siggraph 2014 course on computational cameras and displays (part 3)

96
Compressive Display Systems Gordon Wetzstein MIT / Stanford University media.mit.edu /~ gordonw displayblocks.org

Upload: matthew-otoole

Post on 05-Jul-2015

1.048 views

Category:

Education


6 download

DESCRIPTION

Recent advances in both computational photography and displays have given rise to a new generation of computational devices. Computational cameras and displays provide a visual experience that goes beyond the capabilities of traditional systems by adding computational power to optics, lights, and sensors. These devices are breaking new ground in the consumer market, including lightfield cameras that redefine our understanding of pictures (Lytro), displays for visualizing 3D/4D content without special eyewear (Nintendo 3DS), motion-sensing devices that use light coded in space or time to detect motion and position (Kinect, Leap Motion), and a movement toward ubiquitous computing with wearable cameras and displays (Google Glass). This short (1.5 hour) course serves as an introduction to the key ideas and an overview of the latest work in computational cameras, displays, and light transport.

TRANSCRIPT

Page 1: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Compressive Display Systems

Gordon Wetzstein

MIT / Stanford University

media.mit.edu/~gordonw

displayblocks.org

Page 2: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)
Page 3: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

This slide has a 16:9 media windowEvolution?

1928 2014

Page 4: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Nature

Image: National Geographic

Evolution!

Page 5: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

uberpixel

Page 6: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Next-generation Devices

computation optics & electronics human visual

system

interaction

optics (compressive) computationsensing

Computational &

Compressive Displays

Computational

Imaging

Page 7: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

displayblocks.org

Page 8: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Images: Wikipedia, Shinya Yoshioka

Page 9: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

This slide has a 16:9 media windowNature

Image: Desafio Monteverde and Arenal Volcano Tours Costa Rica

Page 10: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Three-layer Tensor Display

Page 11: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

This slide has a 16:9 media windowCompressive Light

Field Displays

Page 12: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

This slide has a 16:9 media window

Page 13: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

This slide has a 16:9 media window

viewer moves right

vie

wer

moves d

ow

n

4D Light Field

Page 14: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Display OpticsComputational

Processing

Compressive Displays

Page 15: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)
Page 16: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

2D display

barrier

Parallax Barriers – Ives 1903

• low resolution & very dim

Page 17: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Integral Imaging – Lippmann 1908

• low-res, but brighter than parallax barriers

2D display

len

sle

ts

Page 18: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

patent drawings - early 20th century

Page 19: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

multiplexing

nonlinear

compression

optimization

user experience

content

community

next

MN

O

C

U C

C

N

Structural Formula for Compressive Displays

Page 20: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

multiplexing

nonlinear

compression

optimization

user experience

content

community

next

MN

O

C

U C

C

N

Nonlinear Pixel Interaction & Coupling

Page 21: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

layer 2

layer 1

Conventional Parallax Barriers

Page 22: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

layer 2

layer 1

Conventional Parallax Barriers

blocked!

p1

p2

l = p1*p2

nonlinear

Page 23: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

layer 2

layer 1

Most Volumetric Displays / Additive Layers

e.g., LEDs or transparent OLEDs

not blocked!

p1

p2

l = p1+p2

linear

Page 24: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Holography – Nonlinear Interaction

plane wave

hologram

emitted wavefront:

screen or retina

received intensity:

I(x) = T U(x){ }2

= Re T U(x){ }{ }2

+ Im T U(x){ }{ }2

U(x)

Page 25: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Holography – Coupling

plane wave

hologram

W (x,u = l sin(q )) = t x+x '

2

æ

èç

ö

ø÷t x -

x '

2

æ

èç

ö

ø÷e

2pix 'u dx 'ò

Fourier transform of all points interacting

with each other!

nonlinear interaction & pixel coupling!

Page 26: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

attenuation layers with

spacers

backlight

Layered 3D – SIGGRAPH 2011

Page 27: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Layered 3D – SIGGRAPH 2011

layer 2

layer K

layer 1

Page 28: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Layered 3D – SIGGRAPH 2011

layer 2

layer K

layer 1

p1

p2

pK

l = p1*p2*…*pK

Page 29: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Layered 3D – SIGGRAPH 2011

layer 2

layer K

layer 1

Page 30: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Tensor Displays – SIGGRAPH 2012

directional backlight three layer

Reconfigurable

Page 31: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)
Page 32: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

time

Tensor Displays – Directional Backlight

Perceptual Integration

layer 2

microlens array

layer 1

Page 33: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

LCD with directional backlight, rank 6

LCD + directional BL

conventional lenslets

view from above

Page 34: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

LCD with directional backlight, rank 6 (as seen by observer)

Page 35: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

front LCD

directional backlight

Filmed with High-speed Camera

Page 36: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

four stacked liquid crystal panels

two crossed polarizers

Page 37: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

LCD 1

LCD 2

LCD 3

backlight

Polarization Fields – SIGGRAPH ASIA 2011

polarizer

polarizercolor filter array

polarizercolor filter array

polarizercolor filter array

Page 38: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

backlight

Polarization Fields – SIGGRAPH ASIA 2011

LCD 1

LCD 2

LCD 3

polarizer

polarizer

Page 39: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

image formation

f1

f2

f3

L(x,q) = sin2 Q(x,q)( )

backlight

Polarization Fields – SIGGRAPH ASIA 2011

LCD 1

LCD 2

LCD 3

Page 40: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

multiplexing

nonlinear

compression

optimization

user experience

content

community

next

MN

O

C

U C

C

N

Compression

Page 41: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Which Light Field is More Compressible?

a b

Page 42: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Which Light Field is More Compressible?

a b

Page 43: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

This slide has a 16:9 media window

4D Light Field

Uniform or

Directional BacklightStacked Layers

Nonnegative Tensor

Factorization

Display-adaptive

Compression

Compressive

Computed Tomography

(LCDs or Transparencies)

Optics

Observer = Decoder

Page 44: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Give those Pixels a Break!

Applied Mathematics

• sparse optimization

• low-rank factorization

• computed tomography

• …

Benefits for Optics & Electronics

• fewer pixels

• relaxation on refresh rate

• thinner form factors

• …

Page 45: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Parallax Barriers

1903

Time-Shifted

Parallax Barriers 2007

t

HR3D

SIG Asia 2010

t tLayered 3D

SIGGRAPH 2011

Tensor Displays

SIGGRAPH 2012

Conventional Parallax Barriers

layer 2

layer 1

From Conventional to Compressive Displays

Page 46: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Parallax Barriers

1903

Time-Shifted

Parallax Barriers 2007

t

HR3D

SIG Asia 2010

t tLayered 3D

SIGGRAPH 2011

Tensor Displays

SIGGRAPH 2012

time

Perceptual Integration

Tensor Displays – Multilayer & Directional Backlighting

From Conventional to Compressive Displays

Page 47: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Parallax Barriers

1903

Time-Shifted

Parallax Barriers 2007

t

HR3D

SIG Asia 2010

t tLayered 3D

SIGGRAPH 2011

Tensor Displays

SIGGRAPH 2012

Perceptual Integration

Tensor Displays – Directional Backlighting

time

thin

!

From Conventional to Compressive Displays

Page 48: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

multiplexing

nonlinear

compression

optimization

user experience

content

community

next

MN

O

C

U C

C

N

Real-time Optimization

Page 49: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

This slide has a 16:9 media window

4D Light Field

Display-adaptive

Compression

CompressiveOptics

via optimization

Page 50: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

attenuation layers with

spacers

backlight

Layered 3D – SIGGRAPH 2011

Page 51: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

?

• limited baseline tomography

• use algebraic approaches!

Layered 3D – SIGGRAPH 2011

Page 52: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

This slide has a 16:9 media windowComputed Tomography (CT)

Image: W

ikip

edia

x-ray source

x-ray sensor

3D Reconstruction

Reconstructed 2D Slices

Page 53: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Tomographic Light Field Synthesis

q

2D light field

x

xq

backlight

attenuation volume

virtual planesimage formation

L(x,q ) = e- m (r )dr

log L x,q( )( ) = - m(r)drc

ò

2

20

P)log(argmin

L

tomographic synthesis

Page 54: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Limits of Tomographic Light Field Synthesis

image formation

L(x,q ) = e- m (r )dr

log L x,q( )( ) = - m(r)drc

ò

2

20

P)log(argmin

L

tomographic synthesis

log space

p1

p2

pK

p1

p2

pK

time

l = p1*…*pK

p1

p2

pK

log(l) = log(p1)+…+log(pK)

l = (p1*p2*…*pK)1+…+(p1*p2*…*pK)N

log

lin

???

Page 55: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

backlight

rear layer

front layer

two-layer light field display

Low-rank Light Field Factorization

light field

fm(1)(x1)

fm(2)(x2)

x1

x2

L(x1, x2)

Page 56: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

backlight

rear layer

front layer

two-layer light field display

fm(1)(x1)

fm(2)(x2)

x1

x2

L(x1, x2)

`

front layer

rear

laye

r

rank-1

Lanman et al. – SIGGRAPH Asia 2010

Low-rank Light Field Factorization

Page 57: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

backlight

rear layer

front layer

two-layer light field display

fm(1)(x1)

fm(2)(x2)

x1

x2

L(x1, x2)

` rank-4

Lanman et al. – SIGGRAPH Asia 2010

high-speed LCDs = perceptual average

Low-rank Light Field Factorization

Page 58: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

` rank-4F

G

L~

Lanman et al. – SIGGRAPH Asia 2010

Low-rank Light Field Factorization

high-speed LCDs = perceptual average

arg minF,G

L-FGW

2, for F,G ³ 0

objective function:

Page 59: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

fm(1)(x1)

fm(2)(x2)

fm(3)(x3)

x1

x2

x3

L(x2, x3)

multi-layer light field display

backlight

rear layer

middle layer

front layer

light field

Light Field Slice Representation

Page 60: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

fm(1)(x1)

fm(2)(x2)

fm(3)(x3)

x1

x2

x3

L(x1,x2,x3)

Rear

Layer

x3

x2

x1

L(x1,x2,x3)

light field tensor

backlight

rear layer

middle layer

front layer

light field

multi-layer light field display

Light Field Tensor Representation

Page 61: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

fm(1)(x1)

fm(2)(x2)

fm(3)(x3)

x1

x2

x3

Rear

Layer

x3

x2

x1

L(x1,x2,x3)

L(x1,x2,x3)

light field tensor

backlight

rear layer

middle layer

front layer

light field

multi-layer light field display

Light Field Tensor Representation

Page 62: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

fm(1)(x1)

fm(2)(x2)

fm(3)(x3)

Rear

Layer

light field tensor

backlight

rear layer

middle layer

front layer

light field

multi-layer light field display

Light Field Tensor Representation

Page 63: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

fm(1)(x1)

fm(2)(x2)

fm(3)(x3)

Rear

Layer

light field tensor

backlight

rear layer

middle layer

front layer

light field

multi-layer light field display

Light Field Tensor Representation

Page 64: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

fm(1)(x1)

fm(2)(x2)

fm(3)(x3)

Rear

Layer

light field tensor

backlight

rear layer

middle layer

front layer

light field

multi-layer light field display

Light Field Tensor Representation

Page 65: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

frame M

+ ... +

Target Light Field Tensor

frame 1

nonnegative tensorfactorization (NTF)

Rank-M Approximation

perceptualintegration

frame 2

+

Low-rank Tensor Factorization

Page 66: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

iterative update rules

nonlinear (multilinear)

optimization problem

Low-rank Tensor Factorization

• standard form – Tensor Compendium

• multiplicative update keep factors positive

• basically steepest descent with fixed step length

Page 67: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

“standard” formulationalternate formulation

Low-rank Tensor Factorization

Page 68: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

alternate formulation

forward projection (multiview rendering) back projection (projective texture mapping)

Efficient GPU Implementation

Tensor Factorization - Implementation

Page 69: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)
Page 70: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

multiplexing

nonlinear

compression

optimization

user experience

content

community

next

MN

O

C

U C

C

N

Who cares?

Page 71: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Vision-correcting Displayperceived image

displayed image

SIGGRAPH 2014 - Display Session, Tue morning

Page 72: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Vision-correcting Display

iPod Touch prototype printed transparency

SIGGRAPH 2014 - Display Session, Tue morning

Page 73: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

prototype construction

300 dpi or higher

Page 74: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

vision-correcting displayconventional display

Page 75: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

multiplexing

nonlinear

compression

optimization

user experience

content

community

next

MN

O

C

U C

C

N

What’s next?

Page 76: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

resolution

contrast

3D display capabilities

Page 77: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Compressive Multi-mode DisplayOptics Express 2014

Page 78: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

This slide has a 16:9 media window

High-speed LCD

High-speed LCD

Electronically-switchable Diffuser

Page 79: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

High-speed LCD

High-speed LCD

Electronically-switchable Diffuser OFF

3D Display Mode

Page 80: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Light Field Factorization – LCD Patterns

Front Layer Rear Layer

Page 81: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Light Field Factorization – Results

Page 82: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

High Dynamic Range Display Mode

High-speed LCD

High-speed LCD

Electronically-switchable Diffuser OFF

Page 83: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Target HDR Image

Page 84: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Solver = Light Field without Parallax

Front Layer Rear Layer

Page 85: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

ConventionalHigh Dynamic Range

Page 86: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Superresolution Display Mode

High-speed LCD

High-speed LCD

Electronically-switchable Diffuser ON

Page 87: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Results from Prototype

Page 88: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Results from Prototype

Page 89: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Light Field Projection SIGGRAPH 2014 – ETech & Paper

Page 90: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Compressive Light Field Projection

Page 91: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)
Page 92: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)
Page 93: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

multiplexing

nonlinear

compression

optimization

user experience

content

community

next

N

O

C

U C

C

N

Structural Formula for Compressive Displays

M

Mobile Displays Optics Express 2014

Projection Displays SIGGRAPH 2014

Coded Illumination for

Microscopy & LithographyHead Mounted Displays

CGF 2010, SIGGRAPH 2014

Monitors / TVs SIG2011,2012,2013, SIGAsia 2009,2011

Page 94: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Cool Displays at SIGGRAPH 2014

Technical Papers Sessions

Emerging Technologies

• Displays, Tuesday 10:45-12:15, Hall A

• Computational Sensing and Display, Tue 3:45-5:15, Hall A

• AR & VR Displays

• Light Field Projection, HDR Projection

• much more!

Page 95: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Gordon Wetzstein

Massachusetts Institute of Technology

media.mit.edu/~gordonw

displayblocks.org

Matt Hirsch (MIT)

Doug Lanman (MIT/NVIDIA/Oculus VR)

Andrew Maimone (UNC)

Felix Heide (UBC)

Fu-Chung Huang (UC Berkeley)

Belen Masia (University of Zaragoza)

collaborators

sources of funding & hardware

Wolfgang Heidrich (UBC/KAUST)

Ramesh Raskar (MIT)

Diego Gutierrez (University of Zaragoza)

Brian Barsky (UC Berkeley)

Henry Fuchs (UNC)

Page 96: SIGGRAPH 2014 Course on Computational Cameras and Displays (part 3)

Gordon Wetzstein

Massachusetts Institute of Technology

media.mit.edu/~gordonw

displayblocks.org

Stanford looking for:

• students, postdocs, interns

• (industry) collaborators