signals and systems hw1 solution

13
Signals and systems HW1 solution 1. Probs. 1.6 (b) The signal is not periodic. A periodic continuous-time signal () has the property that there is a positive value of for which () = ( + ) for all values of . For this problem, 2 () = 2 ( + ) ⟹ (βˆ’1+) = (βˆ’1+)(+) ⟹ (βˆ’1+) = (βˆ’1+)+(βˆ’1+) ⟹1= (βˆ’1+) ⟹ 0 = (βˆ’1 + ) ⟹ =0 Since is not a positive value, we conclude that the signal 2 () is not periodic. Probs. 1.6 (d) The signal is periodic. 4 [] = 3 3(+ 1 2 )5 ⁄ = 3 3 10 βˆ™ 3 5 The general discrete-time complex exponential signal can be expressed in the form [] = where = || and Ξ± = || 0 Then 4 [] = 3 3 10 βˆ™ 3 5 = where = 3 3 10 = ||

Upload: others

Post on 13-May-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Signals and systems HW1 solution

Signals and systems HW1 solution

1.

Probs. 1.6 (b)

The signal is not periodic.

A periodic continuous-time signal π‘₯(𝑑) has the property that there is a

positive value of 𝑻 for which

π‘₯(𝑑) = π‘₯(𝑑 + 𝑇)

for all values of 𝑑.

For this problem,

π‘₯2(𝑑) = π‘₯2(𝑑 + 𝑇)

⟹ 𝑒(βˆ’1+𝑗)𝑑 = 𝑒(βˆ’1+𝑗)(𝑑+𝑇)

⟹ 𝑒(βˆ’1+𝑗)𝑑 = 𝑒(βˆ’1+𝑗)𝑑+(βˆ’1+𝑗)𝑇

⟹ 1 = 𝑒(βˆ’1+𝑗)𝑇

⟹ 0 = (βˆ’1 + 𝑗)𝑇

⟹ 𝑇 = 0

Since 𝑻 is not a positive value, we conclude that the signal π‘₯2(𝑑) is not

periodic.

Probs. 1.6 (d)

The signal is periodic.

π‘₯4[𝑛] = 3𝑒𝑗3πœ‹(𝑛+12

) 5⁄= 3𝑒𝑗

3πœ‹10 βˆ™ 𝑒𝑗

3πœ‹5

𝑛

The general discrete-time complex exponential signal can be expressed in the

form

π‘₯[𝑛] = 𝐢𝛼𝑛

where

𝐢 = |𝐢|π‘’π‘—πœƒ

and

Ξ± = |𝛼|π‘’π‘—πœ”0

Then

π‘₯4[𝑛] = 3𝑒𝑗3πœ‹10 βˆ™ 𝑒𝑗

3πœ‹5

𝑛 = 𝐢𝛼𝑛

where

𝐢 = 3𝑒𝑗3πœ‹10 = |𝐢|π‘’π‘—πœƒ

Page 2: Signals and systems HW1 solution

and

Ξ± = 𝑒𝑗3πœ‹5 = |𝛼|π‘’π‘—πœ”0 ⟹ πœ”0 =

3πœ‹

5

Since |Ξ±| = 1, the fundamental period is given by

𝑁 = π‘š (2πœ‹

πœ”0) = π‘š (

2πœ‹

3πœ‹ 5⁄) = π‘š (

10

3)

By choosing π‘š = 3, we obtain the fundamental period to be 10.

Probs. 1.25 (b)

The signal is periodic.

π‘₯(𝑑) = 𝑒𝑗(πœ‹π‘‘βˆ’1) = π‘’βˆ’π‘— βˆ™ π‘’π‘—πœ‹π‘‘

The general continuous-time complex exponential signal can be expressed in

the form

π‘₯(𝑑) = 𝐢𝑒𝛼𝑑

where

𝐢 = |𝐢|π‘’π‘—πœƒ

and

Ξ± = π‘Ÿ + π‘—πœ”0

Then,

π‘₯(𝑑) = π‘’βˆ’π‘— βˆ™ π‘’π‘—πœ‹π‘‘ = 𝐢𝑒𝛼𝑑

where

𝐢 = π‘’βˆ’π‘— = |𝐢|π‘’π‘—πœƒ

and

Ξ± = π‘—πœ‹ = π‘Ÿ + π‘—πœ”0 ⟹ πœ”0 = πœ‹

Since Ξ± is purely imaginary, the fundamental period is given by

𝑇 =2πœ‹

πœ”0=

2πœ‹

πœ‹= 2

We obtain the fundamental period to be 2.

Probs. 1.25 (c)

The signal is periodic.

π‘₯(𝑑) = [cos (2𝑑 βˆ’πœ‹

3)]

2

=1 + cos (4𝑑 βˆ’

2πœ‹3 )

2=

1

2+

1

2cos (4𝑑 βˆ’

2πœ‹

3)

The general continuous-time sinusoidal signal can be expressed in the form

π‘₯(𝑑) = 𝐴 cos(πœ”0𝑑 + πœ™)

Then, the frequency for 1

2cos (4𝑑 βˆ’

2πœ‹

3) is πœ”0 = 4.

Page 3: Signals and systems HW1 solution

The fundamental period is given by

𝑇 =2πœ‹

πœ”0=

2πœ‹

4=

πœ‹

2

We obtain the fundamental period to be 𝝅

𝟐.

Probs. 1.25 (f)

The signal is not periodic.

π‘₯(𝑑) = βˆ‘ π‘’βˆ’(2π‘‘βˆ’π‘›)𝑒(2𝑑 βˆ’ 𝑛)

∞

𝑛=βˆ’βˆž

π‘₯(𝑑) = π‘₯(𝑑 + 𝑇)

β‡’ βˆ‘ π‘’βˆ’(2π‘‘βˆ’π‘›)𝑒(2𝑑 βˆ’ 𝑛)

∞

𝑛=βˆ’βˆž

= βˆ‘ π‘’βˆ’(2(𝑑+𝑇)βˆ’π‘›)𝑒(2(𝑑 + 𝑇) βˆ’ 𝑛)

∞

𝑛=βˆ’βˆž

β‡’ βˆ‘ π‘’βˆ’(2π‘‘βˆ’π‘›)𝑒(2𝑑 βˆ’ 𝑛)

∞

𝑛=βˆ’βˆž

= π‘’βˆ’2𝑇 βˆ‘ π‘’βˆ’(2π‘‘βˆ’π‘›)𝑒(2(𝑑 + 𝑇) βˆ’ 𝑛)

∞

𝑛=βˆ’βˆž

β‡’ βˆ‘ π‘’βˆ’(2π‘‘βˆ’π‘›)[𝑒(2𝑑 βˆ’ 𝑛) βˆ’ π‘’βˆ’2𝑇𝑒(2(𝑑 + 𝑇) βˆ’ 𝑛)]

∞

𝑛=βˆ’βˆž

= 0

β‡’ 𝑒(2𝑑 βˆ’ 𝑛) βˆ’ π‘’βˆ’2𝑇𝑒(2(𝑑 + 𝑇) βˆ’ 𝑛) = 0

β‡’ 𝑇 = 0

Since 𝑻 is not a positive value, we conclude that the signal π‘₯(𝑑) is not

periodic.

Probs. 1.26 (c)

The signal is periodic.

π‘₯[𝑛] = cos (πœ‹

8𝑛2)

π‘₯[𝑛] = π‘₯[𝑛 + 𝑁]

⟹ cos (πœ‹

8𝑛2) = cos (

πœ‹

8(𝑛 + 𝑁)2)

⟹ cos (πœ‹

8𝑛2) = cos (

πœ‹

8𝑛2 +

πœ‹

4𝑛𝑁 +

πœ‹

8𝑁2)

βŸΉπœ‹

4𝑛𝑁 +

πœ‹

8𝑁2 = 2πœ‹π‘˜, π‘˜ = 0, Β±1, Β±2, …

Page 4: Signals and systems HW1 solution

βŸΉπœ‹

4𝑛𝑁 = 2πœ‹π‘˜1, π‘˜1 = 0, Β±1, Β±2, … π‘Žπ‘›π‘‘

πœ‹

8𝑁2 = 2πœ‹π‘˜2, π‘˜2 = 0, Β±1, Β±2, …

For πœ‹

4𝑛𝑁 = 2πœ‹π‘˜1, π‘˜1 = 0, Β±1, Β±2, …

𝑛𝑁

8= π‘˜1 ⟹ 𝑁 = 8

For πœ‹

8𝑁2 = 2πœ‹π‘˜2, π‘˜2 = 0, Β±1, Β±2, …

𝑁2

16= π‘˜2 ⟹ 𝑁 = 4

Thus, the fundamental period is the least common multiple of 8 and 4

which is

lcm(8,4) = 8

The answer is 8.

Probs. 1.26 (d)

The signal is periodic.

π‘₯[𝑛] = cos (πœ‹

2𝑛) cos (

πœ‹

4𝑛)

= (1

2𝑒𝑗

πœ‹2

𝑛 +1

2π‘’βˆ’π‘—

πœ‹2

𝑛) (1

2𝑒𝑗

πœ‹4

𝑛 +1

2π‘’βˆ’π‘—

πœ‹4

𝑛)

=1

4𝑒𝑗

3πœ‹4

𝑛 +1

4𝑒𝑗

πœ‹4

𝑛 +1

4π‘’βˆ’π‘—

πœ‹4

𝑛 +1

4π‘’βˆ’π‘—

3πœ‹4

𝑛

For 1

4𝑒𝑗

3πœ‹

4𝑛

, 𝑁 = π‘š2πœ‹

(3πœ‹ 4⁄ )= π‘š

8

3= 8

For 1

4𝑒𝑗

πœ‹

4𝑛

, 𝑁 = π‘š2πœ‹

(πœ‹ 4⁄ )= 8

For 1

4π‘’βˆ’π‘—

3πœ‹

4𝑛 =

1

4𝑒𝑗(βˆ’

3πœ‹

4+2πœ‹)𝑛 =

1

4𝑒𝑗

5πœ‹

4𝑛

, 𝑁 = π‘š2πœ‹

(5πœ‹ 4⁄ )= π‘š

8

5= 8

For 1

4π‘’βˆ’π‘—

πœ‹

4𝑛 =

1

4𝑒𝑗(βˆ’

πœ‹

4+2πœ‹)𝑛 =

1

4𝑒𝑗

7πœ‹

4𝑛

, 𝑁 = π‘š2πœ‹

(7πœ‹ 4⁄ )= π‘š

8

7= 8

The answer is 8.

Probs. 1.26 (e)

The signal is periodic.

π‘₯[𝑛] = 2 cos (πœ‹

4𝑛) + sin (

πœ‹

8𝑛) βˆ’ 2 cos (

πœ‹

2𝑛 +

πœ‹

6)

2 cos (πœ‹

4𝑛) has a fundamental period of 𝑁 = π‘š

2πœ‹

(πœ‹ 4⁄ )= 8.

Page 5: Signals and systems HW1 solution

sin (πœ‹

8𝑛) has a fundamental period of 𝑁 = π‘š

2πœ‹

(πœ‹ 8⁄ )= 16.

βˆ’2 cos (πœ‹

2𝑛 +

πœ‹

6) has a fundamental period of 𝑁 = π‘š

2πœ‹

(πœ‹ 2⁄ )= 4.

Thus, the fundamental period is the least common multiple of 8, 16 and 4

which is

lcm(8,16,4) = 16

The answer is 16.

2.

Probs. 1.21 (c)

Probs. 1.21 (d)

Probs. 1.21 (e)

Probs. 1.21 (f)

Probs. 1.22 (d)

Page 6: Signals and systems HW1 solution

Probs. 1.22 (e)

The answer is the same as the original signal.

π‘₯[𝑛]𝑒[3 βˆ’ 𝑛] = π‘₯[𝑛]

Probs. 1.22 (f)

Probs. 1.22 (g)

3.

Probs. 1.23 (a)

Probs. 1.23 (b)

Page 7: Signals and systems HW1 solution

Probs. 1.24 (b)

Even

Odd

Probs. 1.24 (c)

Even

Odd

4.

Probs. 1.27 (b)

y(𝑑) = [cos(3𝑑)]π‘₯(𝑑)

(1)

The system is memoryless, as the value of y(𝑑) at any particular time

depends only on the value of π‘₯(𝑑) at that time, not π‘₯(𝑑 + 𝜏) or π‘₯(𝑑 βˆ’ 𝜏).

(2)

y(𝑑 βˆ’ 𝑑0) = [cos(3(𝑑 βˆ’ 𝑑0))]π‘₯(𝑑 βˆ’ 𝑑0)

Let π‘₯2(𝑑) = π‘₯(𝑑 βˆ’ 𝑑0)

π‘₯2(𝑑) β†’ 𝑦2(𝑑) = [cos(3𝑑)]π‘₯2(𝑑) = [cos(3𝑑)]π‘₯(𝑑 βˆ’ 𝑑0)

β‰  [cos(3(𝑑 βˆ’ 𝑑0))]π‘₯(𝑑 βˆ’ 𝑑0) = y(𝑑 βˆ’ 𝑑0)

The system is not time invariant, as π‘₯(𝑑 βˆ’ 𝑑0) ↛ y(𝑑 βˆ’ 𝑑0).

(3)

Assume

π‘₯1(𝑑) β†’ 𝑦1(𝑑) = [cos(3𝑑)]π‘₯1(𝑑)

Page 8: Signals and systems HW1 solution

π‘₯2(𝑑) β†’ 𝑦2(𝑑) = [cos(3𝑑)]π‘₯2(𝑑)

Let

π‘₯3(𝑑) = Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑)

Then

π‘₯3(𝑑) β†’ 𝑦3(𝑑) = [cos(3𝑑)]π‘₯3(𝑑) = [cos(3𝑑)][Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑)]

= Ξ±[cos(3𝑑)]π‘₯1(𝑑) + 𝛽[cos(3𝑑)]π‘₯2(𝑑) = α𝑦1(𝑑) + 𝛽𝑦2(𝑑)

The system is linear, as Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑) β†’ α𝑦1(𝑑) + 𝛽𝑦2(𝑑).

(4)

The system is causal, as the value of y(𝑑) at any particular time depends only

on the value of π‘₯(𝑑) at present and past time, not π‘₯(𝑑 + 𝜏) for 𝜏 > 0.

(5)

Let

|π‘₯(𝑑)| < 𝛽

Since

|cos(3𝑑)| < 1

Then

|cos(3𝑑)||π‘₯(𝑑)| < 𝛽 β‡’ |𝑦(𝑑)| < 𝛽

The system is stable.

Probs. 1.27 (e)

y(𝑑) = {0, π‘₯(𝑑) < 0π‘₯(𝑑) + π‘₯(𝑑 βˆ’ 2), π‘₯(𝑑) β‰₯ 0

(1)

The system is not memoryless, as the value of y(𝑑) depends on the value of

π‘₯(𝑑) at π‘₯(𝑑 βˆ’ 2).

(2)

y(𝑑 βˆ’ 𝑑0) = {0, π‘₯(𝑑 βˆ’ 𝑑0) < 0

π‘₯(𝑑 βˆ’ 𝑑0) + π‘₯(𝑑 βˆ’ 𝑑0 βˆ’ 2), π‘₯(𝑑 βˆ’ 𝑑0) β‰₯ 0

Let π‘₯2(𝑑) = π‘₯(𝑑 βˆ’ 𝑑0)

π‘₯2(𝑑) β†’ 𝑦2(𝑑) = {0, π‘₯2(𝑑) < 0

π‘₯2(𝑑) + π‘₯2(𝑑 βˆ’ 2), π‘₯2(𝑑) β‰₯ 0

= {0, π‘₯(𝑑 βˆ’ 𝑑0) < 0

π‘₯(𝑑 βˆ’ 𝑑0) + π‘₯(𝑑 βˆ’ 𝑑0 βˆ’ 2), π‘₯(𝑑 βˆ’ 𝑑0) β‰₯ 0= y(𝑑 βˆ’ 𝑑0)

The system is time invariant, as π‘₯(𝑑 βˆ’ 𝑑0) β†’ y(𝑑 βˆ’ 𝑑0).

(3)

Assume

π‘₯1(𝑑) β†’ 𝑦1(𝑑) = {0, π‘₯1(𝑑) < 0

π‘₯1(𝑑) + π‘₯1(𝑑 βˆ’ 2), π‘₯1(𝑑) β‰₯ 0

Page 9: Signals and systems HW1 solution

π‘₯2(𝑑) β†’ 𝑦2(𝑑) = {0, π‘₯2(𝑑) < 0

π‘₯2(𝑑) + π‘₯2(𝑑 βˆ’ 2), π‘₯2(𝑑) β‰₯ 0

Let

π‘₯3(𝑑) = Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑)

Then

π‘₯3(𝑑) β†’ 𝑦3(𝑑) = {0, π‘₯3(𝑑) < 0

π‘₯3(𝑑) + π‘₯3(𝑑 βˆ’ 2), π‘₯3(𝑑) β‰₯ 0

= {0, Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑) < 0

Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑) + Ξ±π‘₯1(𝑑 βˆ’ 2) + 𝛽π‘₯2(𝑑 βˆ’ 2), Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑) β‰₯ 0

= Ξ± {0, Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑) < 0

π‘₯1(𝑑) + π‘₯1(𝑑 βˆ’ 2), Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑) β‰₯ 0

+ 𝛽 {0, Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑) < 0

π‘₯2(𝑑) + π‘₯2(𝑑 βˆ’ 2), Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑) β‰₯ 0= α𝑦1(𝑑) + 𝛽𝑦2(𝑑)

The system is linear, as Ξ±π‘₯1(𝑑) + 𝛽π‘₯2(𝑑) β†’ α𝑦1(𝑑) + 𝛽𝑦2(𝑑).

(4)

The system is causal, as the value of y(𝑑) at any particular time depends only

on the value of π‘₯(𝑑) at present and past time, not π‘₯(𝑑 + 𝜏) for 𝜏 > 0.

(5)

Let

|π‘₯(𝑑)| < ∞ π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑑

Since

|π‘₯(𝑑 βˆ’ 2)| < ∞

Then

|y(𝑑)| = {0, |π‘₯(𝑑)| < 0|π‘₯(𝑑)| + |π‘₯(𝑑 βˆ’ 2)|, |π‘₯(𝑑)| β‰₯ 0

< ∞ β‡’ |𝑦(𝑑)| < ∞

The system is stable.

Probs. 1.28 (b)

y[𝑛] = π‘₯[𝑛 βˆ’ 2] βˆ’ 2π‘₯[𝑛 βˆ’ 8]

(1)

The system is not memoryless, as the value of y[𝑛] depends on the value of

π‘₯[𝑛] at π‘₯[𝑛 βˆ’ 2] and π‘₯[𝑛 βˆ’ 8].

(2)

y[𝑛 βˆ’ 𝑛0] = π‘₯[𝑛 βˆ’ 𝑛0 βˆ’ 2] βˆ’ 2π‘₯[𝑛 βˆ’ 𝑛0 βˆ’ 8]

Let π‘₯2[𝑛] = π‘₯[𝑛 βˆ’ 𝑛0]

π‘₯2[𝑛] β†’ 𝑦2[𝑛] = π‘₯2[𝑛 βˆ’ 2] βˆ’ 2π‘₯2[𝑛 βˆ’ 8]

= π‘₯[𝑛 βˆ’ 2 βˆ’ 𝑛0] βˆ’ 2π‘₯[𝑛 βˆ’ 8 βˆ’ 𝑛0]

= π‘₯[𝑛 βˆ’ 𝑛0 βˆ’ 2] βˆ’ 2π‘₯[𝑛 βˆ’ 𝑛0 βˆ’ 8] = y[𝑛 βˆ’ 𝑛0]

Page 10: Signals and systems HW1 solution

The system is time invariant, as π‘₯[𝑛 βˆ’ 𝑛0] β†’ y[𝑛 βˆ’ 𝑛0].

(3)

Assume

π‘₯1[𝑛] β†’ 𝑦1[𝑛] = π‘₯1[𝑛 βˆ’ 2] βˆ’ 2π‘₯1[𝑛 βˆ’ 8]

π‘₯2[𝑛] β†’ 𝑦2[𝑛] = π‘₯2[𝑛 βˆ’ 2] βˆ’ 2π‘₯2[𝑛 βˆ’ 8]

Let

π‘₯3[𝑛] = Ξ±π‘₯1[𝑛] + 𝛽π‘₯2[𝑛]

Then

π‘₯3[𝑛] β†’ 𝑦3[𝑛] = π‘₯3[𝑛 βˆ’ 2] βˆ’ 2π‘₯3[𝑛 βˆ’ 8]

= Ξ±π‘₯1[𝑛 βˆ’ 2] + 𝛽π‘₯2[𝑛 βˆ’ 2] βˆ’ 2Ξ±π‘₯1[𝑛 βˆ’ 8] βˆ’ 2𝛽π‘₯2[𝑛 βˆ’ 8]

= Ξ±(π‘₯1[𝑛 βˆ’ 2] βˆ’ 2π‘₯1[𝑛 βˆ’ 8]) + 𝛽(π‘₯2[𝑛 βˆ’ 2] βˆ’ 2π‘₯2[𝑛 βˆ’ 8])

= α𝑦1[𝑛] + 𝛽𝑦2[𝑛]

The system is linear, as Ξ±π‘₯1[𝑛] + 𝛽π‘₯2[𝑛] β†’ α𝑦1[𝑛] + 𝛽𝑦2[𝑛].

(4)

The system is causal, as the value of y[𝑛] at any particular time depends only

on the value of π‘₯[𝑛] at present and past time, not π‘₯[𝑛 + 𝑛0] for 𝑛0 > 0.

(5)

Let

|π‘₯[𝑛]| < ∞ π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑑

Since

|π‘₯[𝑛 βˆ’ 2]| < ∞ and |π‘₯[𝑛 βˆ’ 8]| < ∞

Then

|π‘₯[𝑛 βˆ’ 2]| βˆ’ 2|π‘₯[𝑛 βˆ’ 8]| < ∞ β‡’ |𝑦(𝑑)| < ∞

The system is stable.

Probs. 1.28 (e)

y[𝑛] = {π‘₯[𝑛], 𝑛 β‰₯ 10, 𝑛 = 0

π‘₯[𝑛 + 1], 𝑛 ≀ βˆ’1

(1)

The system is not memoryless, as the value of y[𝑛] depends on the value of

π‘₯[𝑛] at π‘₯[𝑛 + 1].

(2)

y[𝑛 βˆ’ 𝑛0] = {

π‘₯[𝑛 βˆ’ 𝑛0], 𝑛 βˆ’ 𝑛0 β‰₯ 10, 𝑛 βˆ’ 𝑛0 = 0

π‘₯[𝑛 βˆ’ 𝑛0 + 1], 𝑛 βˆ’ 𝑛0 ≀ βˆ’1

Let π‘₯2[𝑛] = π‘₯[𝑛 βˆ’ 𝑛0]

Page 11: Signals and systems HW1 solution

π‘₯2[𝑛] β†’ 𝑦2[𝑛] = {π‘₯2[𝑛], 𝑛 β‰₯ 10, 𝑛 = 0

π‘₯2[𝑛 + 1], 𝑛 ≀ βˆ’1= {

π‘₯[𝑛 βˆ’ 𝑛0], 𝑛 β‰₯ 10, 𝑛 = 0

π‘₯[𝑛 + 1 βˆ’ 𝑛0], 𝑛 ≀ βˆ’1

β‰  {

π‘₯[𝑛 βˆ’ 𝑛0], 𝑛 βˆ’ 𝑛0 β‰₯ 10, 𝑛 βˆ’ 𝑛0 = 0

π‘₯[𝑛 βˆ’ 𝑛0 + 1], 𝑛 βˆ’ 𝑛0 ≀ βˆ’1= y[𝑛 βˆ’ 𝑛0]

The system is not time invariant, as π‘₯[𝑛 βˆ’ 𝑛0] ↛ y[𝑛 βˆ’ 𝑛0].

(3)

Assume

π‘₯1[𝑛] β†’ 𝑦1[𝑛] = {π‘₯1[𝑛], 𝑛 β‰₯ 10, 𝑛 = 0

π‘₯1[𝑛 + 1], 𝑛 ≀ βˆ’1

π‘₯2[𝑛] β†’ 𝑦2[𝑛] = {π‘₯2[𝑛], 𝑛 β‰₯ 10, 𝑛 = 0

π‘₯2[𝑛 + 1], 𝑛 ≀ βˆ’1

Let

π‘₯3[𝑛] = Ξ±π‘₯1[𝑛] + 𝛽π‘₯2[𝑛]

Then

π‘₯3[𝑛] β†’ 𝑦3[𝑛] = {π‘₯3[𝑛], 𝑛 β‰₯ 10, 𝑛 = 0

π‘₯3[𝑛 + 1], 𝑛 ≀ βˆ’1

= {Ξ±π‘₯1[𝑛] + 𝛽π‘₯2[𝑛], 𝑛 β‰₯ 1

0, 𝑛 = 0Ξ±π‘₯1[𝑛 + 1] + 𝛽π‘₯2[𝑛 + 1], 𝑛 ≀ βˆ’1

= Ξ± ({π‘₯1[𝑛], 𝑛 β‰₯ 10, 𝑛 = 0

π‘₯1[𝑛 + 1], 𝑛 ≀ βˆ’1) + 𝛽 ({

π‘₯2[𝑛], 𝑛 β‰₯ 10, 𝑛 = 0

π‘₯2[𝑛 + 1], 𝑛 ≀ βˆ’1)

= α𝑦1[𝑛] + 𝛽𝑦2[𝑛]

The system is linear, as Ξ±π‘₯1[𝑛] + 𝛽π‘₯2[𝑛] β†’ α𝑦1[𝑛] + 𝛽𝑦2[𝑛].

(4)

The system is not causal, as the value of y[𝑛] depends on the future value

π‘₯[𝑛 + 1].

(5)

Let

|π‘₯[𝑛]| < ∞ π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑑

Since

|π‘₯[𝑛 + 1]| < ∞

Then

Page 12: Signals and systems HW1 solution

{|π‘₯[𝑛]|, 𝑛 β‰₯ 10, 𝑛 = 0

|π‘₯[𝑛 + 1]|, 𝑛 ≀ βˆ’1< ∞ β‡’ |𝑦(𝑑)| < ∞

The system is stable.

5.

Probs. 1.31

Probs. 1.42

Page 13: Signals and systems HW1 solution