silicon microchannels studies for the its upgrade

12
Silicon microchannels studies for the ITS upgrade A. Francescon ITS-MFT mini-week 12.03.14

Upload: bin

Post on 15-Feb-2016

41 views

Category:

Documents


0 download

DESCRIPTION

Silicon microchannels studies for the ITS upgrade. Francescon ITS-MFT mini-week 12.03.14. Silicon micro-channels for electronics cooling. CMOSAIC collaboration 3D Stacked Architectures with Interlayer Cooling (CMOSAIC). Agostini et al. (2008) High heat flux flow boiling - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Silicon microchannels studies  for the ITS upgrade

Silicon microchannels studies for the ITS upgrade

A. FrancesconITS-MFT mini-week

12.03.14

Page 2: Silicon microchannels studies  for the ITS upgrade

Silicon micro-channels for electronics cooling

- High heat transfer rate- Uniform temperature (if flow boiling)- Low mass flow rate operation- Reduced dimensions

Agostini et al. (2008) High heat flux flow boiling in silicon microchannels

CMOSAIC collaboration3D Stacked Architectures with Interlayer Cooling (CMOSAIC)

Page 3: Silicon microchannels studies  for the ITS upgrade

Silicon microchannels for tracking detectors

When addressing the thermal management of the on-detector electronics fro HEP tracking detectors, the design is complicated by different constraints:

- Minimization of the material budget

- Cooling of large active areas

- Strict geometrical and integration constraints

Page 4: Silicon microchannels studies  for the ITS upgrade

Silicon microchannels for tracking detectors

When designing cooling system for the tracking detectors, the design is complicated by different constraints:

- Minimization of the material budget

- Cooling of large active areas

- Strict geometrical and integration constraints

Special frame design

Page 5: Silicon microchannels studies  for the ITS upgrade

First prototype of silicon frame with embedded microchannels

60x15 mm2 Silicon dummy chip100 μm thick

Page 6: Silicon microchannels studies  for the ITS upgrade

Results at qchip=0.3 W/cm2The test was performed at the nominal power dissipation expected for the pixel chip.

Dummy chip top surface with two electrodes and seven thermocouples

At the nominal power dissipation expected for the pixel chip the system is able to maintain the detector surface within the thermal constraints.

G=300 [kg·m-2·s-1]Tin=21°CTsat=22.5°C

G=750 [kg·m-2·s-1]Tin=19.5°CTsat=21°C

6

Page 7: Silicon microchannels studies  for the ITS upgrade

Silicon microchannels for tracking detectors

When designing cooling system for the tracking detectors, the design is complicated by different constraints:

- Minimization of the material budget

- Cooling of large active areas

- Strict geometrical and integration constraints

The ˝micro-bridge˝

Page 8: Silicon microchannels studies  for the ITS upgrade

Interconnected silicon microchannel devicesSilicon microchannel devices are limited in dimensions by the diameter of the silicon wafer used as substrate for the microfabrication. At this stage of the development, 4” wafers are used but tests on 6” wafers are on-going. However, even using 8” wafers still it would not be possible to reach the length of the ITS inner layers stave. Using larger wafers would lead to a device very hard to handle during the following integration steps. For this reason, the interconnection of several silicon microchannel devices is mandatory.

In order to guarantee the interconnection of silicon microchannel devices, we developed the concept of the ˝micro-bridge˝.

Page 9: Silicon microchannels studies  for the ITS upgrade

Silicon microchannels for tracking detectors

When designing cooling system for the tracking detectors, the design is complicated by different constraints:

- Minimization of the material budget

- Cooling of large active areas

- Strict geometrical and integration constraints Special fluidic design

The requirement of having all the services on one side for the extraction of the ITS barrel for maintenance, forced us to develop a special fluidic path for the prototype.

Inlet distribution line Micro-bridge

Return line

Page 10: Silicon microchannels studies  for the ITS upgrade

Fabrication of the prototype

The devices are fabricated in the EPFL Center of MicroNano techology (CMi) class 100 clean room using standard microfabrication techniques.

Page 11: Silicon microchannels studies  for the ITS upgrade

Preliminary thermal tests: single-phase flow

Test at 0.1 W/cm2 uniform power dissipationṁ=0.4 g/sTin=16 ᵒC

Page 12: Silicon microchannels studies  for the ITS upgrade

Future plansIn collaboration with the Thai MicroEectronic Center (TMEC) in Bangkok, we are developing ultra-thin full silicon frames with embedded microchannels on 6˝ wafers.This will require only 2 frames for the cooling of a full IB stave.

410 μm

160 μm! Before bonding