site and building water use - university of idaho of fame/arch464/sp… · 3/20/2011 1 site and...

9
3/20/2011 1 SITE and BUILDING WATER USE CASE STUDY 2 Katherine Wood Varela Nick Oelrich Justin Traw Site and Building Water Use Moscow ID ELEVATION 2583 LATITUDE 46.7 LONGITUDE 117.0 AVERAGE PRECIPITATION 23.63 IN AVERAGE SNOWFALL 49.2 IN AVERAGE MAX TEMP. 58.1 F. AVERAGE MIN. TEMP. 36.6 F.

Upload: others

Post on 28-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Site and Building Water Use - University of Idaho of Fame/Arch464/Sp… · 3/20/2011 1 SITE and BUILDING WATER USE CASE STUDY 2 Katherine Wood Varela Nick Oelrich Justin Traw Site

3/20/2011

1

SITE and BUILDING WATER USE

CASE STUDY 2

Katherine Wood Varela

Nick Oelrich

Justin Traw

Site and Building Water Use

Moscow ID

ELEVATION ‐ 2583 

LATITUDE ‐ 46.7   LONGITUDE ‐ 117.0

AVERAGE PRECIPITATION ‐ 23.63 IN

AVERAGE SNOWFALL  49.2 IN

AVERAGE MAX TEMP.  58.1 F.

AVERAGE MIN. TEMP.  36.6 F.

Page 2: Site and Building Water Use - University of Idaho of Fame/Arch464/Sp… · 3/20/2011 1 SITE and BUILDING WATER USE CASE STUDY 2 Katherine Wood Varela Nick Oelrich Justin Traw Site

3/20/2011

2

SITE and BUILDING USEBUILDING DESCRIPTIONMemorial Gym

• Memorial Gym was designed in in 1927 and was complete in 1928

• Designed by David C. Lang‐ head of the architecture department

• Seats more 2500 spectators in the multi‐purpose arena space

• The facility is used for physical education classes, intramurals, open recreation, and an assortment of office space

• Memorial Gym was added to the National Register of Historic Places in 1977 

• Current storm water runoff is directed off the building by cowlicks at the roof

Current storm water runoff is directed off the building by cowlicks at the roof and is allowed to drip to the stormwater drain below the south entry.

SITE STORMWATER USE

Page 3: Site and Building Water Use - University of Idaho of Fame/Arch464/Sp… · 3/20/2011 1 SITE and BUILDING WATER USE CASE STUDY 2 Katherine Wood Varela Nick Oelrich Justin Traw Site

3/20/2011

3

Floor Plan Analysis of Water UsageThird Floor• Men’s Locker room 

•4 Toilets,  4 lavatory, 3 showers• Women's Locker room 

•4 Toilets, 4 lavatory,  3 Shower• 4 Drinking Fountains

Second Floor• Men’s Bathroom

•2 Toilets, 5 Urinals, 3 lavatory, • Women's Bathrooms

•9 Toilets, 5 lavatory• 4 Drinking Fountains

First Floor• Men’s Locker room 

•4 Toilets, 6 Urinals  4 lavatory, 9 showers• Men’s Facility Locker room 

•3 Toilets, 3 Urinals  3 lavatory, 13 showers• Women's Locker room 

•8 Toilets, 4 lavatory,  5 Shower• Women's Bathrooms

•2 Toilets, 1 lavatory  • 1 Drinking Fountains• 3 Industrial Washing Machines 

Basement• Men’s Bathroom

•2 Toilets, 2 Urinals, 2 lavatory, • Women's Bathrooms

•3 Toilets, 2 lavatory• 2 Drinking Fountains

Current Water Usage

Page 4: Site and Building Water Use - University of Idaho of Fame/Arch464/Sp… · 3/20/2011 1 SITE and BUILDING WATER USE CASE STUDY 2 Katherine Wood Varela Nick Oelrich Justin Traw Site

3/20/2011

4

GPFU = Gallons Per Fixture Unit = WU / FUWU = Water Utility 

WU = 5 gal. per capita day x 500 max occupancy = 2500 gal. per dayFU = Fixture Unit (per MEEB Table 21.15) For existing fixtures: FU = 3.57GPF = Gallons Per Fixture = GPFU x FU

TOTAL Gallons Per Fixture Required

5 gal./ per capita daily x 500 max. occupancy

Estimated 2500

gallons/day

Calculated  2520.5 

gallons/day

Water Distribution Diagram

Page 5: Site and Building Water Use - University of Idaho of Fame/Arch464/Sp… · 3/20/2011 1 SITE and BUILDING WATER USE CASE STUDY 2 Katherine Wood Varela Nick Oelrich Justin Traw Site

3/20/2011

5

Water Conservation Plan

Design Strategies:

• Waterless Urinals•Replace the existing urinals with waterless fixtures

• Dual‐Flush Toilets•Replacing the existing toilets with duel‐flush fixtures that are tied into the cistern and grey water system

• Cistern•Collect rain for building use •Channeling the rain off the roof into the cistern without                                                                    ruining the integrity of the architecture of the building

• Grey Water Storage•Use grey water to reduce the Amount of clean water that is used

Replace regular flush valves with dual flush valves, and regular urinals with waterless urinals reduces total clean water supply per day by 44%. 

Estimated Water Conservation

Existing GPFU = 699New GPFU = 395

44%Reduction 

(1400 gal/day)

Water Savings After Fixture Modification

Page 6: Site and Building Water Use - University of Idaho of Fame/Arch464/Sp… · 3/20/2011 1 SITE and BUILDING WATER USE CASE STUDY 2 Katherine Wood Varela Nick Oelrich Justin Traw Site

3/20/2011

6

238,140

Allot grey water from lavatories, showers, drinking fountains and the washing machines to provide water for the dual flush toilets.

Estimated Water Conservation

‐ 404,968 = 19,162 gal/yr required toilet supply

73%  Reduction fresh water supply 

to toilets

Utilization of Alternative Water Supply

Estimated Potable Water Conservation

Changing fixtures: 44% Utilizing onsite grey water: 73%

80% OverallReduction 

(482 gal/day)

Water Distribution after Redesign

Page 7: Site and Building Water Use - University of Idaho of Fame/Arch464/Sp… · 3/20/2011 1 SITE and BUILDING WATER USE CASE STUDY 2 Katherine Wood Varela Nick Oelrich Justin Traw Site

3/20/2011

7

Cistern DesignDesign Strategies:

Due to the high use of the facilities the cistern will be emptied and filled on a regular basis.  The cistern should be cast‐in‐place reinforced concrete, sealed concrete masonry units, brick or stone set with mortar and plastered with cement on the inside, ready made steel tanks, precast concrete tanks, redwood tanks, or a fiberglass tank.

The cistern must be placed upslope of an on‐site sewage facility,  low places were flooding occurs should also be avoided but can be used with the proper site and cistern design.  The cistern can be incorporated into the building structure , in the basement, or under overhangs.  By placing the cistern underground freezing can be avoided and the water can be kept cool in the summer months. 

Cistern Design

Annual Rainfall Cistern Estimated Cistern Water Usage

23.5 in X 2/3 (designed for dry years)= 16 in. annual rainfall

16 in. X 32,000 (roof area) 2.15 =

238,140 gallons a year

Toilets‐19,162

Showers‐ 218,978(required surplus of 93,754 to come from city water supply) 

Cistern Sizing Estimate Cistern Volume

G=2cC=monthly catchment G= cistern capacity19845gal. X2=39690 gallons

V=G7.48

396907.48= 5306 ft3

•Designed for an underground cistern: 25’Wx25’Dx10’H = 6250 ft 3

Providing larger volume to accommodate for greater demand

Page 8: Site and Building Water Use - University of Idaho of Fame/Arch464/Sp… · 3/20/2011 1 SITE and BUILDING WATER USE CASE STUDY 2 Katherine Wood Varela Nick Oelrich Justin Traw Site

3/20/2011

8

Water Distribution Diagram (redesign)

Site Plan

Page 9: Site and Building Water Use - University of Idaho of Fame/Arch464/Sp… · 3/20/2011 1 SITE and BUILDING WATER USE CASE STUDY 2 Katherine Wood Varela Nick Oelrich Justin Traw Site

3/20/2011

9

Conclusion

By changing toilets and urinals, we reduce the daily water usage by 44%. There is an opportunity to save even more water by changing all of the fixtures, like the showers, lavatories and washing machines.

By utilizing on site grey water and rainwater, 100% of the potable water need for the toilets is eliminated. The rainwater used for showers reduces the amount of potable water required by 30%. Overall the total potable water supply to the building is reduced by 80%.

However, the potable water supply from the city should still be accessible to provide tertiary support to the cistern and grey water supply in case of drought or not enough use.

Poor stormwater management was corrected by the use of a rainwater catchment cistern, thus directing building water runoff  into the cistern for reuse in the building, and not down the side of the building and into the sewers.

Questions?

“Oh Black Water, keep on rollin”