silly string

60

Upload: sorley

Post on 13-Feb-2016

36 views

Category:

Documents


0 download

DESCRIPTION

Silly String. Starring. Zeb. Jeff. Mike. Bubba. Introduction. Descriptions Statements. A string can be defined as a rigid body whose dimensions are small when compared with its length . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Silly String
Page 2: Silly String
Page 3: Silly String
Page 4: Silly String
Page 5: Silly String
Page 6: Silly String

Introduction• Descriptions

• Statements

Page 7: Silly String

A string can be defined as a rigid body whose dimensions are small when compared with its length.

Page 8: Silly String

The string in our model will be stretched between two fixed pegs that are separated by a distance of length L.

L

Peg 1 Peg 2

Page 9: Silly String

Tension (T0) will be the force of the two pegs pulling on the string.

For our model, we will assume near constant tension.

Page 10: Silly String

Density can be defined as the ratio of the mass of an object to its volume.

For a string, density is mass per unit length.

In our model, we will also assume near constant density for the string.

Page 11: Silly String

Derivation of the Wave Equation

• Basic modeling assumptions• Review of Newton’s Law• Calculus prereqs• Equational Derivation

Page 12: Silly String

Transverse:

Vibration perpendicular to the X-axis

Model Assumptions

L

Page 13: Silly String

Model Assumptions

•Density is assumed constant

= 1

•Initial Deformation is small

Page 14: Silly String

Model Assumptions

Tension T is constant and tangent to the curve of the string

T = 1

L

Page 15: Silly String

Newton’s Second Law

F = ma

Page 16: Silly String

Calculus Prerequisites

T = [ ]1

1 + dydx( )²( ) i + (

dydx

1 + dydx( )²) j |T|

y = f(x) Angle of Inclination

T

y

x

Page 17: Silly String

Equational Derivation

x x+x

s

u

x

Page 18: Silly String

Equational Derivation

x x+x

s

u

x

Vertical Forces

Horizontal Forces

s

Page 19: Silly String

T[ ux (x + x, t)

1 +ux (x, t)( )2]-ux (x, t)

1 +ux (x + x, t)( )2

Vertical Forces:

Get smaller and go to zero

Page 20: Silly String

Vertical Forces:

T[ ux (x + x, t)

]-ux (x, t)

1 1

= (s) ²ut² (x,t)

Page 21: Silly String

Vertical Forces:

ux

(x + x, t) - ux

(x, t) = s²ut² (x,t)

MassAcceleration

Net Force

Page 22: Silly String

ux

(x + x, t) - ux

(x, t)

x

Vertical Forces

= s²ut² (x,t)

x

Page 23: Silly String

²ux²

(x, t) = ²ut² (x,t)

Vertical Forces

One dimensional wave equation

Page 24: Silly String

Solution to the Wave Equation

• Partial Differential equations

• Multivariate Chain rule

• D’Alemberts Solution

• Infinite String Case

• Finite String Case

• Connections with Fourier Analysis

Page 25: Silly String

2nd Order Homogeneous Partial Differential Equation

A B C FED 0 ²y ²y ²yx² xx ++ +++ t² t

y yx y =

Page 26: Silly String

Classification of P.D.E. types

= B² - AC • Hyperbolic > 0• Parabolic = 0• Elliptic < 0

Page 27: Silly String

Boundary Value Problem

• Finite String Problem • Fixed Ends with 0 < x < l• [u] = 0 and [u] = 0

X = 0 X = l

Page 28: Silly String

Cauchy Problem

• Infinite String Problem• Initial Conditions• [u] = (x) and [du/dt] (x) t=0 t=00 l=

Page 29: Silly String

Multi-Variable Chain Rule example

f(x,y) = xy² + x²

g(x,y) = y sin(x)

h(x) = e

F(x,y) = f(g(x,y),h(x))

x

Page 30: Silly String

Let u = g(x,y)

v = h(x)

So F = f(u,v) = uv² + u²

Page 31: Silly String

F

u

v

x

y

fu

fv

g

g

x

xh

y

Variable Dependency Diagram

Page 32: Silly String

fu

Fx =

gx +

fv

ux

= ((v² + 2u)(y cos(x)) + (2uv)e )x

= (e )² + 2y sin(x) (y cos(x))

+ 2(y sin(x) e e )

x

xx

Page 33: Silly String

Multi-Variable Chain Rule for Second Derivative

Very Similar to that of the first derivative

Page 34: Silly String

Our Partial Differential Equation

ξ = x – t

η = x + t

So ξ + η = 2x x = (ξ + η)/2

And - ξ + η = 2t t = (η – ξ)/2

Page 35: Silly String

Using Multi-Variable Chain Rule

u t η

u= +

²ut²

t

- u +[ ]

Page 36: Silly String

Using Algebra to reduce the equation

²ut² ξ²

2 ²uηξ

²u -= ²u

η²+

Page 37: Silly String

ηuu

ξ

x

= +

²uηuu

ξx²= +

ux

[ ]

Page 38: Silly String

Using Algebra to simplify

²uη²²u²u

ξ²x²= + ηξ

2 ²u+

Page 39: Silly String

Substitute What we just found

²ut²

²ux²

=

Page 40: Silly String

η²²u²u

ξ²+ ηξ

2²uη²²u²u

ξ²+ ηξ

2 ²u+=

ηξ2 ²u

= ηξ2 ²u

ηξ4 ²u

= 0

Page 41: Silly String

We finally come up with

ηξ ²u

= 0

When u = u(ξ, η)

η = x + t

ξ = x - t

Page 42: Silly String

Intermission

Page 43: Silly String

Can I get a Beer?

Sorry, we don’t

sell to strings here

A String walks into a bar

Page 44: Silly String

Can I get a beer?

Again we can’t serve you

because you are a string

I’m afraid not!

Page 45: Silly String

And Now Back to the Models Presentation

Page 46: Silly String

D’Alemberts Solution

2

2

2

2

xu

tu

tx tx

Page 47: Silly String

2

22

2

2

2

2

2nu

nduu

tu

2

22

2

2

2

2

2nu

nduu

xu

Page 48: Silly String

2

22

2

2

2

22

2

2

22nu

nduu

nu

nduu

042

u

02

u

Page 49: Silly String

)(

ku

)()( cdku

)()(),( cku

)()(),( gfu

)()(),( txgtxftxu

Then unsubstituting

Relabeling in more conventional notation gives

Integrating with respect to Ada

Next integrating with respect to Xi

Page 50: Silly String

Infinite String Solution

)()(),( txgtxftxu

0)0,( x

tu

)()0,( xxu

)(')(')0,( xgxfxtu

)(')(' txgtxftu

Which is a cauchy problem

Reasonable initial conditions

0)(')(')0,( xgxfx

tu

Page 51: Silly String

So we have

)()()( xxgxf

0)(')(' xgxf

And we have to solve for f and g

)()()()0,( xxgxfxu

)()(),( txgtxftxu

Page 52: Silly String

2)()( xcxf

2)()( cxxg

When we solved for f and g, we found

Page 53: Silly String

Then when we plug those into U

)()(),( txgtxftxu

2)(

2)( ctxtxc

2)()( txtx

Page 54: Silly String

Finite Solution

)()0,( xxu

0)0,( x

tu

0),0( tu0),( tLu

02

)()(),0(

tttu

02

)()(),(

tLtLtLu

Boundary Value Problem

Boundary conditions

Page 55: Silly String

0)()(),0( tttu

0)()(),( tLtLtLu

tLb

0)()( bb

)()( bb

)()( LttL

0)()( LttL

bt

Page 56: Silly String

This is a periodic function with period 2L. If the boundary conditions hold this above is true. This equation relates to the sin and cos functions.

0)()2( xLx

Page 57: Silly String

NEED A CONCLUSION

Page 58: Silly String

A Special thanks To

• Dr. Steve Deckelman for all your help and support

• S.L. Sobolev “Partial Differential Equations of Mathematical Physics

• Scott A. Banaszynski for use of his wonderful guitar

Page 59: Silly String

?

Page 60: Silly String

Thank you for coming, enjoy the rest of the presentations.