simulation of high current linacs - desyheraeus-technology.desy.de/e8/e44930/tiedelinacs.pdf · r....

20
R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation of High Current Linacs R. Tiede April 28’th, 2009 430. WE-HERAEUS-SEMINAR “Accelerators and Detectors at the Technology Frontier”

Upload: doankiet

Post on 05-Aug-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1

Simulation of High Current Linacs

R. TiedeApril 28’th, 2009

430. WE-HERAEUS-SEMINAR“Accelerators and Detectors at the Technology Frontier”

Page 2: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 2

Outline

- The LORASR beam dynamics code● A new space charge routine based on a PIC 3D FFT algorithm● Tools for loss profile and machine error study calculations

- Description of the ‘Combined Zero-Degree Structure’(‘Kombinierte Null Grad Struktur – KONUS’) concept

- KONUS design examples

- Summary and outlook

Page 3: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 3

LORASR Code Features - Overview

• General :- Multi particle tracking along drift tube sections, quadrupole lenses, short RFQ sections

including fringe fields and dipole magnets.- Running on PC-Windows platforms (Lahey-Fujitsu Fortran 95).

• Available Elements :

Longitudinale und radiale Strahldynamikrechnungen mit RaumladungLongitudinal And Radial Beam Dynamics Calculations including Space Charge

magnetic quadrupole lens

solenoid lens

dipole bending magnet

accelerating gapRFQ section(constant rf phase, ‘Superlens’)3D FFT space charge routine

error study routines

• GUI :

Page 4: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 4

Z

1

Z1 Z2 Z3 Z2Z4 Z5 Z1

KN=1

Z1 Z2 Z3 Z2Z4 Z5 Z1

/21ζ

Wk

kΦ k+1Φ

W (N)s

(N)s,iΦ (N)

sΦW (N)s,m

(N)s,fΦ

W (N+1)s

1ζ 2ζ 3ζ 2ζ 1ζ

Wk+1

z

a

φ

r4

g / = 1φ

i

z

rE (z , r )4

ggeff

zE (z , r )i

E-field shape distributions for 10 gap geometries with different g/Ø ratios are stored as input parameter list.

The evolution of the single particle coordinates x, x’, y, y’, ΔW, ΔΦ, is performed in a 30 step per gap procedure for 4 different radial zones. The field components at the particles positions are linearly interpolated from the stored fields at the adjacent radial zones.

“Thick” Alvarez-type “Slim” H-mode type

0=⋅∇ Err

( ) drdz

dErdrErdrd

Rz

r

R

∫∫ −=⋅00

01=

∂∂

++∂∂

zEE

rrE z

rr

Accel. Gap Calculation Routine :Single Particle Tracking - 30 Steps Per Gap

Page 5: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 5

GAP Field Modelling : Upgrade Options

- Read in the RF field of each cell, as generated by MICROWAVE STUDIOTM, from an external file.

• Accuracy (mesh resolution)?

- Consideration of dipole and quadrupolecontent of IH- and CH-gaps).

z=0

z=Zm

y=0 x=0

Page 6: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 6

( ) ( )( )′ − ′=XX

k kL kLkL kL

XXk

2

21

1

1sin cos

cos sin ;

( ) ( ) ( )′ ⋅ ′=XX

k kL kLkL kL

XXk

2

21

1

1sinh cosh

cosh sinh ;

k = q B cmo

⋅ ′ ⋅⋅ ⋅

⎛⎝⎜

⎞⎠⎟

β γ

1 2/

Focusing lens :

Defocusing lens :

Hard edge approximation :

Magnetic Quadrupole Lens

Page 7: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 7

Ω⊆−=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

+∂∂

=Δ Gonzyx 0

2

2

2

2

2

2

ερϕϕ

x

y

z

ρ

0xL

zL

yL

xΔ j

zΔlyΔ

k

Ω

x

y

z

ρ

Ω

lkjr

,,

G ( )lkjlkj zyxr ;;,, ≡

( )lkjlkj r ,,,, ρρ ≡

( )lkjlkj r ,,,, ϕϕ ≡

∞→=∂=Ω∂=

RatcGonb

ona

0)0)0)

ϕϕϕ

Space Charge Calculation by the“Particle-In-Cell” (PIC) Method

The Poisson equation is solved on the nodes of a Cartesian grid:

Boundary condition options:

Page 8: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 8

Main Steps of aParticle-In-Cell (PIC) Algorithm

- Charge discretization on a 3D Cartesian grid and calculation of the charge density distribution

- Solving the Poisson equation on the grid

- Calculation of the electric field components on the grid from

- Interpolation of the grid field values to the exact position of each macro particle.

0/ερϕ −=Δ

ϕgradE −=r

lkj ,,ρ

Page 9: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 9

Main Steps of aParticle-In-Cell (PIC) Algorithm, Example

Gauß distr., 104 particles , Lx = Ly = 64 mm, Lz = 184 mm , Ibunch = 1 mA 238U28+

Page 10: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 10

Computation Complexity of a PIC FFT-based Algorithm

1.) Grid charge discretization (O( PN ) + O( GN )) 2.) Solving the Poisson equation (O( GG NN 2log⋅ ))

3.) Calculation of the grid Er-field components (O( GN ))

4.) Interpolation of the Er

-field to the particle positions (O( PN ))

Number of operations : ~ (Nparticles + Nmeshpoints x log2Nmeshpoints)

Page 11: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 11

Benchmarking of the New FFT Algorithm

Example: GSI Proton Linac preliminary design, LORASR Run on a 733 MHz, Intel PIII PC

CH-DTL

QT

Beam Axis /m0 5 10 15 20

Bea

m E

nvel

opes

/m

m

-10

-5

0

5

10X-Z

Y-Z

CH-DTL

QT

Beam Axis /m0 5 10 15 20

Bea

m E

nvel

opes

/m

m

-10

-5

0

5

10X-Z

Y-Z

919 space charge calls over total linac length (11 DTL’s + intertank quad. lenses).

Macro part. no. NP

Grid no. NG

PP-routine (old) CPU time / call

PIC-routine (new) CPU time / call

2 000 32 768 (32×32×32) 1.307 s 0.103 s

10 000 32 768 (32×32×32) 34 s 0.294 s

100 000 262 144 (64×64×64)

3 500 s (58 min 20 s) 3.1 s

1 000 000 2 097 152 (128×128×128)

350 000 s (4 d 1 h 13 min) 28.8 s

Page 12: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 12

Error Study Tools for LORASR:Classification of Error Types

- Appear during design and running in phase. Can be detected and cured.

- Examples: quadrupole, cavity, drift tube misalignment,manufacturing errors (geom. lengths),field-flatness, quadrupole gradient errors.

Static errors:

- Appear during operation. Are time-dependent. Remain often uncorrected.

- Examples: rf source instabilities (amplitude, phase),mechanical vibrations,transient beam loading.

Dynamic errors:

Page 13: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 13

LORASR Error Studies Analysis ToolsLoss Profile for Single Runs

Page 14: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 14

KONUS Concept

- “Standard” linac design (up to ≈ 100 MeV) : Alvarez DTL + FODO beam dynamics.

Alternative :

- H-Type DTL (IH or CH) and KONUS beam dynamics,each lattice period divided into 3 regions with separated tasks:• Main acceleration at Φs = 0°, by a multi-gap structure (1). • Transverse focusing by a quadrupole triplet or solenoid (2). • Rebunching: 2 - 7 drift tubes at Φs = - 35° , typically (3).

FODO Neg. Synchr. Phase

Quadrupole Triplet Channel ‘KONUS‘ – Combined 0° Structure

Page 15: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 15

Transverse KONUS Beam Dynamics:Quadrupole Triplet Channel

IH cavity of GSI HLI injector: first built cavity containing several KONUS periods

D

0.0 0.5 1.0 1.5 2.0 2.5 3.0-10

-5

0

5

10

Y [m

m]

z [m]

0.0 0.5 1.0 1.5 2.0 2.5 3.0-10

-5

0

5

10

X [m

m]

z [m]

F D F D F

(op. since 1991)

lattice period:

it,σ : transv. KONUS phase advancei-1 i i+1

Page 16: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 16

Applications

- Proton Injector for the GSI FAIR Facility325 MHz, 70 mA protons, 3-70 MeV, 0.1% duty cycle.

- Superconducting CH-DTL section for IFMIF (IAP proposal) 175 MHz, 125 mA deuterons, 2.5 – 20 MeV/u, cw operation.

Page 17: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 17

FAIR Proton Linac Design

0 5 10 15 20 25-20

-10

0

10

20

X(Z)Y(Z)

trans

v. e

nvel

opes

[m

m]

beam axis [m]

0 5 10 15 20 25

1.0

1.2

1.4

1.6

1.8

X-X' Y-Y' dφ-dW

rela

tive

εrm

s gro

wth

beam axis [m]

Page 18: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 18

FAIR Proton Linac Design:Machine Error Studies

Error type range lens translations ΔX, ΔY [mm] ≤ 0.1

lens rotations Δφx, Δφy, Δφz, [mrad]

1≤Δ xφ

1≤Δ yφ

5≤Δ zφ

gap voltage variation ΔUi,j [%] 0.1≤Δ gapU

0.1≤Δ tankU

tank rf phase oscillations Δφi [°] ≤ 1.0

Page 19: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 19

S.C. CH-Linac for IFMIF

scCH-1

scCH-2

scCH-5

scCH-6

re-buncher cryo -modulesc solenoids

rt IH/CH

4.5 MeV/u 20 MeV/u

scCH-7

scCH-8

scCH-3

scCH-4

scCH-1

scCH-2

scCH-5

scCH-6

re-buncher cryo -modulesc solenoids

rt IH/CH

4.5 MeV/u 20 MeV/u

scCH-7

scCH-8

scCH-3

scCH-4

0 1 2 3 4 5 6 7 8 9 10 11 12 13-60-40-20

0204060

X(Z)

env

elop

es [

mm

]

beam axis [m]

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1.0

1.2

1.4

1.6

1.8

X-X' Y-Y' dφ-dW

rela

tive

εrm

s gro

wth

beam axis [m]

100% common beamenvelopes of 100 runs,106 particles each

red: nominal rungreen: error settings 1blue: error settings 2

Setting1 Setting2

ΔXlens= ± 0.1ΔYlens = ± 0.1

ΔXlens = ± 0.2ΔYlens = ± 0.2

Δφx = ± 1.5Δφy = ± 1.5Δφz = ± 2.5

Δφx = ± 3.0Δφy = ± 3.0Δφz = ± 5.0

ΔUgap = ± 5.0ΔUtank = ± 1.0

ΔUgap = ± 5.0ΔUtank = ± 1.0

ΔΦtank = ± 1.0 ΔΦtank = ± 1.0

Page 20: Simulation of High Current Linacs - DESYheraeus-technology.desy.de/e8/e44930/TiedeLINACS.pdf · R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 1 Simulation

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt 20

Summary

- A new LORASR PIC 3D FFT space charge routine was developed and implemented to the LORASR code. It provides the ability to perform simulations with up to 1 million macroparticles routinely and within a reasonable computation time. This will give a strong impact to the design of high intensity linacs (e.g. GSI FAIR Facility Proton Linac, IAP-proposal for IFMIF Accelerator, …).

- Machine error settings routines and data analysis tools were developed and applied for error studies on the FAIR Proton Linac and the IAP IFMIF proposal.