satellite technology - imageevent

40
Satellite Technology Satellite Technology Assoc. Prof Dr Syed Idris Syed Hassan Assoc. Prof Dr Syed Idris Syed Hassan School of Electrical and Electronic Eng School of Electrical and Electronic Eng Universiti Sains Malaysia Universiti Sains Malaysia Seri Iskandar , 31750 Perak Seri Iskandar , 31750 Perak

Upload: others

Post on 15-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Satellite TechnologySatellite Technology

■ Assoc. Prof Dr Syed Idris Syed HassanAssoc. Prof Dr Syed Idris Syed Hassan■ School of Electrical and Electronic EngSchool of Electrical and Electronic Eng■ Universiti Sains MalaysiaUniversiti Sains Malaysia■ Seri Iskandar , 31750 PerakSeri Iskandar , 31750 Perak

ConceptConcept

Transponder

Earth station (site A) Earth station(site B)

IRRADIUM

downlinkdownlink

uplinkuplink

downlinkdownlink

uplinkuplink

ApplicationsApplications

■ Communication Communication (truncking call)(truncking call)

■ TeleconferenceTeleconference■ TelemedicineTelemedicine■ TV BroadcastingTV Broadcasting■ Data communicationData communication■ Telemetry(TEC, Telemetry(TEC,

remote sensing etc)remote sensing etc)

■ Weather telecastWeather telecast■ NavigationNavigation■ GPSGPS■ Security/Calamity Security/Calamity

monitoringmonitoring■ Standard TimeStandard Time■ militarymilitary

Type of SatellitesType of Satellites

■ LEO -Low Earth orbital 100-16,000Km LEO -Low Earth orbital 100-16,000Km (90min to 12hrs orbiting the earth)(90min to 12hrs orbiting the earth)

■ MEO - Medium Earth Orbital MEO - Medium Earth Orbital 16,000-36,000 Km (12 - 24 hrs orbiting 16,000-36,000 Km (12 - 24 hrs orbiting the earth)the earth)

■ GEO - Geosynchronous Earth Orbital - GEO - Geosynchronous Earth Orbital - 36,000 Km ( The satellite appears to be 36,000 Km ( The satellite appears to be stationary over one point on earth)stationary over one point on earth)

Look angle (Elevation)Look angle (Elevation)

)sin()sin()cos()cos()cos(cos

cos21.

tan

sin)(

2/12

seesse

s

e

s

es

LLllLL

r

r

r

rrdei

satelliteandstationearthbetweencedisdwhered

ElCos

+−=

+=

=

=

γ

γ

γ

ElEl

continuecontinue

■ Le = Earth station LatitudeLe = Earth station Latitude■ le = Earth station longitudele = Earth station longitude■ Ls = Satellite latitude ( = 0 for GEO)Ls = Satellite latitude ( = 0 for GEO)■ ls = Satellite longitudels = Satellite longitude■ rs = Satellite orbital radius ( ~ 36,000 km for GEO)rs = Satellite orbital radius ( ~ 36,000 km for GEO)■ re = earth radius = 6370 kmre = earth radius = 6370 km

For GEO satelliteFor GEO satellite

Cos Cos L Cos l le s eγ = −( ) ( )

Looking angle(azimuth)Looking angle(azimuth)

■ Consider for GEO onlyConsider for GEO only

( ) ( )( ) ( )α

γ

γ

=− −

− −

= − + +

−2

0 5

1tansin sin

sin sin

. ( )

s s L

s s l l

wheres l l L

e

e s

s e e

NN

SS

ESES

SatSat

EEWW

αα

continuecontinue

■ If Earth station is in the North Latitude ,If Earth station is in the North Latitude ,

the azimuth will be as follow (refer to N)the azimuth will be as follow (refer to N)

Satellite on the Eastof Earth station

Az=180-α

Satellite on the Westof Earth station

Az=180+α

continuecontinue

■ If the Earth station is in the South If the Earth station is in the South latitude , the azimuth will be (refer to N)latitude , the azimuth will be (refer to N)

Satellite on the Eastof Earth station

Az=α

Satellite on the Westof Earth station

Az=360-α

ExampleExample

Parameter MEASAT JCSAT Superb C

Longitude 91.5 E 128 E 144 E

EIRP (ku)54MHz 56.5 dBW 42 dBW 50.8 dBW

Beacon signal 6 Ghz ? 12.747ghzIf 1447.5MHz

12.255ghzif 955.0 Mhz

Vedio IF 980-1170 Mhz 950-1400mhz 1090-1433mhz

Looking anglefrom 100E 5N

El=78.05Az=216.5

El=55.9Az=108.4

El=37.7Az=100.3

Link budgetLink budget

Noise Power Budget for 54 MHz channelNoise Power Budget for 54 MHz channel

Boltzmann’s ConstantBoltzmann’s Constant = - 228.6 dBW/K/Hz= - 228.6 dBW/K/Hz

Receiving system noise temp.Receiving system noise temp. = 28.5 dBK= 28.5 dBK

Ku- Band ‘s channel bandwidthKu- Band ‘s channel bandwidth == 77.3 77.3 dBdB

Receiving noise level Receiving noise level - 122.8 - 122.8 dBdB

For C/N about 10 dB to allow rain and other fading For C/N about 10 dB to allow rain and other fading the signal level should be -112.8 dBthe signal level should be -112.8 dB

continuecontinue

( )C N

P G

kTB RG

EIRP

N LG

where

EIRP Equivalent isotropic radiated power P G

N ceived noise level kTB

L Path lossR

G ceiving antenna gain

R dis ce between earth station and satellite

wavelength of operating frequency

t tr

r pathr

t t

r

path

r

/

Re

Re

tan

=

=

= == =

= =

===

λπ

πλ

λ

4

4

2

2

continuecontinue

In decibelIn decibel

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

P dB C N dB N EIRP dB G dB L dB

therefore to calculate antenna size we obtain G

G dB P dB L dB EIRP dB

and parabolic size

AG

antenna efficiency

r r r path

r

r r path

r

= + = + −

= + −

=

=

/

λπη

η

2

4

ContinueContinue

■ Parabolic antenna diameterParabolic antenna diameter

π λπη

λ

π ηη

D G

DG

antenna efficiency

r

r

2 2

2

2

4 4

06

=

=

= = .

ContinueContinue

■ MEASATMEASAT

[ ] [ ] [ ]G dB C N dB N EIRP dB L dB

dB dB dB dB

dB

This gain can be achieved u g m diameter dish

r r path= + − +

= − − +=

/

. .

.

sin . ( ) .

10 122 8 56 5 205

35 7

0 75

continuecontinue

■ JCSATJCSAT

[ ] [ ] [ ]G dB C N dB N EIRP dB L dB

dB dB dB dB

dB

This gain can be achieved u g m diameter dish

r r path= + − +

= − − +=

/

.

.

sin . ( ) .

10 122 8 42 205

50 2

3 6

continuecontinue

■ Superbird CSuperbird C

[ ] [ ] [ ]G dB C N dB N EIRP dB L dB

dB dB dB dB

dB

This gain can be achieved u g m diameter dish

r r path= + − +

= − − +=

/

. .

.

sin . ( ) .

10 122 8 50 8 205

414

1 32

Teleconference SystemTeleconference System

LNA/HPALNA/HPATransceiverTransceiverQPSK modQPSK mod& demod& demod

CODECCODEC

1.536Mbps1.536Mbps

TVTVmonitormonitor

IDUIDU ODUODU

Data communicationData communication

LNA/HPALNA/HPATransceiverTransceiverQPSK modQPSK mod& demod& demod

1.536Mbps1.536MbpsPCPC

RouterRouter

&&TranscieverTransciever

IDUIDU ODUODU

Other factors need to considerOther factors need to consider

■ Antenna Antenna ■ Rain attenuationRain attenuation■ Beam FootprintBeam Footprint■ Mismatch lossesMismatch losses■ MisalignmentMisalignment■ Scintillation ~for low elevationScintillation ~for low elevation■ troposphere/atmospheretroposphere/atmosphere■ Bit error rateBit error rate

To avoid blockinguse offset antenna

no blocking

(6) Depointing error

Antenna gain will be reduced according to deviation from the true angle. Thisis given by

G dB G dBoe

db

( ) ( )= −

12

3

2θθ

where θe is the depointing error.therefore attenuation due to depointing error is

A dB e

dB

( )=

12

3

2θθ

Parabolic antenna feed

Horn a a

Le α b α bE R R

Le E

Ln Ln

E-plane Sectorial horn H-plane sectorial horn

a b

Le α1

α2

Ln

Primidal horn

L Re = 2λ L Rn = 3λ

Directivite gain

(I) E-plane sectorial

( ) ( )D

L L C x S x

xee n=

+322

2 2

πλ

C x t dtx

( ) cos( / )=∫ π20

2

S x t dtx

( ) sin( / )=∫ π20

2 and x= Le / 2λR

(ii) H-plane Sectorial

[ ] [ ]{ }DL R

LC x C x S x S xn

e

n

= − + −4

1 22

1 22π

λ ( ) ( ) ( ) ( )

xR

L

L

Rn

n1

1

2= +

/

/

/

/

λλ

λλ

xR

L

L

Rn

n2

1

2= −

/

/

/

/

λλ

λλ

(iii) Primidal horn

DL L

D Dpe n

e n=πλ2

32

* all the above horn antennas follow the following condition

( )D a D b

2 2 181 2 1 2 0

2 2

2

2

πσ λ π σσ

λ−

− − −

=

D is the desired directivitya,b are the dimension of the feeding waveguide

σλ

=Ls

( )L slant length of the horn

R L

s

e

=

= +2 22/

For large horn (assuming 50% efficiency)

Le = 2σλ L

D

Lne

= λπ

2

2

R L b LLe

se

= −

−( ) /

21 4

σ = D / .15 4

Scalar

Using circular waveguide. This type of feed is used for receiving antenna.It consists of 3 - 7 concentric rings of a quarter-wavelength broad.

feed

λ/ 4

Log periodic

Ln L1

α feed

dn

d1

First element

L F1 10 48=. λ where

FL

DL

D=

+1 and λ1

83 10=× fmin

D is the diameter of the first dipole = 2 a1

LD a=λ1

14 a1 is the radius of the first elementOther elements follow

( )aLL

Dn

n=2

; d Ln n= 2σ ; α τ

σ= −

−21

41tan

and τ= =+ +d

d

L

Ln

n

n

n

1 1

Gain(dB) 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0σ 0.139 0.147 0.157 0.163 0.168 0.172 0.174 0.176 0.178τ 0.782 0.822 0.865 0.892 0.916 0.928 0.940 0.950 0.964

Helical antenna(Axial mode)

S

2r d

C = π d α

S

LDesign parameters2

33

2λ λ<<C

where C = π d2

33

2λ λ<<d

5 20o o<<α where α = helix angle

S = C Tan α and L = wire length per turn = C/cos αDirectivity

( )( )D n S C=152

λλ

Rain attenuationRain attenuation

1%1%

0.1%0.1%

0.01%0.01%

% of time exceedance% of time exceedance

2020 4040 6060 8080 100100mm/hrmm/hr

rain raterain rate

ContinueContinue

■ For TV and broadcasting usually the For TV and broadcasting usually the reliability is not very critical , so 99% is reliability is not very critical , so 99% is okay and this equivalent to 1% of okay and this equivalent to 1% of exceedance of timeexceedance of time

■ For data other digital com the reliability For data other digital com the reliability of 99.99% is probably chosen and this of 99.99% is probably chosen and this is equivalent to 0.01% of exceedance of is equivalent to 0.01% of exceedance of time.time.

continuecontinue

Att aR Lbpath= 0 01.

For 99.99% reliability, the attenuation is calculated asFor 99.99% reliability, the attenuation is calculated as

where a and b are constants relied on frequencywhere a and b are constants relied on frequency

RR0.01 0.01 rain rate at 0.01% of exceedance of timerain rate at 0.01% of exceedance of time

LLpath path is slant path where signal passed the rainis slant path where signal passed the rain

Slant pathSlant path

LLpathpath

RainRainheightheight~3km~3km

Footprints

Gs

Single beam θ3dB r=35,775 Km(3dB contour)

10o N footprint

d R=6378Km

10o S 20

d/2 = R sin 20 = 6378 X 0.3420 = 2181.4 Km

θ3dB = 2( ) = 2 ( ) = 2(arctan(0.060976))arctan arctan.

,

d

r2 21814

35 775

= 2 X 3.49o = 6.98o

( )G dBs =

× = =48360 0 65

6 98645 281

2.

..

For 12 Ghz ----> λ = 0.025 m

D mdB

= = × =70 70 0 025

6 980 251

3

λθ

.

..

Footprint can be stated in EIRP or power density flux (PDF) contours of3dB, 5dB etc.

eg

PDF (dBW/m2)=EIRP(dB) - Lp (dB)

where Lp is the propagation path loss (i.e ( )λπ42

r )

3dB contour

EIRP = Pt Gt = 56.5 dB therefore power transmitted=56.5 -28.1=26.4dBW

PFD = 56.5 - 205.1 = -148.6 dBW/m2

5dB contour

PDF= -148.6-2 = 150.6 dBW/m2

θ λ5

91 91 0 025

0 2519 06dB

o

D= = × =.

..

Elliptically shape beam

Usually using elliptically shape reflector

D2

D1

θ1

θ2

G dB31 2

48360= ηθθ

D11

70= λθ

D22

70= λθ

θ λ5

11

91dB D

= and θ λ5

22

91dB D

=

Array antennasAntenna array may consists of arrangement of dipoles , slots or patches insuch that a directive beam is formed.

θ d sinθ

1 d 2 3 N ( )( )E E e e eo

jkd j kd j N kd=+ + + +− − −−1 2 1sin sin sin. . . . . . .. . .θ θ θ

=

E N

No sin /

sin /

ϕϕ

2

2 where ϕ θ=kd sin

Radiation pattern (beam)main beam

θ λ3

102dB Nd=

in degrees

sidelobes

Changing the direction of the beam electronically

using phase shifter(parallel arangement)

θo

θο 2θο 3θο 4θο ....................Νθο

E EN

No

o

o=

sin

sin

ϕϕ

ϕϕ2

2 where ϕ θo okd=sin and d < 0.5 λ

θ λθ3

102dB

oNd≈

cos

(serial arrangement)

θο θο θο θο ....... .............θο

Using delay line

The serial phse shifter arrangement can be replaced by delay line in suchthat

ϕ θo okd kL= =sin where L is the electrical length of the delay line.

Implementation of multiple beam

1 2 3

amplifier amplifier amplifier

-ϕ1 ϕο +ϕ1 ϕο ϕο ϕο −ϕ1 ϕο +ϕ1

sum sum sum

beam 1 beam 2 beam 3eg. f = 12 Ghz then λ = 0.025 m , N = 20 d = 0.006mθο =0

θ λθ3

0102 102 0 025

20 0 006 021dB

oNd≈ = ×

×=

cos

.

. cos

θο=20

θ3102 0 025

20 0 006 2022 6dB

o≈ ××

=.

. cos.

θο=40

θ3102 0 025

20 0 006 4027 6dB

o≈ ××

=.

. cos.

Beam forming Network

Butler beam forming

1 2 3 4 5 6 7 8

-45o -45o -45o -45o

-67.5o -22.5o -22.5o -67.5o

1R 4L 3R 2L 2R 3L 4R 1L

Directional coupler/power divider

Right beam 1 2 0.707 / 90o

1V / 0o 0.707V / 0o

Left beam 4 3 0.707 V / 0o

1V / 0o 0.707V / 90o