biological Chemistry 274:36241-36251, 1999)

http://www.vaytek.com/vox.htm

hamster ovary cell

Page 13: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 13 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

3D imaging using CLSM

Page 14: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 14 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Backscattered light and autofluorescence signals combined:

collagen gel & HepG2 cells

Page 15: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 15 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Imaging spectroscopy using CLSM

0

200

400

600

800

1000

1200

1400

617

609

601

593

586

579

572

565

558

552

546

540

534

528

522

517

511

506

501

496

491

Wavelength [nm]

Inte

nsit

y [

AU

]

Page 16: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 16 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Spectral imaging methodology

Page 17: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 17 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Zeiss LSM 5 LIVEA new system concept of optics and electronics

Spectral CLSM (Zeiss, Nikon…)

Dispersion grating

Multianode PMT

Page 18: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 18 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Spectral Unmixing - General Concept32 Channel

DetectorCollect Lambda

Stack

Derive Emission Fingerprints

FITC Sytox-green

Raw Image

Unmixed ImageCourtesy: Duncan McMillan, Carl Zeiss Microimaging

Page 19: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 19 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

From “Spectral imaging and its applications in live cell microscopy” by T. Zimmermann et al., FEBS Letters, 546(1) 2003, Pages 87-92

GFP-YFP unmixing

Page 20: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 20 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Spectral imaging

Image A was acquired using a 560-nm long-pass filter. Actin filaments, nuclei, and cell–cell junctions all appear red.

Image B was acquired using a sequential scan (multitrack), using a 560–615 band-pass emission filter for the red channel and a 650-nm long-pass filter for the blue channel. It is now evident that the nuclear stain is far red, while the cytoplasmic labeling is red.

Image C was acquired using a spectral imaging device, collecting the emission as a series of 11-nm spectral bands across a total range of 552–723 nm.

Stains: Tetramethyl Rhodamine (TRITC; labeling actin), Rhodamine Red-X (labeling desmosomes), and To-Pro3 (labeling nuclei).

From “Seeing is believing? A beginners' guide to practical pitfalls in image acquisition”, by Alison J. North, JCB, Volume 172, Number 1, 9-18, 2006

Page 21: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 21 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Unmixing autofluorescence

Top left panel: RGB image of the fluorescence emission of the sample. Two species of quantum dots (570  nm, left circle; and 620  nm, right circle) were spotted onto a plastic mouse phantom. Center circle: mixture of both quantum dots. Red and green arrows indicate regions from which sample spectra were obtained.

Top right panel: Spectral data. Red and green spectra correspond to values obtained from the indicated regions. The blue spectrum is the calculated spectrum of the pure quantum dot derived from red and green spectral data.

Bottom: Results obtained from phantom sample. (a) Image obtained at the peak of one of the quantum dots (bandpass=570+/–10  nm). (b) Unmixed image of the 570-nm quantum dot. (c) Unmixed image of the 620-nm quantum dot. (d) Combined pseudocolor image of (b) (green), (c), and autofluorescence channel (in white, not shown separately).

From “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging” by James R. Mansfield, Kirk W. Gossage, Clifford C. Hoyt, and Richard M. Levenson, J. Biomed. Opt. 10, 041207 (2005)

Page 22: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 22 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

• Cellular Function– Esterase Activity– Oxidation Reactions– Intracellular pH– Intracellular Calcium– Phagocytosis & Internalization– Apoptosis– Membrane Potential– Cell-cell Communication (Gap Junctions)

Applications

Page 23: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 23 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Applications

• Conjugated Antibodies

• DNA/RNA

• Organelle Structure

• Cytochemical Identification

• Probe Ratioing

Page 24: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 24 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Software available• SGI – VoxelView (old and rarely used)• MAC - NIH Image (free)• PC

– Optimus (not now available)– Microvoxel (not now available)– Media Cybernetics software – Image Pro– Lasersharp (Biorad)– Zeiss (proprietary)– Leica (proprietary)– Confocal Assistant (free – old but good)

Page 25: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 25 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Methods for visualization• Hidden object removal

– Easiest methods is to reconstruct from back to front

• Local Projections– Reference height above threshold

– Local maximum intensity

– Height at maximum intensity + Local Kalman Av.

– Height at first intensity + Offset Local Ht. Intensity

• Artificial lighting• Artificial lighting reflection

Page 26: Slide 1 of t:/classes/BMS524/lectures2000/524lec12.ppt © 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories Lecture 10 Applications of

Slide 26 of t:/classes/BMS524/lectures2000/524lec12.ppt© 1993-2007 J. Paul Robinson, Purdue University Cytometry Laboratories

Visualization IssuesVolume rendering is a computer graphics technique whereby the object or phenomenon of interest is sampled or subdivided into many cubic building blocks, called voxels (or volume elements.) A voxel is the 3-D counterpart of the 2-D pixel and is a measure of unit volume. Each voxel carries one or more values for some measured or calculated property of the volume (such as intensity values in the case of LSCM data) and is typically represented by a unit cube. The 3-D voxel sets are assembled from multiple 2-D images (such as the LSCM image stack), and are displayed by projecting these images into 2-D pixel space where they are stored in a frame buffer. Volumes rendered in this manner have been likened to a translucent suspension of particles in 3-D space.

In surface rendering, the volumetric data must first be converted into geometric primitives, by a process such as isosurfacing, isocontouring, surface extraction or border following. These primitives (such as polygon meshes or contours) are then rendered for display using conventional geometric rendering techniques.

http://www.cs.ubc.ca/spider/ladic/volviz.html