second harmonic ech preionization with 7 pairs pf coil scenario...

17
Pl Sh thL b &F i A l t Lb Second Harmonic ECH preionization with 7 pairs PF coil scenario for KSTAR E.M. Choi, Y.S. Bae, C.H. Paek, W. Namkung, M.H. Cho POSTECH POSTECH 2001 2001 KPS KPS October 19-20, 2001 Chonnam univ.

Upload: others

Post on 23-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Pl Sh th L b & F i A l t L b

    Second Harmonic ECH preionization with 7 pairs PF coil scenario

    for KSTAR

    E.M. Choi, Y.S. Bae, C.H. Paek, W. Namkung, M.H. ChoPOSTECHPOSTECH

    2001 2001 KPSKPSOctober 19-20, 2001

    Chonnam univ.

  • Pl Sh th L b & F i A l t L b

    AbstractAbstract

    In the initial phase of KSTAR operations, the toroidal magnetic field is planned to be 1.5 T at the tokamak center. In this case, the electron cyclotron frequency is 42 GHz., and the operating frequency of the ECH pre-ionization system is 84 GHz, corresponding to the second harmonics. We modified the pre-ionization code with 7 pairs of poloidal coils. Through the pre-ionization simulation, we obtained the dependence of the loop voltage, electron temperature, and plasma currents for several input parameters in the second harmonic ECH pre-ionization. It is compared to the results of the fundamental harmonic ECH pre-ionization.

  • Pl Sh th L b & F i A l t L b

    KSTAR Target Operation Modes

    Bo = 3.5 T, Ip = 2 MA

    PNBI = 16 MW, PRF = 12MWPLH = 3MW, PECH = 3 MW

    4.0 Low-beta Reverse-shear mode4.1 Low-beta High-li mode4.2 Low-beta H-mode4.3 High-beta Reverse-shear mode4.4 High-beta High-li mode4.5 High-beta H-mode4.6 Full performance mode

    Upgrade Plasma

    Bo = 3.5T, Ip = 2 MA

    PNBI = 8 MW, PRF = 6 MWPMW = 1.5 MW

    3.0 Ohmic + NBI mode3.1 Ohmic + NBI + RF mode3.2 Ohmic + NBI + RF + MW mode3.3 Extended mode

    Baseline Plasma

    Bo = 3.5T, Ip = 2 MA2.0 ECH-assisted 6 V-outer start-up modeOhmic Plasma

    Bo = 1.5 T, Ip = 100 kA1.0 ECH-assisted 5 V-inner start-up modeFirst Plasma Target Operation ModesOperation Phase

  • Pl Sh th L b & F i A l t L b

    PF coil structure

    (Unit : mH)

    PF1 PF2 PF3 PF4 PF5 PF6 PF7 PLAPF1 85.6 26.55 5.96 5.28 7.45 7.13 8.3 0.11PF2 26.55 44.98 12.56 9.18 7.85 5.81 6.47 0.073PF3 5.96 12.56 13.43 10.38 5.3 2.96 3.13 0.037PF4 5.29 9.18 10.38 26.93 10.96 4.48 4.52 0.031PF5 7.45 7.85 5.3 10.96 327.4 37.32 31.21 0.135PF6 7.13 5.81 2.95 4.48 37.31 199.36 99.1 0.219PF7 8.3 6.47 3.13 4.52 31.2 99.1 316.45 0.284PLA 0.11 0.073 0.037 0.031 0.135 0.219 0.284 0.003

  • Pl Sh th L b & F i A l t L b

    KSTAR Operation Scenario(First Plasma Phase)

    (-0.6)

    (-0.9)

    Flux-linkage(V-s)

    t (s)

    0

    0 10

    14.055 14.255 15.255

    14

    Zero crossing

    Ip=100 kA

    (1.0)

    ECH heating

    (0.0)

    17.0

    PF Coil Current (kA) vs. time (sec)

    -25

    -20

    -15-10

    -5

    0

    5

    1015

    20

    25

    0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

    TIme (sec)

    PF C

    oil C

    urre

    nt (k

    A)

    PF-1PF-2PF-3PF-4PF-5PF-6PF-7FECCIVCIRC

    Start EndInitial Current Charge

  • Pl Sh th L b & F i A l t L b

    Input parametersInput parameters

    1. A major radius; R = 180 cm.2. A minor radius; a = 50 cm.3. An error field range; Berr = 0.1 ~ 4 (mT)4. An initial neutral density; no = 0.2¥1013 ~ 3¥1013 (cm-3).5. RF pulse duration; TRF = 0.2s.6. A magnetic field; Bo = 1.5 T.7. A carbon impurity fraction; fci = 0.018. An oxygen impurity fraction foi is always set to 2 times fci.9. All wave propagates X-mode.

  • Pl Sh th L b & F i A l t L b

    Pre-ionization code modelPre-ionization code model

    Continuity equation

    diffusion.the todue rate lossthe is v and drift toroidalthe todue rate lossthe is v

    field, error todue rate lossthe is v rate, ionizationthe is v where

    diff

    dr

    err

    ion

    )( diffdrerreionee vvvnvndtdn

    ++−=Particle balance

    dtdn

    dtdn eo −=

    none

    Circuit equation

    plasma. and coils PF between sinductance mutualthe is Mthe and resistenceplasma teh is R

    plasma,the for 8n and coilPF of pairs 7the for 7~1nwhere voltage) (resistive

    voltage) (loop

    n8

    p

    ==

    −=

    −=

    ×−−

    =⇒=−−

    ∑∑

    =

    =

    =

    presis

    n

    nnloop

    np

    nn

    pn

    nn

    RIVdtdIMV

    dtM

    RIdtdIM

    dIRIdtdIM

    8

    7

    18

    88

    8

    188

    88

    8

    18 0Energy balance

    EiCXEQUi

    IRADBREMEQUEdrerreRADOHECHe

    vUPPVdt

    dU

    PPPV

    vvvUV

    PPPdtdU

    −−=

    ++−++−−+

    =

    )(1

    )(1)(

    Ue, Ui, TeVloop, Vresis, Ip

  • Pl Sh th L b & F i A l t L b

    Results of the code calculation Results of the code calculation

    1. Temporal behaviorSecond harmonic case

    FIG. 1-1. Plots of the plasma current Ip and the electron temperature Teas a function of time.The RF power 500 kW is applied for 0.2 sec, and the Ohmic heating is applied at 50 msec. The parameters are PRF = 500 kW, Berr=1 mT, f=84 GHz, no = 1.0¥1013 cm-3, ne(0) = 1.0â109 cm-3

    0.0 0.5 1.0 1.5 2.0-200

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    Ip Te

    tim e(sec)

    I p(A

    )

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    Te (eV

    )

    0.0 0.5 1.0 1.5-200

    0

    200

    400

    600

    800

    1000

    1200

    1400

    Ip Te

    tim e(sec)

    I p(A

    )

    RF power = 500 kW No RF power

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    Te (eV

    )

  • Pl Sh th L b & F i A l t L b

    Fundamental harmonic case

    0 1 2 3

    0

    50000

    100000

    150000

    200000

    250000

    Ip Te

    time(sec)

    I p(A

    )

    -50

    0

    50

    100

    150

    200

    250

    300

    350

    Te (eV

    )

    0 1 2 3-200

    0

    200

    400

    600

    800

    1000

    1200

    1400

    Ip Te

    time(sec)

    I p(A

    )

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    Te (eV

    )

    RF power = 500 kW No RF power

    FIG. 1-2. Plots of the plasma current Ip and the electron temperature Teas a function of time. The RF power 500 kW is applied for 0.2 sec, and the Ohmic heating is applied at 50 msec. The parameters are PRF = 500 kW, Berr=1 mT, f=84 GHz, no = 1.0¥1013 cm-3, ne(0) = 1.0â109 cm-3

  • Pl Sh th L b & F i A l t L b

    2. Error field scanSecond harmonic case

    0 1 2 3 4

    1.45

    1.50

    1.55

    1.60

    1.65

    Berr(mT)

    T e(e

    V)

    Te(No impurity) Te(fci=0.01) 0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    ne (x10

    12/cm3) ne(No impurity)

    ne(fci=0.01)

    FIG. 2-1. (a) The electron temperature Te and electron density neat 60 ms, plotted as a function of the error field Berr.

    FIG. 2-1. (b) The plasma current Ip and resistive voltage Vresis at 60 ms, plotted as a function of Berr.

    0 1 2 3 4

    400

    600

    800

    1000

    1200

    1400

    Berr(mT)

    I p(A

    )

    Ip(A) Ip(A)_im

    -5.70

    -5.65

    -5.60

    -5.55

    -5.50

    Vresis (V

    )

    Vresis Vresis_im

  • Pl Sh th L b & F i A l t L b

    Fundamental harmonic case

    FIG. 2-2. (a) The electron temperature Te and the electron density ne at 60 ms,

    plotted as a function of the error field Berr.

    FIG. 2-2. (b) The plasma current Ip and resistive voltage Vresis at 60 ms, plotted as a function of Berr.

    0 1 2 3 40

    50

    100

    150

    200

    250

    Berr(mT)

    T e(e

    V)

    Te(No impurity) Te(fci=0.01)

    -1.0

    -0.5

    0.0

    0.5

    1.0

    ne (x10

    14/cm3)

    ne(No impurity) ne(fci=0.01)

    0 1 2 3 40

    5000

    10000

    15000

    20000

    Berr(mT)

    I p(A

    ) Ip(No impurity) Ip(fci=0.01)

    -6

    -5

    -4

    -3

    -2

    -1

    0

    Vresis (V

    ) Vresis(No impurity) Vresis(fci=0.01)

  • Pl Sh th L b & F i A l t L b

    3. Neutral density scan

    Second harmonic case

    FIG. 3-1.(a) The electron temperature Te and electron density ne at 60 ms, plotted as a

    function of initial neutral density no.

    FIG. 3-1.(b) The plasma current Ip and resistive voltage Vresis at 60 ms, plotted as a function of initial neutral density no.

    0 1 2 30

    2

    4

    6

    8

    10

    No(x1013/cm3)

    T e(e

    V)

    Te(No impurity) Te(fci=0.01)

    0.00

    0.05

    0.10

    0.15

    0.20

    ne (x10

    13/cm3)

    ne(No impurity) ne(fci=0.01)

    0 1 2 3

    1000

    2000

    3000

    4000

    5000

    No(x1013/cm3)

    I p(A

    )

    Ip(No impurity) Ip(fci=0.01)

    -6

    -5

    -4

    -3

    -2

    -1

    Vresis (V

    )

    Vresis(No impurity) Vresis(fci=0.01)

  • Pl Sh th L b & F i A l t L b

    Fundamental harmonic case

    FIG. 3-2. (a) The electron temperature Te and electron density ne at 60 ms, plotted as a function of initial neutral density no.

    FIG. 3-2. (b) The plasma current Ip and resistive voltage Vresis at 60 ms, plotted as a function of initial neutral density no.

    0 1 2 3

    0

    100

    200

    300

    No(x1013/cm3)

    T e(e

    V)

    Te(No impurity) Te(fci=0.01)

    0

    5

    10

    15

    20

    25

    ne (x10

    13/cm3)

    ne(No impurity) ne(fci=0.01)

    0 1 2 30

    5000

    10000

    15000

    20000

    No(x1013/cm3)

    I p(A

    )

    Ip(A) Ip(A)_im

    -6

    -5

    -4

    -3

    -2

    -1

    0

    Vresis (V

    )

    Vresis(V) Vresis(V)_im

  • Pl Sh th L b & F i A l t L b

    4. RF power scanSecond harmonic case

    FIG. 4-1. (a) The electron temperature Te and electron density ne at 60 ms, plottedas a function of the RF power PRF

    FIG. 4-1. (b) The plasma current Ip and resistive voltage Vresis at 60 ms, plotted as a function of the RF power PRF.

    0 500 1000 1500 2000

    1.2

    1.3

    1.4

    1.5

    1.6

    PRF(kW)

    T e(e

    V)

    Te(No impurity) Te(fci=0.01)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    ne (x10

    13/cm3)

    ne(No impurity) ne(fci=0.01)

    0 500 1000 1500 2000

    1000

    1100

    1200

    1300

    1400

    1500

    1600

    PRF(kW)

    I p(A

    )

    Ip(No impurity) Ip(fci=0.01)

    -5.8

    -5.7

    -5.6

    -5.5

    Vresis (V

    )

    Vresis(No impurity) Vresis(fci=0.01)

  • Pl Sh th L b & F i A l t L b

    Fundamental harmonic case

    FIG. 4-2. (a) The electron temperature Te and electron density ne at 60 ms, plotted as a function of the RF power PRF.

    FIG. 4-2. (b) The plasma current Ip and resistive voltage Vresis at 60 ms, plotted as a function of the RF power PRF.

    0 500 1000 1500 20000

    200

    400

    600

    800

    PRF(kW)

    T e(e

    V)

    Te(No impurity) Te(fci=0.01)

    0.0

    0.5

    1.0

    1.5

    2.0

    ne (x10

    13/cm3)

    ne(No impurity) ne(fci=0.01)

    0 500 1000 1500 20000

    5000

    10000

    15000

    20000

    PRF(kW)I p(

    A)

    Ip(No impurity) Ip(fci=0.01)

    -6

    -5

    -4

    -3

    -2

    -1

    0

    Vresis (V

    )

    Vresis(No impurity) Vresis(fci=0.01)

  • Pl Sh th L b & F i A l t L b

    ConclusionConclusion

    1. For the second harmonic case, ECH pre-ionization is not effective for initiating plasma. To make plasma initially, we must modify the central magnetic field to make fundamental harmonic magnetic field (3T) in tokamak or use mode conversion. For the fundamental harmonic case, ECH pre-ionization is very outstanding effect.

    2. For the second harmonic ECH heating, the impurity effects are not significant and Te and Ip maximized near 500 ~ 1000 kW RF power.

  • Pl Sh th L b & F i A l t L b

    ReferencesReferences

    1. B. Lloyd, et al., Nuclear Fusion 31, 2031 (1991)

    2. A. G. Kulchar, et al., Phys. Fluid 27, 1869 (1984)

    3. Y-K. M. Peng, et al., Nuclear Fusion 18, 1489 (1978)