seasonal amino acid profile and nutritional … potentials-composition-k… · seaweed potentials...

29
Seaweed potentials – evaluation of year-round biomass composition of commercial cultivated sugarkelp - results from project KOMBI Susan L. Holdt, Goncalo.S. Marinho, Irini Angelidaki DTU Food and DTU Environment 5th Nordic Seaweed Conference- Oct 7-8, Grenaa Denmark

Upload: vocong

Post on 20-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Seaweed potentials – evaluation of year-round biomass composition of

commercial cultivated sugarkelp - results from project KOMBI

Susan L. Holdt, Goncalo.S. Marinho, Irini Angelidaki

DTU Food and DTU Environment

5th Nordic Seaweed Conference- Oct 7-8, Grenaa Denmark

Menu • Experimental setup • Conclusions • Comparisons to other foods and feeds • Protein by season • Amino acid profile/quality • Lipids and fatty acids • Trace metals (good and bad!) • Vitamins • Pigments • Feed evaluation

Experimental setup • Year 2013-2014

• Commercial IMTA (Integrated Multi-trophic Aquaculture) and reference site

• Analyses every 2 months (sampling every month)

• Triplicate ropes around 10 individuals/rope, with and without epiphytes

• Analyses for ”every compound” (except sugars) and growth, yield etc.

Conclusions • Biomass available all year • Generally no difference between sites • Seasonal variations during a year -harvest time very important for different applications -seaweed growth cycle (loss of old thalli) -content -epiphytes -value (biofilter or price!) • Large standard deviations especially on biomass with epiphytes • Feed producers may be sceptical going into details! –but all biomass! • Food and feed applications are already proven through other studies!

Sept

Conclusions

• Application and harvest time

May

Saccharina latissima is comparable with wheat as a protein ingredient for fish feed, and appears to be a suitable protein/amino acid source for human consumption. This study proposes that there may be a mismatch between harvest time and nutritional value. The preferable harvest time for S. latissima is November, due to high protein content (and EAA score). However, higher yield and cleaner biomass for human consumption would be found in May. Highest biofilter capacity in September

Conclusions • Application and harvest time

• Low in lipids (max 3.35% of dw) highest in November • Polyunsaturated fatty acids (PUFA’s) made up more than half of the fatty

acids in July. • This including the most appreciated health beneficial PUFA’s, EPA

and DHA

• Season of harvest is important for the choice of lipid quantity and quality, but the marine vegetable provide better source of EPA, DHA and long chained-PUFA’s in general compared to traditionally vegetables.

• Compared to fat (salmon) and lean fish (cod) this seaweed species contains higher proportions of ARA and SDA, but lower EPA and DHA.

Conclusions…

Trace elements:

• Good: Cr, Fe, Mn, Co, K, Ca, P, Na, Zn, Se, Iodine – Surprisingly high concentrations of K and Ca

• Problematic: Cu, Cd, Hg, Pb, As, iAs, Iodine – Full evaluation also looking at the amounts!

– Iodine sets the limit for intake of seaweed

Conclusions…

Vitamins and pigments:

• Vitamin A and E conc. were not higher than good sources from vegetables

• Data on pigments show high conc. of fucoxanthin

• Same pattern in the two locations

• Seasonal changes (no statistics yet!)

• Protein content

0

2

4

6

8

10

12

14

16

18

Pro

tein

(%

DW

)

0

2

4

6

8

10

12

14

16

May July Sept Nov Jan Mar May

a

b

b

b

c d

a

b

b

REF

IMTA

REF incl. epiphytes

IMTA incl. epiphytes

Protein content varied markedly seasonally. No significant difference for the tested parameters between the two sampling sites. The protein concentration varied markedly reaching a maximum of 10.8% DW in November and a minimum of 1.3% DW in May 2013. Presence of epiphytes did not significantly alter the protein content in samples collected from July to November.

0

20

40

60

80

100

120 Th

allu

s w

eigh

t (g

FW

) REF IMTA

May Jun July Aug Sept Nov Dec Jan Feb Mar May Oct Apr

R² = 0.8321

R² = 0.9784

Ekspon. (REF) Ekspon. (IMTA)

* *

• Amino acid profile Table 1 Year-round variation in the amino acid composition (mg amino acid g

-1 protein), total amino acid (% DW), total essential amino acid content, essential amino acid

ratio (EAA/AA) and EAA score of S. latissima cultivated at both reference (REF) and IMTA site.

May Jul Sep Nov Jan Mar May

Patt

ern3 FM4 SM4 WM4

Amino acid INITIAL REF IMTA REF IMTA REF IMTA REF IMTA REF IMTA REF IMTA

LYS1 53.1±0.9

61.8±8.2 58.7±16.1

56.7±8.3 64.6±14.9

65.1±7.3 62.8±1.4

58.4±11.1 53.5±2.4

47.4±8.1 45.9±16.3

52.3±8.9 52.7±14.9 52.0

0 113.1

5 139.5

6 21.68

ALA 155.2±17.5

121.2±31.2 95.7±27.7

141.8±6.9 135.9±8.8

112.9±30.9 120.8±12.3

109.9±31.0 105.2±28.0

197.8±56.9 138.4±17.0

107.0±58.

9 90.6±45.1

ARG2 58.6±2.4

69.4±6.1 66.3±6.1

40.9±17.1 49.9±20.8

80.6±32.3 50.3±18.5

44.0±13.0 32.5±7.2

68.2±16.9 59.5±5.6

71.1±25.9 69.1±36.9 83.45

154.2

2 31.47

CYS1 4.1±0.6

1.0±0.6 1.1±0.3

2.9±0.7 2.9±2.4

n.d n.d

n.d n.d

n.d n.d

n.d n.d

MET1 29.8±5.1

60.4±55.9 39.6±17.5

26.3±9.0 26.7±5.5

24.3±9.2 23.2±0.7

22.9±16.2 26.2±15.7

31.4±13.2 24.3±15.0

44.2±6.1 43.0±19.6 26.0

0 41.02 30.67 13.99

LEU1 102.5±1.2

128.7±35.4 128.1±43.3

82.3±15.0 107.3±36.8

64.2±8.7 66.1±10.4

79.2±6.4 73.3±10.4

53.0±17.7 53.1±37.2

69.1±11.4 59.4±11.8

63.0

0

108.9

1

167.5

6 65.73

TYR1 28.9±1.8

23.6±1.7 22.9±0.5

19.9±1.4 22.4±4.5

20.2±0.2 17.6±2.0

19.7±4.3 21.7±9.0

15.1±3.6 17.2±8.3

25.3±5.8 21.6±2.8

46.0

0 16.97 26.22 8.39

PHE1 112.6±7.3

83.1±11.8 97.3±31.0

54.7±7.4 63.8±17.5

38.3±9.1 38.8±1.3

49.2±3.0 42.0±6.3

33.9±6.7 36.4±14.9

47.2±10.7 44.7±7.3 59.41 111.7

8 44.76

PRO 51.6±3.5

61.3±4.4 51.5±4.6

46.7±2.6 50.7±4.5

47.4±5.0 45.8±10.9

59.1±9.3 65.5±10.2

47.1±10.8 43.7±23.7

42.8±3.9 37.4±6.5

THR1 26.5±2.3

33.7±2.5 38.4±7.7

35.5±3.9 32.9±7.6

33.7±15.8 37.8±2.4

39.3±3.2 25.8±3.6

23.9±4.7 27.0±8.5

41.4±9.7 43.0±13.8 27.0

0 62.23 109.3

3 24.48

ASP 157.5±10.9

121.6±23.4 117.3±19.5

112.0±19.1 117.4±15.9

193.4±36.8 181.5±35.8

182.5±32.1 190.7±49.7

211.2±85.3

270.1±114.

4

205.3±12.

4 174.7±17.4

SER 75.2±2.3

79.5±25.6 68.4±6.3

55.5±8.1 43.6±17.7

54.3±25.6 52.9±19.4

69.7±34.2 125.1±50.6

n.d n.d

73.3±7.1 70.1±8.1

HYP 4.1±0.4

19.1±13.3 8.4±3.5

31.7±11.5 28.3±10.7

18.4±16.5 17.9±8.6

12.0±2.8 8.7±3.7

10.3±2.8 5.8±1.4

n.d n.d

GLU 160.2±36.6

146.9±0.6 190.1±62.9

266.5±33.3 204.2±40.6

233.6±17.2 260.9±93.2

236.1±72.8 213.5±32.3

281.9±64.0

304.4±142.

0

225.3±8.3 299.9±29.5

VAL1 25.1±4.6

57.0±12.7 50.0±4.2

53.6±6.0 57.0±7.7

45.0±19.6 64.2±14.3

52.1±5.4 44.0±4.3

21.7±4.8 22.8±23.7

37.5±8.6 39.5±10.9 42.0

0 76.38 104.8

9 37.06

HIS1 10.5±0.9

9.4±1.3 6.7±2.4

3.0±1.0 8.9±2.9

8.7±5.1 12.4±6.2

8.1±1.0 12.2±7.3

n.d n.d

7.1±3.3 6.2±2.6

18.0

0 35.36 58.67 18.88

TRP1 n.d

n.d n.d

n.d n.d

n.d n.d

n.d n.d

n.d n.d

n.d n.d

ILE1 12.0±0.1

35.9±2.4 38.1±3.3

28.1±4.6 43.2±9.1

30.8±14.7 33.6±2.4

39.5±5.0 28.7±3.1

17.4±5.1 16.6±9.9

28.1±13.2 31.4±10.9

31.0

0 66.48

111.3

3 34.97

GLY 109.4±8.1

119.9±9.3 91.8±7.4

121.1±21.3 118.5±15.7

101.6±36.1 86.1±12.9

91.7±41.6 112.8±44.9

87.5±21.7 77.8±39.4

87.5±37.1 77.4±32.6

? AA (% DW) 1.5±0.2d

2.0±0.9 2.0±1.1c

7.0±1.2 7.6±1.7b

11.3±4.0 12.7±1.6a

7.5±1.6 7.2±2.9b

4.0±1.0 8.0±4.9b

5.2±1.9 4.5±2.7b

? EAA

405.0±20.4b

494.2±40.8 480.7±65.3

a

368.3±13.1

428.6±76.0b

330.4±73.8

356.5±35.1bc

368.5±18.2

327.5±36.9bc

247.5±54.7

248.2±141.

6c

352.1±58.

0

341.5±48.4bc

305.

0

EAA/AA 0.34±0.02b

0.42±0.03 0.41±0.06a

0.31±0.01

0.36±0.07b

0.28±0.06

0.30±0.03bc

0.31±0.01

0.28±0.03bc

0.21±0.05 0.21±0.12c

0.30±0.05

0.29±0.04bc

EAA score

(%) 38.7±0.4

52.0±7.3 37.1±13.3

16.7±5.7 49.5±16.2

48.4±28.4 68.9±34.4

45.0±5.5 67.7±40.8

n.d n.d

39.3±18.6 34.2±14.4

Aspartic and glutamic acids dominated the amino acid profile, accounting for up to 49% of the total. Greatest seasonal differences in amino acid composition occurred in July, with leucine contributing most (22.7-26.7%) of the observed differences.

• Essential amino acid score

0

20

40

60

80

100

120

Esse

nti

al a

min

o a

cid

sco

re (

%)

0

20

40

60

80

100

May July Sept Nov Jan Mar May

b

a

REF

IMTA

REF incl. epiphytes

IMTA incl. epiphytes

A maximal essential amino acid (EAA) score of 68.9% (based on WHO/FAO/UNU requirements) was achieved in November 2013. Without significant difference in none of the sites compared to the other months. The presence of epiphytes in July to November changed neither the amino acid content nor the EAA score. Histidine and isoleucine first limiting EAA’s.

EAA score % =g of first limiting EAA in 100 g of test protein

g of limiting EAA in 100 g of WHO/FAO/UNU reference pattern × 100

• Lipids

0

1

2

3

4

5REF

IMTA

May Jul      Sep Nov Jan Mar May              

ab

c

aba

bc

d

abc

Lip

ids (

% D

W)

Generally there was no significant difference in the biomass composition between sites. The lipid concentration varied from 0.62-0.88% DW in July to 3.33-3.35% DW in November (P<0.05). The fatty acid composition in January was significantly different from all the other sampling months.

• PUFA: polyunsatuated fatty acids

0

20

40

60

SFA REF

SFA IMTA

MUFA REF

MUFA IMTA

PUFA REF

PUFA IMTA

      May      Jul Sep Nov Jan Mar May           

aab ab ab abc b

b b a bab abab

a bc bcbcbcb c

PUFA

SFA

MUFA

% F

AM

E

Polyunsaturated fatty acids (PUFA’s) made up more than half of the fatty acids with a maximum in July (52.3-54.0% FAME). This including the most appreciated health beneficial PUFA’s, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), but also arachidonic (ARA) and stearidonic acid (SDA). ARA and SDA are not found in land vegetables such as cabbage and lettuce.

FAME: Fatty Acid Methyl Esters

Tracemetals- Good….

• Calcium

Ca

0

50

100

150

200

      May      Jul     Sep      Nov      Jan       Mar       May     

REF

IMTA

g k

g-1

DW

Milk: 122 mg/100 g Cheese: 960 mg/100 g

Source: www.foodcomp.dk

• Potassium (kalium)

K

0

50

100

150

      May      Jul     Sep      Nov      Jan       Mar       May     

REF

IMTA

g k

g-1

DW

Milk: 153 mg/100 g Cheese: 71 mg/100 g

• Sodium (natrium)

Na

0

10

20

30

40

50

      May      Jul     Sep      Nov      Jan       Mar       May     

REF

IMTA

g k

g-1

DW

Crisps: 606 mg/100 g Cheese: 723 mg/100 g

• Vitamin E- antioxidant

Sunflowers are known to be rich in vit E

vit. E (alpha-tocopherol)

0

10

20

30REF

IMTA

      May      Jul      Sep       Nov      Jan       Mar       May 

mg

kg

-1 D

W

Broccoli: 1.3 mg/100 g

Sunflower: 55 mg/100 g

• Vitamin A –group of organic compounds • Retinol below detection limit

vit. A (beta-carotene)

0

10

20

30

40

      May      Jul      Sep       Nov      Jan       Mar       May 

REF

IMTA

mg

kg

-1 D

W

Carrot: 9070 µg/100 g Broccoli: 533 µg/100 g

• Tracemetals- Problematic…. • Besides essential macro- and microminerals macroalgae also assimilate

heavy metals such as inorganic arsenic, cadmium and mercury, undesirable toxic compounds that constitute a human health safety issue.

• Food (supplement (EU)) treshold values

Table: Overview of EU treshold values for food supplement, and certain national limits for seaweed for food. All values are based on dry weight.

EU legislation only on food supplent level. Food authorities that will make an evaluation if for food.

• Iodine (jod)

Iodine

0

2

4

6

8

      May      Jul     Sep      Nov      Jan       Mar       May     

REF

IMTA

g k

g-1

DW

EU: ---

France: 0.5 mg/kg

USA: 5000 mg/kg

• Inorganic arsenic that is highly problematic

– In the sugarkelp worse case ~1.5 mg/kg

– Below treshold values

As

0

20

40

60

80

      May      Jul     Sep      Nov      Jan       Mar       May     

REF

IMTA

mg

kg

-1 D

W

USA: 3 mg/kg France: 3 mg/kg

EU: ---

Inorg-As

0.0

0.5

1.0

1.5

2.0

May Jul Sep Nov Jan Mar May

REF

IMTA

mg

kg

-1 D

W

• Mercury (kviksølv) • Below treshold values

• Lead (Pb; bly)

EU: 3 mg/kg

France: 5 mg/kg

USA: 10 mg/kg

May Jul Sep Nov Jan Mar May

Pb

0

2

4

6

REF

IMTA m

g k

g -1

DW

• Cadmium Cd

0.0

0.2

0.4

0.6

0.8

      May      Jul     Sep      Nov      Jan       Mar       May     

REF

IMTA

mg

kg

-1 D

W

EU: 5 mg/kg

France: 0,3 mg/kg

USA: ---

Cadmium concentration (0.24-0.64 mg kg-1) in August samples was above the limit established in France, but below the EU regulation. However, in order to reach the provisional tolerable weekly intake limit set for cadmium (7 µg kg-1 body weight per week) (JECFA 1996) a person weighing 70 kg would need an intake of 0.77-2.0 kg DW of S. latissima, depending on harvest time.

• Cupper (kobber)

Cu

0

20

40

60

      May      Jul     Sep      Nov      Jan       Mar       May     

REF

IMTA

mg

kg

-1 D

W

• Pigments

0

100

200

300

400

500

600

700

800

13. nov 2013 REF Example of a HPLC pigment profile. Chl a and fucoxanthin

• Pigments

0

100

200

300

400

500

600

700

800

REF Fucoxanthin mg/kg

sept jan nov maj marts

IMTA

sept jan nov maj marts

Concentration changes over season, but not the expression of different pigments. Most interesting is the fucoxanthin Increased concentration in winter ip to 600 mg/kg

Feed producers evaluate by: • Total protein content

– High content for species as salmon (60%) – Low for species such as tilapia, catfish and carps

• Lysine and methionine (histidin). Data not shown here • Sugar species • Heavy metals • Incl. all biomass or extract of the protein or single

compound • Multiple compound’s effects • Stability of biomass they receive

References • www.foodcomp.dk

• More details please read the publications available and upcoming… • Final report (Danish) soon available on www.havbrug.dk Publications: • Gonçalo S. Marinho, Susan L. Holdt, Charlotte Jacobsen and Irini Angelidaki (2015). Lipids and

composition of fatty acids of Saccharina latissima as seasonal marine vegetable. Marine Drugs

• Marinho, G.S., Holdt, S.L., Angelidaki I (2015). Year-round variations in the amino acid profile and protein nutritional value of Saccharina latissima cultivated in a commercial IMTA system. Journal of Applied Phycology DOI: 10.1007/s10811-015-0546-0

• Marinho, G.S., Holdt, S.L., Birkeland, M.J.Angelidaki I (2015). Bioremediation of sugarkelp, Saccharina latissima, cultivated in a commercial off-shore integrated multi-trophic aquaculture (IMTA). Journal of Applied Phycology, DOI: 10.1007/s10811-014-0519-8

Thank you and thanks to: Gonҫalo S. Marinho

GUDP: Project number: 3405-11-0375