short english version

51
O O f f f f i i c c i i a a l l P P o o s s t t g g r r a a d d u u a a t t e e P P r r o o g g r r a a m m s s Master in Applied Physics Faculty of Physics Universidad Complutense de Madrid Short English version

Upload: others

Post on 16-Oct-2021

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Short English version

OOffffiicciiaall PPoossttggrraadduuaattee PPrrooggrraammss MMaasstteerr iinn AApppplliieedd PPhhyyssiiccss Faculty of Physics

Universidad Complutense de Madrid

Short English version

Page 2: Short English version

MMaasstteerr iinn AApppplliieedd PPhhyyssiiccss SSttrruuccttuurree

Required courses First year (18 ECTS) Second year (30 ECTS)

• Solid state physics (6c) • Quantum mechanics (6c) • Semiconductor physics (6c)

• Research or Professional Work

Optional courses (42 ECTS, 1st year - 30 ECTS, 2nd year)

Electronic physics branch Materials physics branch Basic Blocks

(1st year) Specialized Blocks

(2nd year) Basic Blocks

(1st year) Specialized Blocks

(2nd year) • Devices physics • Semiconductor

materials • Principles of Electronic

Technology • Technological process

integration • Optoelectronic devices

laboratory • Electrical properties of

materials • Electronic II

• Physics and technology of Silicon

• Heterostructures and low dimensionality electronic

• Advanced electronic devices

• Spintronics

• Magnetic materials • Electronic materials • Material microscopy

techniques

• Nanostructures: Physics properties

• Nanodevices • Surface physics • Semiconductor

nanomaterials • Metallic materials • Material structural

properties • Materials

characterization techniques

Digital systems and Control branch Optic branch

Basic Blocks (1st year)

Specialized Blocks (2nd year)

Basic Blocks (1st year)

Specialized Blocks (2nd year)

• Digital Circuits • Integrated circuits test

and design • Control systems • Robotics • Advanced topics in

Control systems

• Non-linear control and multivariable

• Dynamic optimisation and system heuristic

• Modeling and Simulation • Dynamically

Reconfigurable Hardware

• Networks computing and GRID technology

• Photonics • Integrated optics and

optical communications

• Optical properties of materials

• Optical instrumentation and devices

• Micro-Optics and Nano-Optics

• Optical methods of measurement

• Optoinformatics

Renewable energies module (2nd year)

• •

Page 3: Short English version

MMaasstteerr iinn AApppplliieedd PPhhyyssiiccss SSttrruuccttuurree

Required courses First year (18 ECTS) Second year (30 ECTS)

• Solid state physics (6c) • Quantum mechanics (6c) • Semiconductor physics (6c)

• Research or Professional Work

Optional courses (42 ECTS, 1st year - 30 ECTS, 2nd year)

Electronic physics branch Materials physics branch

Basic Blocks(1st year) Basic Blocks(1st year) • Devices physics • Semiconductor materials • Principles of Electronic Technology • Technological process integration • Optoelectronic devices laboratory • Electrical properties of materials • Electronic II

• Magnetic materials • Electronic materials • Material microscopy techniques

Specialized Blocks (2nd year) Specialized Blocks(2nd year)

• Physics and technology of Silicon • Heterostructures and low dimensionality electronic • Advanced electronic devices • Spintronics

• Nanostructures: Physics properties • Nanodevices • Surface physics • Semiconductor nanomaterials • Metallic materials • Material structural properties • Materials characterization techniques

Digital systems and Control branch Optic branch

Basic Blocks(1st year) Basic Blocks(1st year)

• Digital Circuits • Integrated circuits test and design • Control systems • RoboticsAdvanced topics in Control systems

• Photonics • Integrated optics and optical communications • Optical properties of materials • Optical instrumentation and devices

Specialized Blocks (2nd year) Specialized Blocks (2nd year) • Non-linear control and multivariable • Dynamic optimisation and system heuristic • Modeling and Simulation • Dynamically Reconfigurable Hardware • Networks computing and GRID technology

• Micro-Optics and Nano-Optics • Optical methods of measurement • Optoinformatics

Renewable energies module (2nd year)

• Photovoltaic and thermal solar energy conversion • Renewable energies applications

• Non- equilibrium thermodynamic

Page 4: Short English version

BBrriieeff CCoonntteennttss ooff tthhee LLeeccttuurreess

APPLIED PHYSICS

Code : 046 Subject: Quantum mechanics

Speciality/module Credits ECTS Type

Basic 6 Obligatory Teory hours Practical hours Homework hours

40 20 90 Contents

Quantum mechanic postulates. Identical particles. Symmetries. Angular momentum. Central potentials. Approximation methods ( variational, WBK, perturbation methods). Transitions and gold rule. Collisions.

Bibliography

Page 5: Short English version

Code: 047 Subject: Solid state physics

Speciality/module Credits ECTS Type

Basic 6 Obligatory Theory hours Practical hours Homework hours

30 15 105 Contents

Crystal lattice structures. Diffraction. Lattice vibrations: phonons. Electronic states: Energy bands. Transport. Insulators. Magnetic properties. Superconductivity. Crystal lattice defects

Bibliography

Page 6: Short English version

Code: 048 Subject: Semiconductor physics

Speciality/module Credits ECTS Type

Basic 6 Obligatory Theory hours Practical hours Homework hours

30 15 105 Contents

I. Equilibrium carrier statistics. Electrons in solids: Fundamentals. States occupation in Energy Bands. Density of States Function. Fermi-Dirac and Maxwell-Boltzmann statistics. Intrinsic semiconductors. Impurity in semiconductors. Extrinsic semiconductors II. Nonequilibrium carrier statistics.

Generation and recombination of carriers. Fermi´s quasi-level. Intrinsic recombination. Extrinsic recombination. Low injection. High injection. III. Equilibrium carrier transport.

Boltzmann´s transport equation. Linerized Boltzmann´s equation: Relaxation time approximation. Electric transport. Drift current. Scattering process. Diffusion current. Magnetc field effects. Hall effect IV. Nonequilibrium carrier transport.

Continuity equation. Charge neutrality in nonequilibrium. Extrinsic semiconductors. Minority carriers motion in Nonequilibrium . Intrinsic semiconductors. Bipolar charge transport equation. V. Ideal P-N junction.

Introduction. PN Junction in equilibrium. Abrupt and gradual junction approximation. DC biased junction. Depletion Region (DR). Capacity. Neutral zones. Currents. AC biased junction. Currents with harmonic excitation. Junction Admittance. Equivalent circuit. VI. Real P-N junction. Generation/recombination currents in the DR. High injection currents. Break-up of P-N junctions.

Bibliography

-. R. H. Bube, Electronic Properties of Crystalline Solids, An Introduction to Fundamentals, Academic Press 1974 -. D. A. Neamen, Semiconductor Physics and Devices Irwing, 1992 -. J. Singh, Semiconductor Devices, an Introduction, John Wiley & Sons1994 -. S. Wang, Fundamental of Semiconductor Theory and Device Physics, Prentice Hall International, 1989 -. P. Y. Yu and M. Cardona, Fundamental of semiconductors,. Springer, 1996. ok

Page 7: Short English version

Code : 049 Subject: Magnetic materials

Speciality/module Credits ECTS Type

Materials physics 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

Exchange interactions: Ferro, ferri and antiferromagnetism. Domains structure and magnetization process. Soft magnetic materials. Hard magnetic materials. New magnetic materials.

Bibliography

Page 8: Short English version

Code: 050 Subject: Electronic materials

Speciality/module Credits ECTS Type

Material physics I 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

Elementary and compound semiconductors. Ceramics and other electronic materials. Preparation and characterization of electronic materials. Applications introduction

Bibliography

Page 9: Short English version

Code: 051 Subject: Material microscopy techniques

Speciality/module Credits ECTS Type

Material physics I 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

1) Introduction to modern microscopy technique. 2) Electronic microscopy: Transmission electron microscopy (TEM). Scanning

electron microscopy (SEM). 3) Electron microscopy analytic techniques 4) Near-field microscopy: Scanning tunneling microscopy (STM). Atomic force

microscopy (AFM). Scanning near-field optic microscopy. (SNOM). 5) Another microscopy.

Bibliography

Electron microscopy ans analysis, P.H.Goodhew. Taylor ans Francis 2000 Microscopía Electrónica de Barrido y Microanálisis de Rayos X, CSIC y Editorial Rueda 1996 Introduction to scanning tunneling microscopy, C.J.Chen, Oxford 1993

Page 10: Short English version

Code: 052 Subject: Metallic materials

Speciality/module Credits ECTS Type

Material physics II 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

Metallic elements. Ferrous alloy. Non-ferrous alloy. Foams and compound materials. Bibliography

- Physical metallurgy. R.W. Cahn, P. Haasen. North-Holland - Introducción a la ciencia e ingeniería de los materiales. W.D. Callister. Ed.

Reverté. 1997 - Physical metallurgy principles. R. E. Reed-Hill, R. Abbaschian. PWS Publishing

Company. 1994

Page 11: Short English version

Code: 053 Subject: Material structural properties

Speciality/module Credits ECTS Type

Material physics II 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

Crystal clear materials: structures and symmetries. Phase transformations. Points defects. Dislocations. Defects and mechanic properties. Amorphous materials.

Bibliography

Page 12: Short English version

Code : 054 Subject: Materials characterization techniques

Speciality/module Credits ECTS Type

Materials physics II 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

Diffraction. Characterization optical techniques. Electronic spectroscopy. X-ray and nuclear spectroscopy.

Bibliography

Page 13: Short English version

Code: 055 Subject: Nanostructures: Physics properties

Speciality/module Credits ECTS Type

Nanomaterials 6 Optional Theory hours Practical hours Homework hours

30 120 Contents

Nanostrucures fabrication techniques. Mesoscopic scale. Heterostructures and nanotubes. Dimensionality and cooperative effects.

Bibliography

Nanophysics and nanotechnology E. L. Wolf, Ed. Wiley-VCH Introduction to mesoscopic physics Y. Imry, Ed. Oxford Introduction to nanoscale science and technology M. Di Ventra, S. Evoy, J. R. Heflin, Ed. Kluwer

Page 14: Short English version

Code: 056 Subject: Nanodevices

Speciality/module Credits ECTS Type

Nanomaterials 6 Optional Theory hours Practical hours Homework hours

30 120 Contents

Nanomaterials.: fabrication and characterization. Mechanic devices (NEMS). Physics devices and nanoparticles and magnetic nanowire applications. Magnetoelectronic devices. Electron-devices introduction: materials and applications. Applications of nanomaterials in biology and medicine

Bibliography

Page 15: Short English version

Code: 057 Subject: Surface physics

Speciality/module Credits ECTS Type

Nanomaterials 6 Optional Theory hours Practical hours Homework hours

30 120 Contents

Surface composition. Auger and XPS techniques. Surface preparation. Crystal structures of surfaces: LEED. Scanning tunnelling microscope.(STM): superficial structures. Surface electronic structure: Photoemission spectroscopy. Superficial diffusion. Interaction in vapor-phase surface. Adsortion . Oxidation. Catalysis. chemistry-physics of superconducting multilayers.

Bibliography

Page 16: Short English version

Code: 058 Subject: Semiconductor nanomaterials

Speciality/module Credits ECTS Type

Nanomaterials 6 Optional Theory hours Practical hours Homework hours

30 120 Contents

Semiconductor nanomaterials preparation. Optical and electronic properties. Nanostructures of semiconductor oxides. Nanostrutures of III-V compound semiconductors. Porous semiconductors. Characterization techniques and applications

Bibliography

G. Cao, Nanostructures and Nanomaterials, Imperial College Press. 2004 A.L.Efros, D.J. Lockwood, L. Tsybeskob, Semiconductor Nanocrystals, Kluwer, 2003 G. Amato, Ed. “Structural and Optical Properties of Porous Silicon Nanostructures”, Gordon and Breach, (1998).

Page 17: Short English version

Code: 059 Subject: Devices physics

Speciality/module Credits ECTS Type

Electronic physics 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

1.- Ideal Bipolar Transistor. Structure and principles. Qualitative analysis. Transistor currents. Transistor parameters. Ebers-Moll model. Static characteristics of bipolar transistor. 2.-Integrated Bipolar Transistor. Gradual base transistor. Other effects in real transistors. PSPICE models. 3.- Equivalent models of Bipolar Transistors. Introduction to small level signals. Parameters. Equivalent circuits: approximations. Determination of admittance parameters in common base configuration. Ranges of frequencies. Usual equivalent circuits. 4.- Junction Field-Effect Transistor. Introduction. I-V characteristics. Equivalent circuit. PSPICE model. 5.-MOS structure. Introduction. Ideal MOS structure. Real MOS structure. MOS structure capacitance. 6.-MOSFET transistor. Introduction. MOSFET characteristics. Equivalent circuit. FET structures. PSPICE models

Bibliography

- M.S. Tyagi. Introduction to Semiconductor Materials and Devices J. Wiley & Sons, 1991. - D.A. Neamen. Semiconductor Physics and Devices, Irwin, 1997. - S.M. Sze. Semiconductor Devices: Physics and Technology, J. Wiley & Sons, 2002. - K.F. Brennan, A.S. Brown. Theory of Modern Semiconductor Devices, J. Wiley & Sons, 2002. - K. Kwok. Complete Guide to Semiconductor Devices, J. Wiley & Sons, 2002 ok

Page 18: Short English version

Code: 060 Subject: Semiconductor materials

Speciality/module Credits ECTS Type

Electronic physics 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

1.-: Semiconductor materials. Introduction. III-V compounds. II-VI compounds. IV-VI compounds. Wide band gap semiconductors. Other semiconductor families. 2.-Light- absorption in semiconductors. Introduction. Absorption by free charge-carriers. Excitonic absorption. Band-to-band transition. Charge-carriers injection by light absorption. Photoconductors: parameter and families. 3.-Growth & epitaxial technology. Introduction. Crystal growth. Epitaxial growth. Epitaxial layers: examples. 4.- Heterojunctions and metal-semiconductor junctions. Introduction to heterojunctions. Band diagrams. Anderson model. Examples. Schottky junction: ideal model and real barrier structures. Ohmic contact: ideal model. Real ohmic contacts. 5.- Band gap engineering. Low dimensional systems. Density of states. Optical properties of MQW. Tunnel processes. HEMFET.

Bibliography

- Bhattacharya P., Semiconductor Optoelectronic Devices, Prentice Hall 1998 - Bube R.H., Electronic Properties of Crystalline Solids. An Introduction to Fundamentals, Academic Press 1992 - Einspruch N.G., Heterostructures and Quantum Devices Prentice Hall, 1994 - Neamen D.A., Semiconductor Physics and Devices, Irwin 1997 - Sze S.M., Semiconductor Devices. Physics and Technology, John Wiley Sons, 2002 - Wang S., Fundamentals of Semiconductor Theory and Device Physics, Prentice Hall International 1989 ok

Page 19: Short English version

Code: 061 Name: Principles of Electronic Technology

Speciality/module Credits ECTS Type

Electronic physics 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

I - Introduction to Integrated Circuit and Sensor fabrication. II – Wafer fabrication and epitaxial growth technologies. III – Dopant technologies: Difusión and Ion Implantation. IV –Optical photolitogrphy and e-beam litigraphy. V – Vacuum and plasma processing tehcniques. VI –Wet and dry etching. VII – Thin films physical and chemical vapour deposition technologies. VIII –Thin deposited films applications: Metallization, passivation, isolation, etc.

Bibliography

- G.S. May y S.M. Sze Fundamentals of Semiconductor Fabrication. Wiley 2004 - S. A. Campbell. "The science and Engineering of Microelectronic Fabrication".

Oxford UniversityPress. 1996.

- S. K. Ghandhi. "VLSI Fabrication Principles. Silicon and Gallium Arsenide".

Wiley Interscience. 1994.

- W. S. Ruska. "Microelectronic Processing. An introduction to the Manufacture of

Integrated Circuits".McGraw-Hill. 1988.

- S. Sze. "VLSI Technology". McGraw-Hill. 1988.

- M. R. Madou. "Fundamentals of Microfabrication". CRC. Press. 1997. Ok*

Page 20: Short English version

Code: 062 Subject: Technological process integration

Speciality/module Credits ECTS Type

Electronic physics 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

-Clean room concept and fabrication places -Device isolation. Isolation by junction and oxidation. LOCOS method. Trench isolation . SOI technology (silicon on insulator). -Contacts: metal-semiconductor contact. Diffusion barrier. Ohmic contacts and Schottky barriers. Silicides ( auto-aligned process). Electric interconnection: multilevel metallization. Trench filled. Damascened process. -CMOS technology: MOS devices. Basic CMOS route. Integration level increase in CMOS route. “hot-carriers” effects. Latch-up. Bipolar technologies and BICMOS: Bipolar devices. Manufactured process and bipolar devices integration. BICMOS technologies. -FET technologies in GaAs and other semiconductors III-V -Measurement techniques applied to integrated circuits: microscopy, SIMS, etc.

Bibliography

- H. Xiao Introduction to Semiconductor Manufacturing Technology Prentice-Hall2001 - G.S. May y S.M. Sze Fundamentals of Semiconductor Fabrication. Wiley 2004 ok

Page 21: Short English version

Code: 063 Subject: Optoelectronic devices laboratory

Speciality/module Credits ECTS Type

Electronic physics 6 Optional Theory hours Practical hours Homework hours

15 45 90 Contents

I.-SEMICONDUCTORS CHARACTERIZATION: Semiconductor electrical and optical characterization. II.- DEVICES ELECTRICAL CHARACTERIZATION AC & DC characterization of junction devices Electro-optical characterization of solar cells. Electro-optical characterization of LEDs. Bipolar transistor characterization. III DEVICES OPTIC CHARACTERIZATION. PSD & CCD detectors. Light detectors and emitters. Fibre Optic. Acoustooptic.

Bibliography

K.V. Shalimova, Física de Semiconductores, Ed. Mir (1975). S.M. Sze, Physics of Semiconductor Devices, Systems”, John Wiley, (1981) J. Wilson, JFB Hawkes, Optoelectronics, an Introduction Prentice Hall NY (1998). ok

Page 22: Short English version

Code: 064 Subject: Electronic II

Speciality/module Credits ECTS Type

Electronic physics 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

-Operational amplifiers. Operational ideal amplifiers characteristics. Study: operational amplifier 741. -Lineal applications of operational amplifiers: adder, active filters. -Non-lineal applications of operational amplifiers: comparators and converters. -Digital circuits: characteristics and dynamics. Commutation transistors. -Logic family TTL -Logic family CMOS

Bibliography

• J. Millman, A. Grabel, "Microelectrónica", Hispano-Europea, 1993. • T.L. Floyd, "Fundamentos de Sistemas Digitales", Prentice Hall, 1997. • D. Schilling, C. Belove, "Circuitos Electrónicos Discretos e Integrados", McGraw Hill, 1993. • M.N. Horenstein, "Microelectrónica: Circuitos y Dispositivos", Prentice Hall, 1997. • J. Millman, A. Grabel, "Microelectrónica", Hispano-Europea, 1993. • T.L. Floyd, "Fundamentos de Sistemas Digitales", Prentice Hall, 1997. • D. Schilling, C. Belove, "Circuitos Electrónicos Discretos e Integrados", McGraw Hill, 1993. • M.N. Horenstein, "Microelectrónica: Circuitos y Dispositivos", Prentice Hall, 1997.

Page 23: Short English version

Code: 142 Subject: Electrical properties of materials

Speciality/module Credits ECTS Type

Electronic physics 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

-Electromagnetic field equations in matter. Constitutive relations. -Physics of dielectrics: static and dynamic behaviour. -Conduction in conductors, semiconductors and insulators. -Superconductivity. -Materials and applications

Bibliography

R. Coelho. "Physics of dielectrics for engineers". Elsevier (1979). C.J.F. Botteher. "Theory of Electric Polarization". Vols. I y II. Elsevier (1978). N.E. Hill y otros. "Dielectric properties and molecular behavior". Van Nostrand (1966). A.R. Von Hippel. "Dielectric materials and applications". M.I.T. Press (1954). N. W. Ashcroft and N. D. Mermin "Solid State Physics" HRW International Editions, 1987 ok

Page 24: Short English version

Code: 065 Subject: Physics and technology of Silicon

Speciality/module Credits ECTS Type

Nanoelectronic 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

- Computer process simulation - Laboratory practices on microelectronic processes (implantation and annealing,

contact metallization, dielectric thin-film deposition, lithography, etc..) - Process monitoring (resistivity measurement, p-n junction characterization, etc.) -

Bibliography

S. Wolf, Silicon Processing for the VLSI era, Vol. 1-4, Lattice Press ok

Page 25: Short English version

Code: 066 Subject: Heterostructures and low dimensionality electronic

Speciality/module Credits ECTS Type

Nanoelectronic 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

-General properties of heterostructures. -Heterostructure growth. Epitaxy. -Band gap engineering -Low dimension systems: Superconductor layer structures, lines, dots. -Two-dimensional electron gas. -High mobility transistors.

Bibliography

Einspruch N.G., Heterostructures and Quantum Devices Prentice Hall, 1994 Kelly M.J., Low Dimensional Semiconductors, Oxford Science Publications, 1995 Korkin, A., Nanotechnology for electronic materials and devices,2006 Martínez-Duart J., Nanotechnology for microelectronics and optoelectronics,2006 Sze S.M., High-Speed Semiconductor Devices John Wiley Sons, 1990 ok

Page 26: Short English version

Code: 067 Subject: Advanced electronic devices

Speciality/module Credits ECTS Type

Nanoelectronic 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

-Optoelectronic devices: Light detectors: PINs. Light-emitters. LEDs. PN-lasers, solar cells, charge coupled devices CCDs -Electronic devices: Logic gates, memories: Metal-oxide-semiconductor MOS, resonat-tunnel devices RTD, single-electron-transistor SET -Novel technologies and devices: Molecular electronic, Nanotubes.

Bibliography

- P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall, 1994 - R. Waser (ed), Nanoelectronics and Information Technology, Wiley-VCH, 2005 - D.K Schoroder Series on Solid State Devices: Advanced MOS Devices. Addison-Wesley 1987 ok

Page 27: Short English version

Code: 068 Subject: Spintronics

Speciality/module Credits ECTS Type

Nanoelectronics 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

- Spin-polarized transport. Magnetoresistance . - Generation of spin-polarization: spin injection and spin relaxation. - Junctions: F/N, F/N/F, F/I/S, F/I/F. - Spin devices: filters, diodes, transistors

Bibliography

- Rainer Waser. Nanoelectronic and Information Technology.Wiley-VCH. (2005) -. I. Zutic, J. Fabian and S. Das Sarma. Spintronics: Fundamentals and Applications Rev. Mod. Phys. 76, 323 (2004) -. Ed. S. Maekawa. Concepts in Spin Electronics Oxford Univ. Press (2006) -. S. Bandyopadhyay and M. Cahay. An Introduction to Spintronics Taylor and Francis CRC Press (2007) ok

Page 28: Short English version

Code: 069 Subject: Digital circuits

Speciality/module Credits ECTS Type

Digital systems and Control 6 Optional Theory hours Practical hours Homework hours

45 15 90 Contents

1.-Binary codes and numbers. Binary Arithmetic. Fixed-point numbers. Floating-point numbers: IEEE 754 standard. Floating-point operations. Error-detecting codes. Hamming codes. 2.-Combinational circuits optimization. Two-level logic review. Two-level minimization: Quine-McCluskey´s method. Multi-level optimization. Factorization of functions. Temporary response in combinational circuits. Hazards. 3.-Advanced combinational modules. Arithmetic circuits. Adder/subtractors. Carry-Lookahead adders. Subtractors. Comparators. Shifters: Barrel-shifters. Encoders. Decoders. Multiplexers. Demultiplexers. ROM. Programmable logic devices. PAL. PLA. Commercial devices. 4.-Combinational modular networks. Design with encoders and decoders. Design with multiplexers and demultiplexers. Iterative and tree networks. 5.-Sequential circuits advanced optimization. Equivalent sequential systems. State reduction. State assignment. Finite state machine partitioning. Typical sequential systems: Pattern recognizers, Block-pattern recognizers, Event recognizers, Event counters, Pattern generators, Sequential decoders. 6.-Sequential circuits design. Bistables: asynchronous, level sensitive, master-slave, edge-triggered. Timing methodologies. Realizing circuits with different kinds of flipflops. Design with programmable logic devices: ROM, PAL, PLA. Design with counters. Design with FPGAs. 7.-Register transfer level design. Data-path and control-path design. Methodology for the design of algorithmic state machines.

Bibliography

- Contemporary Logic Design. R. H. Katz. Benjamin Cummings/Addison Wesley Publishing Company, 1993. - Digital Systems and Hardware/Firmware Algorithms. M. Ercegovac y T. Lang. John Wiley & Sons, 1995. - Digital Design. J. F. Wakerly. Prentice Hall (3ª ed.), Upper Saddle River, NJ, 2000. ok

Page 29: Short English version

Code: 070 Subject: Integrated circuits test and design

Speciality/module Credits ECTS Type

Digital systems and Control 6 Optional Theory hours Practical hours Homework hours

30 30 90 Contents

1.-Circuits design aspects. Simulation, Test. Design synthesis. Validation and test. 2.-Circuits design Types. Full-custom design. Semi-custom design. Design Type election 3.-Reverse MOS transistors. Enrichment NMOS transistors. accumulation PMOS transistors. PMOS and NMOS comparison. Substrate effect. Reverse MOS transistor. Definition and properties. Dynamic charge reverse CMOS transistor. Reverse pseudo-NMOS transistor. Three-state reverse transistor. Transmission gate. 4.-CMOS process technology. N-well CMOS. Substrate polarization. Latch-up. Design rules. 5.- Circuits characterization. Resistance and capacitance estimation. Connection capacity. Long connections. Delayed analytic models. 6.-Static combination logic. Static CMOS design. Complementary CMOS logic. Pseudo- NMOS proportional logic. Switchs logic. Complementary pass-transistor logic. 7.- Dynamic combination logic. Principles. Characteristics. Increase and decrease times analysis. Leak currents. Charge distribution. Cascade dynamic gates. “Dominó” logic . 8.- Low consumption design. Power dissipation. Power versus temperature. Power consumption in CMOS gates. CMOS design techniques in low power. 9.- Sequential design. System with memory elements. Time in devices charge. Memory elements. Pipeline with register and with latches. 1 and 2 clock phases. Clock skew. System synchronization by PLL. 10.- Test. Test importance. Scan test. Boundary scan test. Failures. Failures simulation. Test pattern Automatic generation. Built in self test

Bibliography

- Jan M. Rabaey, “Digital Integrated Circuits”, Ed. Prentice Hall. - N. Weste, K. Eshraghian, "Principles of CMOS VLSI Design: A Systems Perspective". Addison Wesley, 1993. - W. J. Dally, J. W. Poulton, "Digital Systems Engineering". Cambridge University Press. - W. Wolf , "Modern VLSI Design. A system approach". Prentice Hall.

Page 30: Short English version

Code: 071 Subject: Control systems

Speciality/module Credits ECTS Type

Digital systems and Control 6 Optional Theory hours Practical hours Homework hours

30 30 90 Contents

The following theoretical subjects were studied: Introduction, Lineal systems review; Feed-back; Control in state-spaces; Discretization methods. Roots place; Frequency response; Stability; PID Controller ; Advanced and retarded-phase networks; Other controller design methods. Simulated practical class with Matlab, that was listed in the subject planning who was given the first day, were carried out. Real control practises with instrumentation have been done too.

Bibliography

K.Ogata: Ingeniería de Control Moderna. Ed: Prentice Hall Internacional. K.Ogata: Sistemas de control en tiempo discreto. Ed: Prentice Hall Internacional. B.C.Kuo: Sistemas de control automático. Ed: Prentice Hall Internacional. Gene F.Franflin,J.D.Powell & A.Emani-Naeini. Control de Sistemas Dinámicos con

Retroalimentación. Ed: Addison Wesley Iberoam. R.C.Dorf: Sistemas Modernos de Control. Ed: Addison Wesley Iberoam. Gene F.Franflin,J.D.Powell & Workman, M.C.A. Digital Control Dynamic Systems. Ed: Addison Wesley Iberoamericana.

Page 31: Short English version

Code: 072 Subject: Robotics

Speciality/module Credits ECTS Type

Digital systems and Control 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

The main aim is know the fundamentals of robots: kinematics, planning, programming languages and sensors. Beside, vision and image procesing in robotics are studied. 1.- Introducction to Robotics. Programming of robots. Languages. 2.- Industrial robotic: Kinematic, dynamic and control of manipulators. 3.- Path Planning. 4.- Sensors and actuators. 5.- Artificial vision and image processing in robots.

Bibliography

� Robótica. Control, detección, visión e inteligencia. K.S. Fu, R.C. Gonzalez y C.S.G. Lee. Mc. Graw-Hill, 1988.

� Fundamentals of robotics: analysis and control. R.L. Schilling. Prentice-Hall, 1990.

� Sensors for mobile robots. Theory and application. H.R. Everett. A.K. Peters. Wellesley, 1995.

� Robot motion planning. J.C. Latombe. Kluwer Academic Plublishers, 1991. � Introductory Computer Vision and Image Processing. A. Low. Mc. Graw-Hill,

1991. � Processing, Analysis, and Machine vision. M. Sonka, V. Hlavac y R. Boyle.

International Thomson Computer Press, 1996. ok

Page 32: Short English version

Code : 073 Subject: Advanced topics in Control Systems

Speciality/module Credits ECTS Type

Digital systems and control 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

1.-Optimal control: Optimal control of continuous and discrete systems. Software to design optimal controllers. Linear Quadratic Gaussian (LQG) control. Polynomic approach to LQG control. 2.- Introduction to nonlinear control systems: Examples and simulation of nonlinear systems. Descriptive function. Lyapunov stability. Adaptive control. 3.- Real-time control systems: Properties and characteristics of real-time control systems. Events, concurrency and programming languages (Modula-2, C++, Java). Processes, communication and synchronization. Interrupts and time management. Priorities. Real Time Java. 4.- Discrete control systems: Discrete logic. Programmable logic controllers. State machine formalism and their codification. Control and planning. Feedback planning. Simulation.

Bibliography

� Feedback control of Dynamic Systems. G.F. Franklin, J.D. Powell, A. Emami-Naemi. Addison Wesley, 1994, 3ª Edición.

� Digital Control of Dynamic Systems. G.F. Franklin, J.D. Powell, M.L. workman. Addison Wesley, 1997, 3ª Edición.

� Applied Nonlinear Control. J.J. Slotine,W.Li. Prentice-Hall, 1991. � Real Time Software for Control. Program Examples in C. D.M. Auslander, C.H.

Tham. Prentice-Hall. � Real Time Control Systems. K.E. Arzen. Dpt. Of Automatic control, Lund

Institute of Technology, 2000 � Real-Time Computer Control. S. Bennett. Prentice-Hall, 1994.

ok

Page 33: Short English version

Code: 074 Subject: Non-lineal control and multivariable

Speciality/module Credits ECTS Type

Digital systems and Control II 6 Optional Theory hours Practical hours Homework hours

30 0 120 Contents

Non-lineal control systems let us achieve features in control systems what are hard o impossible to achieve with lineal control systems, This can see in robotics applications and in modern planes control. Besides, non-lineal controller is more intuitive, easier and cheaper controller than lineal controller. Course objective is to show the fundamental current results, in a practical viewpoint, in non-lineal control field. More important classic techniques nowadays will be show like phase plane or descriptive function or Liapunov methods and modern methods with important practical applications, like linearization methods by feed-back and sliding control mode with state observer.

Bibliography

Applied Nonlinear Control. J.J.E. Slotine and W. Li. Prentice Hall International, 1990.

Nonlinear Systems. Analysis, stability and control. S. Sastry. Springer, 1999.

Nonlinear Systems. H.K. Khalil. 2º Edition, Prentice Hall, 1996.

Page 34: Short English version

Code: 075 Subject: Dynamic optimisation and system heuristic

Speciality/module Credits ECTS Type

Digital systems and Control II 6 Optional Theory hours Practical hours Homework hours

30 0 120 Contents

-Introduction. What is process optimisation. Cost function. Continue and discrete optimisation. -Classic methods to optimisation: Dynamic optimisation. -Heuristic methods to optimisation: Genetic algorithm. Taboo search, Simulated quenched, etc. -IA application to the optimisation. -Industrial logistic optimisation. -Optimisation industrial tools: Matlab, Ilog, etc

Bibliography

Introducción a la Computación Evolutiva. Carlos Coello Coello Genetic Algorithms in Search, Optimization, and Machine Learning.

Page 35: Short English version

Code: 076 Subject: Dynamically Reconfigurable Hardware

Speciality/module Credits ECTS Type

Digital systems and Control 6 Optional Theory hours Practical hours Homework hours

30 0 120 Learning Goals

To acquire a knowledge of the existing dynamically reconfigurable hardware architectures, academic and commercial. To know the problems associated with their management.

Contents

1- Introduction to reconfigurable hardware and dynamic reconfiguration. 2- Commercial fine grain architectures and reconfiguration methods. 3- Academic architectures. 4- Resource management in fine grain architectures. 5- Coarse grain architectures 6- Resource management in coarse grain architectures. 7- Design project on dynamically reconfigurable hardware.

Observaciones

web: http://www.fdi.ucm.es/profesor/jseptien/WEB/Docencia/HWdr/hwdr_horjul2.htm

ok

Page 36: Short English version

Code: 077 Subject: Networks computing and GRID technology

Speciality/module Credits ECTS Type

Digital systems and Control II 6 Optional Theory hours Practical hours Homework hours

30 30 90 Contents

Overview of existing technologies for network and Grid computing. The main technology evaluated is the Globus Toolkit. 1. Overview of network and Grid computing 2. Management of local distributed resources 3. The Globus Toolkit 4. Introduction to security in grid environments 5. Resource management 6. Information services 7. File transferring 8. Preparation of the work environment 9. Hands-on exercises with Globus Toolkit Pre-requisites: User level knowledge and skills in Unix or Linux systems: nivel medio; UNIX/Linux administration: nivel elemental; C or JAVA programming: nivel elemental;

Bibliography

1. Ian Foster and Carl Kesselman; The Grid, Blueprint for a New Computing Infrastructure; Morgan Kaufmann Publishers, Inc., 1998.; 2. Borja Sotomayor and Lisa Childers; Globus Toolkit 4. Programming Java Services; Morgan Kaufmann 2006; ok

Page 37: Short English version

Code: 078 Subject: Modeling and Simulation

Speciality/module Credits ECTS Type

Digital systems and Control II 6 Optional Theory hours Practical hours Homework hours

15 30 105 Objetivos específicos de aprendizaje

Learning to build models for the simulation, analysis and control of complex systems. Continuous, discrete and event based models will be studied. Simulation of models and applications in several fields will be carried out. Analysis of results for making decisions.

Contents

Dynamic systems and models: modelling techniques, types of models, examples and applications. Modelling, identification. Bond graphs Building models: representation, linearization; verification and validation. Simulation: continuous and discrete simulation. Introduction. Phases. Simulation tools. Examples. Applications. Discrete event simulation: Introduction. Models, elements, tools. Examples. Applications.

Bibliography

� B. S. Bennet, Simulation Fundamental, Prentice-Hall, London, 1995 � R. L. Woods, K. L. Lawrence, Modeling and Simulation of Dynamic Systems,

Prentice-Hall, 1997 � A.M. Law, W. D. Kelton, Simulation, Modelling and Analysis, McGraw-Hill, 1991 � G.F. Franklin, J.D. Powell, A. Emani-Naeini, Control de Sistemas Dinámicos con

Retroalimentación, Addison-Wesley, 1991. � Atherton, Derek P., Borne, P., Concise encyclopedia of modelling and simulation,

1992, Pergamon Press. � Zeigler, Bernard P., Theory of modelling and simulation: integrating discrete event

and continuous complex dynamic systems, 2000, Academic Press. � Banks, J., Discrete-event systems simulation, 2001, Prentice Hall. � Kheir, Naim A., Systems modelling and computer simulation, 1996, Marcel Dekker. � Monsef, Y., Modelling and simulation of complex systems: concepts, methods and

tools, 1997, Society for Computer Simulation. � Cellier, François E., Continous system modelling, 1991, Springer Verlag ok

Page 38: Short English version

Code: 079 Subject: Photonics

Speciality/module Credits ECTS Type

Optics I 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

Mechanisms and devices for light-generation, light-transmission in optical fibers, light-detection and signal modulation by optical methods, focusing on semiconductor devices and optical communications.

Bibliography

S. O. Kasap, Optoelectronics and Photonics, Prentice Hall 2001 J. Wilson y J. Hawkes, Optoelectronics, Prentice Hall 1998 J. Capmany, F. J. Fraile-Peláez y J. Martí, Fundamentos de Comunicaciones Ópticas, Síntesis 1999 B. E. A. Saleh y M. C. Teich, Fundamentals of Photonics, John Wiley & Sons 1991 ok

Page 39: Short English version

Code: 080 Subject: Integrated optics and optical communications

Speciality/module Credits ECTS Type

Optics I 6 Optional Teory hours Practical hours Homework hours

30 15 105 Contents

Integrated optics fabrication process and rudiments. Optical communications: elements, modulation systems and multiplexed. Communications optical networks. Microlitography and nanoptics

Bibliography

Page 40: Short English version

Code: 081 Subject: Optical properties of materials

Speciality/module Credits ECTS Type

Optics I 6 Optional Teory hours Practical hours Homework hours

30 15 105 Contents

Refractive index. Isotropic and anisotropic materials. Optical characterization methods. Electrooptic and acoustooptic effects. Ligt-generation and detection.

Bibliography

• J. H. Simmons y K. S. Potter, Optical Materials, Academic Press 2000. • J. M. Cabrera, F. Agulló y F. J. López, Óptica electromagnética Vol. II: Materiales y aplicaciones, Addison Wesley/Universidad Autónoma de Madrid 2000.

• B. E. A. Saleh y M. C. Teich, Fundamentals of Photonics, John Wiley & Sons 1991.

Page 41: Short English version

Code: 082 Subject: Optical instrumentation and devices

Speciality/module Credits ECTS Type

Optics I 6 Optional Theory hours Practical hours Homework hours

30 15 120 Contents

1. Optical instruments: Radiometry and photometry 2. Optical instruments: Resolution and image quality 3. Optical instruments: Refractive and reflective devices 4. Optical instruments: Basic characterization of optical systems 5. Optical instruments: Detectors 6. Optical metrology: Polarimetry and photoelasticity 7. Optical metrology: Interferometric devices 8. Optical metrology: Moiré metrology

Bibliography

• Jesús Marcén, Instrumentos ópticos. E. U. de Óptica (Madrid, 1998)

• G. Smith, D. A. Atchinson, The eye and visual instruments. Cambridge University Press (Cambridge, 1997)

• Kjell J. Gåsvik, Optical metrology. John Wiley & Sons (Chichester, 1996)

• Daniel Malacara, ed., Optical shop testing. John Wiley & Sons (New York, 1992)

• Gary L Cloud, Optical methods of engineering analysis. Cambridge University Press (Cambridge, 1998)

• K. Ramesh, Digital photoeslasticity: advanced techniques and applications. Springer (Berlin, 2000)

ok

Page 42: Short English version

Code: 083 Subject: Micro-Optics and Nano-Optics

Speciality/module Credits ECTS Type

Optics II 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

Diffractive and refractive micro-optical elements. Diffraction theory applied to optical elements. Binary optics. Phase optics. Fabrication techniques. Applications. Nanooptics

Bibliography

o H. P. Herzig "Micro-Optics. Elements, systems and applications" Taylor and Francis 1997

o J. Turunen, F. Wyrowski "Diffractive Optics for industrial and commercial applications" Akademie Verlag

o S. Sinzinger, J. Jahns, "Microoptics" Wiley-VCH, Berlin 2003 o L. Novothy, B. Hecht, "Principles of nano-optics", Cambridge University Press,

2006 ok

Page 43: Short English version

Code: 084 Subject: Optical methods of measurement

Speciality/module Credits ECTS Type

Optics II 6 Optional Teory hours Practical hours Homework hours

30 15 105 Contents

Interferometry. Moiré Polarimetry

Bibliography

• Kjell J. Gåsvik, Optical metrology. John Wiley and Sons (Chichester, 1996)

• Gonzalo Pajares Martínsanz, Jesús Manuel de la Cruz García, Visión por computador: imágenes digitales y aplicaciones, (Madrid : Ra-Ma, 2001)

• Gary L Cloud, Optical methods of engineering analysis. Cambridge University Press (Cambridge, 1998)

• K. Ramesh, Digital photoeslasticity: advanced techniques and applications. Springer (Berlín, 2000)

ok

Page 44: Short English version

Code: 085 Subject: Optoinformatics

Speciality/module Credits ECTS Type

Optics II 6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

Space-time signals characterization. Optical coherence. Wigner distribution in optics. Fourier optics. Special optical operations. Systems design for optical computing. Static and dynamic holography. Holographic storage of optical information. Different methods for multiplexing. Associative memories. Neural networks. Optical waveguides for optoinformatic applications

Bibliography

- M.L. Calvo, (Coord.), Óptica Avanzada, Editorial Ariel, Ariel Ciencia, Barcelona, 2002.

- M.L. Calvo, T. Alieva, J.A. Rodrigo et al, Laboratorio Virtual de Óptica. Guía práctica. Delta Publicaciones, Madrid, 2005. [with interactive CD].

- M.L. Calvo, V. Lakshminarayanan (Eds.), Optical waveguides: From theory to Applied Technologies, Ed. Taylor and Francis, NY, December 2007.

- J.W. Goodman, Introduction to Fourier Optics, Mc Graw Hill, NY, 2006. - A.W. Lohmann,.,Ed. S. Sinzinger. Optical information processing. -

Ilmenau, 2006. ISBN: 3-939473-00-6. ok

Page 45: Short English version

Code: 086 Subject: Photovoltaic and thermal solar energy conversion

Speciality/module Credits ECTS Type

Renewable energies 6 Optional Theory hours Practical hours Homework hours

25 25 100 Contents

Solar cell. Photovoltaic module. Electric storage systems. Control devices. Photovoltaic systems characterization. Design and dimension of photovoltaic systems. Solar receiver. Thermal storage systems. Control devices. Thermal systems characterization. Design and dimension of thermal systems.

Bibliography

M.Iqbal. Solar Radiation. Academia Press. 1980 John A. Duffie and William A. Beckman Solar Engineering of Thermal Processes, John Wiley and Sons. 1980 B. Bourges Solar Radation Data. EU. EUFRAT Project. 1990 E. Alcor Instalaciones Solares Fotovoltaicas, Progensa. 1987 C. Armenta y J. Doria Sistemas Solares Fotovoltaicos. Manual de diseño y dimensionado, UCM. 1991 G. López Araujo Electricidad Solar Fotovoltaica. Sistemas Solares Autónomos, UPM. 1983 Energía Solar Fotovoltaica, CET. 1988 George W. Vinal Storage Batteries, John Wiley and Sons, 1955 Colin A. Vincent Modern Batteries, Arnold, 1984 José Fullea Acumuladores Electroquímicos, McGraw-Hill, 1994 Jan F. Kreider and Frank Kreith Solar Heating and Cooling: Active and Passive Design, McGraw-Hill, 1975 Ari Rabl Active Solar Collectors and their applications, Oxford University Press, 1985 Adrian Bejan Heat Transfer, John Wiley and Sons, 1993 M.J. Moran y H.N. Shapiro Fundamentos de Termodinámica Técnica, Reverte, 1995

Page 46: Short English version

Code: 087 Subject: Renewable energies applications

Speciality/module Credits ECTS Type

Renewable energies 6 Optional Theory hours Practical hours Homework hours

25 25 100 Contents

Thermal applications of solar energy: ACS, heating, greenhouse, drying place. Solar energy use to water purification systems. Bioclimatic architecture. Agricultural applications. Solar irradiation. Solar energy evaluation. Determinations. Models. Devices

Bibliography

John A. Duffie and William A. Beckman Solar Engineering of Thermal Processes, John Wiley and Sons. 1980 Aden B. Meinel y Marjorie P. Meinel Aplicaciones de la Energía Solar, Reverté. 1982 N. Wakao and S. Kaguei Heat and Mass Transfer in Packed Beds F.J. Argul y otros Edificios Fotovoltaicos: técnicas y programas de simulación, Progensa, 2004 Félix A. Peuser Sistemas Solares Térmicos: diseño e instalación, Progensa 2004 C. Gallo, M. Sala and A.A.M. Sayigh Architecture: comfort and energy, Pergamon-Elsevier, 1988 Solar Energy Applicactions to Buildings and Solar Radiation Data, EU, Kluver Academic Publishers, 1987 Instalaciones Térmicas en Edificios, AENOR, 1998 Código Técnico de Edificación, AENOR, 2006 Calefacción y Climatización: Instalación, Diseño y Cálculo. AENOR, 1996 Juan A. de Andrés y otros Calefacción y Climatización. UNED, 1988 Varios autores Instalaciones de Energía Solar, Progensa, 2004

Page 47: Short English version

Code: 088 Subject: Non- equilibrium thermodynamic

Speciality/module Credits ECTS Type

6 Optional Theory hours Practical hours Homework hours

30 15 105 Contents

1.- Irreversible process thermodynamic: lineal ITP and general ITP. 2.-Extended thermodynamic. 3.- Rational thermodynamic. 4.- Variational thermodynamic 5.- Finite- time thermodynamic.

Bibliography

S. de Groot, P. Mazur. “Non-Equilibrium Thermodynamics”. Dover (1984). I. Müller, T. Rugeeri. “Extended Thermodymanics”. Springer (1993). P. Glansdorf, I. Prigogine. “Thermodynamics of structure, stability and fluctuations”. Wiley (1971). A. Bejan.”Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes”. CRC Press (1996). S. Sieniutycz, P. Salomon, eds. “Advances in Thermodynamics” (siete volúmenes). Taylor and Francis, N.Y. R.S. Berry et al. “Thermodynamic optimization of finite-time processes” J. Wiley and Sons, N.Y. (2000).

Page 48: Short English version

Code: Subject: Assessment and analysis of solar resource:

Prospecting Techniques

Speciality/module Credits ECTS Type

6 Optional Theory hours Practical hours Homework hours

25 25 100 Contents

Solar resource. Solar irradiance: components and characteristics. Determination and measurement of solar resource: Influence of environmental, climatic and meteorological conditions. Solar resource evaluation methods. Models and simulations. Measuring systems. Protocol for region classifying in solar areas. Prospective studies: examples. Doing a prospective study. Application fields for prospective studies in energetic and business overview today.

Bibliography

M. Iqbal. Solar radiation. Academic Press. 1980 John A. Duffie and William A. Beckam. Solar engineering of Thermal Processes. John Wiley and sons. 1980 B. Bourges. Solar Radiation Data. EU.EUFRAT Project. 1990

Page 49: Short English version

Code: Subject: Termal applications of Solar Energy

Speciality/module Credits ECTS Type

6 Optional Theory hours Practical hours Homework hours

25 25 100 Contents

Heat transmission fundaments. Psicrometry. Active and passive solar systems: applications. Modes and ranges of application of solar thermal systems: Application in several sectors o society. Design and structure of low, med and high temperatura solar systems. Termal applications of solar energy: ACS, heating. Bioclimatic architecture. Comfort and energy concepts. Energeticaly sustentable bioclimatic buildings design. Solar plants for producing electric energy: CPP systems and heliostatic fields. Measurement industrial systems and high temperaturas. Agriicultural applications: greenhouses and driers.

Bibliography

Page 50: Short English version

Code: 089 Subject: Research work

Speciality/module Credits ECTS Type

6 Optional Theory hours Practical hours Homework hours

150 15 600 Contents

This works will treat about research subject that are related with master teacher´s research lines. It´s possible that student will be able to carry work-study programs out and they will be considered as research work whenever they are related to Master teacher´s research and Master teacher will be the tutor.

Bibliography

Page 51: Short English version