sae 1020 s5

26

Upload: nikola-boskovic

Post on 13-Nov-2015

74 views

Category:

Documents


8 download

DESCRIPTION

SAE 1020 steel

TRANSCRIPT

  • STEEL CASTINGS HANDBOOK SUPPLEMENTS

    Supplement 1 Supplement 2 Supplement 3 Supplement 4 Supplement 5 Supplement 6

    Supplement 7 Supplement 8 Supplement 9 Supplement 10 Supplement 11

    Design Rules and Data .. . . .. . .. .. . . . . . . . .. . . . .. . .. .. $2.00 Summary of Standard Specifications for Steel Castings . . No Charge Tolerances ........................................... $2.00 Drafting Practices for Castings .. . . . . . . . . . . . . . . . . . . . . . .. . . . $2.00 General Properties of Steel Castings . . . . . . . . . . . . . . . . . . . . . $2.00 Repair Welding and Fabrication Welding of Carbon and

    Low Alloy Steel Castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $5.00 Welding of High Alloy Castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . $5.00 High Alloy Data Sheets, Corrosion Series . . . . . . . . . . . . . . . . . . . $5.00 High Alloy Data Sheets, Heat Series . . . . . . . . . . . . . . . . . . . . . . . . $5.00 A Glossary of Foundry Terms . . . . . .. . . . . .. . . .. . .. . . . . .. . .. $2.00 Hardenability and Heat Treatment . . . . . . . . . . . . . . . . . . . . . . $2.00 3-Ring Binder for Supplements .. . . . . .. .. . . . .. . . . . . . . . .. . . . $4.00

    /

  • Steel Castings Handbook Supplement 5

    General Properties of Steel Castings

    Preface

    Steel castings, whenever possible, are purchased to property requirements rather than to chemical analysis specifica-tions. Thus, the foundry engineer can select the alloy compositions which best satisfy mechanical property specifications. Most of the national specifications are written in the terms of the alloy type plus tensile properties and in some cases, hardness values, impact values, and hardenability ranges.

    The property values presented in this supplement are those which may be expected from carbon and low alloy cast steels in general. Mechanical properties have been determined from test specimens prepared in accordance with standard practice.

    Additional information on carbon and low alloy steels, as well as wear-resistant steels, corrosion-resistant alloys, both high alloy and nickel base, heat-resistant alloys and low temperature and cryogenic steels is fully discussed in the Steel Castings Handbook, 5th Edition, published by the Steel Founders' Society of America.

    Contents

    Page DEFINITION AND ALLOY CLASSIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 AMBIENT TEMPERATURE PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    Property Ranges and Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Strength-Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Strength-Ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Strength-Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Strength-Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Constant Amplitude Testa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Variable Amplitude Testa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Section Size, Mass Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Alloy and Heat Treatment Influence on Section Size Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    GENERAL ENGINEERING TYPES OF CAST STEEL GRADES .............................................. . 22-23 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

  • 150 1000~ Cl) ...: ::e

    ... ---

    I

    ::z: 900 ::z: 1- ...... - 1-~-~ 800 ~ z w 110 w ~ ,.,.'/' 0: 0: 7001-t;; 100 ~ ... -~.-;/ (/) w 90 fi,/ 600 ~ ..J c;; 80 A_,",

    500 ~ z 70 ~'l I - WATER QUENCHED AND o w ~,, TEMPERED-1200F (649Cl w 1- 60 4~ 2- NORMALIZED 400 1-,,

    50 ~ 3- NORMALIZED AND ::.!! TEMPERED -1200F (649C 0 4- ANNEALED I

    " = 20

    40 ae 35 I z 30 0 25 ~

    5

    1~/ / ----- ----

    / ...... ---:--,---/ ......... _ _... 4 / ...... .......... ... -/ ...... -.......-

    / -,;;; . ..- I-WATER QUENCHED AND :;:::. ' TEMPERED -1200F(649'tl

    2- NORMALIZED 3-NORMALIZED AND

    TEMPERED- 1200~(649C l 4- ANNEALED

    c 0..

    600::'!: I

    ::z: 500 I-

    400 ~ 1-

    300 (/) 0 ..J

    200 w >=

    oL-~--~~--~~--~~--~~~ 00 0.10 020 030 0.40 050 060 070 0.80 0.90 1.0

    CARBON- % Fig. 2 Yield strength and elongation vs. carbon content of cast carbon steels (1).

    tive Engineers, Inc., SAE, have historically been used to identify the various types of steel by their principal alloy content (Appendix A)*. Cast steels, however, do not follow precisely the composition ranges specified by AISI and SAE designations for wrought steels. In most cases the cast steel grades will contain 0.30 to 0.65% Si, and 0.50 to 1.00% Mn, unless specified differently. The principal low alloy cast steel designations, their AISI and SAE equivalents, and their alloy type are listed below:

    Nearest Equivalent Cast Steel AISI and SAE

    Designation Designation Alloy Type

    1300 1300 Mn 8000,8400 8000,8400 Mn-Mo 80800 80800 Mn-Mo-8 2300 2300 Ni 8600,4300 8600,4300 Ni-Cr-Mo 9500 9500 Mn-Ni-Cr-Mo 4100 4100 Cr-Mo

    The AISI no longer uses the 8000, 8400, 2300, and 9500 designations. However, because these alloy types are used extensively as cast steels, their cast steel designation numbers are continued in the steel casting industry. There are additional alloy types which are infrequently specified as cast steels, namely: 3100 (Ni-Cr), 3300 (Ni-Cr), 4000 (Mo ), 5100 (Cr), 6100 (Cr-V), 4600 (Ni-Mo), and 9200 (Si).

    AMBIENT TEMPERATURE PROPERTIES

    Property Ranges and Trends Carbon and low alloy steel castings are produced

    to a great variety of properties because composition

  • z ::c ID

    260

    240

    I 220 en en LLI 200 z 0 0::

    ~ 180 ...J ....I LLI z 160 a: ID

    140

    120

    I

    I ,. /

    1- WATER QUENCHED AND TEMPERED- 1200"F (649"Cl

    2 - NORMALIZED

    '3- NORMALIZED AND TEMPERED-1200"F(649 C

    4- ANNEALED

    100 ~~--~--~--~--~--~--~--L---L--.....1 0.0 0.10 0.20 0.30 040 050 0.60 0.70 0.80 090 1.0

    CARBON-% Fig. 3 Hardness vs. carbon content of cast carbon steels (1).

    and heattreatment can be selected to achieve specific combinations of properties, including hardness, strength, ductility, fatigue, and toughness. While se-lections can be made from a wide range of properties, it is important to recognize the interrelationship of these properties. For example, higher hardness, lower toughness, and lower ductility values are associated with higher strength values.

    Property trends among carbon steels are illustrated as a function of the carbon content in Figures 1 through 4. Unless otherwise noted, the properties discussed refer to those obtained from specimens which have been removed from standard ASTM keel blocks, which are made with a 1.25-in. (32-mm) section size. The subject of how these properties are affected by larger section sizes is discussed in this supplement under the heading Section Size, Mass Effects.

    For low alloy steels, the properties of Ni-Cr-Mo cast 8630 grade in Figure 5 illustrate the range of properties which can be achieved with a single material and the interrelationship of its mechanical properties. These relationships and mechanical property ranges will be further discussed in the following paragraphs for carbon and low alloy cast steels.

    Strength-Hardness. Depending on alloy choice and heat treatment, ultimate tensile strength levels from 60 to 250 ksi (414-1724 MPa) can be achieved with cast carbon and low alloy steels.

    For cast carbon steels Figure 6 illustrates tensile strength and tensile ductility values which can be expected from normalized steels and from quenched

    3

    80 110

    --NORMALIZED 100 70

    .Q 60 -

    -.;._ 50 t!) 0:: LL1 40 z LLI I 30 >

    u 20

    10

    --QUENCHED AND TEMPERED

    0 ~-~-~-~-~-~-~-~-~ 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

    CARBON-%

    90

    80 ..,

    70 >-~ 60 LLI

    z LLI

    50 1 >

    4QU

    30

    20

    10

    Fig. 4 Room temperature Charpy V-notch values vs. carbon content of cast carbon steel in the normalized and tempered condition [tempering temperature l200F (650"C)] (1).

    TEMPERING TEMPERATURE- "C 100 200 300 400 500 600 700

    ~ 150 400

    (f) (f) w a:: 1-

    c- 0.28-0.33 Mn-1.00 mox Si -0.80 mox Ni- 0.40-0.80 Cr -0.40-0.80

    (f) 100 300 Mo-0.15- 0.30

    50 200

    60

    ~ 40 I

    >-1-_j

    20 t; ::::> 0

    0

    200 400 600 800 1000 1200 1400

    TEMPERING TEMPERATURE -F Fig. 5 Mechanical properties of 0.6Ni-0.6Cr-0.22Mo cast 8630 steel (2).

    and tempered steels having Brinell hardness values within the range of 120 to 280 BHN.

    For carbon steel the hardness and strength values are largely determined by the carbon content and the heat treatment as illustrated in Figure 3. The effect

  • ~ 130 120 t; 110 z !::! 100 In 90 ILl 80 ...J u;

    70 aJ 1- 60

    "iii

    "! -"' I

    OJ: 65 ...JI:; 55 ~z >-ILl 45 cr

    1-IJ) 35

    z~

    00! o' _

  • :I: 1-(!) z w oc 1-(/)

    w ....J (/) z w 1-

    ~ I 30

    z 0

    ~ (!) z g w

    -.....

    u 0

    C\i lJ... 0 0 1'-

    1

    >-(!) oc w z w

    > u

    10

    80

    20

    YIELD STRENGTH- MPo

    QT

    0~----~-------L------~----~

    900

    0 0..

    800 :E

    700 i= (!) z w

    600 ~ (/)

    w 500 ~

    (/) z w

    4001-

    u tOO o

    N

    lJ... 80 0

    0 1'-

    6o t; oc w z

    40 w

    20

    > u

    20 40 60 80 100

    YIELD STRENGTH - ksi Fig. 10 Room temperature properties of cast carbon steels. QT = quenched, tempered at 1200"F (650C}. N = normalized. NT = normalized, tempered at 1200"F (650C). A = annealed (3).

    strength, or hardness, of the cast steel to a very large extent (Figures 6 and 9). Actual ductility requirements vary, of course, with the strength level and the specifi-cation to which a steel is ordered (Chapter 27-Specify-ing Steel Castings*). Because yield strength is a primary design criterion for structural applications, the relation- Refers to Steel Casting Handbook-5th edition.

    5

    :I: ~ z w oc 1-(/)

    w ....J U5 z w 120 1-

    ~ I 40 5 F I

    u 0

    C\i 100 ::--

    80 R I

    60 b oc

    40 w z

    20 ~ >

    u

    Fig. 11 Room temperature properties of cast low-alloy steels. QT = quenched and tempered. NT = normalized and tempered (3).

    ships of Figures I, 2, and 9 are replotted in Figures 10 and II to reveal the major trends for cast carbon and low alloy steels. Quenched and tempered steels exhibit the higher ductility values for a given yield strength level compared to normalized, normalized and tempered, and annealed steels.

    Strength-Toughness. Several test methods exist to evaluate toughness of steel, or the resistance to sudden or brittle fracture. These include the Charpy V -notch impact test, the drop weight test, the dynamic tear test and specialized procedures to determine plane strain fracture toughness. Results of all these tests are in use and will be reviewed here because each of these tests offers specific advantages that are unique to the test method as discussed in Chapter 4-Func-tional Considerations in Design.*

    Charpy V -notch impact energy trends at room tern-

  • TEMPERATURE- C -5o -40 -30 -20 -to o 10 20 30 40 50

    90

    80 I - QUENCHED AND TEMPERED 2 - NORMALIZED

    70 3- ANNEALED :! .: 60 ... I

    >- 50 (!) a::

    ~ 40 z UJ I 30 > (.)

    10

    -60 -40 -20 0 20 40 60 80 100 120 TEMPERATURE-oF

    Fig. 12 Effect of various heat treatments on the Charpy V-notch transition curves of a 0.30% carbon steel (1).

    100

    ...,

    80 I >-(!)

    60 ffi z UJ I

    40 > (.)

    20

    perature in Figures I 0 and II reveal the distinct effect of strength and heat treatment on toughness. Higher toughness is obtained when a steel is quenched and tempered, rather than normalized and tempered. The effect of heat treatment and testing temperature on Charpy V-notch toughness is further illustrated in Fig-ures 12 and 13 for a carbon steel and for a low alloy cast 8630 steel. Quenching, followed by tempering, produces superior toughness as indicated by the shift of the impact energy transition curve to lower temperatures. The improved toughness of quenched and tempered steels is

    YIELD STRENGTH - MPo

    50

    r

  • YIELD STRENGTH - M Pa 300 500 700 900 1100 1300

    50

    .i'"'cw /'ys'"/1 0 0 (0 0 0 0 -25 00 IL. 0 I I 'i u)j. 1-1-1- so I o o 1-0 10 0 ~ 50 0 z - . z

    o""-... o

  • TEMPERATURE- C -120 -eo -40 0 40

    eo .0

    60 CHARPY- V ;: >- 40 c.:> a:: UJ z 20 UJ

    5te DYNAMIC TEAR

    -200 -1eo -120 -eo -40 o 40 eo 120 TEMPERATURE- F

    I

    ~ a:: UJ

    eoo a5 a:: 600

  • j

    TABLE 1 Plane Strain Fracture Toughness of Cast Steels at Room Temperature Yield Strength

    Heat .2% offset Alloy Type Treatment ksi

    1.25Cr, .5Mo SRANTSR 40 CAST 1030 NT 44 A-216, wee ATNT 48 .5Cr, .5Mo, .25V NT 53 13Cr NT 58 c- 1.5Mn NT 59 .5C- lCr NT 60 .5 c NT 61 CAST 9535 NT 89 .35C, .6Ni, .7Cr, .4Mo NT 99 CAST 4335 SLQT 108 CAST 9536 NT 109 .3C, lNi, lCr, .3Mo NT 114 CAST 4335 SLQT 118 CAST 4335 SLQT 126 CAST 4335 SLQT 128 CAST 4335 SLQT 131 CAST 4335 QT 156 CAST 4335 QT 158 CAST 4335 QT 169 CAST 4335 QT 173 NiCrMo QT 175 NiCrMo CAST 4340 QT 175 Maraging-IN-0180 QT 182 CAST 4325 QT 183 CAST 4325 QT 186 CrMo QT 200 NiCrMo CAST 4340 QT 210 Maraging-230MA QT 233 NiCrMo (HY-80 type) QT 235 NiCrMo (HY-80 type) QT 250 sR = stress relieved A = annealed

    N = normalized Q = quenched T = tempered SLQ = slack quenched

    The constants in the above equation were a = 2. 786 and b = 0.090 when K 1c was expressed in ksiin. 11 \ yield strength, cry, in ksi, and absorbed energy, E, in ft lb. These constants compare well with those for wrought steels (15,16). Similar correlations for the room temperature dynamic tear energy of cast steels yielded the constants a = 0.775 and b = -0.279; however, the term E I cry in the above equation is taken to the one-half power (9).

    Strength-Fatigue. The most basic method of pre-senting engineering fatigue data is by means of the S-N curve. The S-N curve relates the dependence of the life of the fatigue specimen, in terms of the number of cycles to failure, N, to the maximum applied stress, S. Additional tests have been used, and the principal imdings for cast steel are highlighted in the following sections.

    Fig. 22 The effect of tempering temperature on strength and toughness of four heats of 1.5%Ni-Cr-Mo steel after water quenching (8).

    (MPa) (275) (303) (331) (367) (400) (412) (413) (425) (614) (683) (747) (752) (787) (814) (869) (883) (903)

    (1076) (1090) (1166) (1193) (1207) (1207) (1255) (1263) (1280) (1379) (1450) (1605) (1620) (1724)

    iii ....

    .

    :J: ~ (.!) z L&J a:

    ~ (/) 0 ..J L&J >= a--(\1 0

    -~-c: ;;; ....

    1.., ....

    :II:

    9

    200 1-

    190 1-

    180 '-

    170 -

    160 r-

    150 -

    90 !-

    80 -

    70 -

    60 c--

    50 '--

    Klc

    k . . 1/2 Slln. (MNm-3/2) Reference 80 (88) 6

    116 (127) 7 155 (170) 6 50 (55) 8 70 (76) 8 98 (107) 8 53 (58) 8 59 (65) 8 61 (67) 9 58 (64) 8 63 (69) 8 54 (59) 9 60 (66) 8 87 (97) 9 85 (93) 9 95 (104) 9 96 (105) 9 96 (105) 9

    105 (115) 9 84 (92) 9 82 (90) 9 89 (98) 10

    105 (115) 11 120 (132) 11 82 (75) 8 95 (104) 8 76 (84) 10 61 (67) 11 95 (104) 11 67 (74) 10 47 (51) 10

    TEMPERING TEMPERATURE - C 250 300 350 400 450 500

    500 bOO 700 800 900

    TEMPERING TEMPERATURE - F

    90 ..._N ,.,

    'E 80 ~

    I

    70 .;.

    - 60

    50

  • TABLE 2 Fatigue Properties of Cast Steels (18) Class'

    and Tensile Yield Red.in Endurance Heat Strength Strength Area Elong. Hardness Limit Endurance

    Treatment ksi (MPa) ksi (MPa) % % BHN ksi (MPa) Ratio Carbon Steels

    60 A 63 (434) 35 (241) 54 30 131 30 (207) 0.48 65 N 68 (469) 38 (262) 48 28 131 30 (207) 0.44 70 N 75 (517) 42 (290) 45 27 143 35 (241) 0.47 80 NT 82 (565) 48 (331) 40 23 163 37 (255) 0.45 85 NT 90 (621) 55 (379) 38 20 179 39 (269) 0.43

    100 QT 105 (724) 75 (517) 41 19 212 45 (310) 0.47 A /loy Steels2

    65 NT 68 (469) 38 (262) 55 32 137 32 (221) 0.47 70 NT 74 (510) 44 (303) 50 28 143 35 (241) 0.47 80 NT 86 (593) 54 (372) 46 24 170 39 (269) 0.45 90 NT 95 (655) 64 (441) 44 20 192 42 (290) 0.44

    105 NT 110 (758) 91 (627) 48 21 217 53 (365) 0.48 120 QT 128 (883) 112 (772) 38 16 262 62 (427) 0.48 150 QT 158 (1089) 142 (979) 30 13 311 74 (510) 0.47 175 QT 179 (1234) 160 (1103) 25 11 352 84 (579) 0.47 200 QT 205 (1413) 170 (1172) 21 8 401 88 (607) 0.43 'Class of steel based on tensile strength, ksi (MPa). A = Annealed, N = Normalized, NT = Normalized and tempered, QT = Quenched

    and tempered. 2Below 8% total alloy content.

    tr 0 t; 0.8

    ~ >-1-5 0.6 i= u; z w UJ I u b z

    0.4

    TENSILE STRENGTH- MPo 600 700 800 900 1000 1100 1200 1300

    0 0

    NORMALIZED AND TEMPERED

    ~ 0

    R.R.MOORE FATIGUE TESTS, K1 = 2.2

    100 120 140 160 180 200 TENSILE STRENGTH - ksi

    Fig. 23 The fatigue notch sensitivity factor vs. tensile strength for several steels with different heat treatments (18-24).

    TENSILE YIELD STRENGTH STRENGTHELONG. HARDNESS

    ksi MPa ksi MPo __..!!.._ BHN CAST 94 (648} 56 (386} 25 187

    55 ~W~R=O~U~G~HT~~9~0~(~62~~~~5~6~(~3~86~}~2~7 ____ ~17~0~-4

    u; 50 ....:

    J, 45 ~ 0: 40 t; :!: 35 ::::> :!: >

  • TABLE 3 Fatigue Notch Sensitivity of Several Cast Steels*(19) Tensile Endurance Limit Fatigue Notch

    Steel Strength Unnotched Notched Endurance Ratio Sensitivity Grade ksi (MPa) ksi (MPa) ksi (MPa) Unnotched Notched Factor (q**)

    Normalized and Tempered 1040 94.2 (648) 37.7 (260) 28 (193) 0.40 0.30 0.29 1330 99.3 (685) 48.4 (334) 31.7 (219) 0.49 0.32 0.44 1330 97 (669) 41.7 (288) 31.2 (215) 0.43 0.32 0.28 4135 112.7 (777) 51.2 (353) 33.3 (230) 0.45 0.30 0.45 4335 126.5 (872) 63 (434) 34.9 (241) 0.50 0.28 0.68 8630 110.5 (762) 54 (372) 33.1 (228) 0.49 0.30 0.53

    Quenched and Tempered 1330 122.2 (843) 58.5 (403) 37.3 (257) 0.48 0.31 0.48 4135 146.4 (1009) 61.3 (423) 40.6 (280) 0.42 0.28 0.43 4335 168.2 (1160) 77.6 (535) 48.2 (332) 0.46 0.29 0.51 8630 137.5 (948) 64.9 (447) 38.6 (266) 0.47 0.27 0.57

    Annealed 1040 83.5 (576) 33.2 (229) 26 (179) 0.40 0.31 0.23

    *Notched tests run with theoretical stress concentration factor of 2.2. q = (Kr -1)/(K, -1), Kr = Notch fatigue factor = Endurance limit unnotched/Endurance limit notched, K, = Theoretical stress concentration factor

    TABLE 4 Fatigue Notch Sensitivity of Cast 8630 Steel (20) Tensile Notch Stress Fatigue Notch Strength Radius Concentration Sensitivity

    Heat Treatment ksi (MPa) in. (mm) Factor Factor(q) Norm & Temper 83.1 (573) 0.015 (.381) 2.2 0.45 Norm & Temper 83.4 (575) 0.015 (.381) 2.2 0.51 Norm & Temper 87.3 (602) 0.015 (.381) 2.2 0.48 Quench & Temper 126.0 (869) 0.015 (.381) 2.2 0.41 Quench & Temper 145.0 (1000) 0.015 (.381) 2.2 0.53 Anneal 88.9 (613) 0.001 (.025) 6.2 0.14 Quench & Temper 132.0 (910) 0.001 (.025) 6.2 0.22 *q = (Kr -1)/(K, -1), Kr = Notch fatigue factor = Endurance limit unnotched/Endurance limit notched, K, = Theoretical stress concentration factor

    5 shows the wrought steel to be 1.5 to 2.3 times as notch sensitive as cast steel. Under the ideal laboratory test conditions and test preparation (uniform section size, polished and honed surfaces, etc.), the endurance limit of wrought steel is higher. The same fatigue characteristics as those of cast steel, however, are obtained when a notch is introduced, or when standard lathe-turned sur-faces are employed in the rotating beam bending fatigue test (19, 25). These effects are illustrated in Figures 24 through 27.

    The cyclic stress-strain characteristics in Figure 28 and Table 6 show a reduction of the strain hardening expo-nent of the normalized and tempered cast carbon steel (SAE 1030) from n = 0.3 in monotonic tension ton'= 0.13 under cyclic strain controlled tests (7).

    The strain life characteristics of normalized and tem-pered cast carbon steel (SAE I 030) and wrought steel are similar as exhibited in Figure 29 and Table 7 for strain controlled constant amplitude low cycle fatigue tests (0.001 to 0.02 strain range amplitudes, with constant strain rate triangle wave form of2.5 x 10 - 4 /sec at 0.5 to 3.3 Hz) (7).

    Constant load amplitude fatigue crack growth proper-ties for load ratios R = 0 indicate comparable properties for cast and wrought steel (Figure 30), and slightly better properties for normalized and tempered cast carbon steel (SAE 1 030) under load ratios of R = -1. These tests

    II

    were conducted in air at 10 to 30 Hz depending on load ratio, initial stress intensity, and crack length. Addi-tional crack propagation rate data are listed in Table 8 for normalized and tempered cast steels used in the pressure vessel and power generating industry and for a variety of cast carbon and low alloy steels.

    Variable Amplitude Tests. Variable load amplitude fatigue test using the T f H SAE service spectrum (Fig-ure 31) and a modified transmission history which elimi-nates all compressive loading indicate equal total life for cast and wrought carbon steel (cast SAE 1030 and wrought SAE I 020, respectively) (Figure 32). The slower crack growth rate in the cast material compensated for the longer crack initiation life [a= 0.01 in. (0.25 mm)] of the wrought carbon steel.

    The total fatigue life is further comparable for the cast and wrought carbon steels with and without the applia-tion of tensile overloads (Po/ P max= 1.6) as indicated in Figure 33. Removal of the compressive loads from the T 1 H spectrum increases crack initiation life by a factor of 3 and crack propagation life by a factor of 2. The compressive loads are therefore detrimental to both crack initiation and crack propagation. Tensile over-loads increase total life but have mixed effects on crack initiation and propagation in these variable load ampli-tude fatigue tests (7).

  • TABLE's Fatigue Notch Sensitivity Factors for Cast and Wrought Steels at a Number of Strength Levels (18)

    Fatigue Tensile Strength Notch Sensitivity

    Steel ksi (MPa) Factor (q)* Annealed

    1040 Cast 83.5 (576) 0.23 1040 Wrought 81.4 (561) 0.43

    Normalized and Tempered 1040 Cast 94.2 (649) 0.29 1040 Wrought 90.0 (620) 0.50 1330 Cast 97.0 (669) 0.28 1340 Wrought 101.8 (702) 0.65 4135 Cast 112.7 (777) 0.45 4140 Wrought 111.1 (766) 0.81 4335 Cast 126.5 (872) 0.68 4340 Wrought 124.6 (859) 0.97 8630 Cast 110.5 (762) 0.53 8640 Wrought 108.5 (748) 0.85

    Quenched and Tempered 1330 Cast 122.2 (843) 0.48 1340 Wrought 121.2 (836) 0.73 4135 Cast 146.4 (1009) 0.43 4140 Wrought 146.8 (1012) 0.93 4335 Cast 168.2 (1160) 0.51 4340 Wrought 168.4 (1161) 0.92 8630 Cast 137.5 (948) 0.57 8640 Wrought 138.2 (953) 0.90

    *q = (Kr -1)/(K, -1) Kr = Notch fatigue factor = Endurance limit unnotched/En-

    durance limit notched K, = Theoretical stress concentration factor

    TENSILE YIELD STRENGTH STRENGTH ELONG. HARDNESS

    ksi (MPal ksi CMPal ~ BHN CAST 8630 138 (9521 126 (869) 15 286 WROUGHT 8640 138 (9521 124(855) 22 286

    85 550

    80 W~UGHT} 0 75 0... 500 :IE

    ;;; NO ~ 70 NOTCH C/) C/) CAST 450 f3 C/) 65 IX 1LI t-IX C/) ..... 60 400::1E C/) :IE ;::) ;::) 55 :IE :IE 350 x x 50 ..--WROUGHT- LATHE TURNED

    CAST- POLISHED CAST- LATH

    TURNED

    Fig. 26 Comparison of the fatigue characteristics (S-N

    500 ~ :IE

    I !/)

    450 f3 a: .....

    !/) 400 :IE

    ::::> :IE

    350 x

  • TABLE 6 Monotonic Tensile and Cyclic Stress Strain Properties (7)

    Property

    0.2% yield strength, cry-ksi (MPa) Ultimate strength,cr.-ksi (MPa) True fracture strength, crr-ksi (MPa) Reduction in area-% True fracture ductility, Er Modulus of elasticity, E-psi (GPa) Strain hardening exponent, n Strength coefficient, K, ksi (MPa)

    Property

    0.2% yield strength, cr; -ksi (MPa) Strength coefficient, K' -ksi (MPa) Strain hardening exponent, n'

    *Representative values taken from Ref. 26

    TABLE 7 Constant Amplitude Fatigue Properties (7)

    Monotonic Tension

    44 72

    109 46

    0.62

    Cast SAE1030

    3o x to 0.3

    158

    (303) (496) (750)

    (207)

    (1090) Cyclic Stress-Strain

    Cast SAE 1030

    46 (317) 103 (708)

    0.13

    Strain Control Fatigue Properties

    Property Cast

    SAE 1030

    Wrought SAE1020

    38 (262) 60.0 (413)

    145 (999) 58 0.87

    29.5 x 10 (203)* 0.19*

    107 (738)*

    Wrought SAE 1020

    35 112

    (24W (772)*

    0.18*

    Wrought SAE 1020

    Fatigue strength coefficient, cr/ -ksi (MPa) Fatigue strength exponent,b

    95 (653) 130 (896)*

    Fatigue ductility coefficient, E/ Fatigue ductility exponent, c

    *Representative values taken from Ref. (29).

    Property A using ksi Yin. and in. A (using MPa Vm and m) n

    *Reference 26.

    Fatigue Crack Growth Rate Properties 1030 Cast Steel

    R=O R,;-1 1.24 x w-ll 2.2 x I0- 13

    3.82

    1.88 x w-ll 3.14 x w- 13

    4.45

    TABLE 8 Crack Propagation Rate Characteristics of Carbon and Low Alloy Steels

    -0.082 0.28

    -0.51

    -0.12* 0.41*

    -0.51*

    1020 Wrought Steel R=O R= -1

    .372 x w-ll .64 x w-n

    4.18

    6.76 X 10- 11 12.29 x I0- 13

    3.54

    Heat .2% YS Ktc A** n Ref. Alloy Type Treatment ksi (MPa) ksi.in. 112 (MNm- 312 ) using MNm - 312 and m

    ll/2Mn A,N 62 (427) 126 (138) w-' oo 2.07 ll/2Crl /2Mol/4V A,N,T, 73 (503) 42 (46) 10-6.55 2.11 ll/2MnMo A,WQ,TI 96 (662) Il4 (125) 10_, 10 1.94 11 /2Ni1Crl /3Mo A,OQ,T 123 (848) 73 (80) w-" 1.80 .54C A 52 (359) 78 (86) 10-6.91 2.09

    using ksi in. 112 and in.

    l-l/4Mn(A216,WCC) A,N,T 48 (331) 116 (127) 2.3x w- 19 3.00 l-l/4Cr-l/2Mo SR,A,N,T,SR 40 (276) 80 (88) 3.1 xl0- 24 4.10 0.25C N,T 43 (296) 1.69x 10- 10 3.3 0.35C N,T 73 (503) 1.69x 10- 10 3.3 0.35C N,T 88 (607) 1.69x 10- 10 3.3 1.53C SA 66 (455) 1.69x 10- 10 3.3 1.53C N,T 63 (434) 1.3x w-lo 5.0

    *A Annealed N Normalized T Tempered, Tf = Double tempered

    WQ Water quenched, OQ = Oil quenched SR Stress relieved SA Spheroidize-anneal

    **The values for A and n denote material constants in the expression for crack propagation dajdN=A~K" R = 0 for References 6 and 8, tests conducted in air, at room temperature, at 20 Hz for Reference 8, and at 600 Hz for Reference 6. R = 0.1, 0.5, and 0.7 for Reference 27, conducted in air, at room temperature, at 300Hz.

    l3

    No. 8 8 8 8 8

    6 6

    27 27 27 27 27

  • 60 CAST SAE 1030 MONOTONIC 400

    / 50

    c a.

    en -" 300:E I 40 (f)

    (f) LLJ 0::

    (f) (f) LLJ 0:: 1-t; 30

    'WROUGHT SAE 1020 CYCLIC

    200 (f)

    20

    100

    10

    0 0.016

    Fig. 28 Monotonic tensile and cyclic stress-strain behavior of comparable wrought and cast carbon steel in the normalized and tempered condition (7).

    5

    flK-MPa 1m

    e CAST SAE I 030 0 WROUGHT SAE 1020 R:::: 0

    I0-5

    5 0

    2

    w .J u >-u ....

    E z 'C ....

    c 'C

    5

    I0-6 ~ w ti a: 2

    :::z:: 1-~ I0-5 0 a: (,!)

    ~ 5 u .q: a: u

    2

    :'

    .

    :-.'t .~ . l

    .

    .. .

    5

    2

    I0-7

    5

    I0-6'------crs---........__.......__.~..-_,___.___.......L....I 10 20 30 40 50 60 80 100

    STRESS INTENSITY RANGE, flK-ksi'in~ Fig. 30a Constant amplitude fatigue crack growth behavior of comparable cast and wrought carbon steel in the normalized and tempered condition, R "" 0 (7).

    'C ....

    c 'C

    14

    (\J 10 ....

    1- ., ',,, /WROOG>

  • .#

    +

    0

    +

    0

    Fig. 32 Average blocks to specific crack lengths and fracture with T /H load history of comparable cast and wrought carbon steel in the normalized and tempered condition (7).

    900

    600 (/)

    ~ (.) 0 500 ..J ID 0 LIJ 400 :J Q. Q. q:

    300

    200

    100

    T/H MOD. T/H

    TIME

    A. T /H 1,708 REVERSALS

    TIME

    B. MOD T/H 1,692 REVERSALS Fig. 31 Variable amplitude load Spectra T /Hand mod T /H (7).

    T/H +

    Ill a. ...: I

    LLJ (.) 0::

    ~

    2 O.L.

    5.5 .------r----r---.---.-----;r----,---,---~--..----,

    50

    4.5

    4.0

    3.5

    3.0 0

    MOD. T/H + 2 O.L

    50

    15

    -0- CAST SAE 1030 --e-- WROUGHT SAE 1020

    lla =0.1 in. (2.5 mm)

    100 150 200 AVERAGE BLOCKS

    24

    22

    z

    20 ~ LLJ (.)

    18 0:: 0 IL.

    16

    14

    250

    Fig. 33 Average blocks to specific crack lengths and fracture with four load histories of comparable cast and wrought carbon steel in the normalized and tempered condition, P max = 4 kips (17.8 kN) (7).

  • Section Size, Mass Effects Mass effects are common to steels, whether rolled,

    forged, or cast, because the cooling rate during the heat treating operation varies with section size, and because the microstructure components, grain size, and nonme-tallic inclusions, increase in size from surface to center. These changes in microstructure are illustrated in Fig-ures 34 through 36. Mass effects are metallurgical in nature, distinct from the effect of discontinuities. An example of how the mass of a component lowers strength properties for wrought AISI 8630 and for AISI 8650 steel plate is shown in Figures 37a and 37b. Proper-ties are plotted for the 1 f 4 T location, halfway between surface and center of plate. Comparison of Figures 37a and 37b indicates that toughness is proportional to strength only in a limited way and that a major loss in toughness may occur in heavier sections.

    Surface

    1/4 T

    Center

    100x

    The section size, or mass effect, is of particular impor-tance to steel castings because the mechanical properties are typically assessed from test bars machined from standardized coupons which have fixed dimensions and are cast separately from or attached to the castings (Fig-ure 38). To remove test bars from the casting is impracti-cal because removal of material for testing would des-troy the usefulness of the component or require costly weld repairs to replace the material removed for testing purposes.

    One cannot routinely expect that test specimens removed from a casting will exhibit the same properties as test specimens machined from the standard test cou-pon designs for which minimum properties are estab-lished in specifications. The mass effect discussed above, i.e. the differences in cooling rate between that of test coupons and of the part being produced, is the funda-

    r

    500X

    Fig. 34 The ferrite-pearlite structure of a quenched and tempered 4-in. (102 mm) thick, A-216-WCC type, carbon steel plate casting.

    16

    _)

  • ..#

    A 250x B 250x

    Fig. 35 A. The martensitic microstructure at the surface of a quenched and tempered Ni-Cr-Mo (cast 8635) 17-in. (432 mm) thick gear blank. B. The acicular, ferrite-pearlite structure of the casting in A-at the center of the 17-in. (432 mm) thick section. Representative Properties:

    UTS YS El RA BHN Cv- Impact Energy at RT ksi MPa ksi MPa % % ftlb J

    A 160 1103 146 1007 14 38 345 30 41 B 110 758 2 2 280 4 5

    A 100x B 100x c 100x

    Fig. 36 A. Ferrite-pearlite structure-representation in a 1.5-in. (38 mm) section of a larger 15-ton, 2% Ni, .20% C steel turbine blade casting that was normalized and tempered. B. Same as in A, but coarser and acicular Widmanstatten structure in the center of a 7-in. (178 mm) thick portion of the same casting. C. Same as in B, but coarse and blocky in appearance in the center of a 28-in. (711 mm) thick portion of the same casting.

    Representative UTS YS El RA BHN Cv- Impact Energy at RT

    Properties: ksi MPa ksi MPa % % ftlb J A 80 552 49 338 26 55 165 58 79 B 76 524 47 324 25 52 155 56 76 c 75 517 46 317 22 38 !48 57 77

    17

  • SECTION THICKNESS- mm SECTION THICKNESS-mm 20 40 60 80 100 20 40 60 80 100

    120 8650 (f) 8630 OIL QUENCHED 120 (f)

    _jw WATER QUENCHED (f) DIFFERENT SIZES _jz

    Dl FFERENT SIZES (f) we _jW

    'l"ctvs1 TEMPERED AT 1000F Za:: TEMPERED AT 1000 oF (538C) _jz '-c (538C) ii:

  • mental reason for this situation. Several specifications provide for the mass effect by permitting the testing of coupons which are larger than the basic keel block in Figure 38, and whose cooling rate is therefore more representative ofthat experienced by the part being pro-duced. Among these specifications are ASTM specifi-cations E208, A356, and A757.

    Alloy and Heat Treatment Influence on Section Size Effects. The tensile properties of normalized and tempered cast carbon steel with 0.3% C (cast 1030) and Ni-Cr-Mo low alloy steel (cast 8635) in Figures 39a and 39b reveal the largest effect of section size to be on reduction of area. The higher strength of the low alloy steel is relatively uniform in the 1.25 and 3-in. (32 and 76 mm) sections. For the 6-in. (152 mm) section a distinct drop in yield and tensile strength is evident. These sec-tion size effects on tensile properties are more pro-nounced upon quenching and tempering to higher strength values as evident from data illustrated in Figure 40 for Ni-Cr-Mo low alloy cast 8635 steel.

    Toughness, because of its sensitivity to the changes in metallurgical structure, i.e. heat treatment, may reveal major effects of section size. Figure 41 shows the differ-ences in Charpy V-notch impact energy due to section size as well as the variation of impact energy with loca-tion in a given section. These data shown only minor effects for the normalized and tempered steels. Compar-able and uniform properties are also shown for the

    ...,

    ~ 100 ~ 80 LLI a: 60 t;

    ELONGATION IN 2in (51 mml ~ 40 i ~ 1 i ~ 30 -A-A-r=-fb~(l)~fD,AIL1-A-A a: 20 ' I ~

    10

    3 in. 176mml

    ~-------'6'--~'" (152::.c;cm.;.;.m~l -----.-1 SECTION SIZE

    Fig. 39a Distribution of tensile properties of cast 1030 steel. Normalized from 1600"F (871C) and tempered at 1200"F (649C) (19).

    19

    higher strength, quenched and tempered cast 8630 steel up to a 3-in. (76 mm) section thickness. For the 6-in. ( 152 mm) thick 8630 steel a significant loss in toughness occurs due to insufficient hardenability of the steel. Lack of hardenabilty of this steel prevents the 6-in. (152 mm) section from through hardening and forming a sufficient amount of martensite at distances of I in. (25 mm) or more below the surface of the 6-in. ( 152 mm) thick section.

    Fatigue strength values are affected by the mass effect in a manner similar to tensile strength. When the endu-rance limit is "normalized" for tensile strength by divid-ing the endurance limit by the tensile strength, the result-ing endurance ratio reveals only minor effects of section size as illustrated in Figure 42.

    Early studies of the section size effect (19, 29, 30) evaluated mechanical properties extensively as a func-tion oflocation in a given casting to determine the rate of change with distance from the surface to the center of the casting.

    Figure 43 illustrates one example of these studies and demonstrates the tendency of properties to level off at distances of approximately l I 4 thickness, I I 4 T, from the surface. Newer studies, therefore, tend to be limited to the I I 4 T location. Data of this type in Table 9 illustrate the trends for property changes as a function of section size. These data do not reflect minimum values to be expected for the grades listed. Table 10 shows the compositions of the grades listed in Table 9.

    __ 160 ...,

    ...: I 140

    C/) ff} 120 a: t; 100

    80 ;;; f 100 C/) ~ 80

    ~ 60 40

    I- 40 z

    TENSILE STRENGTH 0 1.25in.(32mml 0 3in.(76mml A6in.(l52mml

    A-A_i-o-otoo.ro.OoJo-o-{_A A ~-A!A--A~A-~

    UJ 30 -u a: 20 UJ ll.

    10

    I- 30 z UJ

    20 u a: 10 UJ ll.

    0

    I. 1.25 in. (32mml I l------~---------'3~in__;.(76~m~m~l ______ ~~~ 6 in. ( 152 mml SECTION SIZE

    1100 ~ 1000 ~ 900 ~ 800 w 700 f= 600 C/) 800 ~ 700 ::i

    I 600 C/) 500 ~ 400 f= 300 C/)

    Fig. 39b Distribution of tensile properties of cast 8635 steel. Normalized from 1600"F (871C) and tempered at l200"F (649C) (19).

  • 180 1200~ 'iii TENSILE STRENGTH ""' 160 0 1.25 ini32mml 0 3in.(76mmlSECTION A6in.052mml 1100~ (/)

    A !O-ofO~oo.:..'b1o-o1 A 1000~ (/) 140 w

    'A I ' It"' 900~ a: 120 -A ' A- soot; t; 1-A A--A A-: 100 700 c

    u; ~ ""' 140

    1000 :::!E I I (/) 900~ (/) 120 w 800~ a: t; 100 700 I-600 (/) 80

    I- 40 z w 30 (..) a: w 20

    ~ 10

    I- , ELOGATION IN 2in.(51mml I I I I z I i I i w u a:

    IY-A -t.Lo~~:.-(!) 10 a:

    w 50 ffi

    I >

    40 (..)

    30

    20

    10

    Sl. I. 1.25 in. ( 32 mml ~ l I 3 in.(76mml j.,.ot----------':6:-:i-n.(l52"'"m-m-,l,--------t.,~

    SECTION SIZE

    Fig. 41 Distribution of Charpy V -notch impact properties at 74F (23C) for various section sizes of cast steels (19).

    Ill .>I! I

    300

    ::r:: 280 I-(!) z w a: l-en 260

    240

    if. 20 I

    >-I-::J t3 :::::> 10 0

    0 TRUE BREAKING STRENGTH

    /

    0 0

    ~SILE STRENgTH 0 - J /---o

    I ----o o ENGINEERING TENSILE STRENGTH

    0

    ~:~~: ----.:.._

    .----.>-~----- \ELONGATION

    0.5 (131 1.5(38) 2.5(64)

    2100

    2000 c ~ ::E I

    1900 ::r:: t; z w

    1800 ~

    1700

    1600

    DISTANCE FROM COUPON SURFACE-in(mm)

    4 16 36 64

    APPROXIMATE SOLIDIFICATION TIME MINUTES Fig. 43 Effect of mass on tensile properties in 8-in. (203-mm) coupon of cast Ni-Cr-Mo, 4330 steel in the quenched and tempered condition (29).

  • TABLE 9 Tensile and Low Temperature Toughness Properties of Selected Ferritic Hardenable Cast Steels8

    ASTM Spec. Grade

    A217 WCA

    WCB

    wee

    A352 LCB

    LCC

    LCI

    LC2

    A352 LC2-I

    LC3

    A757 CIQ

    CIQ

    EIQ

    EIQ

    Heat Treat-mente

    NT

    NT

    NT

    QT

    QT

    QT

    QT

    QT

    QT

    NQTA

    ANQT

    NQT

    ANQT

    QT

    Section Size

    in. (rom) I (25) 3 (51)

    (76) (25) (51) (76) (25) (51)

    5 (76) I (25) 3 (51) 5 (76)

    (25) (51)

    5 (76) (25) (51)

    5 (76) I (25) 3 (51) 5 (76)

    (25) (51)

    5 (76) (25) (51)

    5 (76) I (25) 3 (51) 5 (76) 3 (51) s (76)

    (25) (51)

    5 (76) 3 (51) s (76) I (25) 3 (51) 5 (76)

    UTS ksi (MPa)

    75 (517) 75 (517) 72 (496) 73 (503) 74 (510) 71 (490) 75 (517) 75 (517) 74 (510) 70 (483) 65 (448) 65 (448) 76 (524) 77 (531) 71 (490) 80 (552) 79 (545) 74 (510) 77 (531) 73 (503) 71 (490)

    109 (752) 106 (731) 107 (738) 89 (614) 92 (634) 85 (586) 95 (655) 92 (634) 78 (738) 82 (565) 83 (572)

    102 (703) 102 (703) 99 (683) 90 (621) 91 (627) 132 (910) 127 (816) 117 (807)

    Y.S. ksi (MPa)

    47 (324) 45 (310) 40 (276) 45 (310) 49 (338) 46 (317) 53 (365) 54 (372) 52 (359) 46 (317) 43 (296) 42 (290) 53 (365) 51 (352) 49 (338) 65 (448) 66 (445) 53 (365) 62 (427) 59 (407) 55 (379) 97 (670) 92 (634) 93 (641) 57 (393) 61 (421) 60 (413) 72' (496) 69 (476) 60 (413) 68 (469) 62 (427) 90 (621) 88 (607) 83 (572) 72 (496) 71 (490) 117 (807) 87 (600) 95 (655)

    EL %

    20 28 22 29 17 13 20 16 16

    35 39 35 18 28 28 28 29 25 26 33 30 24 23 21 19 17 15

    27 31 25 30 28 26 22 25 28 23

    17 10

    A Determined at the I /4 Thickness Location of Cast Plates Measuring in excess of 4T x 4T. 8 See Table 10 for Composition and Heat Treatment. c N = Normalized, Q = Quenched, A = Aged, T = Tempered 0 Also referred to as CA-6NM, as in ASTM A487.

    TABLE 10 Composition of Selected Ferritic Hardenable Cast Steels ASTM

    Specification

    216

    352

    757

    Grade WCA WCB wee LCB LCC LCI LC2 LC2-1 LC3

    CIQ CIQ EIQ EIQ E3N

    Heat Treatment8

    NT NT NT

    WQTSR WQT NQT NQT NQTA WQT NQTA ANQT NQT ANQT NT

    c .24 .24 .21

    .18

    .18

    .17

    .12

    .08

    .12

    .18

    .21 .07 .10 .05

    A See Table 9 for tensile and low temperature toughness properties. 8 NT = Normalized and Tempered. WQT =Water Quenched and Tempered. WQTSR = Water Quenched and Tempered and Stress Relieved. NQTA =Normalized, Quenched, Tempered and Aged.

    Mn

    .72

    .65 1.12

    .75 1.11 .78 .63 .58 .82

    .89

    .87

    .61

    .75 .51

    21

    R.A. %

    46 38 48 25 20 18 18 IS 13

    73 73 60 29 47 49 62 64 44 35 48 54 65 66 53 33 25 18

    60 70 54 58 ss 69 53 69 62 61 20 49 14

    Si .53 .42 .51

    .38

    .36

    .40

    .41

    .35

    .36

    .34

    .39

    .30

    .34

    .57

    FAIT 50 "F ("C)

    68 (2~ 116 (46) 32 (0) 93 (34)

    134 (57) 131 (55)

    61 (16) 39 (4) 55 (13) 20 (-4) 60 (16) 60 (16) 37 (3) 41 (5) 36 (2) 14 (-10) 32 (0) 57 (14)

    -78 (-61) -47 (-44) -22 (-30) -60 (-51) -55 (-49) -25 (-32)

    -121 (-85) -19:i (-125) -202 (-130)

    -IS (-26) -22 (-30)

    -120 (-84) -100 (-73) -184 (-120) -157 (-105) -94 (-70)

    TCV-15 "F ("C)

    27 (-3) -4 (-20)

    0 (-18) 59 (IS) 32 (0) 57 (14) -4 (-20) 14 (-10) 23 (-5)

    -75 (-60) -40 (-40) -30 (-34) -73 (-58) -67 (-55) -40 (-40) -86 (-66) -58 (-50)

    0 (-18) -160 (-107) -166 (-110) -144 (-98) -140 (-96) -95 (-71)

    -110 (-79) -166 (-110) -157 (-105) -148 (-100) -130 (-90) -120 (-84) -105 (-76) -110 (-79) -85 (-65)

    -145 (-99) -120 (-84)

    -188 (-122) -155 (-104)

    -256 (-160) -220 (-140) -148 (-100)

    Composition-% p

    .021

    .012

    .034

    .007

    .02

    .02

    .Oil

    .012

    .01

    .01

    .014

    .022

    .018

    .025

    s .013 .023 .035

    .014

    .02

    .008

    .013

    .010

    .013

    .006

    .014

    .003

    .013

    .009

    Cr

    .15

    .10

    .06

    .06

    .05 1.40

    .18

    .03

    .06 1.42 1.83

    12.4

    NDTT "F {"C)

    (-15) 14 (-10) 32 (0) 0 (-18)

    (-13) 14 (-10)

    (-14) -4 (-20)

    0 (-18)

    -40 (-40) -40 (-40) -40 (-40) -22 (-30) -13 (-25) -40 (-40) -22 (-30)

    (-15) -121 (-85) -112 (-80) -94 (-70)

    -140 (-96) -80 (-62)

    -193 (-125) -175 (-115) -193 (-125)

    -90 (-68) -80 (-62) -85 (-65) -68 (-56)

    -175 (-115) -140 (-96) -100 (-73) -151 (-102) -144 (-98) -211 (-135) -202 (-130) -202 (-130)

    Ni

    .09

    .09

    .03

    .II 2.6 3.00 3.9

    1.72 1.67 2.87 2.90 3.25

    Mo

    .07

    .047

    .015

    .53

    .01

    .52

    .06

    .22 .28 .39 .42 .63

    Reference

    31

    31

    31

    32

    31

    31

    32

    32

    31

    33

    33

    33

    33

    31

    AI

    .044

    .051

    .09

    .016

    .047

    .009

    .034

    .041

    .017

    .054

    .03

  • GENERAL ENGINEERING TYPES

    CLASSIFIED ACCORDINl

    STRUCTURAL GRADES-CARBON STEELS

    Tensile Strength, psi 60,000 65,000 70,000 80,000 85,000

    Low electric resistivity,

    Indicated desirable magnetic Excellent weldability, medium strength High strength carbon steels with goad properties, carburiz

    Application ing and case harden- with good machinability and high machinability, toughness and excellent ing grades, excellent ductility fatigue resistance, readily weldable weldability

    -

    All values listed below are specification minimum values and apply only to the typical specification listed

    Tensile Strength, psi 60,000 65,000 70,000 80,000 85,000 Yield Point, psi 30,000 35,000 36,000 40,000 45,000

    Elongation in 2", % 24 24 22 17 16

    Reduction in Area, % 35 35 30 25 24

    Brinell Hardness No. -

    131' -- 1633 170"

    Values listed directly below are those normally expected in the production of steel castings for the tensile strength values given in the upper portion of the chart. The values are only for

    general information and are not to be used as design or specification limit values.

    Tensile Strength, psi 63,000 68,000 75,000

    Yie!d Point, psi 35,000 38,000 42,000

    Elongation in 2", % 30 28 27

    Reduction of Area, % 54 48 45

    Brinell Hardness No. 131 131 143 Charpy 70F 12 35 30 -Notched Impact Ft-lbs -40F 5 12 12

    Endurance Unnotched 30,000 30,000 35,000 limit, psi Notched 19,000 19,000 22,000

    Modulus of Elasticity 30 million 30 million 30 million psi psi psi

    Machinability Speed HSS 160 135 135 Index Carbide 400 230 230

    Type of Heat T reatrnent Annealed Normalized Normalized

    * Summary of Steel Castings Specifications available from Steel Founders' Society of America. 1 Below 8 percent total alloy content.

    82,000 90,000

    48,000 55,000

    23 20

    40 38

    163 179

    35 26

    10 10

    37,000 39,000

    26,000 28,000 30 million 30 million

    psi psi

    135 120

    400 325 Normalized Normalized

    and Tempered and Tampered

    100,000

    Wear resistance, hardness

    100,000

    70,000

    10

    15

    2073

    105,000

    75,000

    19

    41

    212

    40

    12

    45,000

    31,000 30 million

    psi

    80

    310 Quenched

    and Tampered

    2 There are commercial cast steels available at tensile strength levels greater than 200,000 psi. Properties must be checked with the producers. 3 SAE Hardness requirement. (Minimum)

    22

  • OF CAST STEEL GRADES 0,0

    ) TENSILE STRENGTHS

    ENGINEERING GRADES-LOW ALLOY STEELS 1

    I 65,000 70,000 I 80,000 90,000 I 105,000 I 120,000 150,000 175,000 I 200,000'

    Excellent weld- Certain steels of these classes have excellent high Deep hardening, ability, low tem- Excellent weldability, medium temperature properties and deep hardening prop high strength, High strength, wear resistance,

    strength with high toughness and erties. High resistance to impad, excellent low perature and good machinability, high tem- temperature properties for certain steels, deep wear resistance high hardness, and high fatigue high tempera-ture service

    ASTM, A352 erau LC1

    65,000

    35,000

    24

    35

    --

    68,000

    38,000

    32

    55

    137

    60

    20

    32,000

    20,000 30 million

    psi

    130

    400 Normaliz.cl

    andTempe...d

    perature service hardening properties, excellent combination of and fatigue re resistance strength and toughness, weldable sistance

    ASTM, A217 I ASTM ASTM,

    I ASTM

    I ASTM ASTM, ASTM,

    A14 A14 A14 A14 A14 A14 Class WCC era .. 8().50 era .. - era .. 105-15 elau 120-95 era .. 150-125 era.. 175-145

    All values listed below are specification minimum values and apply only to the typical specification listed

    70,000 80,000 90,000 105,000 120,000 150,000 175,000

    40,000 50,000 60,000 85,000 95,000 125,000 14.5,000

    20 22 20 17 14 9 6 35 35 40 35 30 22 12

    --1633 1873 2171 2481 311' 3631

    Values listed directly below are those normally expected in the production of steel castings for the tensile strength values given in the upper portion of the chart.' The values are only for

    general information and are not to be used as design or specification limit values.

    74,000 86,000 95,000 110,000 128,000 158,000 179,000

    44,000 54,000 64,000 91,000 112,000 142,000 160,000

    28 24 20 21 16 13 11

    50 46 44 48 38 30 25

    143 170 192 217 262 311 352

    55 48 40 58 45 30 24

    22 1!1 16 40 31 17 12

    35,000 39,000 42,000 53,000 62,000 74,000 84,000

    23,000 25,000 31,000 34,000 37,000 44,000 48,000 30 million 30 million 30 million 30 illion 30 ntiHion 30 million 30million

    psi psi psi psi psi psi psi

    120 110 95 90 75 4.5 35

    230 240 290 310 180 200 180 Normalized Nonnolized Normalized& Qvonchod Queftehed Quenched Quenched

    and Tempered and Te111pered and Tempered and Tempered and Temperad and Teper.cl and THiperecf

    4 Test values obtained in accordance with ASTM testing procedureso (Relatively large castings show lower ductility valueso)

    I None

    specified

    -

    -

    -

    -

    -

    205,000

    170,000

    8

    21

    401

    14

    8

    88,000

    50,000 30111illion

    psi

    -

    -

    Quenched andt .. perwd

    5 Machinability speed index for a standard 18-4-1 high-speed steel tool is based on cutting speed which gives one hour tool life. For carbide (788) cutting speed far one hour tool life based an 0.015-inch wearland.

    6 Quench and temper heat treatments may also be employed for this class.

    23

  • REFERENCES I. SFSA Research Results. 2. Nickel Alloy Steel Data Book, Section 3, Bulletin D,

    !NCO, 1966, Based upon American Brake Shoe Company unpublished data.

    3. Wieser, P. F., "Carbon and Low Alloy Steels," Machine Design, February 14, 1974, p. 8.

    4. Breznyak, B.S., and Wallace, J. F., "Impact Properties of Cast Steel Sections with Surface Discontinuities," Steel Foundry Research Foundation, September, 1967.

    5. Gall, E., Wieser, P. F., "Strength-Toughness Relation-ships for Cast Steels," Journal of Steel Castings Re-search, No. 64, September, 1963, p. 3.

    6. Wessel, E. T., and Clark, W. T., Jr., "Fracture Preven-tion Procedure for Heavy Section Components," West-inghouse scientific paper 70-IE7-FMPWR-P2, January 14, 1970.

    7. Stephens, R. I., et al., "Fatigue and Fracture Toughness of SAE 0030 Cast Steel in Comparison with SAE 1020 Wrought Steel," Journal of Steel Castings Research, No. 83, July, 1978, p. 1.

    8. Jackson, W. J., "Fracture Toughness in Relation to Steel Casting Design and Application," Steel Founders' Society of America, August, 1978.

    9. Groves, M. T., and Wallace, J. F., "Plane Strain Fracture Toughness of Cast and Wrought Steels," Journal of Steel Castings Research, No. 80, September, 1977, p. 1.

    10. Venne, L. J., "The Application of Fracture Toughness Criteria to Steel Castings," Steel Foundry Facts, No. 313, March, 1975, p. 3.

    II. Floreen, S., "The Fracture Toughness of Cast High Strength Steels," Journal of Engineering, MAT, 1976.

    12. Bamby, J. T., Al-Daimalani, I. S., "Assessment of the Fracture Toughness of Cast Steels," Part !-Low Alloy Steels, Journal of Materials Science, Vol. 11, 1976, p. 1979.

    13. Barnby, J. T., Al-Daimalani, I. S., "Assessment of the Fracture Toughness of Cast Steels," Part II-Carbon and Carbon Manganese Steels, Journal of Materials Science, Vol. 11, 1976, p. 1989.

    14. Steigerwald, E. A., "Plane Strain Fracture Toughness for Handbook Presentation," AFML TR-67-187, July, 1967.

    15. Barsom, J. M., and Rolfe, S. T., "Correlation between Charpy V-notch Test Results in the Transition Tempera-ture Range," Impact Testing of Metals, ASTM, STP-466, Philadelphia, 1970, p. 281.

    16. Begley, J. A., and Logsdon, W. A., "Correlation of Fracture Toughness and Charpy Properties for Rotor Steels," Westinghouse Research Laboratories, Scientif-ic Paper 71-lET-MSRLF-Pl, May, 1971.

    24

    17. "Materials Selector," Metal Engineering, mid-Sep-tember, 1972, p. 34.

    18. Ebert, L. J., "A Critical Review of Recent Literature on the Fatigue Properties of Cast Steel," MPC-2, ASME, 1976, p. 135.

    19. Evans, E. B., Ebert, L. J., and Briggs, C. W., Proc., American Society for Testing and Materials, Vol. 56, 1956, p. I.

    20. Wallace, J. F., Vishnevsky, C., and Briggs, C. W., Journal of Basic Engineering, ASME, March, 1968, p. 51.

    21. Vishnevsky, C., Bertolino, M. F., and Wallace, J. F., "The Evaluation of Discontinuities in Commercial Steel Castings by Dynamic Loading to Failure in Fatigue," Steel Foundry Research Foundation, February, 1967.

    22. Breznyak, E. S., Vishnevsky, C., and Wallace, J. F., "The Effect of Internal Shrinkage Discontinuities on the Fatigue and Impact Properties of Cast Steel Sec-tions," Steel Foundry Research Foundation, May, 1969.

    23. Vishnevsky, C., Wallace, J. F., and Mang, J. S., "Fatigue of Cast Steels, Part I-A Study of the Notch Effect and of the Specimen Design and Loading on the Fatigue Properties of Cast Steel," and "Part II-Spectrographic Studies of Fatigue in Cast Steel," Steel Foundry Research Foundation, April, 1967.

    24. Vishnevsky, C., Bertolino, M. F., and Wallace, J. F., "The Effects of Surface Discontinuities on the Fatigue Properties of Cast Steel Sections," Steel Foundry Re-search Foundation, August, 1966.

    25. "Properties and Selection of Metals," Metals Hand-book, Vol. 1, ASM, 1961, p. 128.

    26. Technical Report on Fatigue Properties, SAE Jl099, February, 1975.

    27. Kapadia, B. M., Imhof, E. J., Jr., "Fatigue Crack Growth in Cast Irons and Cast Steels," ASME publica-tion Cast Metals for Structural and Pressure Contain-ment Applications, MPC-11, 1979.

    28. Nickel Alloy Steel Data Book, Section 2, Bulletin A. 29. Ahearn, P. J., Form, W. G., and Wallace, J. F., "Mass

    Effect on Tensile Properties of High Strength Cast Steel Castings, Modern Castings, February, !959, p. 45.

    30. Briggs, C. W., and Gezelius, R. A., "The Effect of Mass upon the Mechanical Properties of Cast Steel, Trans., ASM, 1938, Vol. 26, p. 367.

    31. MPC research to be published. 32. Private communications, V. Behal, Dominion Foundries

    & Steel, Ltd., 1979. 33. SFSA research.