sc filters

Upload: lalith420

Post on 30-May-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 SC Filters

    1/42

    F. Maloberti

    : Switched Capacitor Filters 1

    Switched Capacitor Filters

    Franco Maloberti

  • 8/14/2019 SC Filters

    2/42

    F. Maloberti

    : Switched Capacitor Filters 2

    OUTLINE

    Switched capacitor technique

    Biquadratic SC filters

    SC N-path filters

    Finite gain and bandwidth effects

    Layout consideration

    Noise

  • 8/14/2019 SC Filters

    3/42

  • 8/14/2019 SC Filters

    4/42

  • 8/14/2019 SC Filters

    5/42

    F. Maloberti

    : Switched Capacitor Filters 5

    Simple SC structures

    Q = C

    1

    (V

    1

    - V

    2

    ) every

    t = T

    1

    2

    1 2

    I

    1

    2

    C1

    C1

    I

    T

    T

    V1 V2

    V1 V2

  • 8/14/2019 SC Filters

    6/42

    F. Maloberti

    : Switched Capacitor Filters 6

    The two SC structures are

    (on average) equivalent to a resistor

    If the SC structures are used to get an equivalent time constant

    eq

    = R

    eq

    C

    2

    it results:

    IV1 V2 Tt

    I

    Q itV1 V2

    R-------------------T= =

    ReqT

    C1

    -------=

    eq T

    C2

    C1-------

    =

  • 8/14/2019 SC Filters

    7/42

  • 8/14/2019 SC Filters

    8/42

    F. Maloberti

    : Switched Capacitor Filters 8

    SC INTEGRATOR

    Starting from the continuous-time circuit of the Integrator, we can ob-tain a SC integrator by replacing the continuous-time resistor with the

    equivalent resistances.

    +

    _

    R1

    C2

  • 8/14/2019 SC Filters

    9/42

    F. Maloberti

    : Switched Capacitor Filters 9

    1 2

    +

    _

    C1

    C2

    +

    _

    C1

    C2

    +

    _

    C2

    C1

    1

    1

    1

    2

    2

    2

    2

    1

    1

    1

  • 8/14/2019 SC Filters

    10/42

    F. Maloberti: Switched Capacitor Filters 10

    We consider the samples of the input and of the output taken at

    the same times nT (the end of the sampling period).

    Structure 1:

    taking the z-transform:

    Structure 2:

    taking the z-transform:

    Vout n 1+( )T[ ] Vout nT( )

    C1

    C2-------Vin nT( )=

    Vout

    z( )

    Vin z( )-------------------

    C1C2-------

    1z 1------------=

    Vout n 1+( )T[ ] Vout nT( )C1C2-------Vin n( 1 )T ]+=

  • 8/14/2019 SC Filters

    11/42

    F. Maloberti: Switched Capacitor Filters 11

    Structure 3:

    taking the z-transform:

    Remember that for the continuous-time integrator:

    Comparing the sampled-data and continuous-time transfer functions we get:

    Vout z( )

    Vin z( )-------------------

    C1C2-------

    z

    z 1------------=

    Vout

    n 1+( )T[ ] Vout

    nT( )C1

    C2------- V

    inn 1+( )T[ ] V

    innT( )+{ }=

    Vout z( )

    Vin z( )-------------------

    C1

    C2-------

    z 1+

    z 1------------=

    Vout s( )Vin s( )-------------------

    1sR1C2------------------=

  • 8/14/2019 SC Filters

    12/42

    F. Maloberti: Switched Capacitor Filters 12

    Structure 1:

    FE approximation

    Structure 2:

    BE approximation

    Structure 3:

    Bilinear approximation

    It does not exist a simple SC integrator which implement the LD

    approximation.

    Note: the cascade of a FE integrator and a BE integrator is

    equivalent to the cascade of two LD integrators.

    R1

    T

    C1-------

    s

    1

    T---

    z 1( )

    R1T

    C1------- s

    1

    T

    ---

    z 1( )

    z

    -----------------

    R1T

    2C1

    ---------- s2

    T---

    z 1( )z 1+( )

    -----------------

  • 8/14/2019 SC Filters

    13/42

    F. Maloberti: Switched Capacitor Filters 13

    The key point is to introduce a full period delay from the input to

    the output

    1

    2

    +

    _

    21+

    _

    C2

    C1

    C1

    C2'

    '

  • 8/14/2019 SC Filters

    14/42

    F. Maloberti: Switched Capacitor Filters 14

    The same result is got with:

    1 2

    +

    _2 1

    +

    _

    C2

    C1

    C2

    '

    '

    C1

  • 8/14/2019 SC Filters

    15/42

    F. Maloberti: Switched Capacitor Filters 15

    STRAY INSENSITIVE STRUCTURE

    The considered SC integrators are sensitive to parasitics.

    Toggle structure:

    The top plate parasitic capacitance Ct,1 isin parallel with C1

    It is not negligible with respect to C1 and

    it is non linear The top plate parasitic capacitance Ct,1

    acts as a toggle structure

    Bilinear resistor:

    1 2C1

    Ct,1 Cb,1

    1

    2C1

    Ct,1 Cb,1

  • 8/14/2019 SC Filters

    16/42

    F. Maloberti: Switched Capacitor Filters 16

    Both the parasiticcapacitances Ct,1, Cb,1 act

    as toggle structures. Theirvalues are different (of afactor 10) and they are nonlinear.

    Stray insensitivity can be gotfor the first two structures ifone terminal is switchedbetween points at the same

    voltage.

    The right-side parasiticcapacitor is switchedbetween the virtual groundand ground (note: even inDC Vv.g. must equal Vground)

    1

    1

    2

    2

    C1

    Ct,1

    Cb,1

    C1

    12

    12

    Virtual

    ground

    C1

    1

    2

    Virtualground

    2

    1

  • 8/14/2019 SC Filters

    17/42

    F. Maloberti: Switched Capacitor Filters 17

    The left side capacitor is connected, during phase 1, to a voltage(or equivalent) source.

    The charge injected into virtual ground is important, not the onefurnished by the input source.

    Structure A is equivalent to the toggle structure, but the injected

    charge has opposite sign. Equivalent negative resistance allows to implement non inverting

    integrators.

    It is possible to easily realize a stray insensitive bilinear resistorwith fully differential configuration.

  • 8/14/2019 SC Filters

    18/42

    F. Maloberti: Switched Capacitor Filters 18

    SC BIQUADRATIC FILTERS

    Consider a (continuous-time) biquadratic transfer function

    If the bilinear transformation is applied, it results a z-biquadratic trans-fer function

    where the coefficients are:

    H s( )p0 sp1 s

    2p2+ +

    s2

    s0

    Q0-------

    0

    2+ +

    ----------------------------------------=

    H s( )a0 za1 z

    2a2+ +

    b0 zb1 z2b2+ +

    ----------------------------------------=

    a0 p02

    T---p1

    4

    T2

    ------p2+=

  • 8/14/2019 SC Filters

    19/42

    F. Maloberti: Switched Capacitor Filters 19

    a1 2p08

    T2

    ------p2=

    a2 p02

    T---p1

    4

    T2

    ------p2+ +=

    b0 02 2

    T---

    0Q------

    4

    T2

    ------+=

    b1 202 8

    T2------

    =

    b2 02 2

    T---

    0

    Q------

    4

    T2------

    + +=

  • 8/14/2019 SC Filters

    20/42

    F. Maloberti: Switched Capacitor Filters 20

    All the stable z-biquadratic transfer functions are realized by the topology:

    +

    -

    +

    -

    G

    D

    E

    C

    A

    B

    F

    I

    J

    H

    1

    F1

    F2

    Vin

    t

    V01V02

  • 8/14/2019 SC Filters

    21/42

    F. Maloberti: Switched Capacitor Filters 21

    Features:

    Loop of two integrators one inverting and the other noninverting.

    Damping around the loop provided by capacitor F or (and)

    capacitor E (usually only E or F are included in the network).

    Two outputs available V0,1 V0,2.

    Denominator of the transfer function determined by the capacitors

    along the loop (A, B, C, D, E, F).Transmission zeros (numerator) realized by the capacitors (G, H,

    I, J).

    Input signal sampled during 1 and held for a full clock period

    Charge injected into the virtual ground during 1.

  • 8/14/2019 SC Filters

    22/42

    F. Maloberti: Switched Capacitor Filters 23

    Charge conservation equations:

    DV0,1(n+1) = DV0,1(n) - GVin(n+1) + HVin(n) - CV0,2(n+1) - E[V0,2(n+1) - V0,2(n)]

    (B + F)V0,2(n+1) = BV0,2(n) + AV0,1(n) - IVin(n+1) + JVin(n)

    Taking the z-transform and solving, it results:

    10 Capacitors

    6 Equations a0, a1, a2, b0, b1, b2

    Dynamic range optimization

    H1V0 1,Vin-----------

    IC IE GF GB+( )z2

    FH BH BG JC JE IE+ +( )z EJ BH( )+ +

    DB DF+( )z2

    AC AE 2DB DF+( )z DB AE( )+ +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------= =

    H2V

    0 2,Vin-----------

    DIz

    2

    AG DI DJ( )z DJ AH( )+ +DB DF+( )z

    2AC AE 2DB DF+( )z DB AE( )+ +

    -------------------------------------------------------------------------------------------------------------------------------------------= =

  • 8/14/2019 SC Filters

    23/42

    F. Maloberti: Switched Capacitor Filters 24

    Scaling for minimum total capacitance in the groups of capacitorsconnected to the virtual ground of the op-amp1 and the op-amp2.

    Since there are 9 conditions, one capacitor can be set equal tozero

    E = 0 F type

    F = 0 E type

    Firstly the 6 equations are satisfied. Later capacitors D and A

    are adjusted in order to optimize the dynamic range. Finally all

    the capacitor connected to the virtual ground of the op-amp arenormalized to the smaller of the group.

  • 8/14/2019 SC Filters

    24/42

    F. Maloberti: Switched Capacitor Filters 25

    Scaling for minimum total capacitance

    Assume that C3 is the smallest capacitance of the group. In order to makeminimum the total capacitance C3 must be reduced to the smallest value al-lowed by the technology (Cmin)

    Multiply all the capacitors of the group by

    +

    _

    C2

    C1

    C3

    C4

    Cn

    kCminC3

    ------------=

  • 8/14/2019 SC Filters

    25/42

    F. Maloberti: Switched Capacitor Filters 27

    SC LADDER FILTERS

    Orchards observationDoubly-terminated LC ladder network that are designed to effect max-

    imum power transfer from source to load over the filter passband fea-

    ture very low sensitivities to value component variation.

    Syntesis of SC Ladder Filters:

    Symple approach

    Replace every resistance Ri in an active ladder structure with aswitched capacitor Ci = T/Ri.

    Use a full clock period delay along all the two integrator loop (itresults automatically verified in single ended schemes).

    It results an LD equivalent, except for the terminations.

  • 8/14/2019 SC Filters

    26/42

    F. Maloberti: Switched Capacitor Filters 28

    Quasi LD transformation:

    Prewarp the specifications using sin(T/2)

    Attenuation wwsbwpbApb Asb DESIRED SPECIFICATION Attenuationw

    ww

    Apb

    Asb

    PREWARPED SPECIFICATION

    sin( pb T/2) sin( sb T/2)

  • 8/14/2019 SC Filters

    27/42

    F. Maloberti: Switched Capacitor Filters 29

    Effect of the terminations:

    if R1 = T/ C1 and R3 = T/C3 we get:

    +

    _

    R1

    R

    C2_

    +

    _

    C2C1

    C3

    HDI s( )R3

    sC2

    R1

    R3

    R1

    +---------------------------------------= HDI s( )

    C1sTC

    2

    C3

    +----------------------------=

    Vout n 1+( ) C2 C3+( ) Vout n( )C2 C1Vin n( )+=

  • 8/14/2019 SC Filters

    28/42

    F. Maloberti: Switched Capacitor Filters 30

    Taking the z-transform we get:

    along the unity circle z=ejT

    The half clock period delay will be used in the cascaded integrator in

    order to get the LD transformation

    The termination is complex and frequency dependent.

    The integrating capacitor C2 must be replaced by C2 + C3/2.

    zVout C2 C3+( ) C2Vout C1Vin+=

    HDI z( )C1

    C2 z 1( ) zC3+-----------------------------------------

    C1z1 2

    C2 z1 2

    z1 2

    ( ) z1 2

    C3+---------------------------------------------------------------------= =

    HDI ejT

    ( )C1e

    j T 2

    C2 ejT 2

    ej T 2

    ( ) ejT 2

    C3+-------------------------------------------------------------------------------------

    C1ej T 2

    2j C2

    C3

    +( )T

    2-------- C

    3

    T

    2--------cos+sin

    ---------------------------------------------------------------------------------= =

  • 8/14/2019 SC Filters

    29/42

    F. Maloberti: Switched Capacitor Filters 31

    Complex termination:

    Note: the output voltage changes during

    Taking the z-transform:

    +

    _

    C2C

    1

    C3

    F1

    Vout n 1+( )C2 Vout n( )C2

    2

    C2 C3+-------------------- C1Vin n( )+=

    zVoutC2 Vout C2C2C3

    C2 C3+--------------------

    C1Vin+=

  • 8/14/2019 SC Filters

    30/42

    F. Maloberti: Switched Capacitor Filters 32

    along the unity circle z=ejT

    The imaginary part of the contribution of the termination isnegative

    The integrating capacitor must be replaced by

    HDI z( )C1

    C2 z 1( )C

    2

    C3

    C2 C3+--------------------+

    ----------------------------------------------------

    C1z1 2

    C2 z1 2

    z 1 2

    ( ) z 1 2

    C2

    C3

    C2 C3+--------------------+

    -------------------------------------------------------------------------------------= =

    HDI ejT( ) C1e

    j T 2

    2j C21

    2---

    C2C3C2 C3+--------------------

    T2

    --------

    C2C3C2 C3+--------------------

    T2

    --------cos+sin

    ----------------------------------------------------------------------------------------------------------------=

    C2 C21

    2---

    C2C3C2 C3+--------------------

  • 8/14/2019 SC Filters

    31/42

  • 8/14/2019 SC Filters

    32/42

    F. Maloberti: Switched Capacitor Filters 53

    FINITE GAIN AND BANDWIDTH EFFECT

    If the op-amp has finite gain A0 the virtual ground voltage is V0/A0

    z-transforming:

    +

    _

    C2

    C1

    C2V0 n 1+( ) 11

    A0------+

    C2V0 n( ) 11

    A0------+

    C1 Vin n 1+( )V0 n 1+( )

    A0-------------------------+=

    H z( )Vo z( )

    Vin z( )----------------

    C1z

    C2 11

    A0------+

    z 1( )C1A0-------z+

    ----------------------------------------------------------------= =

  • 8/14/2019 SC Filters

    33/42

    F. Maloberti: Switched Capacitor Filters 54

    Comparing H(z) with the transfer function with

    Substituting z = esT, on the imaginary axis

    Magnitude error

    Phase error

    A0

    Hid z( )

    C1z

    C2 z 1( )------------------------=

    H z( )H

    idz( )

    11

    A0

    -------+

    C

    1

    C2A0

    ---------------

    z

    z 1

    ------------+

    ----------------------------------------------------------

    Hid

    z( )

    11

    A0

    -------+

    C

    1

    C2A0

    ---------------

    1

    z 1

    ------------

    1

    2

    ---

    1

    2

    ---+ +

    +

    -----------------------------------------------------------------------------------

    Hid

    z( )

    11

    A0

    -------

    1

    2

    ---

    C1

    C2A0

    ---------------+ +

    C1

    2C2A0

    -------------------

    z 1+

    z 1------------+

    ----------------------------------------------------------------------------------------= = =

    H ejT

    ( )H

    idejT

    ( )

    11

    A0

    -------

    C1

    2C2A0------------------- j

    C1

    2C2

    A0

    T 2( )tan---------------------------------------------------+ +

    -----------------------------------------------------------------------------------------------------

    Hid

    ejT

    ( )

    1 m ( ) j ( )-------------------------------------------= =

    m ( )1

    A0------ 1

    C1

    2C2-----------+

    =

    ( )C1

    2C2

    A0

    T 2( )tan------------------------------------------------

    C1C

    2A

    0T

    -----------------------=

  • 8/14/2019 SC Filters

    34/42

    F. Maloberti: Switched Capacitor Filters 55

    For the noninverting integrator

    z-transforming and solving

    Same magnitude and phase error result

    +

    _

    C2

    C1

    C2V0 n 1+( ) 11

    A0

    ------+ C2V0 n( ) 1

    1

    A0

    ------+ C1 Vin n( )

    V0 n 1+( )

    A0

    -------------------------++=

    H z( )Vo z( )

    Vin z( )----------------

    C1

    C2 1

    1

    A0------

    +

    z 1( )

    C1

    A0-------

    z+

    ----------------------------------------------------------------= =

  • 8/14/2019 SC Filters

    35/42

    F. Maloberti: Switched Capacitor Filters 66

    FULLY DIFFERENTIAL CIRCUITS

    Fully differential configurations reduce the clock feedthroughnoise and increase the dynamic range.

    They allow an increase design flexibility

    Simple integrator (inverting and non inverting)

    +

    _

    C2

    C1

    1

    2

    2

    12

    (2)

    (1)

  • 8/14/2019 SC Filters

    36/42

    F. Maloberti: Switched Capacitor Filters 67

    Immediate sampling (inverting and non inverting) integrator:

    Delayed sampling (inverting and non inverting) integrator:

    1

    +

    _

    122

    1

    1 22

    Vin

    -Vin

    -Vin

    Vin

    1

    1

    1

    +

    _

    122

    1122

    Vin

    -Vin

    -Vin

    Vin2

    2

  • 8/14/2019 SC Filters

    37/42

  • 8/14/2019 SC Filters

    38/42

    F. Maloberti: Switched Capacitor Filters 69

    The peaking in the frequency response due to the phase error is

    strongly reduced

    It is easy to realize bilinear integrators

    1

    +

    1

    2

    1

    1

    2

    Vin

    Vin

    2

    2

    C2C1

    C2

    C1

    _

    _

    NOISE IN SC CIRCUITS

  • 8/14/2019 SC Filters

    39/42

    F. Maloberti: Switched Capacitor Filters 74

    NOISE IN SC CIRCUITS

    The noise sources in a SC network are: Clock feedthrough noise

    Noise coupled from power supply lines and substrate

    kT/C noise Noise generators of the op-amp

    The first two sources are the same as in mixed analog-digital circuits.

    kT/C noise:

    C id th i l t k

  • 8/14/2019 SC Filters

    40/42

    F. Maloberti: Switched Capacitor Filters 75

    Consider the simple network:

    In the on state the switch can bemodeled with a noisy resitor

    Noise equivalent circuit:

    The white spectrum of the on resistance is shaped by the low pass

    vin

    CS1

    4kTR fC

    S1

    on

    Ron

    ti f th R C filt

  • 8/14/2019 SC Filters

    41/42

    F. Maloberti: Switched Capacitor Filters 76

    action of the RonC filter.The noise voltage across the capacitor C has spectrum:

    When the switch is turned off the noise voltage vn,c is sampled andheld onto C

    Sn,c vn c,2

    4kTRon H f( )2

    f4kTRonf

    1 2fRonC( )2

    +-----------------------------------------= = =

    f

    S

    The folding of the spectrum in band base gives a white spectrum

  • 8/14/2019 SC Filters

    42/42

    F. Maloberti: Switched Capacitor Filters 77

    The folding of the spectrum in band-base gives a white spectrum.

    It power (the dashed area) is equal to the integral of Sn,c

    Procedure for the noise calculation in SC networks:

    f

    v n,c

    fCK/2

    *

    vn c,2 4kTRonf

    1 2fRonC( )2

    +-----------------------------------------

    0

    df4kT

    2C----------- xatan( )0

    kT

    C-------= = =