rne fundamental b10.pdf

434
Section 1 - Module - Page 1 3FL 11820 ACAA WBZZA Edition 3 All rights reserved © 2005, Alcatel Evolium BSS - RNE Fundamentals 3FL 11820 ACAA WBZZA Edition 3 RNE Fundamentals

Upload: adewale2001

Post on 07-Nov-2014

152 views

Category:

Documents


0 download

DESCRIPTION

RNE Fundamental B10.pdf

TRANSCRIPT

Page 1: RNE Fundamental B10.pdf

Section 1 - Module - Page 13FL 11820 ACAA WBZZA Edition 3

All rights reserved © 2005, Alcatel

Evolium BSS - RNE Fundamentals

3FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals

Page 2: RNE Fundamental B10.pdf

Section 1 - Module - Page 23FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 2

Blank Page

This page is left blank intentionally

Page 3: RNE Fundamental B10.pdf

Section 1 - Module - Page 33FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 3

Objectives

By the end of the course, participants will be able to: - Plan a standard GSM (single band and single layer)

network in urban, suburban and rural areas fulfillingdefined coverage probability;

- Choose suitable BTS site configurations for different clutter types:

- Omni sites/sectorized sites, - Number of TRX,

- Antenna height and antenna type,

- Feeder cable.

- Plan site locations:

- To achieve planned coverage probability

- Inter site distance Antenna azimuth and tilt.

Page 4: RNE Fundamental B10.pdf

Section 1 - Module - Page 43FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 4

Objectives [cont.]

This page is left blank intentionally

Page 5: RNE Fundamental B10.pdf

Section 1 - Module - Page 53FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 5

Table of Contents

Switch to notes view!Page

1 Introduction 141.1 Standardisation & Documentation 151.1.1 www.3GPP.org organizational partners 161.1.2 TSG Organisation 171.1.3 Specifications and Releases 181.1.4 Specifications out of Release 1999 19

1.2 Radio Network Architecture 201.2.1GSM Network Architecture with out GPRS 211.2.2 GSM Network Architecture with GPRS 221.2.3 OMC-R 231.2.4 GSM Network Elements 241.2.5 RF Spectrum 25

1.3 Mobile Phone Systems 261.3.1 Access Methods 271.3.2 FDMA 281.3.3 TDMA 291.3.4 CDMA (Code Division Multiple Access) 301.3.5 Analogue Cellular Mobile Systems 311.3.6 AMPS (Advanced Mobile Phone System) 321.3.7 AMPS - Technical objectives 331.3.8 AMPS Frequency Range 341.3.9 TACS Total Access Communications System 351.3.10 TACS - Technical objectives 361.3.11 Different TACS-Systems 371.3.12 TACS (Total Access Communications System) 381.3.13 Why digital mobile communication ? 391.3.14 GSM - Technical objectives 401.3.15 DECT (Digital European Cordless Telephone) 411.3.16 DECT - Technical objectives 421.3.17 CDMA - Technical objectives 431.3.18 CDMA - Special Features 441.3.19 CDMA - Technical objectives 451.3.20 TETRA - Features 461.3.21 TETRA - Typical Users 471.3.22 TETRA - Technical objectives 481.3.23 Universal Mobile Telecommunication System 49

1.4 RNP Process Overview 501.4.1 Definition of RN Requirements 511.4.2 Preliminary Network Design 521.4.3 Project Setup and Management 531.4.4 Initial Radio Network Design 541.4.5 Site Acquisition Procedure 551.4.6 Technical Site Survey 561.4.7 Basic Parameter Definition 571.4.8 Cell Design CAE Data Exchange over COF 581.4.9 Turn On Cycle 591.4.10 Site Verification and Drive Test 601.4.11 HW / SW Problem Detection 611.4.12 Basic Network Optimization 621.4.13 Network Acceptance 631.4.14 Further Optimization 64

2 Coverage Planning 652.1 Geo databases 662.1.1 Why are geographical data needed for Radio Network Planning ? 672.1.2 Maps are flat 68

Page 6: RNE Fundamental B10.pdf

Section 1 - Module - Page 63FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 6

Table of Contents [cont.]

Switch to notes view! Page

2.1.3 Mapping the earth 692.1.4 Map Projection 702.1.5 Geodetic Ellipsoid 712.1.6 Global & Regional Ellipsoids 722.1.7 Geodetic Datum 732.1.8 Different Map Projection’s 742.1.9 Geo-Coordinate System 752.1.10 WGS 84 (World Geodetic System 1984) 762.1.11 Transverse Mercator Projection 77

2.1 Geo databases 2.1.12 Transverse Mercator Projection (e.g. UTM ) 782.1.13 Universal Transverse Mercator System 792.1.14 UTM - Definitions 802.1.15 UTM Zones (e.g. Europe) 812.1.16 UTM-System 822.1.17 UTM Zone Numbers 832.1.18 UTM-System: Example "Stuttgart" 842.1.19 Lambert Conformal Conic Projection 852.1.20 Geospatial data for Network Planning 862.1.21Creation of geospatial databases 872.1.22 Parameters of a Map 882.1.23 Raster- and Vectordata 892.1.24 Rasterdata / Grid data 902.1.25 Vectordata 912.1.26 Digital Elevation Model (DEM) 92

2.1 Geo databases 2.1.27 Morphostructure / Land usage / Clutter (1) 932.1.28 Morphostructure (2) 942.1.29 Morphoclasses 952.1.30 Morphoclasses (2) 962.1.31Background data (streets, borders etc.) 972.1.32 Orthophoto 982.1.33 Scanned Maps 992.1.34 Buildings 1002.1.35 Buildings (2) 1012.1.36 Traffic density 1022.1.37 Converting one single point (1a) 1032.1.38 Converting one single point (1b) 1042.1.39 Converting one single point (2a) 1052.1.40 Converting one single point (2b) 1062.1.41 Converting a list of points (3a) 1072.1.42 Converting a list of points (3b) 1082.1.43 Converting a list of points (3c) 1092.1.44 Provider for Geospatial data 1102.1.45 Links for more detailed infos 111

Page 7: RNE Fundamental B10.pdf

Section 1 - Module - Page 73FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 7

Table of Contents [cont.]

Switch to notes view!Page

2.2 Antennas and Cables 1122.2.1.1 The Antenna System 1132.2.1.2 Antenna Theory 1142.2.1.3 Antenna Data 1152.2.1.4 Antenna Pattern and HPBW 1162.2.1.5 EIRP 1172.2.1.6 Linear Antennas 1182.2.1.7 Monopole Antenna Pattern 1192.2.1.8 Panel Antenna with Dipole Array 1202.2.1.9 Dipole Arrangement 1212.2.1.10 Omni Antenna 122

2.2.2 Antenna Parameters 1232.2.2.1 X 65° T6 900MHz 2.5m 1242.2.2.2 X 65° T6 900MHz 1.9m 1252.2.2.3 X 90° T2 900MHz 2.5m 1262.2.2.4 V 65° T0 900MHz 2.0m 1272.2.2.5 V 90° T0 900MHz 2.0m 1282.2.2.4 X 65° T6 1800MHz 1.3m 1292.2.2.5 X 65° T2 1800MHz 1.3m 1302.2.2.6 X 65° T2 1800MHz 1.9m 1312.2.2.7 V 65° T2 1800MHz 1.3m 1322.2.2.8 V 90° T2 1800MHz 1.9m 133

2.2.3 Cable Parameters 1342.2.3.1 7/8" CELLFLEX® Low-Loss Coaxial Cable 1352.2.3.2 1-1/4" CELLFLEX® Coaxial Cable 1362.2.3.3 1-5/8" CELLFLEX® Coaxial Cable 1372.2.3.4 1/2" CELLFLEX® Jumper Cable 138

2.3 Radio Propagation 1392.3.1 Propagation effects 140

2.3.1.1 Reflection 1412.3.1.2 Refraction 1422.3.1.3 Diffraction 1432.3.1.4 Fading 1442.3.1.5 Fading types 1452.3.1.6 Signal Variation due to Fading 1462.3.1.7 Lognormal Fading 147

2.4 Path Loss Prediction 1482.4.1 Free Space Loss 1492.4.2 Fresnel Ellipsoid 1502.4.3 Fresnel Ellipsoid 1512.4.4 Knife Edge Diffraction 1522.4.5 Knife Edge Diffraction Function 1532.4.6 "Final Solution" for Wave Propagation Calculations? 1542.4.7 CCIR Recommendation 1552.4.8 Mobile Radio Propagation 1562.4.9 Terrain Modeling 1572.4.10 Effect of Morphostructure on Propagation Loss 1582.4.11 Okumura-Hata for GSM 900 1592.4.12 CORRECTIONS TO THE HATA FORMULA 1602.4.13 Hata-Okumura for GSM 900 1612.4.14 COST 231 Hata-Okumura GSM 1800 1622.4.15 Alcatel Propagation Model (Standard Propagation Model) 1632.4.16 Alcatel Propagation Model 1642.4.17 Exercise ‘Path Loss’ 165

2.5 Link Budget Calculation 1662.5.1 Maximum Propagation Loss (Downlink) 1672.5.2 Maximum Propagation Loss (Uplink) 1682.5.3 GSM900/1800 Link Budget 1692.5.3 GSM900/1800 Link Budget 1712.5.4 GSM1800 Link Budget 1722.5.5 Additional Losses Overview 173

Page 8: RNE Fundamental B10.pdf

Section 1 - Module - Page 83FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 8

Table of Contents [cont.]

Switch to notes view! Page

2.6 Coverage Probability 1742.6.1 Indoor propagation aspects 1752.6.2 Indoor propagation: empirical model 1762.6.3 Indoor Penetration 1772.6.4 Body Loss (1) 1782.6.5 Body Loss (2) 1792.6.6 Body Loss (3) 1802.6.7 Interference Margin 1812.6.8 Degradation (no FH) 1822.6.9 Diversity Gain 1832.6.10 Lognormal margin 1842.6.11 Consideration of Signal Statistics (1) 1852.6.12 Consideration of Signal Statistics (2) 186

2.7 Cell Range Calculation 1872.7.1 Calculation of Coverage Radius R 1882.7.2 Coverage Probability 1892.7.3 Coverage Ranges and Hata Correction Factors 1902.7.4 Conventional BTS Configuration 1912.7.5 Coverage Improvement by Antenna Diversity 1922.7.6 Radiation Patterns and Range 1932.7.7 Improvement by Antenna Diversity and Sectorization 1942.7.8 Improvement by Antenna Preamplifier 195

2.8 Antenna Engineering 1962.8.1 Omni Antennas 1972.8.2 Sector Antenna 1982.8.3 Typical Applications 1992.8.4 Antenna Tilt 2002.8.5 Mechanical Downtilt 2012.8.6 Electrical Downtilt 2022.8.7 Combined Downtilt 2032.8.8 Assessment of Required Tilts 2042.8.9 Inter Site Distance in Urban Area 2052.8.10 Downtilt in Urban Area 2062.8.11 Downtilt in Urban Area 2072.8.12 Downtilt in Suburban and Rural Area 2082.8.13 Antenna configurations 2092.8.14 Antenna Configurations for Omni and Sector Sites 2102.8.15 Three Sector Antenna Configuration with AD 2112.8.16 Antenna Engineering Rules 2122.8.17 Distortion of antenna pattern 2132.8.18 Tx-Rx Decoupling (1) 2142.8.19 TX-RX Decoupling (2) 2152.8.20 TX-RX Decoupling (3) 2162.8.21 Space Diversity 2172.8.22 Power Divider 2182.8.23 Power Divider 2192.8.24 Panel Configurations (1) 2202.8.25 Panel Configurations (2) 2212.8.26 Panel Configurations (3) 222

Page 9: RNE Fundamental B10.pdf

Section 1 - Module - Page 93FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 9

Table of Contents [cont.]

Switch to notes view! Page

2.8 Antenna Engineering 2.8.27 Feeders 2232.8.28 Feeder Installation Set and Connectors 2242.8.29 Feeder Parameters 2252.8.30 Feeder attenuation (1) 226

2.8 Antenna Engineering 2.8.31 Radiating Cables 2272.8.32 Components of a radiating cable system 2282.8.33 Comparison of field strength: Radiating cable and standard antenna 2292.8.34 Example of a radiating cable in a tunnel 2302.8.35 Microwave antennas, feeders and accessories 2312.8.36 Parabolic antenna 2322.8.37 High performance antenna 2332.8.38 Horn antennas 2342.8.39 Specific Microwave Antenna Parameters (1) 2352.8.40 Specific Microwave Antenna Parameters (2) 2362.8.41 Data sheet 15 GHz 2372.8.42 Radiation pattern envelope 2382.8.43 Feeders (1) 2392.8.44 Feeders (2) 2402.8.45 Feeders (3) 2412.8.46 Feeders (4) 2422.8.47 Feeders (5) 2432.8.48 Antenna feeder systems (1) 2442.8.49 Antenna feeder systems (2) 2452.8.50 Antenna feeder systems (3) 246

2.9 Alcatel BSS 2472.9.1 Architecture of BTS - Evolium Evolution A9100 2482.9.2 EVOLIUMTM A9100 Base Station (1) 2492.9.3 EVOLIUMTM A9100 Base Station (2) 2502.9.4 EVOLIUMTM A9100 Base Station (3) 2512.9.5 EVOLIUMTM BTS Features 2522.9.7 Generic Configurations for A9100 G4/5 BTS 2582.9.8 Non multi-band configurations 2592.9.9 Multi-band configurations 2602.9.10 Extended cell configurations 2612.9.11 Standard configurations 2622.9.12 TRX Types 2632.9.12 TRX Types 2642.9.13 BTS Output Power 2652.9.14 Feature Power Balancing 2662.9.15 Cell Split Feature 2672.9.19 Cell Split Example: High Power Configuration 2682.9.22 Indoor BTS Rack Layout 2692.9.23 Outdoor MBO1 Evolution and MBO2 Evolution cabinets 2702.9.24 Micro BTS types 2712.9.25 Technical Data 2722.9.26 BSC capacities in terms of boards 2732.9.27 Capacity and dimensioning for E1 links 2742.9.28 Abis and atermux allocation on LIU boards 275

Page 10: RNE Fundamental B10.pdf

Section 1 - Module - Page 103FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 10

Table of Contents [cont.]

Switch to notes view! Page

2.10 Coveradge Improvement 2762.10.1 Antenna Diversity 2772.10.1.1 Diversity 2782.10.1.2 Selection Diversity (1) 2792.10.1.3 Selection Diversity (2) 2802.10.1.4 Selection Diversity (3) 2812.10.1.5 Equal Gain Combining (1) 2822.10.1.6 Equal Gain Combining (2) 2832.10.1.7 Maximum Ratio Combining (1) 2842.10.1.8 Maximum Ratio Combining (2) 2852.10.1.9 Comparison of combining methods 2862.10.1.10 Enhanced Diversity Combining (1) 2872.10.1.11 Enhanced Diversity Combining (2) 2882.10.1.12 Tx Diversity 2892.10.1.12 Tx Diversity 2902.10.1.12 Tx Diversity 2912.10.1.12 Tx Diversity 2922.10.1.12 Diversity systems in Mobile Radio Networks 2932.10.1.13 Space Diversity Systems 2942.10.1.14 Space Diversity - General Rules 2952.10.1.15 Achievable Diversity Gain 2962.10.1.16 Polarization Diversity 2972.10.1.17 Principle of Polarization Diversity 2982.10.1.18 Air Combining 2992.10.1.19 Air Combining with Polarization Diversity 3002.10.1.20 Air Combining with Space Diversity 3012.10.1.21 Decoupling of Signal Branches 3022.10.1.22 Cross Polarized or Hor/Ver Antenna? (1) 3032.10.1.23 Cross Polarized or Hor/Ver Antenna? (2) 3042.10.1.24 Conclusion on Antenna Diversity 305

2.10.2 Repeater Systems 3062.10.2.1 Repeater Application 3072.10.2.2 Repeater Block Diagram 3082.10.2.3 Repeater Applications (2) 3092.10.2.4 Repeater Types 3102.10.2.5 Repeater for Tunnel Coverage 3112.10.2.4 Repeater for Indoor coverage 3122.10.2.5 Planning Aspects 3132.10.2.6 Repeater Gain Limitation (1) 3142.10.2.7 Repeater Gain Limitation (2) 3152.10.2.8 Intermodulation Products 3162.10.2.9 Repeater Link Budget 3172.10.2.10 High Power TRXs 3182.10.2.13 3x6 TRXs High Power Configuration 3192.10.2.14 Mixed TRX Configuration 320

3 Traffic & Frequency Planning 3213.1 Traffic Caspacity 3223.1.1 Telephone System 3233.1.2 Offered Traffic and Traffic Capacity 3243.1.3 Definition of Erlang 3253.1.4 Call Mix and Erlang Calculation 3263.1.5 ERLANG B LAW (2) 3283.1.6 Erlang´s Formula 3293.1.7 Blocking Probability (Erlang B) 3303.1.8 BTS Traffic Capacity (Full Rate) 331

Page 11: RNE Fundamental B10.pdf

Section 1 - Module - Page 113FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 11

Table of Contents [cont.]

Switch to notes view! Page

3.2 Network Evolution 3323.2.1 Network Evolution - Capacity Approach (1) 3333.2.2 Network Evolution - Capacity Approach (2) 3343.2.3 Network Evolution - Capacity Approach (3) 3353.2.4 Network Evolution - Capacity Approach (4) 336

3.3 Cell Structures 3373.3.1 Cell Structures and Quality 3383.3.2 Cell Re-use Cluster (Omni Sites) (1) 3393.3.2 Cell Re-use Cluster (Omni Sites)(2) 3403.3.4 Cell Re-use Cluster (Sector Site) (1) 3413.3.5 4x3 Cell Re-use Cluster (Sector Site) (2) 3423.3.6 Irregular (Real) Cell Shapes 343

3.4 Frequency Reuse 3443.4.1 GSM Frequency Spectrum 3453.4.2 Impact of limited Frequency Spectrum 3463.4.3 What is frequency reuse? 3473.4.4 RCS and ARCS (1) 3483.4.5 RCS and ARCS (2) 3493.4.6 Reuse Cluster Size (1) 3503.4.7 Reuse Cluster Size (2) 3513.4.8 Reuse Distance 3523.4.9 Frequency Reuse Distance 3533.4.10 Frequency Reuse: Example 354

3.5 Cell Planning 3553.5.1 Cell Planning - Frequency Planning (1) 3563.5.2 Cell Planning - Frequency Planning (2) 3573.5.3 Influencing Factors on Frequency Reuse Distance 3583.5.4 Conclusion 3593.5.5 Examples for different frequency reuses 360

3.6 Interference Probability 3613.6.1 Interference Theory (1) 3623.6.2 Interference Theory (2) 3633.6.3 CPDF - Cumulative Probability Density Function 3643.6.4 Interference Probability dependent on Average Reuse 365

3.7 Carrier Types 3663.7.1 Carrier Types - BCCH carrier 3673.7.2 Carrier Types - TCH carrier 368

3.8 Multiple Reuse Pattern MRP 3693.8.1 Meaning of multiple reuse pattern (1) 3703.8.2 Meaning of multiple reuse pattern (2) 3713.8.3 GSM restrictions 372

3.9 Intermodulation 3733.9.1 Intermodulation problems (1) 3743.9.2 Intermodulation problems (2) 3753.9.3 Intermodulation problems (3) - Summary 3763.9.4 Treating “neighbor” cells 3773.9.5 Where can I find neighbor cells? 378

3.10 Manual Frequency Planning 3793.10.1 Frequency planning (1) 3803.10.2 Frequency planning (2) 3813.10.3 Exercise: Manual frequency planning (1) 3823.10.4 Exercise: Manual frequency planning (2) 3833.10.5 Discussion: Subdivide Frequency Band? 3843.10.6 Hint for creating a future proofed frequency plan 3853.10.7 Implementing a frequency plan 386

Page 12: RNE Fundamental B10.pdf

Section 1 - Module - Page 123FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 12

Table of Contents [cont.]

Switch to notes view! Page

3.11 BSCI Planning 3873.11.1 BSCI allocation 3883.11.2 BSIC Planning Rules 3893.11.3 Spurious RACH 3903.11.4 Summary 391

3.12 Capacity Enhancement Techniques 3923.12.1 Capacity enhancement by planning 3933.12.2 Capacity enhancement by adding feature 3943.12.3 Capacity enhancement by adding TRX 3953.12.4 Capacity enhancement by adding cells 3963.12.5 Capacity enhancement by adding sites 397

4 Radio Interface 398

4.1 GSM Air Interface 3994.1.1 Radio Resources 4004.1.2 GSM Transmission Principles (1) 4014.1.3 GSM Transmission Principles (2) 4024.1.4 Advantages of Signal Processing 4034.1.5 Signal Processing Chain 404

4.2 Channel Coding 4054.2.1 Speech Coding 4064.2.2 Error Protection 4074.2.3 Interleaving and TDMA Frame Mapping 4084.2.4 Encryption 4094.2.5 Burst Structure 4104.2.4 Synchronisation 4114.2.5 Modulation 4124.2.6 Propagation Environment 4134.2.7 Equalizing 4144.2.8 Definition of Bit Error Rates 4154.2.9 Speech Quality 4164.2.10 Dependence of BER on Noise and Interference 4174.2.13 Frequency Hopping (1) 4184.2.14 Frequency Hopping (2) 4194.2.15 The OSI Reference Model 4204.2.16 GSM Burst Types (1) 4214.2.17 GSM Burst Types (2) 4224.2.18 Logical Channels 4234.2.19 Possible Channel Combinations 4244.2.20 Channel Mapping (1) 4254.2.21 Channel Mapping (2) 4264.2.22 TDMA Frame Structure for TCHs 427

Page 13: RNE Fundamental B10.pdf

Section 1 - Module - Page 133FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 13

Blank Page

This page is left blank intentionally

Page 14: RNE Fundamental B10.pdf

Section 1 - Module - Page 143FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 14

1 Introduction

Page 15: RNE Fundamental B10.pdf

Section 1 - Module - Page 153FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 15

1 Intruduction

1.1 Standardisation & Documentation

Page 16: RNE Fundamental B10.pdf

Section 1 - Module - Page 163FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 16

1.1 Standardisation & Documentation

1.1.1 www.3GPP.org organizational partners

Project supported by

ARIB Association of Radio Industries and Businesses (Japan)

CWTS China Wireless Telecommunication Standard group

ETSI European Telecommunications Standards Institut

T1 Standards Committee T1 Telecommunication (US)

TTA Telecommunications Technology Association (Korea)

TTC Telecommunication Technology Committee (Japan)

The Organizational Partners shall determine the general policy and strategy of 3GPP and perform the following tasks:

Approval and maintenance of the 3GPP scope

Maintenance the Partnership Project Description

Taking decisions on the creation or cessation of Technical Specification Groups, and approving their scope and terms of reference

Approval of Organizational Partner funding requirements

Allocation of human and financial resources provided by the Organizational Partners to the Project Co-ordination Group

Source: www.3gpp.org

Page 17: RNE Fundamental B10.pdf

Section 1 - Module - Page 173FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 17

TSG ORGANIZATION

Project Co-ordination Group

(PCG)

TSG RANRadio Access Networks

RAN WG1

Radio Layer 1 specification

RAN WG2

Radio Layer2 &3 spec

RAN WG3UTRAN O&M requirements

RAN WG4Radio &Protocol Aspects

RAN WG5 (ex T1)Mobile TerminalTesting

TSG SAServices & System Aspects

SA WG1Services

SA WG2Architecture

SA WG3Security

SA WG4Codec

SA WG5Telecom Management

TSG CTCore Network & Terminals

CT WG1 (ex CN1)MM/CC/SM (lu)

CT WG3 (ex CN3)Networks Interworking

CT WG4 (ex CN4)MAP/GTP/BCH/SS

CT WG5 (ex CN5)Open Service Access

CT WG6 (ex T3)Card Application Aspects

TSG GERANGSM EDGE

Radio Access Network

GERAN WG1Radio Aspects

GERAN WG2Protocol Aspects

GERAN WG3Terminal TestingGERAN WG3Terminal Testing

1.1 Standardisation & Documentation

1.1.2 TSG Organisation

Source: www.3gpp.org

Page 18: RNE Fundamental B10.pdf

Section 1 - Module - Page 183FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 18

1.1 Standardisation & Documentation

1.1.3 Specifications and Releases

GSM/Edge Releases: http://www.3gpp.org/specs/releases.htm

TR 41.103 GSM Phase 2+ Release 5

• Freeze date: March - June 2002

TR 41.102 GSM Phase 2+ Release 4

• Freeze date: March 2001

TR 01.01 Phase 2+ Release 1999

• Freeze date: March 2000

For the latest specification status information please go to the 3GPP Specifications database: http://www.3gpp.org/ftp/Information/Databases/Spec_Status/

The latest versions of specifications can be found on ftp://ftp.3gpp.org/specs/latest/

TS – Technical Specification

TR – Technical Report

Page 19: RNE Fundamental B10.pdf

Section 1 - Module - Page 193FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 19

1.1 Standardisation & Documentation

1.1.4 Specifications out of Release 1999

TR 01.04 Abbreviations and acronyms

TS 03.22 Functions related to Mobile Station (MS) in idle mode and group receive mode

TR 03.30 Radio Network Planning Aspects

TS 04.04 Layer 1 - General Requirements

TS 04.06 Mobile Station - Base Stations System (MS - BSS) Interface Data Link (DL) Layer Specification

TS 04.08 Mobile radio interface layer 3 specification

TS 05.05 Radio Transmission and Reception

TS 05.08 Radio Subsystem Link Control

TS 08.06 Signalling Transport Mechanism Specification for the Base Station System - Mobile Services Switching Centre (BSS-MSC) Interface

TS 08.08 Mobile-services Switching Centre - Base Station system (MSC-BSS) Interface Layer 3 Specification

Page 20: RNE Fundamental B10.pdf

Section 1 - Module - Page 203FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 20

1 Intruduction

1.2 Radio Network Architecture

Page 21: RNE Fundamental B10.pdf

Section 1 - Module - Page 213FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 21

1.2 Radio Network Architecture

1.2.1GSM Network Architecture with out GPRS

HLRHLRHLRHLR GCRGCRGCRGCR AuCAuCAuCAuC

EEEE

BBBB CCCC

DDDD

FFFF

GGGGHHHH

IIII

AbisAbisAbisAbis

BBBB CCCC DDDD EEEE FFFF GGGG HHHH IIII

PSTNPSTNPSTNPSTN

ISDNISDNISDNISDN

BTS BTS BTS BTS ---- BSC BSC BSC BSC

MSCMSCMSCMSC----VLRVLRVLRVLR (SM(SM(SM(SM----G)MSCG)MSCG)MSCG)MSC----HLRHLRHLRHLR

HLRHLRHLRHLR----VLRVLRVLRVLR (SM(SM(SM(SM----G)MSCG)MSCG)MSCG)MSC----MSCMSCMSCMSC (SS7 basic) + (SS7 basic) + (SS7 basic) + (SS7 basic) +

MAPMAPMAPMAP MSCMSCMSCMSC----EIREIREIREIR VLRVLRVLRVLR----VLRVLRVLRVLR

HLRHLRHLRHLR----AuCAuCAuCAuC MSCMSCMSCMSC----GCRGCRGCRGCR

MSCMSCMSCMSC----PSTNPSTNPSTNPSTN (SS7 basic) + TUP or (SS7 basic) + TUP or (SS7 basic) + TUP or (SS7 basic) + TUP or ISUPISUPISUPISUP MSCMSCMSCMSC----ISDNISDNISDNISDN

LapDLapDLapDLapD

(ISDN type)

GSM CircuitGSM CircuitGSM CircuitGSM Circuit----switching:switching:switching:switching:

(BSSAP = BSSMAP + DTAP)

AAAA BSC BSC BSC BSC ---- MSC MSC MSC MSC (SS7 basic) + (SS7 basic) + (SS7 basic) + (SS7 basic) + BSSAPBSSAPBSSAPBSSAP

BTSBTSBTSBTS

LapDmLapDmLapDmLapDm

(GSM specific)

Um Um Um Um (Radio)(Radio)(Radio)(Radio)

MS MS MS MS ---- BTS BTS BTS BTS

BSCBSCBSCBSC BSCBSCBSCBSC

MSCMSCMSCMSC MSCMSCMSCMSC

BTSBTSBTSBTS

PSTN /PSTN /PSTN /PSTN / ISDN ISDN ISDN ISDN

MSMSMSMS

VLRVLRVLRVLR VLRVLRVLRVLR EIREIREIREIR

AuCAuCAuCAuC

AuC Authentication Center

BTS Base Transceiver Station

BSC Base Station Controller

BSS Base Station System

EIR Equipment Identity Register

HLR Home Location Register

ISDN Integrated Services Digital Network

MS Mobile Station

OMC-R Operation and Maintenance Centre – Radio

PSTN Public Switched Telephone Network

VLR Visitor Location Register

GCR Group Call Register -The general architecture of GSM is maintained. In addition, a network function is required which is used for registration of the broadcast call attributes, the Group Call Register.

Page 22: RNE Fundamental B10.pdf

Section 1 - Module - Page 223FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 22

GcGcGcGc GGSNGGSNGGSNGGSN----HLRHLRHLRHLR IP/SS7IP/SS7IP/SS7IP/SS7

LAPDmLAPDmLAPDmLAPDm(GSM specific)

GsGsGsGs

GbGbGbGb

UmUmUmUm (Radio)(Radio)(Radio)(Radio)

GiGiGiGi GGSNGGSNGGSNGGSN----Data NetworkData NetworkData NetworkData Network IPIPIPIP

MSMSMSMS

BSS BSS BSS BSS ---- SGSN SGSN SGSN SGSN

GrGrGrGr SS7SS7SS7SS7SGSNSGSNSGSNSGSN----HLRHLRHLRHLR

GfGfGfGf SS7SS7SS7SS7SGSNSGSNSGSNSGSN----EIREIREIREIRSGSNSGSNSGSNSGSN----MSC/VLRMSC/VLRMSC/VLRMSC/VLR

GnGnGnGnSGSNSGSNSGSNSGSN----GGSNGGSNGGSNGGSN IPIPIPIP

IPIPIPIPSGSNSGSNSGSNSGSN----SGSNSGSNSGSNSGSN

MS MS MS MS ---- BTS BTS BTS BTS

GsGsGsGs

GfGfGfGfGrGrGrGr

GnGnGnGn

GnGnGnGn

GcGcGcGc SS7SS7SS7SS7

GSM GSM GSM GSM PacketPacketPacketPacket----switchingswitchingswitchingswitching (GPRS/EDGE):(GPRS/EDGE):(GPRS/EDGE):(GPRS/EDGE):

BSSGPBSSGPBSSGPBSSGP

BSS BSS BSS BSS withwithwithwithPCUPCUPCUPCU

BSS BSS BSS BSS withwithwithwithPCUPCUPCUPCU

HLRHLRHLRHLR EIREIREIREIR

DataDataDataDataNetworkNetworkNetworkNetwork

SGSNSGSNSGSNSGSN

GGSNGGSNGGSNGGSN

SGSNSGSNSGSNSGSNMSCMSCMSCMSC

1.2 Radio Network Architecture

1.2.2 GSM Network Architecture with GPRS

Note: according to GSM 03.60, the PCU function (Packet Control Unit) may be implemented on the BTS, the BSC or the SGSN site.

MFS Multi – BSS Fast Packet Server A935

PSTN Public Switched Telephone Network

SGSN Serving GPRS Support Node

GGSN Gateway GPRS Support Node

VLR Visitor Location Register

Page 23: RNE Fundamental B10.pdf

Section 1 - Module - Page 233FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 23

1.2 Radio Network Architecture

1.2.3 OMC-R

BSSBSSBSSBSS

BTSBTSBTSBTS

BTSBTSBTSBTS

AlcatelAlcatelAlcatelAlcatel9135 9135 9135 9135 MFSMFSMFSMFS

SSPSSPSSPSSP+ RCP+ RCP+ RCP+ RCP

BSCBSCBSCBSC

SGSNSGSNSGSNSGSN

OMCOMCOMCOMC----RRRR

MSMSMSMS

AAAA bisbisbisbis AAAA terterterter

TCTCTCTC

GbGbGbGb

AAAA

GGSNGGSNGGSNGGSNGnGnGnGn

OMCOMCOMCOMC----GGGG

NSSNSSNSSNSS

GPRS CNGPRS CNGPRS CNGPRS CN

GPRS Core Network (CN): Alcatel 1000 GPRS

Packet Control Unit (PCU) function for several BSS: Alcatel 9135 MFS

TC Transcoder

Page 24: RNE Fundamental B10.pdf

Section 1 - Module - Page 243FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 24

1.2 Radio Network Architecture

1.2.4 GSM Network Elements

Base Station System BSS

Base Transceiver Station BTS

Base Station Controller BSC

Terminal Equipment

Mobile Station MS

Operation and Maintenance Center-Radio OMC-R

Network Subsystem NSS

Mobile Services Switching Center MSC

Visitor Location Register VLR

Home Location Register HLR

Authentication Center AuC

Equipment Identity Register EIR

Operation and Maintenance Center OMC

Multi-BSS Fast Packet Server (GPRS) MFS

Serving GPRS Support Node SGSN

Gateway GPRS Support Node GGSN

Page 25: RNE Fundamental B10.pdf

Section 1 - Module - Page 253FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 25

1.2 Radio Network Architecture

1.2.5 RF Spectrum

System Total Bandwidth Uplink frequency band /MHz

Downlink frequency band /MHz

Carrier Spacing

GSM 450 2x7.5MHz 450.4-457.6 460.4-467.6 200 kHz

GSM 480 2x7.2MHz 478.8-486 488.8-496 200 kHz

GSM 850 2x25MHz 824-849 869-894 200 kHz

GSM 900 2x25MHz 890-915 935-960 200 kHz

E-GSM 2x35MHz 880-915 925-960 200 kHz

DCS 1800 (GSM)

2x75MHz 1710-1785 1805-1880 200 kHz

PCS 1900 (GSM)

2x60MHz 1850-1910 1930-1990 200 kHz

AMPS : UK

TACS : UK

DECT: Cordless

CDMA: System of next Generation

TETRA: Digital communication System for Commercial use

Frequency Ranges depends on country.

Page 26: RNE Fundamental B10.pdf

Section 1 - Module - Page 263FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 26

1 Intruduction

1.3 Mobile Phone Systems

Page 27: RNE Fundamental B10.pdf

Section 1 - Module - Page 273FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 27

FDMA (Frequency Division Multiple Access)

TDMA (Time Division Multiple Access)

CDMA (Code Division Multiple Access)

1.3 Mobile Phone Systems Access Methods

1.3.1 Access Methods

Page 28: RNE Fundamental B10.pdf

Section 1 - Module - Page 283FL 11820 ACAA WBZZA Edition 3

@@SECTIONTITLE - @@MODULETITLE

All rights reserved © 2005, Alcatel@@PRODUCT - @@COURSENAME

@@SECTION - @@MODULE - 25

1.3 Mobile Phone Systems Access Methods

1.3.2 FDMA

Used for standard analog cellular mobile systems(AMPS, TACS, NMT etc.)

Each user is assigned a discrete slice of the RF spectrum

Permits only one user per channel since it allows the user to use the channel 100% of the time.

Page 29: RNE Fundamental B10.pdf

Section 1 - Module - Page 293FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 29

1.3 Mobile Phone Systems Access Methods

1.3.3 TDMA

Multiple users share RF carrier on a time slot basis

Carriers are sub-divided into timeslots

Information flow is not continuous for an user, it is sent and received in "bursts"

Page 30: RNE Fundamental B10.pdf

Section 1 - Module - Page 303FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 30

1.3 Mobile Phone Systems Access Methods

1.3.4 CDMA (Code Division Multiple Access)

Multiple access spread spectrum technique

Each user is assigned a sequence code during a call

No time division; all users use the entire carrier

What is CDMA ?

One of the most important concepts to any cellular telephone system is that of "multiple access", meaning that multiple,

simultaneous users can be supported. In other words, a large number of users share a common pool of radio channels and

any user can gain access to any channel (each user is not always assigned to the same channel). A channel can be thought

of as merely a portion of the limited radio resource which is temporary allocated for a specific purpose, such as

someone's phone call. A multiple access method is a definition of how the radio spectrum is divided into channels and

how channels are allocated to the many users of the system.

Page 31: RNE Fundamental B10.pdf

Section 1 - Module - Page 313FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 31

1.3 Mobile Phone Systems Access Methods

1.3.5 Analogue Cellular Mobile Systems

Analogue transmission of speech

One TCH/Channel

Only FDMA (Frequency Division Multiple Access)

Different Systems

AMPS (Countries: USA)

TACS (UK, I, A, E, ...)

NMT (SF, S, DK, N, ...)

...

NMT: Nordic Mobile Telephone System. Allianz von Nordischen Systembetreibern.

AMPS: Advanced Mobile Phone System

TACS: Total Access Communications System

UK United Kingdom

I Italy

A Austria

E Spain

SF Finnland

S Schweden

DK Denmark

N Norwegen

Page 32: RNE Fundamental B10.pdf

Section 1 - Module - Page 323FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 32

1.3 Mobile Phone Systems Access Methods

1.3.6 AMPS (Advanced Mobile Phone System)

Analogue cellular mobile telephone system

Predominant cellular system operating in the US

Original system: 666 channels (624 voice and 42 control channels)

EAMPS - Extended AMPS Current system: 832 channels (790 voice, 42 control); has replaced AMPS as the US standard

NAMPS - Narrowband AMPS New system that has three times more voice channels than EAMPS with no loss of signal quality

Backward compatible: if the infrastructure is designed properly, older phones work on the newer systems

Page 33: RNE Fundamental B10.pdf

Section 1 - Module - Page 333FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 33

1.3 Mobile Phone Systems Access Methods

1.3.7 AMPS - Technical objectives

Technology FDMARF frequency band 825 - 890 MHzChannel Spacing 30 kHzCarriers 666 (832)Timeslots 1Mobile Power 0.6 - 4 WTransmission Voice, (data)HO possibleRoaming possible

Page 34: RNE Fundamental B10.pdf

Section 1 - Module - Page 343FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 34

1.3 Mobile Phone Systems Access Methods

1.3.8 AMPS Frequency Range

991 1023 1 666 667 799

Extended AMPS

AMPSUplink

Channel number

Frequency of Channel(MHz)

824.040 825.030 844.980

845.010

845.010

Duplex distance45 MHz

Downlink

Channel number

Frequency of Channel(MHz)

991 1023 1 666 667 799

Extended AMPS

AMPS

869.040 870.030 889.980 893.980

890.010

Page 35: RNE Fundamental B10.pdf

Section 1 - Module - Page 353FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 35

1.3 Mobile Phone Systems Access Methods

1.3.9 TACS Total Access Communications System

Analogue cellular mobile telephone system

The UK TACS system was based on the US AMPS system

TACS - Original UK system that has either 600 or 1000 channels (558 or958 voice channels, 42 control channels)

RF frequency band: 890 - 960Uplink: 890-915 Downlink: 935-960

Channel spacing: 25 KHz

Page 36: RNE Fundamental B10.pdf

Section 1 - Module - Page 363FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 36

1.3 Mobile Phone Systems Access Methods

1.3.10 TACS - Technical objectives

Technology FDMARF frequency band 890 - 960 MHzChannel Spacing 25 kHzCarriers 1000Timeslots 1Mobile Power 0.6 - 10 WTransmission Voice , (data)HO possibleRoaming possible

Tacs disturb GSM because the same frequency- range!

Page 37: RNE Fundamental B10.pdf

Section 1 - Module - Page 373FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 37

1.3 Mobile Phone Systems Access Methods

1.3.11 Different TACS-Systems

ETACS - Extended TACS Current UK system that has 1320 channels (1278 voice, 42 control)

and has replaced TACS as the UK standard

ITACS and IETACS - International (E)TACS Minor variation of TACS to allow operation outside of the UK by allowing flexibility in

assigning the control channels

JTACS - Japanese TACS A version of TACS designed for operation in Japan

NTACS - Narrowband TACS New system that has three times as many voice channels as ETACS with no loss of

signal quality

Page 38: RNE Fundamental B10.pdf

Section 1 - Module - Page 383FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 38

1.3 Mobile Phone Systems Access Methods

1.3.12 TACS (Total Access Communications System)

1329 2047 0 23 44 323

344

600

100011

890.0125(935.0125

)

905(950

)

915(960

)

1st Assignment in the UK (600 channels)

Organisation B

Organisation A

Original concept (1000 channels)

890935

889.9875(934.9875

)

889.9625(934.9625

)

872.0125(917.0125

)

872917

Frequency of channel

[Mhz]

Number of Channel

E-TACS - 1320 Channels

Borders of channels [Mhz]

Mobile Station TX

(Base Station TX)

Page 39: RNE Fundamental B10.pdf

Section 1 - Module - Page 393FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 39

1.3 Mobile Phone Systems Access Methods

1.3.13 Why digital mobile communication ?

Easy adaptation to digital networks

Digital signaling serves for flexible adaptation to operational needs

Possibility to realize a wide spectrum of non-voice services

Digital transmission allows for high cellular implementation flexibility

Digital signal processing gain results in high interference immunity

Privacy of radio transmission ensured by digital voice coding and

encryption

Cost and performance trends of modern microelectronics are

in favour of a digital solution

Page 40: RNE Fundamental B10.pdf

Section 1 - Module - Page 403FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 40

1.3 Mobile Phone Systems Access Methods

1.3.14 GSM - Technical objectives

Technology TDMA/FDMARF frequency band 890 - 960 MHzChannel Spacing 200 kHzCarriers 124Timeslots 8Mobile Power (average/max) 2 W/ 8 WBTS Power class 10 ... 40 WMS sensitivity - 102 dBmBTS sensitivity - 104 dBmTransmission Voice, dataHO possibleRoaming possible

Page 41: RNE Fundamental B10.pdf

Section 1 - Module - Page 413FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 41

1.3 Mobile Phone Systems Access Methods

1.3.15 DECT (Digital European Cordless Telephone)

European Standard for Cordless Communication

Using TDMA-System

Traditional Applications

Domestic use ("Cordless telephone")

Cordless office applications

Combination possible with

ISDN

GSM

High flexibility for different applications

Page 42: RNE Fundamental B10.pdf

Section 1 - Module - Page 423FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 42

1.3 Mobile Phone Systems Access Methods

1.3.16 DECT - Technical objectives

Technology TDMA/FDMARF frequency band 1880 - 1900 MHzChannel Spacing 1.728 MHzCarriers 10Timeslots 12 (duplex)Mobile Power (average/max) 10 mW/250 mWBTS Power class 250 mWMS sensitivity -83 dBmBTS sensitivity -83 dBmTransmission Voice, dataHO possible

Frequency Range with 10 carriers, 1728 KHz channel spacing

10 carrier 24 timeslots

120 Duplex channels

cell radius 200-300 meter

no Equalizer

HO und Macro Diversity Optional

Page 43: RNE Fundamental B10.pdf

Section 1 - Module - Page 433FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 43

1.3 Mobile Phone Systems Access Methods

1.3.17 CDMA - Technical objectives

Spread spectrum technology(Code Division Multiple Access)

Several users occupy continuously one CDMA channel(bandwidth: 1.25 MHz) The CDMA channel can be re-used in every cell

Each user is addressed by

A specific code and

Selected by correlation processing

Orthogonal codes provides optimumisolation between users

Page 44: RNE Fundamental B10.pdf

Section 1 - Module - Page 443FL 11820 ACAA WBZZA Edition 3

Vocoder:

8Kbps oder 13 Kbps.

Multiple Forms of diversity:

Frequency diversity (Spektrum 1.25 MHz)

Spatial diversity (2 different receiving Antennas)

Path diversity (Usage of Multi-path propagation)

Time diversity (Interleaving, error correction codes….)

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 44

1.3 Mobile Phone Systems Access Methods

1.3.18 CDMA - Special Features

Vocoder allows variable data rates

Soft handover

Open and closed loop power control

Multiple forms of diversity

Data, fax and short message services possible

Page 45: RNE Fundamental B10.pdf

Section 1 - Module - Page 453FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 45

1.3 Mobile Phone Systems Access Methods

1.3.19 CDMA - Technical objectives

Technology CDMARF frequency band 869-894 / 824-849

or 1900 MHzChannel Spacing 1250 kHzChannels per 1250 kHz 64Mobile Power (average/max) 1-6.3 W / 6.3 WTransmission Voice, dataHO ("Soft handoff") possibleRoaming possible

Page 46: RNE Fundamental B10.pdf

Section 1 - Module - Page 463FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 46

1.3 Mobile Phone Systems Access Methods

1.3.20 TETRA - Features

Standard for a frequency efficient european digital trunked radio communication system (defined in 1990)

Possibility of connections with simultaneous transmission of voice and data

Encryption at two levels:

Basic level which uses the air interface encryption

End-to-end encryption (specifically intended for public safety users)

Open channel operation

"Direct Mode" possible

Communication between two MS without connecting via a BTS

MS can be used as a repeater

Page 47: RNE Fundamental B10.pdf

Section 1 - Module - Page 473FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 47

1.3 Mobile Phone Systems Access Methods

1.3.21 TETRA - Typical Users

Public safety

Police (State, Custom, Military, Traffic)

Fire brigades

Ambulance service

...

Railway, transport and distribution companies

For use in:

Police, ambulance and fire Services Security Services Military Transport Services Closed User Groups (CUGs) Factory site services

Page 48: RNE Fundamental B10.pdf

Section 1 - Module - Page 483FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 48

1.3 Mobile Phone Systems Access Methods

1.3.22 TETRA - Technical objectives

Technology TDMA/FDMARF frequency band 380 - 400 MHzChannel Spacing 25 or 12.5 KHzCarriers not yet specifiedTimeslots 4Mobile Power (3 Classes) 1, 3, 10 WBTS Power class 0.6 - 25 WMS sensitivity -103 dBmBTS sensitivity -106 dBmTransmission Voice, data, images,

short messageHO possibleRoaming possible

Page 49: RNE Fundamental B10.pdf

Section 1 - Module - Page 493FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 49

1.3 Mobile Phone Systems Access Methods

1.3.23 Universal Mobile Telecommunication System

Third generation mobile communication system

Combining existing mobile services (GSM, CDMA etc.) and fixed

telecommunications services

More capacity and bandwidth

More services (Speech, Video, Audio, Multimedia etc.)

Worldwide roaming

"High" subscriber capacity

http://www.vtt.fi/tte/nh/UMTS/

Page 50: RNE Fundamental B10.pdf

Section 1 - Module - Page 503FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 50

1 Intruduction

1.4 RNP Process Overview

Page 51: RNE Fundamental B10.pdf

Section 1 - Module - Page 513FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 51

1.4 RNP Process Overview

1.4.1 Definition of RN Requirements

The Request for Quotation (RfQ) from the customer prescribes the requirements mainly

Coverage

Definition of coverage probability

• Percentage of measurements above level threshold

Definition of covered area

Traffic

Definition of Erlang per square kilometer

Definition of number of TRX in a cell

Mixture of circuit switched and packed switched traffic

QoS

Call success rate

RxQual, voice quality, throughput rates, ping time

Page 52: RNE Fundamental B10.pdf

Section 1 - Module - Page 523FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 52

1.4 RNP Process Overview

1.4.2 Preliminary Network Design

The preliminary design lays the foundation to create the Bill of Quantity (BoQ)

List of needed network elements

Geo data procurement

Digital Elevation Model DEM/Topographic map

Clutter map

Definition of standard equipment configurations dependent on

clutter type

traffic density

Coverage Plots

Expected receiving level

Definition of roll out phases

Areas to be covered

Number of sites to be installed

Date, when the roll out takes place.

Network architecture design

Planning of BSC and MSC locations and their links

Frequency spectrum from license conditions

Page 53: RNE Fundamental B10.pdf

Section 1 - Module - Page 533FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 53

1.4 RNP Process Overview

1.4.3 Project Setup and Management

This phase includes all tasks to be performed before the on site part of the RNP process takes place.

This ramp up phase includes:

Geo data procurement if required

Setting up ‘general rules’ of the project

Define and agree on reporting scheme to be used

• Coordination of information exchange between the different teams which are involved in the project

Each department/team has to prepare its part of the project

Definition of required manpower and budget

Selection of project database (MatrixX)

Page 54: RNE Fundamental B10.pdf

Section 1 - Module - Page 543FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 54

1.4 RNP Process Overview

1.4.4 Initial Radio Network Design

Area surveys As well check of correctness of geo data

Frequency spectrum partitioning design

RNP tool calibration For the different morpho classes:

• Performing of drive measurements

• Calibration of correction factor and standard deviation by comparison of measurements to predicted received power values of the tool

Definition of search areas (SAM – Search Area Map) A team searches for site locations in the defined areas

The search team should be able to speak the national language

Selection of number of sectors/TRX per site together with project management and customer

Get ‘real’ design acceptance from customer based on coverage prediction and predefined design level thresholds

Page 55: RNE Fundamental B10.pdf

Section 1 - Module - Page 553FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 55

1.4 RNP Process Overview

1.4.5 Site Acquisition Procedure

Delivery of site candidates

Several site candidates shall be the result out of the site location search

Find alternative sites

If no site candidate or no satisfactory candidate can be found in the search area

Definition of new SAM (Search Area Map)

Possibly adaptation of radio network design

Check and correct SAR (Site Acquisition Report)

Location information

Land usage

Object (roof top, pylon, grassland) information

Site plan

Site candidate acceptance and ranking

If the reported site is accepted as candidate, then it is ranked according to its quality in terms of

• Radio transmission

-High visibility on covered area

-No obstacles in the near field of the antennas

-No interference from other systems/antennas

• Installation costs

-Installation possibilities

-Power supply

-Wind and heat

• Maintenance costs

-Accessibility

-Rental rates for object

-Durability of object

Page 56: RNE Fundamental B10.pdf

Section 1 - Module - Page 563FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 56

1.4 RNP Process Overview

1.4.6 Technical Site Survey

Agree on an equipment installation solution satisfying the needs of

RNE Radio Network Engineer

Transmission planner

Site engineer

Site owner

The Technical Site Survey Report (TSSR) defines

Antenna type, position, bearing/orientation and tilt

Mast/pole or wall mounting position of antennas

EMC rules are taken into account

• Radio network engineer and transmission planner check electro magnetic compatibility (EMC) with other installed devices

BTS/Node B location

Power and feeder cable mount

Transmission equipment installation

Final Line Of Site (LOS) confirmation for microwave link planning

• E.g. red balloon of around half a meter diameter marks target location

If the site is not acceptable or the owner disagrees with all suggested solutions

The site will be rejected

Site acquisition team has to organize a new date with the next site from the ranking list

Page 57: RNE Fundamental B10.pdf

Section 1 - Module - Page 573FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 57

1.4 RNP Process Overview

1.4.7 Basic Parameter Definition

After installation of equipment the basic parameter settings are used for

Commissioning

• Functional test of BTS and VSWR check

Call tests

RNEs define cell design data

Operations field service generates the basic software using the cell design CAE data

Cell design CAE data to be defined for all cells are for example:

CI/LAC/BSIC

Frequencies

Neighborhood/cell handover relationship

Transmit power

Cell type (macro, micro, umbrella, …)

Page 58: RNE Fundamental B10.pdf

Section 1 - Module - Page 583FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 58

1.4 RNP Process Overview

1.4.8 Cell Design CAE Data Exchange over COF

A9156 RNO

OMC 1

COF

ACIE

ACIE

POLOBSS Software offline production

3rd Party RNP or Database

A955 V5 /A9155 V6

RNP

A9155PRC Generator

Module

ConversionOMC 2

ACIE = PRC file

ACIE ASCII Configuration Import Export

PRC Provisioning Radio Configuration

SC Supervised Configuration

COF CMA Offsite

CMA Customer Management Application

CAE Customer Application Engineering

Page 59: RNE Fundamental B10.pdf

Section 1 - Module - Page 593FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 59

1.4 RNP Process Overview

1.4.9 Turn On Cycle

The network is launched step by step during the TOC

A single step takes typically two or three weeks

Not to mix up with rollout phases, which take months or even years

For each step the RNE has to define ‘TOC Parameter’

Cells to go on air

Determination of frequency plan

Cell design CAE parameter

Each step is finished with the ‘Turn On Cycle Activation’

Upload PRC/ACIE files into OMC-R

Unlock sites

Page 60: RNE Fundamental B10.pdf

Section 1 - Module - Page 603FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 60

1.4 RNP Process Overview

1.4.10 Site Verification and Drive Test

RNE performs drive measurement to compare the real coverage with the predicted coverage of the cells.

If coverage holes or areas of high interference are detected

Adjust the antenna tilt and orientation

Verification of cell design CAE data

To fulfill heavy acceptance test requirements, it is absolutely essential to perform such a drive measurement.

Basic site and area optimization reduces the probability to haveunforeseen mysterious network behavior afterwards.

Page 61: RNE Fundamental B10.pdf

Section 1 - Module - Page 613FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 61

1.4 RNP Process Overview

1.4.11 HW / SW Problem Detection

Problems can be detected due to drive tests or equipment monitoring

Defective equipment

• will trigger replacement by operation field service

Software bugs

Incorrect parameter settings

• are corrected by using the OMC or in the next TOC

Faulty antenna installation

• Wrong coverage footprints of the site will trigger antenna re-alignments

If the problem is serious

Lock BTS

Detailed error detection

Get rid of the fault

Eventually adjusting antenna tilt and orientation

Page 62: RNE Fundamental B10.pdf

Section 1 - Module - Page 623FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 62

1.4 RNP Process Overview

1.4.12 Basic Network Optimization

Network wide drive measurements It is highly recommended to perform network wide drive tests before doing

the commercial opening of the network

Key performance indicators (KPI) are determined

The results out of the drive tests are used for basic optimization of the network

Basic optimization All optimization tasks are still site related

Alignment of antenna system

Adding new sites in case of too large coverage holes

Parameter optimization• No traffic yet -> not all parameters can be optimized

Basic optimization during commercial service If only a small number of new sites are going on air the basic optimization

will be included in the site verification procedure

Page 63: RNE Fundamental B10.pdf

Section 1 - Module - Page 633FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 63

1.4 RNP Process Overview

1.4.13 Network Acceptance

Acceptance drive test

Calculation of KPI according to acceptance requirements in contract

Presentation of KPI to the customer

Comparison of key performance indicators with the acceptance targets in the contract

The customer accepts

the whole network

only parts of it step by step

Now the network is ready for commercial launch

Page 64: RNE Fundamental B10.pdf

Section 1 - Module - Page 643FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 64

1.4 RNP Process Overview

1.4.14 Further Optimization

Network is in commercial operation

Network optimization can be performed

Significant traffic allows to use OMC based statistics by using A9156 RNO and A9185 NPA

End of optimization depends on contract and mutual agreement between Alcatel and customer

Usually, Alcatel is only involved during the first optimization activities directly after opening the network commercially

Page 65: RNE Fundamental B10.pdf

Section 1 - Module - Page 653FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 65

2 Coverage Planning

Page 66: RNE Fundamental B10.pdf

Section 1 - Module - Page 663FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 66

2 Coverage Planning

2.1 Geo databases

Page 67: RNE Fundamental B10.pdf

Section 1 - Module - Page 673FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 67

2.1 Geo databases

2.1.1 Why are geographical data needed for Radio Network Planning ?

Propagation models dependon geographical data

Geographical information for site acquisition

Latitude (East/West) / Longitude (North/South)

Rectangular coordinates(e.g. UTM coordinates)

Page 68: RNE Fundamental B10.pdf

Section 1 - Module - Page 683FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 68

2.1 Geo databases

2.1.2 Maps are flat

Longitude

Latitude

x, y

Problem: Earth is 3D, the maps are 2D

Page 69: RNE Fundamental B10.pdf

Section 1 - Module - Page 693FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 69

2.1 Geo databases

2.1.3 Mapping the earth

The Earth is a very complex shape

To map the geography of the earth, a reference model (-> Geodetic Datum) is needed

The model needs to be simple so that it is easy to use

It needs to include a Coordinate system which allows the positions of objects to be uniquely identified

It needs to be readily associated with the physical world so that its use is intuitive

Page 70: RNE Fundamental B10.pdf

Section 1 - Module - Page 703FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 70

2.1 Geo databases

2.1.4 Map Projection

Geodetic Datume.g. WGS84, ED50

Ellipsoide.g. WGS84,

International 1924

GeocoordinateSysteme.g. UTM

Map Projectione.g. Transverse Mercator (UTM),

Lambert Conformal Conic

Page 71: RNE Fundamental B10.pdf

Section 1 - Module - Page 713FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 71

2.1 Geo databases

2.1.5 Geodetic Ellipsoid

Definition: A mathematical surface (an ellipse rotated around the earth's polar axis) which provides a convenient model of the size and shape of the earth. The ellipsoid is chosen to best meet the needs of a particular map datum system design.

Reference ellipsoids are usually defined by semi-major (equatorial radius) and flattening (the relationship between

equatorial and polar radii).

Page 72: RNE Fundamental B10.pdf

Section 1 - Module - Page 723FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 72

2.1 Geo databases

2.1.6 Global & Regional Ellipsoids

Global ellipsoidse.g. WGS84, GRS80

Center of ellipsoid is“Center of gravity”

Worldwide consistence ofall maps around the world

Regional ellipsoidse.g. Bessel, Clarke, Hayford, Krassovsky

Best fitting ellipsoid for a part of the world(“local optimized”)

Less local deviation

Page 73: RNE Fundamental B10.pdf

Section 1 - Module - Page 733FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 73

2.1 Geo databases

2.1.7 Geodetic Datum

A Geodetic Datum is a Reference System which includes:

A local or global Ellipsoid

One “Fixpoint”

Attention: Referencing geodetic coordinates to the wrong map datum can result in positionerrors ofhundreds of meters

Info:In most cases the shift, rotation and scale factor of a Map Datum is relative to the “satellite map datum” WGS84.

Page 74: RNE Fundamental B10.pdf

Section 1 - Module - Page 743FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 74

2.1 Geo databases

2.1.8 Different Map Projection’s

Cylindrical

e.g. UTM, Gauss-Krueger

Conical

e.g.Lambert Conformal Conic

Planar/Azimuthal

Info: In 90% of the cases we will have a cylindrical projection in 10% of the cases a conical projection

Page 75: RNE Fundamental B10.pdf

Section 1 - Module - Page 753FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 75

2.1 Geo databases

2.1.9 Geo-Coordinate System

To simplify the use of maps aCartesian Coordinates is used

To avoid negative values a

False Easting value and a

False Northing valueis added

Also a scaling factor is used to minimize the “projection error” over the whole area

X = EastingY = Northing

Page 76: RNE Fundamental B10.pdf

Section 1 - Module - Page 763FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 76

2.1 Geo databases

2.1.10 WGS 84 (World Geodetic System 1984)

Most needed Geodetic Datumin the world today (“Satellite Datum”)

It is the reference frame usedby the U.S. Department of Defenseis defined by the National Imageryand Mapping Agency (NIMA)

The Global Positioning System (GPS)system is based on the World GeodeticSystem 1984 (WGS-84).

Optimal adaption to the surface of the earth

Page 77: RNE Fundamental B10.pdf

Section 1 - Module - Page 773FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 77

2.1 Geo databases

2.1.11 Transverse Mercator Projection

Projection cylinder is rotated 90 degrees from the polar axis (“transverse”)

Geometric basisfor the UTMand theGauss-KruegerMap Projection

ConformalMap projection

Page 78: RNE Fundamental B10.pdf

Section 1 - Module - Page 783FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 78

2.1 Geo databases

2.1.12 Transverse Mercator Projection (e.g. UTM )

Middle-Meridian

Page 79: RNE Fundamental B10.pdf

Section 1 - Module - Page 793FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 79

2.1 Geo databases

2.1.13 Universal Transverse Mercator System

60 zones, each 6o (60 · 6o = 360o )

±3o around each center meridian

Beginning at 180o longitude(measured eastward fromGreenwich)

Zone number = (center meridian + 183o ) / 6o

Page 80: RNE Fundamental B10.pdf

Section 1 - Module - Page 803FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 80

2.1 Geo databases

2.1.14 UTM - Definitions

False Easting: 500 000 m(Middle-meridian x = 500 000 m)

False Northing:Northern Hemisphere: 0 m Southern Hemisphere: 10 000 000 m

Scaling Factor: 0,9996(used to minimize the“projection error” over the whole area)

Page 81: RNE Fundamental B10.pdf

Section 1 - Module - Page 813FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 81

2.1 Geo databases

2.1.15 UTM Zones (e.g. Europe)

UTM-Zones

9° 15° 21° 27° 33° 39°3°-3°-6° Middle-Meridian

Page 82: RNE Fundamental B10.pdf

Section 1 - Module - Page 823FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 82

UTM-System

False origin on the central meridian of the zone has an easting of 500,000 meters.

All eastings have a positive values for the zone

Eastings range from 100,000 to 900,000 meters

The 6 Degree zone ranges from 166,667 to 833,333 m, leaving about a 0.5° overlap at each end of the zone(valid only at the equator)

This allows for overlaps and matching between zones

2.1 Geo databases

2.1.16 UTM-System

Page 83: RNE Fundamental B10.pdf

Section 1 - Module - Page 833FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 83

2.1 Geo databases

2.1.17 UTM Zone Numbers

Page 84: RNE Fundamental B10.pdf

Section 1 - Module - Page 843FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 84

UTM-Zone: 32

Middle meridian: 9o

(9o = 500 000500 000500 000500 000 m“False Easting”)

2.1 Geo databases

2.1.18 UTM-System: Example "Stuttgart"

Transformation: latitude / longitude → UTM system

North 48o 45' 13.5''

East 9o 11' 7.5''

y = 5 400 099 m

x = 513 629 m

Page 85: RNE Fundamental B10.pdf

Section 1 - Module - Page 853FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 85

2.1 Geo databases

2.1.19 Lambert Conformal Conic Projection

Maps an ellipsoid onto a cone whose central axis coincides with the polar axis

Cone touches the ellipsoid=> One standard parallel (1SP)(e.g. NTF-System in France)

Cutting edges of cone and ellipsoid=> Two standard parallels (2SP)(e.g. Lambert-Projection in Austria)

Page 86: RNE Fundamental B10.pdf

Section 1 - Module - Page 863FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 86

2.1 Geo databases

2.1.20 Geospatial data for Network Planning

DEM (Digital Elevation Model)/ Topography

Morphostructure / Land usage / Clutter

Satellite Photos /Orthoimages

Scanned Maps

Background data(streets, borders,coastlines, etc. )

Buildings

Traffic data

Page 87: RNE Fundamental B10.pdf

Section 1 - Module - Page 873FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 87

2.1 Geo databases

2.1.21Creation of geospatial databases

Satellite imagery Digitizing maps Aerial photography

Geospatial data

Page 88: RNE Fundamental B10.pdf

Section 1 - Module - Page 883FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 88

2.1 Geo databases

2.1.22 Parameters of a Map

Coordinate system

Map Projection(incl. Geodetic Datum)

Location of the map (Area …)

Scale:

macrocell planning1:50000 - 1:100000

microcell planning1:500 -1:5000

Thematic

Source

Date of Production

Page 89: RNE Fundamental B10.pdf

Section 1 - Module - Page 893FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 89

Raster data

DEM /Topography

Morphostructure /Land usage / Clutter

Traffic density

Vector data

Background data(streets, borders, coastlines, etc. )

Buildings

2.1 Geo databases

2.1.23 Raster- and Vectordata

x

y

(x1,y1)

(xn,yn)

Page 90: RNE Fundamental B10.pdf

Section 1 - Module - Page 903FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 90

2.1 Geo databases

2.1.24 Rasterdata / Grid data

Pixel-oriented data

Stored as row and column

Each Pixel stored in one or two byte

Each Pixel contents information(e.g. morphoclass,colour of a scanned map, elevation of a DEM)

Page 91: RNE Fundamental B10.pdf

Section 1 - Module - Page 913FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 91

2.1 Geo databases

2.1.25 Vectordata

Vector mainly used are: airport, coastline, highway, main roads, secondary roads, railway, rivers/lakes

Each vector contents

Info about kind of vector(e.g. street, coastline)

A series of several pointsEach point has a corresponded x / y -value(e.g. in UTM System or as Long/Lat)

Info about Map projection and used Geodetic Datum

(x1,y1)

(xn,yn)

Page 92: RNE Fundamental B10.pdf

Section 1 - Module - Page 923FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 92

2.1 Geo databases

2.1.26 Digital Elevation Model (DEM)

Raster dataset that showsterrain features such as hillsand valleys

Each element (or pixel) inthe DEM image represents the terrain elevation at that location

Resolution in most cases: 20 m for urban areas50-100 m for other areas

DEM are typically generatedfrom topographic maps,stereo satellite images,or stereo aerial photographs

Page 93: RNE Fundamental B10.pdf

Section 1 - Module - Page 933FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 93

2.1 Geo databases

2.1.27 Morphostructure / Land usage / Clutter (1)

Land usage classificationaccording to the impact on wave propagation

In most cases:7...14 morpho classes

Resolution in most cases:20 m for cities50…100m other areasfor radio networkplanning

The clutter files describe the land cover (dense urban, buildings, residential, forest, open, villages....). Ground is

represented by a grid map where each bin is characterised by a code corresponding to a main type of cover (a clutter

class). The clutter maps are 8 bits/pixel (256 classes)-raster maps, they show an image with a colour assigned to each

clutter class (by default, grey shading).

Clutter file provides clutter code per bin. Bin size is defined by pixel size (P stated in metre). Pixel size must be the same

in both directions. Abscissa and ordinate axes are respectively oriented in right and down directions. First point given in

the file corresponds to the upper-left corner of the image. This point refers to the northwest point geo-referenced by A9155

Page 94: RNE Fundamental B10.pdf

Section 1 - Module - Page 943FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 94

2.1 Geo databases

2.1.28 Morphostructure (2)

Besides the topo database the basic input for radio network planning

Each propagation area has different obstacles like buildings, forest etc.Obstacles which have similar effects on propagation conditions are classified in morphoclasses

Each morphoclass has a corresponding value for the correction gain

The resolution of the morphodatabases should be adaptedto the propagation model

Morpho correction factor for predictions:0 dB (”skyscapers") … 30 dB (”water")

Morphodatabases (Landuse/Clutter) are a special kind of geodatabases. The morphodatabase is beside the topodatabase the basic input for radio network planning. Each morphoclass has a corresponding value of propagation loss. Together with a topographical database it is possible to predict the radio wave propagation.

Each propagation area has different obstacles like buildings, forest etc. Those obstacles, which have similar effects on propagation conditions are classified in morphoclasses.

This resolution of the morphodatabases should be adapted to the empirical propagation model for macrocellular radio network planning and the necessary planning resolution. In most cases the resolution of the rasterdatabases for morphostructure is around 50 ...100 m. With those values an optimum between calculation time and the necessary resolution of the prediction is reached in most radio network planning projects.

For microcellular radio network planning a buildingdatabase is needed with a higher resolution.

Each morphoclass is corresponding with a morpho-correction factor. The propagation loss is between 30 dB ("skyscrapers") ... and around 0 dB ("open area") The morphocorrection factors are achieved by calibration measurements

Page 95: RNE Fundamental B10.pdf

Section 1 - Module - Page 953FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 95

2.1 Geo databases

2.1.29 Morphoclasses

Code Morpho-

structure

Description

0 not classified e.g. edge of a database

1 skyscrapers /

buildings

very high buildings ( >40m), very high density of buildings,

no vegetation on ground level

e.g. cities like NewYork, Tokio etc.

2 dense urban 4 or more storeys, areas within urban perimeters, inner city,

very little vegetation, high density of buildings, most

buildings are standing close together, small pedestrian

zones and streets incl.

3 medium

urban / mean

urban

3 or 4 storeys, areas within urban perimeters, most buildings

are standing close together, less vegetation, middle density

of buildings, small pedestrian zones and streets included

4 lower urban /

suburban

2 or 3 storeys, middle density of buildings,

some vegetation, terraced houses with gardens

5 residential 1-2 storeys, low density of buildings with gardens

e.g. farmhouses, detached houses

6 industrial zone

/ industrial

factory, warehouse, garage, shipyards

Page 96: RNE Fundamental B10.pdf

Section 1 - Module - Page 963FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 96

2.1 Geo databases

2.1.30 Morphoclasses (2)

Code Morpho-

structure

Description

7 forest all kinds of forest, parks, with high tree density

8 agriculture /

rural

high vegetation, plants: 1... 3 m,

high density of plants, e.g. crop fields, fruit plantation

9 low tree

density / parks

low vegetation, low height of plants,

low density of plants, some kinds of parks, botanical

garden

10 water sea, rivers, all kind of fresh- and saltwater

11 open area no buildings, no vegetation

e.g. desert, beach, part of an airport, big streets etc.

huge parking areas, large

12 (optional)

defined by networkplanner if necessary

13 (optional)

defined by networkplanner if necessary

Page 97: RNE Fundamental B10.pdf

Section 1 - Module - Page 973FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 97

2.1 Geo databases

2.1.31Background data (streets, borders etc.)

All kinds of information data like streets, borders, coastlines etc.

Necessary for orientationin plots of calculation results

The background data arenot needed for the calculationof the fieldstrength, power etc.

These data represent either polygons (regions...), or lines (roads, coastlines...) or points (towns...).

Page 98: RNE Fundamental B10.pdf

Section 1 - Module - Page 983FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 98

2.1 Geo databases

2.1.32 Orthophoto

Georeferenced Satellite Image

Resolution: most 10 or 20 m

Satellite: e.g. SPOT, Landsat

These geographic data regroup the road maps and the satellite images ; they are only used for display and provide information about the geographic environment. A9155 supports scanned image files with TIFF (1, 4, 8, 24-bits/pixel), BIL (1, 4, 8, 24-bits/pixel), PlaNET© (1, 4, 8, 24-bits/pixel), BMP (1-24-bits/pixel) and ErdasImagine (1, 4, 8, 24-bits/pixel) formats.

Page 99: RNE Fundamental B10.pdf

Section 1 - Module - Page 993FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 99

2.1 Geo databases

2.1.33 Scanned Maps

Mainly used asbackground data

Not used for calculationbut for localisation

Has to be geocodedto put it into a GIS (Geographic Information System) e.g. a Radio Network Planning Tool

Page 100: RNE Fundamental B10.pdf

Section 1 - Module - Page 1003FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 100

2.1 Geo databases

2.1.34 Buildings

Vectordata

Outlines of

• single buildings

• building blocks

Building heights

Material code

• not: roof shape

Page 101: RNE Fundamental B10.pdf

Section 1 - Module - Page 1013FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 101

2.1 Geo databases

2.1.35 Buildings (2)

Microcell radio network planningis mainly used in urban environment

The prediction of mircowavepropagation is calculated witha ray-tracing/launching model

A lot of calculationsteps are needed

Optimum building databaserequired (data reduction) tominimize the pre-calculation time

Page 102: RNE Fundamental B10.pdf

Section 1 - Module - Page 1023FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 102

2.1 Geo databases

2.1.36 Traffic density

Advantageous in theinterference calculation,thus for frequencyassignment andin the calculationof average figures innetwork analysis

Raster database of traffic densityvalues (in Erlangs) of thewhole planning area

Resolution: 20...100 m

Page 103: RNE Fundamental B10.pdf

Section 1 - Module - Page 1033FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 103

2.1 Geo databases

2.1.37 Converting one single point (1a)

Example “Stuttgart” (Example 1)Long/Lat (WGS84) => UTM (WGS84)

Input:Longitude: 9 deg 11 min 7.5 secLatitude: 48 deg 45 min 13.5 secDatum “WGE: World Geodetic System 1984”; Projection: “Geodetic”

Exercise: Convert following example with the program “Geotrans”:

Output: Easting: 513629 mNorthing: 5400099 mDatum “WGE: World Geodetic System 1984”Projection: “Universersal Transverse Mercator (UTM)”Zone: 32 ; Hemisphere: N (North)

Preset of thisvalues necessary

Values, which willcalculated by program

Page 104: RNE Fundamental B10.pdf

Section 1 - Module - Page 1043FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 104

2.1 Geo databases

2.1.38 Converting one single point (1b)

GEOTRANS(Geographic Translator)is an application program which allows you to convert geographic coordinates easily among a wide variety of coordinate systems, map projections, and datums.

Example “Stuttgart” (Example 1)Long/Lat (WGS84) => UTM (WGS84)

Source: http://164.214.2.59/GandG/geotrans/

Page 105: RNE Fundamental B10.pdf

Section 1 - Module - Page 1053FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 105

2.1 Geo databases

2.1.39 Converting one single point (2a)

Input:Longitude: 9 deg 11 min 7.5 secLatitude: 48 deg 45 min 13.5 secDatum “WGE: World Geodetic System 1984”; Projection: “Geodetic”

Exercise: Convert following example with the program “Geotrans”:

Output: Easting: 513549 mNorthing: 5403685 mDatum “EUR-A: EUROPEAN 1950, Western Europe”Projection: “Universersal Transverse Mercator (UTM)”Zone: 32 ; Hemisphere: N (North)

Example “Stuttgart” (Example 2)Long/Lat (WGS84) => UTM (ED50) (ED50 = EUR-A = European Datum 1950)

Preset of thisvalues necessary

Values, which willcalculated by program

Page 106: RNE Fundamental B10.pdf

Section 1 - Module - Page 1063FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 106

2.1 Geo databases

2.1.40 Converting one single point (2b)

Example “Stuttgart” (Example 2)Long/Lat (WGS84) => UTM (ED50)(ED50 = EUR-A = European Datum 1950)

Attention: For flat coordinates (e.g. UTM) as well as for geographic coordinates (Long/Lat) a reference called “Geodetic Datum” is necessary.

Diff. X (Ex.2 - Ex.1): 69 mDiff. Y (Ex.2 - Ex.1): 200 mDifference because of different Geodetic Datums

Page 107: RNE Fundamental B10.pdf

Section 1 - Module - Page 1073FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 107

2.1 Geo databases

2.1.41 Converting a list of points (3a)

Example “Stuttgart” (Example 3 )Long/Lat (WGS84) => UTM (WGS84)

Input:text-file with the values (list) of the longitudeand latitude of different points(How to create the inputfile see on page 3c)

Output:Datum: “WGE: World Geodetic System 1984”Projection: “Universal Transverse Mercator (UTM)”Zone: 32

Preset of thisvalues necessary

Page 108: RNE Fundamental B10.pdf

Section 1 - Module - Page 1083FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 108

2.1 Geo databases

2.1.42 Converting a list of points (3b)

Example “Stuttgart” (Example 3 )Long/Lat (WGS84)

=> UTM (WGS84)

Page 109: RNE Fundamental B10.pdf

Section 1 - Module - Page 1093FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 109

2.1 Geo databases

2.1.43 Converting a list of points (3c)

Example “Stuttgart” (Example 3)Long/Lat (WGS84)=> UTM (WGS84)

Latitude Longitude UTM-Zone

Hemisphere

Easting (x)

Northing (y)

Optional: different error-infos,depending on the input-datadefault: “Unk”=“unknown”

Geotrans V2.2.3 Geotrans V2.2.3

deg min sec deg min sec

Page 110: RNE Fundamental B10.pdf

Section 1 - Module - Page 1103FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 110

2.1 Geo databases

2.1.44 Provider for Geospatial data

Geodatasupplier Internet

BKS www.bks.co.uk

ComputaMaps www.computamaps.com

Geoimage www.geoimage.fr

Infoterra www.infoterra-global.com

Istar www.istar.fr

RMSI www.rmsi.com

Page 111: RNE Fundamental B10.pdf

Section 1 - Module - Page 1113FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 111

2.1 Geo databases

2.1.45 Links for more detailed infos

Maps Projection Overviewhttp://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj.htmlhttp://www.ecu.edu/geog/http://www.wikipedia.org/wiki/Map_projection

Coordinate Transformation (online)http://jeeep.com/details/coord/http://www.cellspark.com/UTM.html

Map Collectionhttp://www.lib.utexas.edu/maps/index.html

Finding out Latitude/Longitude of cities etc. http://www.maporama.com

Page 112: RNE Fundamental B10.pdf

Section 1 - Module - Page 1123FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 112

2 Coverage Planning

2.2 Antennas and Cables

Page 113: RNE Fundamental B10.pdf

Section 1 - Module - Page 1133FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 113

2.2 Antennas and Cables

2.2.1.1 The Antenna System

Antennas

Power divider

Cables (jumper)

Feeder cables

Connectors

Clamps

Lightning protection

Wall glands

Planning

Rxdiv

Tx

Rx

Feedercable

Earthingkit

Wallgland

Jumper cables

Feederinstallationclamps

Plugs7/16“

Sockets7/16“

Mountingclamp

Grounding

Lightningrod Antennas

Earthing kit

Jumpercable Jumper

cable

Mechanicalantennasupportstructure

Page 114: RNE Fundamental B10.pdf

Section 1 - Module - Page 1143FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 114

2.2 Antennas and Cables

2.2.1.2 Antenna Theory

50Ω is the impedance of the cable

377Ω is the impedance of the air

Antennas adapt the different impedances

They convert guided waves, into free-space waves (Hertzian waves) and/or vice versa

Z =377ΩZ =50Ω

It happens that the coulomb field and the induction field fall off much more rapidly than the radiation field with increasing distance from the antenna. At distances greater than a few wavelengths from the antenna, in what is called the antenna's far field, the electric field is essentially pure radiation. Closer to the antenna, we have the near field, which is a mixture of the radiation, induction and coulomb fields.

The coulomb field at an instant in time around a half-wave resonant dipole A half-cycle later, the polarity, and all the arrows, will be reversed. The spacing between the field lines indicates field strength.

Page 115: RNE Fundamental B10.pdf

Section 1 - Module - Page 1153FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 115

2.2 Antennas and Cables

2.2.1.3 Antenna Data

The antenna parameters which are of interest for the radio network engineering are the following:

Antenna directivity, efficiency, gain

Polarization, near field and far field

Specification due to certain wave polarization (linear/elliptic, cross-polarization)

Half power beam width (HPBW)

Related to polarization of electrical field

Vertical and Horizontal HPBW

Antenna pattern, side lobes, null directions

Yields the spatial radiation characteristics of the antenna

Front-to-back ratio

Important for interference considerations

Voltage standing wave ratio (VSWR)

Bandwidth

In electrodynamics, polarization (also spelled polarisation) is the property of electromagnetic waves, such as light, that describes the direction of their transverse electric field. More generally, the polarization of a transverse wave describes the direction of oscillation in the plane perpendicular to the direction of travel. Longitudinal waves such as sound waves do not exhibit polarization, because for these waves the direction of oscillation is along the direction of travel.

Linear Circular Elliptical

Page 116: RNE Fundamental B10.pdf

Section 1 - Module - Page 1163FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 116

2.2 Antennas and Cables

2.2.1.4 Antenna Pattern and HPBW

0 dB

-3 dB

-10 dB

0 dB

-3 dB

-10 dB

verticalhorizontal

sidelobe

null direction

main beam

HP

BW

The antenna radiation pattern also named antenna diagram, describes the relative strength of the radiated field in various directions from the antenna, at a constant distance. The radiation pattern is a reception pattern as well, since it also describes the receiving properties of the antenna. The radiation pattern is three-dimensional, but usually as shown in Figure 4, the measured radiation patterns are a two dimensional slice of the three-dimensional pattern, in the horizontal or vertical planes.

This pattern depends on the antenna geometry and the current distribution in its elements. It is possible to compose, with a certain degree of freedom, arbitrary antenna diagrams by arranging antenna elements, e.g. dipoles, in groups, e.g. in a grid arrangement.

As shown in Figure, each antenna pattern consists of a couple of beams or lobes. One distinguishes the main beam, pointing in the direction where the maximum power is radiated, and the side lobes, which are local maxima in the antenna diagram. The side lobes must sometimes be treated with special care, as they could radiate too much power towards unplanned directions of the cell. This may lead to unexpected interference with other cells! The antenna has directions where it isn't nearly radiating. These directions are called null directions. They may cause coverage problems.

Based on the radiation pattern, the radio mobiles antennas are categorized in the following types:

Omni-directional antennas that provides a 360 degree horizontal radiation pattern. Omni antennas are typically used when continuous coverage around the site is needed and the offered traffic is low. Directionalantennas that provide a stronger radiation pattern in a specific direction by focusing the radiation energy. For instance the radiation pattern shown in Figure, belongs to a directive antenna.

The sector or panel antennas are directional antennas and they are built based on the array antennas principle. Array antennas consist of a number of dipole antennas arranged in a geometrical manner to create a directional receiving or transmission pattern.

The panel antennas are used on sectorized sites in order to focus the coverage on special area of interest.

Page 117: RNE Fundamental B10.pdf

Section 1 - Module - Page 1173FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 117

2.2 Antennas and Cables

2.2.1.5 EIRP

Pt = 45 dBm

Gain = 11dBi

Isotropic radiated Power Pt

Effective isotropicradiated power:EIRP = Pt+Gain

= 56 dBm

V1

V2 = V1

radiatedpower

Known the antenna gain and the power fed into antenna, an important link budget parameter, the Effective Isotropic Radiated (EIRP) can be calculated. The EIRP represents the total power radiated by the antenna

Effective Isotropic Radiated Power

Effective Isotropic Radiated Power (in main beam direction) in [dBm];

power fed into the antenna, [dBm];

antenna gain, [dBi];

GPEIRP in +=

EIRP

inP

G

Page 118: RNE Fundamental B10.pdf

Section 1 - Module - Page 1183FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 118

For the link between base station and mobile station, mostly linear antennas are used:

Monopole antennas

• MS antennas, car roof antennas

Dipole antennas

• Used for array antennas at base stations for increasing the directivity of RX and TX antennas

2.2 Antennas and Cables

2.2.1.6 Linear Antennas

Page 119: RNE Fundamental B10.pdf

Section 1 - Module - Page 1193FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 119

2.2 Antennas and Cables

2.2.1.7 Monopole Antenna Pattern

Influence of antenna length on the antenna pattern

Page 120: RNE Fundamental B10.pdf

Section 1 - Module - Page 1203FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 120

2.2 Antennas and Cables

2.2.1.8 Panel Antenna with Dipole Array

Many dipoles are arranged in a grid layout

Nearly arbitrary antenna patterns may be designed

Feeding of the dipoles with weighted and phase-shifted signals

Coupling of all dipole elements

Page 121: RNE Fundamental B10.pdf

Section 1 - Module - Page 1213FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 121

2.2 Antennas and Cables

2.2.1.9 Dipole Arrangement

Dipole arrangement

Typical flat panel antenna

Dipole element

Weightedandphaseshiftedsignals

Page 122: RNE Fundamental B10.pdf

Section 1 - Module - Page 1223FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 122

2.2 Antennas and Cables

2.2.1.10 Omni Antenna

Antenna with vertical HPBW for omni sites

Large area coverage

Advantages

Continuous coverage around the site

Simple antenna mounting

Ideal for homogeneous terrain

Drawbacks

No mechanical tilt possible

Clearance of antenna required

Page 123: RNE Fundamental B10.pdf

Section 1 - Module - Page 1233FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 123

2 Coverage Planning

2.2.2 Antenna Parameters

Page 124: RNE Fundamental B10.pdf

Section 1 - Module - Page 1243FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 124

2.2.2 Antennas Parameters

2.2.2.1 X 65° T6 900MHz 2.5m

Rural road coverage with mechanical uptilt

Antenna

RFS Panel Dual Polarized Antenna 872-960 MHz

APX906516-T6 Series

Electrical specification

Gain in dBi: 17.1

Polarization: +/-45°

HBW: 65°

VBW: 6.5°

Electrical downtilt: 6°

Mechanical specification

Dimensions HxWxD in mm: 2475 x 306 x 120

Weight in kg: 16.6

Horizontal Pattern

Page 125: RNE Fundamental B10.pdf

Section 1 - Module - Page 1253FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 125

2.2.2 Antennas Parameters

2.2.2.2 X 65° T6 900MHz 1.9m

Dense urban area

Antenna

RFS Panel Dual Polarized Antenna 872-960 MHz

APX906515-T6 Series

Electrical specification

Gain in dBi: 16.5

Polarization: +/-45°

HBW: 65°

VBW: 9°

Electrical downtilt: 6°

Mechanical specification

Dimensions HxWxD in mm: 1890 x 306 x 120

Weight in kg: 16.6

Vertical Pattern

Page 126: RNE Fundamental B10.pdf

Section 1 - Module - Page 1263FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 126

2.2.2 Antennas Parameters

2.2.2.3 X 90° T2 900MHz 2.5m

Rural area with mechanical uptilt

Antenna

RFS Panel Dual Polarized Antenna 872-960 MHz

APX909014-T6 Series

Electrical specification

Gain in dBi: 15.9

Polarization: +/-45°

HPBW: 90°

VBW: 7°

Electrical downtilt: 6°

Mechanical specification

Dimensions HxWxD in mm: 2475 x 306 x 120

Weight in kg: 15.5

Vertical Pattern

Page 127: RNE Fundamental B10.pdf

Section 1 - Module - Page 1273FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 127

2.2.2 Antennas Parameters

2.2.2.4 V 65° T0 900MHz 2.0m

Highway

Antenna

RFS CELLite® Panel Vertical Polarized Antenna 872-960 MHz

AP906516-T0 Series

Electrical specification

Gain in dBi: 17.5

Polarization: Vertical

HBW: 65°

VBW: 8.5°

Electrical downtilt: 0°

Mechanical specification

Dimensions HxWxD in mm: 1977 x 265 x 130

Weight in kg: 10.9

Vertical Pattern

Page 128: RNE Fundamental B10.pdf

Section 1 - Module - Page 1283FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 128

2.2.2 Antennas Parameters

2.2.2.5 V 90° T0 900MHz 2.0m

Rural Area

Antenna

RFS CELLite® Panel Vertical Polarized Antenna 872-960 MHz

AP909014-T0 Series

Electrical specification

Gain in dBi: 16.0

Polarization: Vertical

HBW: 65°

VBW: 8.5°

Electrical downtilt: 0°

Mechanical specification

Dimensions HxWxD in mm: 1977 x 265 x 130

Weight in kg: 9.5

Vertical Pattern

Page 129: RNE Fundamental B10.pdf

Section 1 - Module - Page 1293FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 129

2.2.2 Antennas Parameters

2.2.2.4 X 65° T6 1800MHz 1.3m

Dense urban area

Antenna

RFS Panel Dual Polarized Antenna 1710-1880 MHz

APX186515-T6 Series

Electrical specification

Gain in dBi: 17.5

Polarization: +/-45°

HBW: 65°

VBW: 7°

Electrical downtilt: 6°

Mechanical specification

Dimensions HxWxD in mm: 1310 x 198 x 50

Weight in kg: 5.6

Vertical Pattern

Page 130: RNE Fundamental B10.pdf

Section 1 - Module - Page 1303FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 130

2.2.2 Antennas Parameters

2.2.2.5 X 65° T2 1800MHz 1.3m

Dense urban area

Antenna

RFS Panel Dual Polarized Antenna 1710-1880 MHz

APX186515-T2 Series

Electrical specification

Gain in dBi: 17.5

Polarization: +/-45°

HBW: 65°

VBW: 7°

Electrical downtilt: 2°

Mechanical specification

Dimensions HxWxD in mm: 1310 x 198 x 50

Weight in kg: 5.6

Vertical Pattern

Page 131: RNE Fundamental B10.pdf

Section 1 - Module - Page 1313FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 131

2.2.2 Antennas Parameters

2.2.2.6 X 65° T2 1800MHz 1.9m

Highway

Antenna

RFS Panel Dual Polarized Antenna 1710-1880 MHz

APX186516-T2 Series

Electrical specification

Gain in dBi: 18.3

Polarization: +/-45°

HBW: 65°

VBW: 4.5°

Electrical downtilt: 2°

Mechanical specification

Dimensions HxWxD in mm: 1855 x 198 x 50

Weight in kg: 8.6

Vertical Pattern

Page 132: RNE Fundamental B10.pdf

Section 1 - Module - Page 1323FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 132

2.2.2 Antennas Parameters

2.2.2.7 V 65° T2 1800MHz 1.3m

Highway

Antenna

RFS CELLite® Panel Vertical Polarized Antenna 1710-1880 MHz

AP186516-T2 Series

Electrical specification

Gain in dBi: 17.0

Polarization: Vertical

HBW: 65°

VBW: 7.5°

Electrical downtilt: 2°

Mechanical specification

Dimensions HxWxD in mm: 1310 x 198 x 50

Weight in kg: 4.7

Horizontal Pattern

Page 133: RNE Fundamental B10.pdf

Section 1 - Module - Page 1333FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 133

2.2.2 Antennas Parameters

2.2.2.8 V 90° T2 1800MHz 1.9m

Highway

Antenna

RFS CELLite® Panel Vertical Polarized Antenna 1710-1880 MHz

AP189016-T2 Series

Electrical specification

Gain in dBi: 17.0

Polarization: Vertical

HBW: 90°

VBW: 5.5°

Electrical downtilt: 2°

Mechanical specification

Dimensions HxWxD in mm: 1855 x 198 x 50

Weight in kg: 6.0

Vertical Pattern

Page 134: RNE Fundamental B10.pdf

Section 1 - Module - Page 1343FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 134

2 Coverage Planning

2.2.3 Cable Parameters

Page 135: RNE Fundamental B10.pdf

Section 1 - Module - Page 1353FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 135

2.2.3 Cable Parameters

2.2.3.1 7/8" CELLFLEX® Low-Loss Coaxial Cable

Feeder Cable

7/8" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cable

LCF78-50J Standard

LCF78-50JFN Flame Retardant

• Installation temperature >-25°C

Electrical specification 900MHz

Attenuation: 3.87dB/100m

Average power in kW: 2.45

Electrical specification 1800MHz

Attenuation: 5.73dB/100m

Average power in kW: 1.79

Mechanical specification

Cable weight kg\m: 0.53

Minimum bending radius

• Single bend in mm: 120

• Repeated bends in mm: 250

Bending moment in Nm: 13.0

Recommended clamp spacing: 0.8m

Page 136: RNE Fundamental B10.pdf

Section 1 - Module - Page 1363FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 136

2.2.3 Cable Parameters

2.2.3.2 1-1/4" CELLFLEX® Coaxial Cable

Feeder Cable

1-1/4" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cable

LCF114-50J Standard

LCF114-50JFN Flame Retardant

• Installation temperature >-25°C

Electrical specification 900MHz

Attenuation: 3.06dB/100m

Average power in kW: 3.56

Electrical specification 1800MHz

Attenuation: 4.61dB/100m

Average power in kW: 2.36

Mechanical specification

Cable weight kg\m: 0.86

Minimum bending radius

• Single bend in mm: 200

• Repeated bends in mm: 380

Bending moment in Nm: 38.0

Recommended clamp spacing: 1.0m

Page 137: RNE Fundamental B10.pdf

Section 1 - Module - Page 1373FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 137

2.2.3 Cable Parameters

2.2.3.3 1-5/8" CELLFLEX® Coaxial Cable

Feeder Cable

1-5/8" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cable

LCF158-50J Standard

LCF158-50JFN Flame Retardant

• Installation temperature >-25°C

Electrical specification 900MHz

Attenuation: 2.34dB/100m

Average power in kW: 4.97

Electrical specification 1800MHz

Attenuation: 3.57dB/100m

Average power in kW: 3.26

Mechanical specification

Cable weight kg\m: 1.26

Minimum bending radius

• Single bend in mm: 200

• Repeated bends in mm: 508

Bending moment in Nm: 46.0

Recommended clamp spacing: 1.2m

Page 138: RNE Fundamental B10.pdf

Section 1 - Module - Page 1383FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 138

2.2.3 Cable Parameters

2.2.3.4 1/2" CELLFLEX® Jumper Cable

CELLFLEX® LCF12-50J Jumpers

Feeder Cable

• LCF12-50J CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cable

Connectors

• 7/16” DIN male/female

• N male/female

• Right angle

Molded version available in 1m, 2m, 3m

Mechanical specification

Minimum bending radius

• Repeated bends in mm: 125

Electrical specification 900MHz

Attenuation: 0.068db/m

Total losses with connectors are 0.108dB, 0.176dB and 0.244dB

Electrical specification 1800MHz

Attenuation: 0.099dB/m

Total losses with connectors are 0.139dB, 0.238dB and 0.337dB

Page 139: RNE Fundamental B10.pdf

Section 1 - Module - Page 1393FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 139

2 Coverage Planning

2.3 Radio Propagation

Page 140: RNE Fundamental B10.pdf

Section 1 - Module - Page 1403FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 140

2.3 Radio Propagation

2.3.1 Propagation effects

Free space loss

Fresnel ellipsoid

Reflection, Refraction, Scattering

in the atmosphere

at a boundary to another material

Diffraction

at small obstacles

over round earth

Attenuation

Rain attenuation

Gas absorption

Fading

Page 141: RNE Fundamental B10.pdf

Section 1 - Module - Page 1413FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 141

ϕ

P0

∆h

2.3.1 Propagation effects

2.3.1.1 Reflection

Pr = Rh/v ⋅ P0

Rh/v = f(ϕ, ε, σ, ∆h)horizontal reflection factor

vertical reflection factor

angle of incidence

permittivity

conductivity

surface roughness

Rh

Rv

ϕεσ∆h

Pr

Page 142: RNE Fundamental B10.pdf

Section 1 - Module - Page 1423FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 142

2.3.1 Propagation effects

2.3.1.2 Refraction

k = 4/3

k = 1 k = 2/3

k =

true earth

Ray paths with different k over true

Considered via an effective earth radius factor k

Radio path plotted as a straight line by changing the earth's radius

k = 4/3k = 1

k = 2/3

k =

radio path

earth

Page 143: RNE Fundamental B10.pdf

Section 1 - Module - Page 1433FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 143

2.3.1 Propagation effects

2.3.1.3 Diffraction

Occurs at objects which sizes are in the order of the wavelength λ Radio waves are ‘bent’ or ‘curved’ around objects

Bending angle increases if object thickness is smaller compared to λ Influence of the object causes an attenuation: diffraction loss

diffracted radio shadow

zone

obstacle

radio

Page 144: RNE Fundamental B10.pdf

Section 1 - Module - Page 1443FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 144

2.3.1 Propagation effects

2.3.1.4 Fading

Caused by delay spread of original signal

Multi path propagation

Time-dependent variations in heterogeneity of environment

Movement of receiver

Short-term fading, fast fading

This fading is characterised by phase summation and cancellation of signal components, which travel on multiple paths. The variation is in the order of the considered wavelength.

Their statistical behaviour is described by the Rayleigh distribution (for non-LOS signals) and the Rice distribution (for LOS signals), respectively.

In GSM, it is already considered by the sensitivity values, which take the error correction capability into account.

Page 145: RNE Fundamental B10.pdf

Section 1 - Module - Page 1453FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 145

2.3.1 Propagation effects

2.3.1.5 Fading types

Mid-term fading, lognormal fading

Mid-term field strength variations caused by objects in the size of 10...100m (cars, trees, buildings). These variations are lognormal distributed.

Long-term fading, slow fading

Long-term variations caused by large objects like large buildings, forests, hills, earth curvature (> 100m). Like the mid-term field strength variations, these variations are lognormal distributed.

Page 146: RNE Fundamental B10.pdf

Section 1 - Module - Page 1463FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 146

2.3.1 Propagation effects

2.3.1.6 Signal Variation due to Fading

-70

-60

-50

-40

-30

-20

-10

0

0.1

2.8

5.4

8.0

10.6

13.2

15.9

18.5

21.1

23.7

26.3

29.0

31.6

34.2

36.8

39.4

42.1

44.7

47.3

49.9

Distance [m]

Rec

eive

d P

ower

[dB

m]

Lognormal fading

Raleygh fading

Fading hole

Raylaight/Rician Fading: Fast Fading.

Rayleight : Statistical behaviour of Fast Fading signals for NON LOS-Signals.

Lognormal Fading

Page 147: RNE Fundamental B10.pdf

Section 1 - Module - Page 1473FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 147

2.3.1 Propagation effects

2.3.1.7 Lognormal Fading

Lognormal fading (typical 20 dB loss by entering a village)

Fading hole

Lognormal fading (entering a tunnel)

Page 148: RNE Fundamental B10.pdf

Section 1 - Module - Page 1483FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 148

2 Coverage Planning

2.4 Path Loss Prediction

Page 149: RNE Fundamental B10.pdf

Section 1 - Module - Page 1493FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 149

2.4 Path Loss Prediction

2.4.1 Free Space Loss

The simplest form of wave propagation is the free-space propagation

The according path loss can be calculated with the following formula

Path Loss in Free Space Propagation

L free space loss

d distance between transmitter and receiver antenna

f operating frequency

Ld

km

f

MHzfreespace = + ⋅ + ⋅324 20 20. log log

Page 150: RNE Fundamental B10.pdf

Section 1 - Module - Page 1503FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 150

2.4 Path Loss Prediction

2.4.2 Fresnel Ellipsoid

The free space loss formula can only be applied if the direct line-of-sight (LOS) between transmitter and receiver is not obstructed

This is the case, if a specific region around the LOS is cleared from any obstacles

The region is called Fresnel ellipsoid

Transmitter

Receiver

LOS

Page 151: RNE Fundamental B10.pdf

Section 1 - Module - Page 1513FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 151

2.4 Path Loss Prediction

2.4.3 Fresnel Ellipsoid

21

21

dd

ddr

+⋅⋅= λ

The Fresnel ellipsoid is the set of all points around the LOS where the total length of the connecting lines to the transmitter and the receiver is longer than the LOS length by exactly half a wavelength

It can be shown that this region is carrying the main power flow from transmitter to receiver

Transmitter Receiver

LOS

LOS + λ/2

Fresnel zone

Page 152: RNE Fundamental B10.pdf

Section 1 - Module - Page 1523FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 152

2.4 Path Loss Prediction

2.4.4 Knife Edge Diffraction

1st Fresnel zone

r

BTS

MS

d1 d2

h0

line of sight

path of diffracted wave

d1 d2

h0

replaced obstacle (knife edge)

h0 = height of obstacle over line of sight

d1, d2 = distance of obstacle from BTS and MS

• Knife edge diffraction

In case of an obstruction of the LOS path, the free-space formula with an additional correction term can be used if the obstacle is small compared to the distance from transmitter to receiver. Based on the assumption that this obstacle can be replaced by an ideal conducting half-plane which extends to infinity in the direction perpendicular to the propagation path and which is of infinitesimal thickness („knife-edge“), this situation refers to a field theory problem which can be solved in a deterministic way.

In the case that this knife-edge obstacle type enters the Fresnel region, diffraction occurs (similar to the diffraction known from optics) and introduces some additional diffraction loss compared to the free-space propagation.

The diffraction loss can be described by

with h0 the height of the obstacle above the LOS. v is a parameter which represents the number of „cleared“ Fresnel ellipsoids. The function F(v) is shown in . One can see that the diffraction loss is 6dB if the obstacle is just touching the LOS.

λ2

where)(21

210

0 ⋅⋅+⋅−=−==dd

ddh

r

hvvFLdiff

Page 153: RNE Fundamental B10.pdf

Section 1 - Module - Page 1533FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 153

2.4 Path Loss Prediction

2.4.5 Knife Edge Diffraction Function

Knife-edge diffraction function

-5

0

5

10

15

20

25

30

35

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

Clearance of Fresnel ellipsoid (v)

F(v

) [d

B]

Additional diffraction loss F(v)v: clearance parameter, v=-h0/rNote: h0 = 0 ⇒ v =0 ⇒ L = 6 dB

V=0:1=0

The function F(v) is shown on the top . One can see that the diffraction loss is 6dB if the obstacle is just touching the LOS. For v>1, some oscillation is noted, which appears due to the fact that the obstacle moves over several Fresnel regions where the phase of the transmitted signal is alternating between +180° and -180° phase shift.

In reality, the conductivity of the obstacle´s material is not ideal, and the oscillations appears „smoothed“ to an average value.

h0

r

d1 d2

LOS

h0

LOS

Page 154: RNE Fundamental B10.pdf

Section 1 - Module - Page 1543FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 154

2.4 Path Loss Prediction

2.4.6 "Final Solution" for Wave Propagation Calculations?

Exact field solution requires too much computer resources! Too much details required for input Exact calculation too time-consuming Field strength prediction rather than calculation

Requirements for field strength prediction models

Reasonable amount of input data

Fast (it is very important to see the impact of changes in the network layout immediately)

Accurate (results influence the hardware cost directly)

Tradeoff required (accurate results within a suitable time)

Parameter tuning according to real measurements should be possible

Page 155: RNE Fundamental B10.pdf

Section 1 - Module - Page 1553FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 155

2.4 Path Loss Prediction

2.4.7 CCIR Recommendation

The CCIR Recommendations provide various propagation curves Based on Okumura (1968) Example (CCIR Report 567-3):

Median field strength in urban areaFrequency = 900 MHzhMS = 1.5 mDashed line: free space

How to use this experience in field strength prediction models?

Model which fits the curves in certain ranges → Hata's model

was modified later by the European Cooperation in Science and Technology (COST): COST 231 Hata/Okumura

Page 156: RNE Fundamental B10.pdf

Section 1 - Module - Page 1563FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 156

2.4 Path Loss Prediction

2.4.8 Mobile Radio Propagation

Free-space propagation (Fresnel zone not obstructed) → L ~ d2

Fresnel zone heavily obstructed near the mobile station → L ~ d3.7

d

Page 157: RNE Fundamental B10.pdf

Section 1 - Module - Page 1573FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 157

2.4 Path Loss Prediction

2.4.9 Terrain Modeling

Topography

Effective antenna height

Knife edge diffraction

• single obstacles

• multiple obstacles

Surface shape/Morpho-structure

Correction factors for Hata-Okumura formula

Page 158: RNE Fundamental B10.pdf

Section 1 - Module - Page 1583FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 158

2.4 Path Loss Prediction

2.4.10 Effect of Morphostructure on Propagation Loss

Open area Open areaUrban area

Distance

Field

stre

ngth

urban area

open area

Page 159: RNE Fundamental B10.pdf

Section 1 - Module - Page 1593FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 159

Path loss (Lu) is calculated (in dB) as follows:

Lu= A1 + A2 log(f) + A3 log(hBTS) + (B1 + B2log(hBTS)) log d

The parameters A1, A2, A3, B1 and B2 can be user-defined. Default values are proposed in the table below:

2.4 Path Loss Prediction

2.4.11 Okumura-Hata for GSM 900

-6.55-6.55B2

44.9044.90B1

-13.82-13.82A3

33.9026.16A2

46.3069.55A1

Cost-Hata

F>1500 MHz

Okumura-Hata

f< 1500 MHz

Parameters

Hata formula empirically describes the path loss as a function of frequency, receiver-transmitter distance and antenna heights for an urban environment. This formula is valid for flat, urban environments and 1.5 metre mobile antenna height.

Page 160: RNE Fundamental B10.pdf

Section 1 - Module - Page 1603FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 160

2.4 Path Loss Prediction

2.4.12 CORRECTIONS TO THE HATA FORMULA

As described above, the Hata formula is valid for urban environment and a receiver antenna height of 1.5m. For other environments and mobile antenna heights, corrective formulas must be applied.

Lmodel1=Lu-a(hMS) for large city and urban environments

Lmodel1=Lu-a(hMS) -2log² (f/28) -5.4 for suburban area

Lmodel1=Lu -a(hMS) - 4.78log² (f)+ 18.33 log(f) – 40.94 for rural area

a(hMS) is a correction factor to take into account a receiver antenna height different from 1.5m.

3.2log² (11.75hMS) – 4.97Large city

(1.1log(f) – 0.7)hMS – (1.56log(f) -0.8)Rural/Small city

A(hMS)Environments

Note: When receiver antenna height equals 1.5m, a(hMS) is close to 0 dB regardless of frequency.

Page 161: RNE Fundamental B10.pdf

Section 1 - Module - Page 1613FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 161

2.4 Path Loss Prediction

2.4.13 Hata-Okumura for GSM 900

Formula valid for frequency range: 150…1000 MHz

Lmorpho [dB] Morpho/surface shape-Correction factor 0 dB: ‘Skyscrapers’->27 dB: ‘open area’

f [MHz] Frequency (150 - 1000 MHz)hBTS [m] Height of BTS (30 - 200 m)hMS [m] Height of Mobile (1 - 10m)d [km] Distance between BTS and MS (1 - 20 km)

Power law exponent shown colored

LossHata = 69.55 + 26.16 log (f) - 13.82 log (hBTS)- a(hMS) +(44.9 - 6.55 log (hBTS)) log (d) - Lmorpho

a (hMS) = (1.1 log (f) - 0.7) hMS - (1.56 log (f) - 0.8)

2.4 Path Loss Prediction 2.4 Path Loss Prediction

Page 162: RNE Fundamental B10.pdf

Section 1 - Module - Page 1623FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 162

2.4 Path Loss Prediction

2.4.14 COST 231 Hata-Okumura GSM 1800

Formula is valid for frequency range: 1500...2000 MHz

Hata’s model is extended for GSM 1800

Modification of original formula to the new frequency range

For cells with small ranges the COST 231 Walfish-Ikegami model is more precisely

LossHata = 46.3 + 33.9 log (f) - 13.82 log (hBTS) - a(hMS) +(44.9 - 6.55 log (hBTS)) log (d) - Lmorpho

a (hMS) = (1.1 log (f) - 0.7) hMS - (1.56 log (f) -0.8)

Page 163: RNE Fundamental B10.pdf

Section 1 - Module - Page 1633FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 163

With: K1: constant offset (dB). K2: multiplying factor for log(d). d: distance between the receiver and the transmitter (m). K3: multiplying factor for log(HTxeff). HTxeff: effective height of the transmitter antenna (m). K4: multiplying factor for diffraction calculation. K4 has to be a positive number. Diffraction loss: loss due to diffraction over an obstructed path (dB). K5: multiplying factor for log(HTxeff)log(d). K6: multiplying factor for . : effective mobile antenna height (m). Kclutter: multiplying factor for f(clutter). f(clutter): average of weighted losses due to clutter.

( ) ( ) ( ) ( ) ( ) ( )clutterfKHKHdKlossnDiffractioKHKdKKL clutterRxeffTxeffTxeffel ++×+×+++= 654321mod loglog loglog

2.4 Path Loss Prediction

2.4.15 Alcatel Propagation Model (Standard Propagation Model)

Page 164: RNE Fundamental B10.pdf

Section 1 - Module - Page 1643FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 164

2.4 Path Loss Prediction

2.4.16 Alcatel Propagation Model

Using of effective antenna height in the Hata-Okumura formula:

ΤhRx eff = f(α, d, hBTS, hMS)

Page 165: RNE Fundamental B10.pdf

Section 1 - Module - Page 1653FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 165

2.4 Path Loss Prediction

2.4.17 Exercise ‘Path Loss’

Scenario

Height BTS = 40m

Height MS = 1.5m

D (BTS to MS) = 2000m

1. Calculate free space loss for

A.) f=900MHz

B.) f=1800MHz

2. Calculate the path loss for f = 900MHz

A.) Morpho class ‘skyscraper’

B.) Morpho class ‘open area’

3. Calculate the path loss for f = 1800MHz

A.) Morpho class ‘skyscraper’

B.) Morpho class ‘open area’

Morpho correction factors:

-Skyscraper: 0dB;

-Open area: 27dB

1. Calculate free space loss for

A.) f=900MHz: 97.6dB

B.) f=1800MHz: 103.6dB

2. Calculate the path loss for f = 900MHz

A.) Morpho class ‘skyscraper’: 135dB

B.) Morpho class ‘open area’: 108dB

3. Calculate the path loss for f = 1800MHz

A.) Morpho class ‘skyscraper’: 144.8dB

B.) Morpho class ‘open area’: 117.8dB

Page 166: RNE Fundamental B10.pdf

Section 1 - Module - Page 1663FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 166

2 Coverage Planning

2.5 Link Budget Calculation

Page 167: RNE Fundamental B10.pdf

Section 1 - Module - Page 1673FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 167

2.5 Link Budget Calculation

2.5.1 Maximum Propagation Loss (Downlink)

Feeder Cable LossLcable = 3 dB

BTS Antenna GainGantBS = 16.5 dBi

Effective Isotropic Radiated PowerEIRPBTS = 59.5 dBm

MS Antenna GainGantMS = 2 dBi

Internal LossesLint = 2 dB

ALCATEL EvoliumTM

Propagation LossLprop Minimum Received Power

PRX,min,MS = -102 dBm

Maximum allowed downlink propagation loss: LMAPL = EIRPBTS - PRX,min,MS = 161.5 dB

MS RXSensitivity-102 dBm

Output Power at antenna connector 46.0 dBm

Exercice:Calculate the MAPL for this Example:

MAPL=

Add. Losses:

Anx = 1.8 dB

Anc = 5.1 dB

ANy = 3.5 dB

----------

Give the result for different using :

1. With Combiner

2. Without combiner

Pathloss without ANy = 153.6 dB

Page 168: RNE Fundamental B10.pdf

Section 1 - Module - Page 1683FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 168

Max. allowed uplink propagation loss: Lprop,max = EIRPMS - PRX,min,BTS = 157.5 dB

With antenna diversity gain of 3dB: Lprop,max,AD = EIRPMS - PRX,min,BTS + GAD = 160.5 dB

With TMA compensating cable loss: Lprop,max,AD,TMA = EIRPMS - PRX,min,BTS + GAD + GTMA = 163.5 dB

2.5 Link Budget Calculation

2.5.2 Maximum Propagation Loss (Uplink)

Feeder Cable LossLcable = 3 dB

BTS Antenna GainGantBS = 16.5 dBi

Minimum Received PowerPRX,min,BTS = -124.5 dBm

MS Antenna GainGantMS = 2 dBi

Internal LossesLint = 2 dB

ALCATEL EvoliumTM

Propagation LossLprop

EIRPMS = 33 dBm

MS TX Power33 dBm

Receiving sensitivity at ant. conn. -111 dBm

AD = Antenna Diversity ~3dB Gain

TMA = Tower Mounted Amplifier ~3-4 dB Gain

Exercice:

Calculate the MAPL for these Examples:

MAPL(AD)=

MAPL(AD+TMA) =

Page 169: RNE Fundamental B10.pdf

Section 1 - Module - Page 1693FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 169

2.5 Link Budget Calculation

2.5.3 GSM900/1800 Link Budget

MAPLDL = EIRPDL - PISO_DL - MMAPLUL = EIRPUL - PISO_UL – MMaximum Allowable Path Loss

M = LSFM + LIF + LBODY + LPENM = LSFM + LIF + LBODY + LPENTotal Margins

LPENLPENPenetration Margin (indoor/in-car)

LBODYLBODYBody Loss

LIFLIFInterference Margin

LSFMLSFMSlow Fading Margin

Margins

EIRPDL = PTX_BTS - LEXT - LFEEDER - LJC - LTMA + GANT - LSLANTEIRPUL = PTX_MSEIRP

LSLANTSlant Polarization Loss

GANTAntenna Gain

LTMATMA Insertion Loss

LJCJumpers and Connectors Losses

LFEEDERFeeder Loss

LEXTExternal Device Losses

PTX_BTSPTX_MSTX Output Power

TX Parameters

PISO_DL = PRX_MSPISO_UL = PRX_BTS - GAD + LEXT +LFEEDER+LJC - GTMA- GANTIsotropic Power

GANTAntenna Gain

GTMATMA Contribution

LJCJumpers and Connectors Losses

LFEEDERFeeder Loss

LEXTExternal Device Losses

GADAntenna Diversity Gain

PRX_MSPRX_BTSRX Sensitivity

RX Parameters

DownlinkUplink

The GSM link budget components are described as follows:

UL/DL: measured in dBm, represent the BTS and the MS output power.

UL/DL: measured in dBm, express the BTS and MS receiver sensitivity.

DL only: the BTS antenna gain, measured in dBi. The MS antenna gain is normally assumed to be 0dBi.

UL only: the gain measured in dB that is caused by the diversity reception of the radio signal in uplink. Information concerning the antenna diversity gain

used for link budget calculation is given in;

UL only: the Tower Mounted Amplifier’s contribution in UL. It is expressed in dB.

DL only: the loss caused in DL path due to internal TMA filters and duplexers. It is a TMA catalog parameter and it is expressed in dB.

UL/DL: the loss due to the usage of external components such external diplexers, splitters, etc. It is measured in dB, and can be deduced from

respective data sheets.

UL/DL: the loss due to feeder cable, measured in dB.

UL/DL: the loss due to the usage of jumpers and connectors, measured in dB.

TX Output Power

RX Sensitivity

Antenna Gain

Antenna Diversity Gain

TMA Contribution

TMA Insertion Loss

External Device Loss

Feeder Loss

Jumper and Connector Loss

See also next page

Page 170: RNE Fundamental B10.pdf

Section 1 - Module - Page 1703FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 170

DL only: the polarization mismatch loss and represents a signal loss due to different polarization at the transmitting and receiving end, e.g. the usage of BTS cross polarized antenna at ± 45°. It is not applicable for MS.

As a rule of thumb, 0 dB is considered for slant polarization loss in case of cross-polar antenna usage within the urban and sub-urban areas. Contrary, 1.5 to 3 dB is recommended in case of rural and open areas. For deeper aspects please.

UL/DL: the Effective Isotropic Radiated Power, measured in dBm.

UL/DL: the minimum power, measured in dB, required to maintain a certain level of service, at the receiver antenna. The calculation method inside the link budget is described in page 169

UL/DL: Maximum allowable path loss. The weaker value is considered within the network design process. Explanation on computation is shown in page 169

UL/DL: called also log-normal margin, measured in dB, added to the path loss calculation in order to increase the coverage probability at the cell border to a certain value.

UL/DL: a margin measured in dB, added to the link budget in order to compensate the signal degradation due to interference. A value of 3 dB is typical considered. More information on interference margin can be found in GSM rec. 03.30.

UL/DL: a margin measured in dB, included to reflect the loss especially experienced if handheld mobiles are used. It is occurring due to partial field absorption in the human body. Typical values are 3 dB and 4 dB. Further details are specified in GSM rec. 03.30.

UL/DL: the penetration margin is measured in dB and is given on the service class basis. Consequently, the penetration margin can be an in-caror an indoor margin:

In-car margin measured in dB, added due to MS usage in a car. Typically a loss of 6 to 8 dB is assumed.

Indoor margin measured in dB, added due to MS usage in indoor environment at ground floor level. Usually, indoor is referred to the first wall and no statement is given for deep indoor coverage. Its range varies from 10 to 18 dB.

Deep indoor margin measured in dB, included due to MS usage deep inside the buildings. Its range varies from 13 to 28 dB.

Slant Polarization Loss

EIRP

Isotropic Power

MAPL

Slow Fading Margin

Interference Margin

Body Loss Margin

Penetration Margin

Page 171: RNE Fundamental B10.pdf

Section 1 - Module - Page 1713FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 171

2.5 Link Budget Calculation

2.5.3 GSM900/1800 Link Budget

dB133,0dB133,0Max. Pathloss

dBm-87,0dBm-104,0Isotr. Rec. Power:

dB0,0Antenna Pre-Ampl.

dB0,0dB0,0Degradation (no FH)

90,9%

dB8,0dB8,0Lognormal Margin 50%→dB3,0dB3,0Interferer Margin

dB3,0Diversity Gain

dBi2,0dBi11,0Antenna Gain

dB2,0dB3,0Cables, Connectors Loss

dB4,0Body/Indoor Loss

dBm-102,0dBm-104,0Rec. Sensitivity

DownlinkUplinkRX

dBm46,0dBm29,0EIRP

dBi11,0dBi2,0Antenna Gain

dB4,0Body/Indoor Loss

dB3,0dB2,0Cable,Connectors Loss

dBm38,0dBm33,0Output Power

dB3,0dB0,0Comb+Filter Loss, Tol.

dBm41,0dBm33,0Internal Power

DownlinkUplinkTX

BS to MSMS to BS

GSM900 Link Budget(Example)

Page 172: RNE Fundamental B10.pdf

Section 1 - Module - Page 1723FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 172

2.5 Link Budget Calculation

2.5.4 GSM1800 Link Budget

TX Uplink Downlink

Internal Power 33 dBm 45.4 dBm

Comb+Filter Loss - 0 dBm - 5.3 dBm

Output Power 33 dBm 40.1 dBm

Cable+Conn Loss - 2 dB - 3 dBm

Body/Indoor Loss - 4 dB

Antenna Gain + 2 dBi + 11 dBiEIRP 29.0 dBm 48.1 dBm

RX Uplink Downlink

Rec. Sensitivity - 109 dBm - 102 dBmBody/Indoor Loss + 4 dB

Cables, Con. Loss + 3 dB + 2 dB

Antenna Gain - 11 dBi - 2 dBi

Diversity Gain - 3 dBi

Interferer Margin + 3 dB + 3 dBLognormal Margin + 8 dB + 8 dB

Isotr. Rec. Power - 109 dB - 87 dBm

Max. Pathloss 138 dB 135.1 dB

Page 173: RNE Fundamental B10.pdf

Section 1 - Module - Page 1733FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 173

2.5 Link Budget Calculation

2.5.5 Additional Losses Overview

Loss type Reason Value

Indoor loss Electrical properties of wall material 20dB (3...30dB)

Incar loss Brass influencing radio waves 7dB (4...10dB)

Body loss Absorption of radio waves by thehuman body

3dB (0...8dB)

Interferer margin Both signal-to-noise ratio and C/I low 3 dB

Lognormal margin Receiving the minimum field strengthwith a higher probability

According toprobability

Page 174: RNE Fundamental B10.pdf

Section 1 - Module - Page 1743FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 174

2 Coverage Planning

2.6 Coverage Probability

Page 175: RNE Fundamental B10.pdf

Section 1 - Module - Page 1753FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 175

2.6 Coverage Probability

2.6.1 Indoor propagation aspects

Penetration Loss

Multiple Refraction

Multiple Reflection

Exact modeling of

indoor environment

not possible

Practical solution:empirical model!

Page 176: RNE Fundamental B10.pdf

Section 1 - Module - Page 1763FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 176

2.6 Coverage Probability

2.6.2 Indoor propagation: empirical model

d

Additional Loss in [dB] relative to loss at vertical incidence

Power relative to power at d=0

ϕ

d

0

5

10

15

20

25

30

35

0 6

12

18

24

30

36

42

48

54

60

66

72

78

84

90

Angle of incidence in degree

Additional attenuation in dB

Page 177: RNE Fundamental B10.pdf

Section 1 - Module - Page 1773FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 177

2.6 Coverage Probability

2.6.3 Indoor Penetration

Incident wave

Incident wave

Lindoor = 3 ... 15 dB

Lindoor = 13 ... 25 dBLindoor = ∞ dB (deep basement)

Lindoor = 17 ... 28 dB

-2.7 dB / floor(1st ... 10th floor)

-0.3 dB / floor(11th ... 100th floor)

Lindoor = 7 ... 18 dB(ground floor)

Depending on environment

Line-of-sight to antenna?

Interior unknown

general assumptions

Page 178: RNE Fundamental B10.pdf

Section 1 - Module - Page 1783FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 178

2.6 Coverage Probability

2.6.4 Body Loss (1)

Measured attenuation versus

time for a test person walking

around in ananechoic chamber

Page 179: RNE Fundamental B10.pdf

Section 1 - Module - Page 1793FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 179

2.6 Coverage Probability

2.6.5 Body Loss (2)

Head modeled as sphere

Calculation model

Near field of MS antenna•without head•with head

Page 180: RNE Fundamental B10.pdf

Section 1 - Module - Page 1803FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 180

2.6 Coverage Probability

2.6.6 Body Loss (3)

Indirect measured field strength penetrated into the

head (horizontal cut)

Test equipment for indirectfield strength measurements

Page 181: RNE Fundamental B10.pdf

Section 1 - Module - Page 1813FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 181

2.6 Coverage Probability

2.6.7 Interference Margin

In GSM, the defined minimum carrier-to-interferer ration (C/I) threshold of 9 dB is only valid if the received server signal is not too weak.

In the case that e.g. the defined system threshold for the BTS of -111dBm is approached, a higher value of C/I is required in order to maintain the speech quality.

According to GSM, this is done by taking into account a correction of 3 dB.

Page 182: RNE Fundamental B10.pdf

Section 1 - Module - Page 1823FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 182

2.6 Coverage Probability

2.6.8 Degradation (no FH)

GSM uses a frame correction system, which works with checksum coding and convolutional codes.

Under defined conditions, this frame correction works successfully and copes even with fast fading types as Rayleigh or Rician fading.

For lower mobile speed or stationary use, the fading has a bigger influence on the bit error rate and hence the speech quality is reduced.

In such a case, a degradation margin must be applied. The margindepends on the mobile speed and the usage of slow frequency hopping, which can improve the situation for slow mobiles again.

Page 183: RNE Fundamental B10.pdf

Section 1 - Module - Page 1833FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 183

2.6 Coverage Probability

2.6.9 Diversity Gain

This designates the optional usage of a second receiver antenna.

The second antenna is placed in a way, which provides some decorrelation of the received signals.

In a suitable combiner, the signals are processed in order to achieve a sum signal with a smaller fading variation range.

Depending on the receiver type, the signal correlation, and the antenna orientation, a diversity gain from 2…6 dB is possible.

Page 184: RNE Fundamental B10.pdf

Section 1 - Module - Page 1843FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 184

2.6 Coverage Probability

2.6.10 Lognormal margin

Lognormal margin is also called fading margin

Due to fading effects, the minimum isotropic power is only received with a certain probability

Signal statistics, lognormal distribution with median power value Fmed and standard deviation σ (sigma)

Without any margin, the probability is 50%, which is not a sufficient value in order to provide a good call success rate.

A typical design goal should be a coverage probability of 90...95%. The following normalised table can be applied to find fading margins for different values of σ. The fading margin is calculated by multiplying the value of k (in the table) with the standard deviation:

Lognormal/Fading Margin = kσσσσ.

k -∞ -0.5 0 1 1.3 1.65 2 2.33 +∞

Coverage

Probability

0% 30% 50% 84% 90% 95% 97.7

%

99% 100

%

k -∞ -0.5 0 1 1.3 1.65 2 2.33 +∞

Coverage

Probability

0% 30% 50% 84% 90% 95% 97.7

%

99% 100

%

kk -∞-∞ -0.5-0.5 00 11 1.31.3 1.651.65 22 2.332.33 +∞+∞

Coverage

Probability

Coverage

Probability

0%0% 30%30% 50%50% 84%84% 90%90% 95%95% 97.7

%

97.7

%

99%99% 100

%

100

%

Page 185: RNE Fundamental B10.pdf

Section 1 - Module - Page 1853FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 185

2.6 Coverage Probability

2.6.11 Consideration of Signal Statistics (1)

100 m10

0 m

BS

x

Field strength at location xlognormally distributedarround Fmedian

Page 186: RNE Fundamental B10.pdf

Section 1 - Module - Page 1863FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 186

2.6 Coverage Probability

2.6.12 Consideration of Signal Statistics (2)

0

0,05

0,1

0,15

0,2

0,25

0,3

received signal level F [dBm]

PDF

Local coverage probability: Pcov = P [ F > Fthreshold ]

σ

FmedianFthreshold

Area representing thecoverage probability

probability density function (pdf)

Folie large Scale (slow) Fading:

The lognormal distribution, described by a mean fieldstrength Fmed and a standard deviation s, is shown in the diagram. A coverage probability Pcov can be calculated, which defines the chance that a certain fieldstrengththreshold Fthr is reached or exceeded by the calculated (or predicted) mean fieldstrength level Fmed.

The variation of the probability in dependence on Fmed is shown in the diagram. The required difference between Fmed and Fthr in order to achieve a required probability is called the fading margin.

Without any margin, the probability is 50% (Fmedian), which is not a sufficient value in order to provide a good call success rate. A typical design goal should be a coverage probability of 90...95%. This can be reached by applying a factor s (Fthreshold). (Additional System margin). -> Next Chapter

Page 187: RNE Fundamental B10.pdf

Section 1 - Module - Page 1873FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 187

2 Coverage Planning

2.7 Cell Range Calculation

Page 188: RNE Fundamental B10.pdf

Section 1 - Module - Page 1883FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 188

For what Radius R is the average coverage probability in the cell area 95% ?

2.7 Cell Range Calculation

2.7.1 Calculation of Coverage Radius R

r = distance between BTS and MS

Frec = received power

σ = Standard deviation

F rec, thr

F rec

Frec,med (r)

0 r

σ

R

R

<Pcov(R)> = = 0.95∫20

π

πR²

Pcov (r) dr !

Frec,med (r) = EIRP - LossHata (r)

Loss Hata = f(hBS, hMS, f, r) + Kmor

Pcov(r)= P(Frec (r) > Frec,thr)

R = f (hBS, hMS, f, Kmor, EIRP, Frec,thr)

Page 189: RNE Fundamental B10.pdf

Section 1 - Module - Page 1893FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 189

2.7 Cell Range Calculation

2.7.2 Coverage Probability

0

0,5

0,951

Pcov (r)

R r

Pcov = P ( Frec > Frec, thr )

Page 190: RNE Fundamental B10.pdf

Section 1 - Module - Page 1903FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 190

2.7 Cell Range Calculation

2.7.3 Coverage Ranges and Hata Correction Factors

Area Coverage Probability

70%

75%

80%

85%

90%

95%

100%

0,0 1,5 3,0 4,5 6,0 7,5 9,0 10,5

d [km]

Pco

v

155

150

145

140

135

130

125

120

115

110

Reference

Pathlos s [dB]

Calculation conditions:

Correction = 3; Sigma = 7hBS= 30 m; hMS = 1.7m; f = 900 Mhz

Clutter type Cor [dB] σ [dB]

Skyscrapers 0 6Dense urban 2 6Medium urban 4 7Lower urban 6 7Residential 8 6Industrial zone 10 10Forest 8 8Agricultural 20 6Low tree density 15 8Water 27 5Open area 27 6

The lognormal distribution, described by a mean fieldstrength Fmed and a standard deviation s, is shown in in the left diagram. A coverage probability Pcov can be calculated, which defines the chance that a certain fieldstrength threshold Fthr is reached or exceeded by the calculated (or predicted) mean fieldstrength level Fmed. This probability is represented by the area enclosed by the graph of the probability density function and the vertical line at F=Fthr in the left diagram. The variation of the probability in dependence on Fmed is shown in the right diagram. The required difference between Fmed and Fthr in order to achieve a required probability is called the fading margin.

Without any margin, the probability is 50%, which is not a sufficient value in order to provide a good call success rate. A typical design goal should be a coverage probability of 90...95%. The following normalized table can be applied to find fading margins for different values of s. The fading margin is calculated by multiplying the value of k (in the table) with the standard deviation (Fading Margin = k s).

k -∞ -0.5 0 1 1.3 1.65 2 2.33 +∞CoverageProbability 0% 30% 50% 84% 90% 95% 97.7% 99% 100%

Page 191: RNE Fundamental B10.pdf

Section 1 - Module - Page 1913FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 191

2.7 Cell Range Calculation

2.7.4 Conventional BTS Configuration

ALCATEL EvoliumTM

TX → 45.4 dBmRX → -109dBm

TX

TX and RX

1 BTS

Omnidirectional antenna for both TX and RX

Coverage Range R0

Coverage Area A0

R0

A0

Page 192: RNE Fundamental B10.pdf

Section 1 - Module - Page 1923FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 192

2.7 Cell Range Calculation

2.7.5 Coverage Improvement by Antenna Diversity

ALCATEL EvoliumTM

TX → 45.4 dBmRX → -109dBm

TX RXDIV

RX and TX

1 BTS

Omnidirectional antennas

one for both RX and TX

one for RXDIV

Antenna diversity gain (2...6 dB)

Example: 3 dB

Coverage rangeRDiv = 1.23 · R0

Coverage areaADiv = 1.5 · A0

R0RDiv

A0

ADiv

Page 193: RNE Fundamental B10.pdf

Section 1 - Module - Page 1933FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 193

2.7 Cell Range Calculation

2.7.6 Radiation Patterns and Range

3 antennas at sector site,Gain: 18 dBi, HPBW: 65°

Resulting antenna footprint ("cloverleaf")compared to an 11 dBi omni antenna

omni

sector

Page 194: RNE Fundamental B10.pdf

Section 1 - Module - Page 1943FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 194

2.7 Cell Range Calculation

2.7.7 Improvement by Antenna Diversity and Sectorization

TX

RXDIV

3 BTS

Directional antennas (18 dBi)

Antenna diversity (3 dB)

Max. coverage rangeRsec,div = 1.95 · R0

Coverage areaAsec,div = 3 · A0

ALCATELEvoliumTM

ALCATELEvoliumTM

ALCATELEvoliumTM

R0

Rsec,div

Asec,div

Page 195: RNE Fundamental B10.pdf

Section 1 - Module - Page 1953FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 195

2.7 Cell Range Calculation

2.7.8 Improvement by Antenna Preamplifier

TX

RXDIV

3 BTS

Directional antennas (18 dBi)

Antenna diversity (3 dB)

Antenna preamplifier (3dB)

Max. coverage rangeRsec,div,pre = 2.22 · R0

Coverage areaAsec,div,pre = 3.9 · A0

General:Asec = g · A0

g: Area gain factorR0

Rsec,div,pre

Asec,div,pre

ALCATELEvoliumTM

ALCATELEvoliumTM

ALCATELEvoliumTM

Page 196: RNE Fundamental B10.pdf

Section 1 - Module - Page 1963FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 196

2 Coverage Planning

2.8 Antenna Engineering

Page 197: RNE Fundamental B10.pdf

Section 1 - Module - Page 1973FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 197

2.8 Antenna Engineering

2.8.1 Omni Antennas

Application Large area coverage

Umbrella cell for micro cell layer

Advantages Continuous coverage around the site

Simple antenna mounting

Ideal for homogeneous terrain

Drawbacks No mechanical tilt possible

Clearance of antenna required

Densification of network difficult

Page 198: RNE Fundamental B10.pdf

Section 1 - Module - Page 1983FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 198

2.8 Antenna Engineering

2.8.2 Sector Antenna

Antenna with horizontal HPBW of e.g. 90° or 65°

Advantages

Coverage can be focussed on special areas

Low coverage of areas of no interest (e.g. forest)

Allows high traffic load

Additional mechanical downtilt possible

Wall mounting possible

Drawbacks

More frequencies needed per site compared to omni sites

More hardware needed

Lower coverage area per sector

Page 199: RNE Fundamental B10.pdf

Section 1 - Module - Page 1993FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 199

2.8 Antenna Engineering

2.8.3 Typical Applications

Wide horizontal beam width (e.g. 90°)

For areas with few reflecting and scattering objects (rural area)

Area coverage for 3-sector sites

Sufficient cell overlap to allow successful handovers

Small horizontal beam width (e.g. 65°)

For areas with high scattering (city areas)

Coverage between sectors by scattering and by adjacent sites (mostly site densification in urban areas)

Page 200: RNE Fundamental B10.pdf

Section 1 - Module - Page 2003FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 200

2.8 Antenna Engineering

2.8.4 Antenna Tilt

Downtilting of the Antenna main beam related to the horizontal line

Goals:

Reduction of overshoot

Removal of insular coverage

Lowering the interference

Coverage improvement of the near area (indoor coverage)

Adjustment of cell borders (handover zones)

Mechanical / Electrical or Combined downtilt

Page 201: RNE Fundamental B10.pdf

Section 1 - Module - Page 2013FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 201

2.8 Antenna Engineering

2.8.5 Mechanical Downtilt

Advantages

Later adjustment of vertical tilt possible

Antenna diagram is not changed, i.e. nulls and side lobes remain in their position relative to the main beam

Cost effective (single antenna type may be used)

Fast adjustments possible

Drawbacks

Side lobes are less tilted

Accurate adjustment is difficult

Problems for sites with difficult access

Page 202: RNE Fundamental B10.pdf

Section 1 - Module - Page 2023FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 202

2.8 Antenna Engineering

2.8.6 Electrical Downtilt

Advantages

Same tilt for both

main and side lobes

Antenna mounting is more simple → no adjustment errors

Drawbacks

Introduction of additional antenna types necessary

New antenna installation at the site if downtilting is introduced

Long antenna optimization phase

Adjustment of electrical tilt mostly not possible

τ τ τ τ = 0

τ τ τ τ = t

τ τ τ τ = 2 t

τ τ τ τ = 3 t

ττττ = delay time

downtilt angle

Page 203: RNE Fundamental B10.pdf

Section 1 - Module - Page 2033FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 203

2.8 Antenna Engineering

2.8.7 Combined Downtilt

Combination of both mechanical and electrical downtilt

High electrical downtilt: Distinct range reduction in sidelobe direction (interference reduction)

Less mechanical uptilt in main beam direction

Choose sector antennas with high electrical downtilt (6°...8°) and apply mechanical uptilt installation for optimum coverage range in main beam direction

Page 204: RNE Fundamental B10.pdf

Section 1 - Module - Page 2043FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 204

2.8 Antenna Engineering

2.8.8 Assessment of Required Tilts

Required tilt is estimated using Geometrical Optics

Consideration of

Vertical HPBW of the antenna

Antenna height above ground

Height difference antenna/location to be covered

Morpho-structure in the vicinity of the antenna

Topography between transmitter and receiver location

Tilt must be applied for both TX and RX antennas!

Page 205: RNE Fundamental B10.pdf

Section 1 - Module - Page 2053FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 205

2.8 Antenna Engineering

2.8.9 Inter Site Distance in Urban Area

Using sectorized sites with antennas of 65° horizontal half power beam width

The sidelobe is approximately reduced by 10dB.

This is a reduction of cell range to 50%.

The inter site distance calculation factor depends on

Type of antenna

Type of morpho class

• Multi path propagation

• Scattering

• Sigma (fading variations)

X XA B

0.5* R2R2

Page 206: RNE Fundamental B10.pdf

Section 1 - Module - Page 2063FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 206

2.8 Antenna Engineering

2.8.10 Downtilt in Urban Area

Cell range R2

Main beam

0.5* R2

Side l

obe

Tilt 2 Tilt 2Site A Site B

Inter Site Distance A-B = 1.5* R2

Page 207: RNE Fundamental B10.pdf

Section 1 - Module - Page 2073FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 207

2.8 Antenna Engineering

2.8.11 Downtilt in Urban Area

The upper limit of the vertical half power beam widthis directed towards the ground at maximum cell range

Upper –3dB point of the vertical antenna pattern

To be used in areas with

Multi path propagation condition

Good scattering of the beam

Aim

Reduction of interference

Optimization

Coverage Optimization in isolated cases using less downtilt

Interference Reduction in isolated cases using more downtilt

Page 208: RNE Fundamental B10.pdf

Section 1 - Module - Page 2083FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 208

2.8 Antenna Engineering

2.8.12 Downtilt in Suburban and Rural Area

Downtilt planning for

Suburban

Rural

Highway Coverage

The main beam is directed towards the ground at maximum cell range

Main beamMain

beam

Cell range R1 Cell range R1

Tilt 1 Tilt 1

Inter Site Distance C-D = 2* R1

Site C Site D

Page 209: RNE Fundamental B10.pdf

Section 1 - Module - Page 2093FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 209

2.8 Antenna Engineering

2.8.13 Antenna configurations

Application of Duplexer

Consists of a TX/RX Filter and a combiner

one antenna can be saved

Tower Mounted Amplifier (TMA)

Increase Uplink Sensitivity

TMA needs to have TX bypass => in case of duplexer usage

Diversity

Space diversity

Polarization diversity

Rx/Tx

RxTx

DuplexFilter

To BTS

Page 210: RNE Fundamental B10.pdf

Section 1 - Module - Page 2103FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 210

2.8 Antenna Engineering

2.8.14 Antenna Configurations for Omni and Sector Sites

Antenna Configurations for Omni and Sector Sites

RxRxdiv

TxRx

Tx

Rxdiv

Bracons

Sectorantenna

Pole

SectorAntenna

Pole

Tower mounting for omni antennas Tower mounting for directional antennas

Pole mounting for roof-top mounting

Pole mounting for wallor parapet mounting

Page 211: RNE Fundamental B10.pdf

Section 1 - Module - Page 2113FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 211

2.8 Antenna Engineering

2.8.15 Three Sector Antenna Configuration with AD

Page 212: RNE Fundamental B10.pdf

Section 1 - Module - Page 2123FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 212

2.8 Antenna Engineering

2.8.16 Antenna Engineering Rules

Distortion of antenna pattern: No obstacles within

Antenna near field range

HPBW Rule plus security margin of 20°

First fresnel ellipsoid range (additional losses!)

TX-RX Decoupling to avoid blocking and intermodulation

Required minimum separation of TX - RX antennas dependent on antenna configuration (e.g. duplexer or not)

Diversity gain

Required antenna separation for space diversity

Page 213: RNE Fundamental B10.pdf

Section 1 - Module - Page 2133FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 213

2.8 Antenna Engineering

2.8.17 Distortion of antenna pattern

Antenna Near Field Range: Rmin = 2D²/λ D = Aperture of antenna (e.g. 3m)

=> Rmin = 60 / 120m for GSM / DCS

HPBW Rule with securtiy margin of 20° and tilt αααα

Roof Top = Obstacle

ϕϕϕϕϕ = ϕ = ϕ = ϕ = HPBW/2 + 20° + αααα

D

H

D[m] 1 5 10H[m] 0.5 2.5 5

HPBW = 8°, α = 2°

Page 214: RNE Fundamental B10.pdf

Section 1 - Module - Page 2143FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 214

2.8 Antenna Engineering

2.8.18 Tx-Rx Decoupling (1)

TX

RX

fuse

fint

f[MHz]

P [dBm]

fuse fint

-101

-13

n*200kHz

Pout

Pin

ReceiverCharacteristic

Pblock

P1dB

Out of Band Blocking Requirement (GSM Rec. 11.21)

GSM 900 = +8 dBm

GSM 1800 = 0 dBm

Required Decoupling (n = number of transmitters)

TX-TX = 20 dB

TX-RX GSM = 30 + 10 log (n) dB

TX-RX DCS = 40 + 10 log (n) dB

Page 215: RNE Fundamental B10.pdf

Section 1 - Module - Page 2153FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 215

2.8 Antenna Engineering

2.8.19 TX-RX Decoupling (2)

Horizontal separation (Approximation)

IH=22+20log(d

H/λλλλ)-(G

T+G

R) [dB]

dH

Isolation for Horizontal Separation - omni 11dBi

15

20

25

30

35

40

45

1,7

2,7

3,7

4,7

5,7

6,7

7,7

8,7

9,7

10,4

10,8

11,2

11,6 12

12,4

12,8

13,2

13,6 14

14,4

14,8

15,2

Separation [m]

Isol

atio

n [d

B]

GSM1800

GSM900

Page 216: RNE Fundamental B10.pdf

Section 1 - Module - Page 2163FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 216

2.8 Antenna Engineering

2.8.20 TX-RX Decoupling (3)

Vertical separation (Approximation)

IV=28+40log(d

V/λλλλ) [dB]

dv

dm

Mast

Isolation for Vertical Separation

0

10

20

30

40

50

60

70

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Separation [m]

Isol

atio

n [d

B] GSM1800

GSM900

Page 217: RNE Fundamental B10.pdf

Section 1 - Module - Page 2173FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 217

Required separation for max. diversity gain = F(λ)

2.8 Antenna Engineering

2.8.21 Space Diversity

dH

RXA RXB

dV

RXA

RXB

For a sufficient low correlation coefficient ρ < 0.7:

dH = 20λ => GSM 900: 6m / GSM1800: 3m

dV = 15λ => GSM 900: 4.5m / GSM1800: 2.25m

Page 218: RNE Fundamental B10.pdf

Section 1 - Module - Page 2183FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 218

2.8 Antenna Engineering

2.8.22 Power Divider

Power dividers connect several

antennas to one feeder cable

For combination of individualantenna patterns for a requested configuration

Quasi-omni configuration

Bidirectional configuration(road coverage)

4-to-1 Power splitter(6 dB loss)

To BTS: Receiver input

To BTS: Duplexer output(TX plus RX diversity)

Quasi-OmniConfiguration

Page 219: RNE Fundamental B10.pdf

Section 1 - Module - Page 2193FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 219

Power divider

Also called "power splitter" or "junction box"

Passive device (works in both (transmit and receive) direction)

3 dB

Pin

Pin

2

Pin

2

Pin

3

4.5 dB

Pin

Pin

3

Pin

3

6 dB

Pin

Pin

4

Pin

4

Pin

4

Pin

4

2.8 Antenna Engineering

2.8.23 Power Divider

Page 220: RNE Fundamental B10.pdf

Section 1 - Module - Page 2203FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 220

2.8 Antenna Engineering

2.8.24 Panel Configurations (1)

Radial Arrangement

of 6 Panel Antennas with horizontal beamwidth = 105 °gain = 16.5 dBi, mast radius = 0.425 m, mounting radius = 0.575 m

Page 221: RNE Fundamental B10.pdf

Section 1 - Module - Page 2213FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 221

2.8 Antenna Engineering

2.8.25 Panel Configurations (2)

Example 2: Quasi Omni Arrangement

of 3 antennas with horizontal beamwidth = 105 °, gain =13.5 dBi,mounting radius = 4 m

Page 222: RNE Fundamental B10.pdf

Section 1 - Module - Page 2223FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 222

2.8 Antenna Engineering

2.8.26 Panel Configurations (3)

Example 3: Skrew Arrangement

of 4 Panel Antennas with horizontal beamwidth = 65 °,gain = 12.5 dBi, mast radius = 1 m,mounting radius = 1.615 m

Page 223: RNE Fundamental B10.pdf

Section 1 - Module - Page 2233FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 223

2.8 Antenna Engineering

2.8.27 Feeders

Technical summary

Inner conductor: Copper wire

Dielectric: Low density foam PE

Outer conductor: Corrugated copper tube

Jacket: Polyethylene (PE)black

Inner conductor Outer conductor

Dielectric Jacket

Page 224: RNE Fundamental B10.pdf

Section 1 - Module - Page 2243FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 224

2.8 Antenna Engineering

2.8.28 Feeder Installation Set and Connectors

1 Cable Clamps2 Antenna Cable3 Double Bearing4 Counterpart5 Anchor tape

7/16 Connector:Coaxial ConnectorRobustGood RF-Performance

Page 225: RNE Fundamental B10.pdf

Section 1 - Module - Page 2253FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 225

Type Minimum bending radius Jacket(outer diameter)

Weight (m) Recommendedclamp spacing

Single bending Repeated bending

LCF 1/2’’ 70 mm 210 mm 16 mm 0.35 kg 0.6 m

LCF 7/8’’ 120 mm 360 mm 28 mm 0.62 kg 0.8 m

LCF 1 5/8’’ 300 mm 900 mm 49.7 mm 1.5 kg 1.2 m

These values are based on feeder types with an impedance of 50 ohms

GSM 900 GSM 1800 GSM 1900

Type Attenuation /100 m [dB]

Recommendedmax length [m]

Attenuation /100 m [dB]

Recommendedmax length [m]

Attenuation /100 m [dB]

Recommendedmax length [m]

LCF 1/2“ 6.6 45 10.3 30 10.6 28

LCF 7/8“ 4.0 75 6.0 50 6.3 47

LCF 1_5/8“ 2.6 115 4.0 75 4.2 71

2.8 Antenna Engineering

2.8.29 Feeder Parameters

Page 226: RNE Fundamental B10.pdf

Section 1 - Module - Page 2263FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 226

2.8 Antenna Engineering

2.8.30 Feeder attenuation (1)

Main contribution is given by feeder loss

Feeder Cable 4dB/100m => length 50m Loss =2.0dB

Jumper Cable 0.066dB/1m => 5m Loss =0.33dB

Insertion Loss of connector and power splitter < 0.1dB

Total Loss 2.0dB+2x0.33dB+5x0.1dB+0.1dB =3.26dB

Cable type is trade off between

Handling flexibility

Cost

Attenuation

Page 227: RNE Fundamental B10.pdf

Section 1 - Module - Page 2273FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 227

2.8 Antenna Engineering

2.8.31 Radiating Cables

Provide coverage in Tunnels, buildings, along side tracks or lines

Principle: Radiate a weak but constant electromagnetic wave

Suitable for coverage over longer distances (Repeater)

Fieldstrength distribution more constant as with antennas

F

FThr

Repeater

F

FThr

Terminat-ing Load

Page 228: RNE Fundamental B10.pdf

Section 1 - Module - Page 2283FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 228

Components are shown with black lines

BTS

Tx

Rx

Radiating cable Termination load

Earthing kitMounting clips with 50 mm wall standoff

N-connections

Jumper cabel

1-leg radiating cable system

2.8 Antenna Engineering

2.8.32 Components of a radiating cable system

Page 229: RNE Fundamental B10.pdf

Section 1 - Module - Page 2293FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 229

-40

-50

-60

-70

-80

-90

-100

-110

[dBm]

Cable attenuationbetween the antennas

Radiating cable field strength

Antenna field strength

Distance

2.8 Antenna Engineering

2.8.33 Comparison of field strength: Radiating cable and standard antenna

Page 230: RNE Fundamental B10.pdf

Section 1 - Module - Page 2303FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 230

Example of a radiating cable in a tunnel

2.8 Antenna Engineering

2.8.34 Example of a radiating cable in a tunnel

Page 231: RNE Fundamental B10.pdf

Section 1 - Module - Page 2313FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 231

2.8 Antenna Engineering

2.8.35 Microwave antennas, feeders and accessories

Microwave point to point systems use highly directional antennas

Gain

with G = gain over isotropic, in dBi

A = area of antenna aperture

e = antenna efficiency

Used antenna types

parabolic antenna

high performance antenna

horn lens antenna

horn antenna

GA e= 10 4

2lg

πλ

Page 232: RNE Fundamental B10.pdf

Section 1 - Module - Page 2323FL 11820 ACAA WBZZA Edition 3

Parabolic dish, illuminated by a feed horn at its focus.

Available in a wide variety of sizes [1’ (0.3 m), 2’ (0.6 m), 4’ (1.2 m), 6’ (1.8 m), 8’ (2.4 m), 10’ (3.0 m) and sometimes up to 16’ (4.8 m) in most frequency bands.

Sizes over 4’ are seldom used due to the installation restrictions on private buildings

Mostly with single plane polarised feed, which can be either vertical (V) or horizontal (H)

Dual polarized feeds (DP), with separate V and H connections possible

DP`s usually have lower gain than single polarized antennas

Front-to-back ratios of about 45 dB are not high enough to use these antennas back-to-back on the same frequency (interference calculations)

Antenna patterns are absolutely necessary for interference calculations

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 232

2.8 Antenna Engineering

2.8.36 Parabolic antenna

Parabolic dish, illuminated by a feed horn at its focus

Available sizes: 1’ (0.3 m) up to 16’ (4.8 m)

Sizes over 4’ seldom used due to installation restrictions

Single plane polarized feed vertical (V) or horizontal (H)

Also: dual polarized feeder (DP), with separate V and H connections (lower gain)

Front-to-back ratios of 45 dB not high enough for back-to-back configuration on the same frequency

Antenna patterns are absolutely necessary for interference calculations

Page 233: RNE Fundamental B10.pdf

Section 1 - Module - Page 2333FL 11820 ACAA WBZZA Edition 3

Similar to the common parabolic antenna, except for an attached cylindrical shield

Improvement of the front-to-back ratio, and wide angle radiation discrimination

Available in the same sizes as parabolic ones, either single or double polarised

Substantially bigger, heavier, and more expensive than the ordinary parabolics

Allow back-to-back transmision at the same frequency in both directions (refer to interference calculation)

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 233

2.8 Antenna Engineering

2.8.37 High performance antenna

Similar to common parabolic antenna, except for attached cylindrical shield

Improvement of front-to-back ratio and wide angle radiation discrimination

Available in same sizes as parabolic, single or dual polarized

Substantially bigger, heavier, and more expensive than parabolic antennas

Allow back-to-back transmission at the same frequency in both directions (refer to interference calculation)

Page 234: RNE Fundamental B10.pdf

Section 1 - Module - Page 2343FL 11820 ACAA WBZZA Edition 3

Horn lens antenna

Only available for very high frequencies (above 25 Ghz)

Replacement for small parabolic antennas (1’)

Electrical data nearly the same, but easier to install due to their size and weight

Horn reflector antenna

Consists of a very large parabola, mounted at such an angle that the energy from the feed horn is reflected at right angle (90°)

Gain in the region of a 10’ parabolic antenna (60 dBi), but it has much higher front-to-back ratios ( 70 dB or more)

Very big, heavy and requires a complex installation procedure

Only used on high capacity microwave backbones (example: MSC-MSC interconnections).

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 234

2.8 Antenna Engineering

2.8.38 Horn antennas

Horn lens antenna

For very high frequencies > 25 GHz

Replacement for small parabolic antennas (1’)

Same electrical data, but easier to install due to size and weight

Horn reflector antenna

Large parabola, energy from the feed horn is reflected at right angle (90°)

Gain like 10’ parabolic antenna (60 dBi), but higher front-to-back ratios > 70 dB

Big and heavy, requires a complex installation procedure

Only used on high capacity microwave backbones (e.g. MSC-MSC interconnections)

Page 235: RNE Fundamental B10.pdf

Section 1 - Module - Page 2353FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 235

2.8 Antenna Engineering

2.8.39 Specific Microwave Antenna Parameters (1)

Cross polarization discrimination (XPD)

highest level of cross polarisation radiation relative to the main beam; should be > 30 dB for parabolic antennas

Inter-port isolation

isolation between the two ports of dual polarised antennas; typical value: better than 35 dB

Return loss (VSWR)

Quality value for the adaption of antenna impedance to the impedance of the connection cable

Return loss is the ratio of the reflected power to the power fed at the antenna input (typical> 20 dB)

Page 236: RNE Fundamental B10.pdf

Section 1 - Module - Page 2363FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 236

Radiation pattern envelope (RPE)

Tolerance specification for antenna pattern (specification of antenna pattern itself not suitable due to manufacturing problems)

Usually available from manufacturer in vertical and horizontal polarisation (worst values of several measurements)

Weight

Wind load

2.8 Antenna Engineering

2.8.40 Specific Microwave Antenna Parameters (2)

Page 237: RNE Fundamental B10.pdf

Section 1 - Module - Page 2373FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 237

2.8 Antenna Engineering

2.8.41 Data sheet 15 GHz

Parabolic antenna 15 GHz High performance antenna 15 GHz

Bandwidth (GHz) 14.4 - 15.35 14.4 - 15.35 14.4 - 15.35

Model number PA 2 - 144 PA 4 - 144 PA 6 - 144

Nominal diameter (m) 0.6 1.2 1.8

(ft) 2 4 6

Half-power beamwidth (deg) 2.3 1.2 0.8

Gain low band (dBi) 36.2 42.3 45.8

Gain mid band (dBi) 36.5 42.5 46.0

Gain high band (dBi) 36.7 42.8 46.3

Front-to-back ratio (dB) 42 48 52

Cross polar discrimination (dB) 28 30 30

Return loss (dB) 26 26 28

Weight (kg) 19 43 73

Windload

Elevation adjustment (deg) +/- 5 +/- 5 +/- 5

Bandwidth (GHz) 14.4 - 15.35 14.4 - 15.35 14.4 - 15.35

Model number DA 2 - 144 DA 4 - 144 DA 6 - 144

Nominal diameter (m) 0.6 1.2 1.8

(ft) 2 4 6

Half-power beamwidth (deg) 2.3 1.2 0.8

Gain low band (dBi) 36.2 42.3 45.8

Gain mid band (dBi) 36.5 42.5 46.0

Gain high band (dBi) 36.7 42.8 46.3

Front-to-back ratio (dB) 65 68 68

Cross polar discrimination (dB) 28 30 30

Return loss (dB) 26 26 26

Weight (kg) 28 55 130

Windload

Elevation adjustment (deg) +/- 12 +/- 12 +/- 12

Page 238: RNE Fundamental B10.pdf

Section 1 - Module - Page 2383FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 238

2.8 Antenna Engineering

2.8.42 Radiation pattern envelope

Page 239: RNE Fundamental B10.pdf

Section 1 - Module - Page 2393FL 11820 ACAA WBZZA Edition 3

Depending on the frequency coaxial cables and waveguides are used for the transmission of RF energy between radio systems and antennas. The most important characteristic of feeders is their loss, but also

their impedance (return loss).

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 239

2.8 Antenna Engineering

2.8.43 Feeders (1)

Coaxial cables or waveguides (according to frequency)

Most important characteristic: loss and return loss

Coaxial cables

Used between 10 MHz and 3 GHz

Dielectric material: foam or air

Parameters of common coaxial cables:

type dielectric diameter(mm)

loss(dB/100m)

powerrating (kW)

bendingradius (mm)

LCF 1/2’ CU2Y foam 16.0 10,9 / 2 GHz 0.47 200

13.8 / 3 GHz

LCF 7/8’ CU2Y foam 28.0 6.5 / 2 GHz 0.95 360

8.5 / 3 GHz

LCF 1 5/8’ CU2Y foam 49.7 4.4 / 2 GHz 1.7 380

5.6 / 3 GHz

Page 240: RNE Fundamental B10.pdf

Section 1 - Module - Page 2403FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 240

2.8 Antenna Engineering

2.8.44 Feeders (2)

Waveguides

Used for frequency bands above 2.5 GHz

Three basic types available: circular, elliptical and rectangular

Rigid circular waveguide

Very low loss

Supports two orthogonal polarisations

Capable to carry more than one frequency band

Usually, short components of this type are used

Disadvantages: cost, handling and moding problems

Page 241: RNE Fundamental B10.pdf

Section 1 - Module - Page 2413FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 241

2.8 Antenna Engineering

2.8.45 Feeders (3)

Elliptical semiflexible waveguides

Acceptable loss, good VSWR performance

Low cost and easy to install

Various types optimised for many frequency bands up to 23 GHz

Used for longer distances (easy and flexible installation)

Can be installed as a "single run" (no intermediate flanges)

type loss /100 m FrequencyEW 34 2.0 4 GHz

EW 52 4.0 6GHz

EW 77 5.8 8GHz

EW 90 10.0 11 GHz

EW 220 28.0 23 GHz

Page 242: RNE Fundamental B10.pdf

Section 1 - Module - Page 2423FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 242

2.8 Antenna Engineering

2.8.46 Feeders (4)

Solid and flexible rectangular waveguides

Solid rectangular waveguides

Combination of low VSWR and low loss

High cost and difficult to install

Used for realising couplers, combiners, filters

type loss /100 m FrequencyWR 229 2.8 4 GHz

WR159 4.5 6GHz

WR112 8.5 8GHz

WR 90 11.7 11 GHz

WR 75 15.0 13 GHz

Page 243: RNE Fundamental B10.pdf

Section 1 - Module - Page 2433FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 243

2.8 Antenna Engineering

2.8.47 Feeders (5)

Flexible rectangular waveguides

Worse VSWR and losses than for solid waveguides

Often used in short lengths (<1 m), where position between connection points depends on actual installation place

Common applications: connection of microwave system to antenna (close together on rooftops or towers) for frequencies >13 Ghz

type loss / m FrequencyPDR140 0.5 15GHz

PDR180 1 18 GHz

PDR220 2 23 GHz

Page 244: RNE Fundamental B10.pdf

Section 1 - Module - Page 2443FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 244

2.8 Antenna Engineering

2.8.48 Antenna feeder systems (1)

Direct radiating system

Most commonly used for frequencies up to 13 Ghz

Depending on accepted feeder loss/length, higher frequencies may be possible

Excessive attenuation and costs in long runs of wave guide

Occurence of echo distortion due to mismatch in long runs of waveguide possible

Page 245: RNE Fundamental B10.pdf

Section 1 - Module - Page 2453FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 245

2.8 Antenna Engineering

2.8.49 Antenna feeder systems (2)

Periscope antenna system

Used for

• considerable antenna heights

• waveguide installation problems

Negligible wave guide cost and easy installation

System gain is a function of antenna and reflector size, distance and frequency

Used above 4 GHz , because reflector size is prohibitive for lower frequencies

Page 246: RNE Fundamental B10.pdf

Section 1 - Module - Page 2463FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 246

2.8 Antenna Engineering

2.8.50 Antenna feeder systems (3)

Combined antenna with transceiver

Antenna and transceiver are combined as a single unit to cut out wave guide loss (higher frequencies)

Units are mounted on top of a mast and connected to multiplex equipment via cable

Page 247: RNE Fundamental B10.pdf

Section 1 - Module - Page 2473FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 247

2 Coverage Planning

2.9 Alcatel BSS

Page 248: RNE Fundamental B10.pdf

Section 1 - Module - Page 2483FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 248

2.9 Alcatel BSS

2.9.1 Architecture of BTS - Evolium Evolution A9100

3 levels

Antenna coupling level

TRX level

BCF level Station unit module

Abis interface

Abbreviations

BCF Base station Control Function TRX Transceiver

Antenna network stage ANC

Air interface

Combiner stage (ANY) Combiner stage (ANY)

TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX TRX

Antenna network stage ANC or ANB (note)

)1)

Note 1 : ANB module is limited to 2 TRX in No TX Div mode and to 1 TRX in TX Div mode.

Antenna coupling level

The general functions performed at this level are:

- Duplexing transmit and receive paths onto common antennas;

- Feeding the received signals from the antenna to the receiver front end, where the signals are amplified and distributed to the different receivers (Low Noise Amplifier (LNA) and power splitter functions);

- Providing filtering for the transmit and the receive paths;

- Combining, if necessary, output signals of different transmitters and connecting them to the antenna(s);

- Supervising antennas VSWR (Voltage Standing Wave Ratio).

-Powering and supervising TMA through the feeder.

The Antenna Network Combiner (ANC) module

- one duplexer allowing a single antenna to be used for the transmission and reception of both downlink and uplink channels- hence minimizing the number of antenna

- a frequency selective VSWR meter to monitor antenna feeder and antenna

- one LNA amplifying the receive RF signal, and giving good VSWR values, noise compression and good reliability

- two splitter levels distributing the received signal to four separate outputs so that each output receives the signal from its dedicated antenna and from the second one (diversity)

- one Wide Band Combiner (WBC), concentrating two transmitter outputs into one, only for configurations with more than two TRX

- insertion of 12V DC current in the feeder in order to provide power to TMAs when TMAs are used; there is thus no need for separate Power Distribution Unit (PDU) nor Bias-Tee (Feeder Lightning protections, that come with the ANC in case of outdoor BTSs, are themselves of a new type, compatible with this DC power feeding) (This function is only available with the new Evolution version of this module; it can be disabled, even if TMAs are used, in case those TMAs have their own PDUs).

Page 249: RNE Fundamental B10.pdf

Section 1 - Module - Page 2493FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 249

2.9 Alcatel BSS

2.9.2 EVOLIUMTM A9100 Base Station (1)

The Antenna network Combiner (ANc)- no-combining mode

Antenna A TXA - RXA -

RXdivB

Splitter WBC

TRX 1 TX RXn RXd

TRX 2 TX RXn RXd

Splitter

Splitter

LNA

Duplexer

Filter Filter

Splitter Splitter WBC

Antenna B TXB- RXB - RXdivA

Duplexer

Filter Filter

Splitter

LNA

By-pass function By-pass function

No-combining mode & No TX Div mode

The No-combining mode for configuration up to 2 TRX if TX Diversity is not used, or up to one TRX if TX Diversity is used (two TRX ports must then be connected to the two Antenna Connector ports of

a same Twin TRX module); in these cases, the Wide Band Combiner is not needed, and therefore bypassed

Page 250: RNE Fundamental B10.pdf

Section 1 - Module - Page 2503FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 250

2.9 Alcatel BSS

2.9.3 EVOLIUMTM A9100 Base Station (2)

The Antenna network Combiner (ANc)- Combining mode & No TX Div mode

Antenna A TXA - RXA -

RXdivB

Splitter WBC

TRX 1 TX RXn RXd

TRX 4 TX RXn RXd

Splitter

Splitter

LNA

Duplexer

Filter Filter

Splitter Splitter WBC

Antenna B TXB- RXB - RXdivA

Duplexer

Filter Filter

Splitter

LNA

TRX 2 TX RXn RXd

TRX 3 TX RXn RXd

The Combining mode for configuration from 3 up to 4 TRX if TX Diversity is not used, or up to 2 TRX if TX Diversity is used (two TRX ports must then be connected to the two Antenna Connector ports of

a same Twin TRX module); in these cases, the Wide Band combiner is not bypassed, as shown in the figure

Page 251: RNE Fundamental B10.pdf

Section 1 - Module - Page 2513FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 251

2.9 Alcatel BSS

2.9.4 EVOLIUMTM A9100 Base Station (3)

ANy: Twin Wide Band Combiner Stage

Splitter SplitterWBC SplitterSplitter WBC

TXA RXA RXAdiv

TX RX RXdiv

TRX 1

TX RX RXdiv

TRX 2

Rxdiv RX TX

TRX 4

Rxdiv RX TX

TRX 3

RXBdiv RXB TXB

The Twin Wide Band Combiner stage (ANY) combines up to four transmitters into two outputs, and distributes the two received signals up to four receivers. This module includes twice the same structure, each structure containing:

one wide band combiner (WBC), concentrating two transmitter outputs into one two splitters, each one distributing the received signal to two separate outputs

providing diversity and non-diversity path

Page 252: RNE Fundamental B10.pdf

Section 1 - Module - Page 2523FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 252

2.9 Alcatel BSS

2.9.5 EVOLIUMTM BTS Features

Standard Features according to GSM• DR (Dual Rate), EFR (Enhanced Full Rate coder), AMR (Adaptive Multi Rate) requires

that the BSS software release and the other network elements also support these codecs

• HW supports GSM 850, E-GSM, GSM 900, GSM 1800 and GSM 1900 bands

• Multi Band Capabilities (supporting of 850/1800 TRX, 850/1900TRX, and, 900 /1800 can be located in the same cabinet)

• All known A5 algorithms to be supported; HW provisions done

Standard Features due to new Architecture and new SW Releases• SUS (Station Unit Sharing)

Only one central control unit (SUM) for all BTS per cabinet

• Multiband BTS (GSM 900/1800) in one cabinet

• Static (Release 4) and statistical (Release 6) submultiplexing on Abis

- Better use of Abis-interface capacity: More BTS/TRX to be supported in a multidrop loop

• Introduction of GPRS and HSCSD without HW changes

• EDGE compatible TRX

The BTS range supports A5/1 and A5/2 ciphering algorithms;

A5/0 = ‘no ciphering’ is always supported.

The TRX are hardware ready for A5/3.

Page 253: RNE Fundamental B10.pdf

Section 1 - Module - Page 2533FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 253

2.9 Alcatel BSS

2.9.6 EVOLIUMTM BTS Features [cont.]

Features specific to Radio Performance

TX Output Power (at TRX output)

RX Sensitivity: -111 dBm certified(GSM|ETSI| request: -104 dBm)

Synthesized Frequency Hopping as general solution• Standard RF hopping mode

• Pseudo baseband RF hopping mode

Antenna Diversity in general• Two or four antennas (RX) per sector

• TX Diversity feature is possible with Twin TRX module in coverage mode only.

Duplexer (TX and RX on one antenna) as general solution

Multiband capabilities• Thanks to the high flexibility of the EVOLIUM™ A9100 Base Station, GSM 850 and GSM 1800 TRXs or

GSM 850 and GSM 1900 TRXs or GSM 900 and GSM 1800 TRXs or GSM 900 and GSM 1900 TRXs can be located in the same cabinet with a single Station Unit Module (SUM).

25 W = 44.0 dBm45 W = 46.5 dBmGSM 1900

30 W = 44.8 dBm60 W = 47.8 dBmGSM 1800 HP

30 W = 44.8 dBm35 W = 45.4 dBmGSM 1800 MP (*)

30 W = 44.8 dBm60 W = 47.8 dBmGSM 900 HP

30 W = 44.8 dBm45 W = 46.5 dBmGSM 900 MP (*)

15 W = 41.8 dBm45 W = 46.5 dBmGSM 850

TX output power, 8-PSK (EDGE)TX output power, GMSKFrequency band

(*) Note that for the Twin TRX, the TX output powers above are in capacity mode, i.e. each of the functional TRX achieves these output powers. In coverage mode, i.e. with Tx Diversity, a significant extra gain has to be considered (see "TX Diversity" chapter) thanks to on-air combining and diversity.

The diagram below shows that 4RX Diversity requires two Antenna Network modules per sector, thereby needing either 4 vertical-polarized or 2 cross-polarized antennas.

Antenna Network Antenna Network

TX1 RX1

TX2 RX3

RX20

RX4

TW IN

TRX

Figure : Twin TRX module in TX Div & 4 RX div

Page 254: RNE Fundamental B10.pdf

Section 1 - Module - Page 2543FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 254

2.9 Alcatel BSS

2.9.6 EVOLIUMTM BTS Features [cont.]

Capacity Mode Principle

1 TWIN module = 2 functional TRX

1 Housing = 2 functional TRX = 16 radio timeslots

Same Radio Performances as EDGE + TRX Medium Power

Reduced Power Consumption

Tx : GSM 900 : 45 W GMSK / 30 W 8PSKGSM 1800 : 35 W GMSK / 30 W 8PSK

Rx : Sensitivity < -114 dBm(-114 to -117 dBm with 2 Rx diversity – environment dependent)

Tx : GSM 900 : 45 W GMSK / 30 W 8PSKGSM 1800 : 35 W GMSK / 30 W 8PSK

Rx : Sensitivity < -114 dBm(-114 to -117 dBm with 2 Rx diversity – environment dependent)

Saving per TRX (vs. TRX EDGE+):- 17 % in GSM 900- 35 % in GSM 1800

Saving per TRX (vs. TRX EDGE+):- 17 % in GSM 900- 35 % in GSM 1800

2 TRXs can belongto different sectors

TRX1

TRX2

TRX

TRX

TRX

Page 255: RNE Fundamental B10.pdf

Section 1 - Module - Page 2553FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 255

Rx : Equ. sensitivity = -117.4 to - 121 dBm (*) (4RX div)(*) environment dependent)

Rx : Equ. sensitivity = -117.4 to - 121 dBm (*) (4RX div)(*) environment dependent)

Coverage Mode Principle

• 1 TWIN module = 1 functional TRX = 8 radio TS

• 2 RX & 4 RX diversity possible

• TX diversity used ( very high coverage)

• Gain in sites (less sites needed)

• This mode is also called TX div mode

• Up to 12 TRX in MBI5/MBO2 cabinets

Tx : GSM 900 : 113 to 175 W (*) GMSKGSM 1800 : 88 to 136 W (*) GMSK

Tx : GSM 900 : 113 to 175 W (*) GMSKGSM 1800 : 88 to 136 W (*) GMSK

Higher Output Power

Higher Sensitivity

2.9 Alcatel BSS

2.9.6 EVOLIUMTM BTS Features [cont.]

Page 256: RNE Fundamental B10.pdf

Section 1 - Module - Page 2563FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 256

2.9 Alcatel BSS

2.9.6 EVOLIUMTM BTS Features [cont.]

2 RX Diversity

The TRX module supports enhanced diversity combining in all frequency bands, which is based on several algorithms:

A beam-forming algorithm to improve the received signal by steering a beam in the direction of the mobile. This is one way of doing smart antennas,

An algorithm to reduce interference: this mitigates the influence of interferers by steering a null beam in the direction of the main interferer (the phase difference between the two antennas for the strongest interfering signal is estimated and then this interfering signal is strongly attenuated by summing the signals with an inversed phase).

-114.5dBm3.5 dBRural (RA100)

-116dBm5 dBSub Urban (TU50)

-117dBm6 dBDense Urban (TU3)

Equivalent RX sensitivity (without TMA)Total 2RX diversity gain

EnvironmentUser

x

strong interferer

Page 257: RNE Fundamental B10.pdf

Section 1 - Module - Page 2573FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 257

2.9 Alcatel BSS

2.9.6 EVOLIUMTM BTS Features [cont.]

4 RX Diversity 4 RX diversity is supported by the Twin TRX module in coverage mode only. It uses exactly the same

algorithms as for 2Rx diversity, i.e. beam-forming techniques are implemented. The table below provides the typical gains achieved thanks to 4RX enhanced Diversity and the equivalent Rx sensitivity that can be considered for link budget calculations.

4 RX diversity also provides significant benefits for GPRS/EDGE since it allows achieving higher throughputs for given radio conditions.

-117.4dBm6.4 dBRural (RA100)

-119.6dBm8.6 dBSub Urban (TU50)

-121dBm10 dBDense Urban (TU3)

Equivalent RX sensitivity (without TMA)Total 4RX diversity gain

Environment

Page 258: RNE Fundamental B10.pdf

Section 1 - Module - Page 2583FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 258

2.9 Alcatel BSS

2.9.7 Generic Configurations for A9100 G4/5 BTS

The configurations for indoor (MBI) and outdoor (MBO) cabinet are presented in the next slides

larger configurations with more than one cabinet can be derived from the tables

configurations are valid for EDGE capable TRX (Evolution step 2)

availability of multiband configurations other than GSM 900 / GSM 1800 must be checked with product management (authorization required)

Notation:

BBU - Battery Backup Unit

BATS - Small Battery Backup

LBBU - Large Battery Backup Unit

TWIN

TRX

TWIN

TRX

ANY

TWIN

TRX

TWIN

TRX

ANY

TWIN

TRX

TWIN

TRX

ANY

TWIN

TRX

TWIN

TRX

ANY

ANC

TWIN

TRX

TWIN

TRX

ANY

ANC

TWIN

TRX

TWIN

TRX

ANY

ANC

SUM

Mounting Frame for 19" equipment (3U) A//DC conversion

Ava

ilabl

e sp

ace

for

eith

er:

• M

ount

ing

Fra

me

fo

r 19

" eq

uipm

ent

(6U

) •

Bat

tery

Ava

ilabl

e sp

ace

for

eith

er:

• M

ount

ing

Fra

me

fo

r 19

" eq

uipm

ent (

6U)

• B

atte

ry

Stand

TWIN

TRX

TWIN

TRX

TWIN

TRX

TWIN

TRX

TWIN

TRX

TWIN

TRX

TWIN

TRX

TWIN

TRX

ANC

TWIN

TRX

TWIN

TRX

ANY

ANY

ANC

TWIN

TRX

TWIN

TRX

ANY

ANY

ANC

ANY

ANY

SUM

Indoor MBI5 3x8

Outdoor MBO2 3x8

Page 259: RNE Fundamental B10.pdf

Section 1 - Module - Page 2593FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 259

2.9 Alcatel BSS

2.9.8 Non multi-band configurations

900/1800 (2)2222213Low loss TX div & 4 RX div

900/1800 (2)22222222212Low loss TX div & 4 RX div

900/1800 (2)2222222222211Low loss TX div & 4 RX div

900/1800 (2)221222222113Standard TX div & 2 RX div

900/1800 (2)4211444422212Standard TX div & 2 RX div

900/1800 (2)4422444444411Standard TX div & 2 RX div

900/1800 (2)8866433Low-loss no TX div

900/1800 (2)126121010864332Low-loss no TX div

900/1800 (2)161264161616161210831Low-loss no TX div

900/1800 (2)* No BU5** MBO1 Evo. only

62**64442214Standard(3) no TX div

900/1800 (2)* No BU58421*864442213Standard(3) no TX div

900/1800 (2)8632888864412Standard(3) no TX div

900/1800 (2)8864888888811Standard(3) no TX div

Other BU5BU90other BU5

DCACDCACACACDCACAC

bandsMBO2Evolution

MBO1Evoluti

on

CBOMBI5 (Note 4)MBI3per sect.

FrequencyNotesMax TRX per sectorMin TRXSectors

Note 1: "AC other" is referring to the Indoor AC configurations without integrated battery, i.e. either with no battery, or with batteries in an external cabinet.Note 2: Frequency bands: new modules are available initially in GSM 900 and GSM 1800 frequency band; they will be available in a second step in GSM 850 and GSM 1900, on market request.Note 3: As described in chapter "Standard configurations" above, "Standard" is referring to configurations with 1 Antenna Network per sector, and are thus limited to 8 TRXs per sector. Configurations with more than 8 TRXs per sector need two Antenna Networks per sector; such configurations are called "Low-loss" and described in a separate section of the table.Note 4: With MBI5, more than 18 TRX per cabinet is only possible with DC cabinets (and using TWIN modules) and more precisely with functional variant 3BK 25965 ABxx of these cabinets, that has become since end 2006 the standard delivery; MBI5 with functional variant 3BK 25965 AAxx, are limited to 18 TRX (using TWIN modules); functional variant of a cabinet can be checked either on site (on printed Barcode label, or available through Line Maintenance Terminal), or from the OMC-R where it is part of the Remote Inventory data.

Page 260: RNE Fundamental B10.pdf

Section 1 - Module - Page 2603FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 260

2.9 Alcatel BSS

2.9.9 Multi-band configurations

900/1800 (2)4/44/42/22/22/21/13Standard no TX div

900/1800 (2)6/62/26/64/44/44/41/12Standard no TX div

900/1800 (2)12/126/64/22/212/128/88/88/86/62/22/21/11Standard no TX div

Other BU5BU90other

BU5

DCACDCACACACDCACAC

bandsMBO2Evolution

MBO1Evolution

CBOMBI5 (Note 4)MBI3per sect.band1/band2

(3)

FrequencyNotesMax TRX per sector (band 1/ band 2)Min TRXSectors

Note 1: "AC other" is referring to the Indoor AC configurations without integrated battery, i.e. either with no battery, or with batteries in an external cabinet.Note 2: Frequency bands: new modules are available initially in GSM 900 and GSM 1800 frequency band; they will be available in a second step in GSM 850 and GSM 1900, on market request.Note 3: Count of sectors is made with hypothese of multiband cell, i.e. that each sector contains one cell in band1 and one cell in band2, these two cells being paired as a single "multiband cell", counted as one sector.

In multiband "without multiband cell", a same configurations would be counted as having twice the number of sectors.The table above thus describes at the same time- possible configurations for multiband "with multiband cell"- those configurations for multiband "without multiband cell" that have the same number of sectors in each band

Note 4: With MBI5, more than 18 TRX per cabinet is only possible with DC cabinets (and using Twin TRX modules) and more precisely with functional variant 3BK 25965 ABxx of these cabinets, that has become since end 2006 the standard delivery; MBI5 with functional variant 3BK 25965 AAxx, are limited to 18 TRX (using Twin TRX modules); functional variant of a cabinet can be checked either on site (on printed Barcode label, or available through Line Maintenance Terminal), or from the OMC-R where it is part of the Remote Inventory data.

Page 261: RNE Fundamental B10.pdf

Section 1 - Module - Page 2613FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 261

2.9 Alcatel BSS

2.9.10 Extended cell configurations

900MBI3; MBO1 Evolution4411

900MBI5; MBO2 evolution8811

OuterInnerOuterInner

Frequency band

Type of cabinetof TRXMax. numberof TRXMin. Number

Extended Cell configurations

Page 262: RNE Fundamental B10.pdf

Section 1 - Module - Page 2623FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 262

2.9 Alcatel BSS

2.9.11 Standard configurations

1 up to2TRX/ sector

No-combining ANC or ANB

Antenna Antenna

TRX 1 TRX 2

3 up to 4TRX/ sector

Antenna Antenna

TRX 1 TRX 4

Combining ANC

5 up to 6TRX/ sector 5 up to 8RX/sector

TRX 1 TRX 2

Combining ANC

Antenna Antenna

TRX 3 TRX 6

Combiner (ANY)

TRX 1 TRX 4

Combining ANC

Antenna Antenna

TRX 5 TRX 8

Combiner (ANY) Combiner (ANY)

The interface with the antenna system is through one single Antenna network combining (ANC) module in each sector (and then through 2 feeders and two antennas or one dual-polarized antenna).

Standard configurations with Twin TRX in No TX Div

The number of sectors and TRXs depends on the cabinet type, with a maximum of 6 sectors and 24 TRXs in a Indoor MBI5 ("AB" functional variant) or an Outdoor MBO2 evolution cabinet.

Page 263: RNE Fundamental B10.pdf

Section 1 - Module - Page 2633FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 263

2.9 Alcatel BSS

2.9.12 TRX Types

44,830W45,435W1800TGT18

44,830W46,545W900TGT09

44,830W46,860WHP1800TADHE

44,025W47,760WHP1800TADH

47,760WHP1800TRDH

40,025W46,545WMP1900TRAP

44,830W45,435WMP1800TRADE

40,812W45,435WMP1800TRAD

41,830W47,860WHP900TAGHE

44,025W47,760WHP900TAGH

44,830W46,545WMP900TRAGE

41,815W46,545WMP900TRAG

41,815W46,545WMP850TRAL

dBmWdBmW

8PSKGMSKPOWERBANDNAME

Example of TRE boards with their frequency band and power characteristics

GMSK – Gaussian Minimum Shift Keying

8PSK – 8 phase shift keying

TGT – Twin GSM Tranceiver

Different Transceivers are used depending on the band : 900, 1800, 1900 (in America) and 850MHz (this new band has been introduced in the Release 1999 of the 3GPP Standard).

The list above is not exhaustive.

A new Tx Rx hardware module gives the possibility to have per Hardware module transmission receiption function. In this case the module is called Twin TRX

For example

In the MBI5 rack, the number of hardware module is 12 maximum, but if all are Twin TRX the maximum number of Transmitter functions will be 24. (TRE G5)

The new Twin TRX (TGT) gives also the possibility to provide TX diversity

Page 264: RNE Fundamental B10.pdf

Section 1 - Module - Page 2643FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 264

2.9 Alcatel BSS

2.9.12 TRX Types

The losses between TRE connector and the Antenna connector

Configuration Transmission loss (dB)

1 ANC without bridges 1.8

1 ANC 5.1

1 ANC + 1 ANY 8.6

1 ANX 1.8

1 ANX / 1 ANY 5.3

1 ANX + 2 ANY 8.8

delta ANY 3.5

Module Transmission loss (dB)

ANC 4.4

ANC no bridge 1

ANX 1

ANY 3.3

Radio cables

TRE-AN

AN-AN

AN-Antenna

0.3

0.2

0.5

Losses due to the Antenna Network (AN)

Page 265: RNE Fundamental B10.pdf

Section 1 - Module - Page 2653FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 265

2.9 Alcatel BSS

2.9.13 BTS Output Power

What is monitored during validation is the BTS output power at antenna connector

The individual losses for duplexer, combiner and internal cabling are not systematically measured

for detailed info consult the BTS product description

Page 266: RNE Fundamental B10.pdf

Section 1 - Module - Page 2663FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 266

2.9 Alcatel BSS

2.9.14 Feature Power Balancing

From G4 (now G5) BTS it is allowed to use TRXs of different power within the same sector, or to use of different combining path for TRX belonging to the same sector.

Reason: the G4 BTS is able to detect unbalanced losses/powers within a sector and automatically compensate it for GMSK modulation.

Consequence: All TRX connected to one ANc are automatically adjusted to the GMSK output power of the weakest TRX (required for BCCH recovery)

Page 267: RNE Fundamental B10.pdf

Section 1 - Module - Page 2673FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 267

2.9 Alcatel BSS

2.9.15 Cell Split Feature

Principle Cell Split allows to provide one logical cell with one common BCCH over

several BTS cabinets. The cabinets must be synchronized

Benefits Same number of TRX in fewer racks No need to touch/modify the configuration of existing BTS (cabling) Take full benefit of 24 TRX per cabinet

Drawback: more complex antenna system Applications

Multi-band cells Configuration extension of sites by adding TRX Large configurations

Condition: BTS must be synchronized

Configuration built with several cabinets and the “cell split over two BTSs” feature

It is possible to optimize the number of cabinets needed for a site configuration (indoor or outdoor, single band or multi-band) built with more than one cabinet, thanks to a feature called “cell split over two BTSs”.

In that case, the TRXs of one sector can be split over two A9100 BTS cabinets. Various configurations are possible, the only constraint being that following conditions are fulfilled:

Maximal number of TRX per cell is 16.

Maximal number of cabinets between which a given cell is shared is 2.

Cabinets between which a cell is shared are clock synchronised in a master / slave configuration

Note : when used in mono band configurations, cell split feature may allow to reduce the number of cabinets with regards to the solution with one cabinet per sector; but at the expense of a more complex antenna system (two ANC, hence 4 feeders per sector instead of 2 feeders, as for "low-loss" configurations); this has to be considered before selecting such a solution.

Page 268: RNE Fundamental B10.pdf

Section 1 - Module - Page 2683FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 268

2.9 Alcatel BSS

2.9.19 Cell Split Example: High Power Configuration

Cabinet1

(Standard 8,8,8TRX)

Cabinet2

(Standard 8,8,8TRX)

Sector3: 1x16 TRX Sector2: 1x16 TRX Sector1: 1x16 TRX

TRX 1 TRX 4

ANC

TRX 5 TRX 8

ANY ANY

TRX 1 TRX 4

ANC

TRX 5 TRX 8

ANY ANY

TRX 1 TRX 4

ANC

TRX 5 TRX 8

ANY ANY

TRX 1 TRX 4

ANC

TRX 5 TRX 8

ANY ANY

TRX 1 TRX 4

ANC

TRX 5 TRX 8

ANY ANY

TRX 1 TRX 4

ANC

TRX 5 TRX 8

ANY ANY

The following figure gives an example of standard multi-band with multi-band cell 3x8/3x8 in 2 MBI5 cabinets :

For a MBI5, in a 3 sector configuration, max. 3 HP TRX /sector are allowed (thermal reasons).

The only way´to have 3x6 in MBI5 is with the cell split feature.

Page 269: RNE Fundamental B10.pdf

Section 1 - Module - Page 2693FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 269

2.9 Alcatel BSS

2.9.22 Indoor BTS Rack Layout

IND mini: 4carrier, 1 Duplexer (Anx), 1 Combiner (Any), SUM (CPU, Link to BSC)

IND Medi: 12carrier, 3 Duplexer (Anx), 3 Combiner (Any), SUM (CPU, Link to BSC)

Page 270: RNE Fundamental B10.pdf

Section 1 - Module - Page 2703FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 270

2.9 Alcatel BSS

2.9.23 Outdoor MBO1 Evolution and MBO2 Evolution cabinets

Mounting Frame for 19" equipment (3U) A//DC conversion

Ava

ilabl

e sp

ace

for

eith

er:

• M

ount

ing

Fra

me

fo

r 19

" eq

uipm

ent

(6U

) •

Bat

tery

Ava

ilabl

e sp

ace

for

eith

er:

• M

ount

ing

Fra

me

fo

r 19

" eq

uipm

ent (

6U)

• B

atte

ry

Radio subrack

Radio subrack

Radio subrack

Radio subrack

Radio subrack

Radio subrack

156 cm94 cmWidth

161 cm161 cmHeight with plinth

146 cm146 cmHeight without plintht

80 cm80 cmDepth (roof level)

74 cm74 cmDepth (floor level)

MBO2Evolution

MBO1Evolution

External Dimensions

The Multi-standard Outdoor BaseStation cabinets MBO1 Evolution and MBO2 Evolution offer operators important flexibility with:

An easy extension on-site from the Outdoor MBO1 Evolution BTS (up to 12 TRXs capacity) to the Outdoor MBO2 Evolution BTS (up to 24 TRXs capacity)

Page 271: RNE Fundamental B10.pdf

Section 1 - Module - Page 2713FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 271

2.9 Alcatel BSS

2.9.24 Micro BTS types

M5M EVOLIUM A9110 Micro-BTS (M5M)

Introduced in Q3 2003

up to 12 TRX-es

site configurations can mix older A910 with newer A9110-E

support for GPRS and EDGE (release dependent)

Page 272: RNE Fundamental B10.pdf

Section 1 - Module - Page 2723FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 272

2.9 Alcatel BSS

2.9.25 Technical Data

A910A910A910A910(2 TRX)(2 TRX)(2 TRX)(2 TRX)

A9110A9110A9110A9110(2 TRX)(2 TRX)(2 TRX)(2 TRX)

Frequency band GSM 850, E-GSM,GSM900, GSM 1800, GSM

1900

GSM 850, E-GSM,GSM900, GSM 1800, GSM

1900

Tx output power(at antenna connector)

Up to 4.5 W 7 W

Rx sensitivity -107 dBm -110 dBm

Radio FH Yes yes

Temperature range (max.) 55 °C 55 °C

Max. power consumption 130 W 145 W

Size (volume) 54 litres 54 litres

Weight 39.6 kg (incl. connectionbox)

32.5

Page 273: RNE Fundamental B10.pdf

Section 1 - Module - Page 2733FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 273

2.9 Alcatel BSS

2.9.26 BSC capacities in terms of boards

Three BSC capacities are defined depending on the number of TRXs

200 TRX 400 TRX 600 TRX

BSC Capacity

ATCA shelf

CCP

Spare CCP

TPGSM

OMCP

SSW

LIU shelf

MUX

LIU

1 2 3

1

1

2

2

2

1

2

8 16

Equipment

The quantity of TPGSM, OMCP, SSW and MUX boards have to be considered as 1 activ + 1 stand-by for redundancy function in the shelf.

LIU Line Interface Unit – 16x 2Mbit/Board

Page 274: RNE Fundamental B10.pdf

Section 1 - Module - Page 2743FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 274

2.9 Alcatel BSS

2.9.27 Capacity and dimensioning for E1 links

The BSC Evolution is able to process up to 2600 erlangs

200 TRX 400 TRX 600 TRX

BSC Capacity

Max number of BTS

Max number of cells

Total number of E1

Number of Abis

Number of Atermux CS

Number of Erlangs

Traffic Ater PS (Mb/s) Max

255

Equipment

Number of Atermux PS

264

224

176

30

18

2600

36

255

264

128

96

20

12

1800

24

150

200

112

96

10

6

900

12

Page 275: RNE Fundamental B10.pdf

Section 1 - Module - Page 2753FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 275

2.9 Alcatel BSS

2.9.28 Abis and atermux allocation on LIU boards

Abis and atermux allocation on LIU boards versus BSC capacity

200 TRXLIU 1 LIU 2 LIU 3 LIU 4 LIU 5 LIU 6 LIU 7 LIU 8 LIU 9 LIU 10 LIU 11 LIU 12 LIU 13 LIU 14 LIU 15 LIU 16

1 1 17 33 49 65 81 97 113 129 145 161 41 31 21 2 1

2 2 18 34 50 66 82 98 114 130 145 162 42 32 22 4 3

3 3 19 35 51 67 83 99 115 131 147 163 43 33 23 6 5

4 4 20 36 52 68 84 100 116 132 148 164 44 34 24 8 7

5 5 21 37 53 69 85 101 117 133 149 165 45 35 25 10 9

6 6 22 38 54 70 86 102 118 134 150 166 46 36 26 12 11

7 7 23 39 55 71 87 103 119 135 151 167 47 37 27 14 13

8 8 24 40 56 72 88 104 120 136 152 168 48 38 28 16 15

9 9 25 41 57 73 89 105 121 137 153 169 x 39 29 18 17

10 10 26 42 58 74 90 106 122 138 154 170 x 40 30 20 19

11 11 27 43 59 75 91 107 123 139 155 171 x 24 18 12 11

12 12 28 44 60 76 92 108 124 140 156 172 x 23 17 10 9

13 13 29 45 61 77 93 109 125 141 157 173 28 22 16 8 7

14 14 30 46 62 78 94 110 126 142 158 174 27 21 15 6 5

15 15 31 47 63 79 95 111 127 143 159 175 26 20 14 4 3

16 16 32 48 64 80 96 112 128 144 160 176 25 19 13 2 1

Abis ports (max 176)Atermux CS (max 48)Ater mux PS (max 28)

200 TRX400 TRX 400 TRX

600 TRX 600 TRX

200

400

400

200

Abis portsAter Ports

One ater LIU boardfor 200 TRX

Maximum flexibilityon abis LIU board

LIU boards are fitted in the LIU shelf depending on the BSC configuration (Capacity + connectivity), but

• only 2 HW configurations for the LIU shelf are considered: one with 8 LIU boards, one with 16 LIU boards,

• Assignment to each LIU boards either to Abis or Ater,

• On the Ater LIU, 10 TP are “generic” (can be assigned either to PS, full CS or a mixed of the 2), and the 6 others are dedicated to PS.

In case of 200 TRX configuration, Alcatel decided to split the traffic up to 2 LIU boards (even if one LIU board should be efficient) in order to not impact all the traffic in case of one LIU board failure.

The maximum of available LIU boards are used for Abis, to offer maximum flexibility to the clients.

The port numbered 9, 10, 11 and 12 on the LIU 12 are not used.

Page 276: RNE Fundamental B10.pdf

Section 1 - Module - Page 2763FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 276

2 Coverage Planning

2.10 Coveradge Improvement

Page 277: RNE Fundamental B10.pdf

Section 1 - Module - Page 2773FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 277

2.10 Coveradge Improvement

2.10.1 Antenna Diversity

Page 278: RNE Fundamental B10.pdf

Section 1 - Module - Page 2783FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 278

2.10.1 Antenna Diversity

2.10.1.1 Diversity

Purpose

Improvement in fading probability statistics

leads to a better total signal level or better total S/N ratio

Principle

Combining signals with same information from different signal branches

Demands

correlation between different signal branches should be low

Combining methods

Selection Diversity

Maximum Ratio Combining

Equal Gain Combining

Purpose

The purpose of using diversity is to reduce short-term fading effects, such that an acceptable level of performance (receiver sensitivity) can be achieved, without having to increase the transmitted power or the bandwidth.

Principle

The principle relies on the combination of two or more signals, containing the same information, which are at least partially de-correlated. If two signals of the same level are completely de-correlated, the probability that both signals experience the same depth of fade is very low. Therefore the signal reliability is increased.

Page 279: RNE Fundamental B10.pdf

Section 1 - Module - Page 2793FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 279

Time [sec]

Fieldstrength

[dBm]

0.1 0.2 0.3 0.4

-80

-90

-100

Antenna 1 Antenna 2

2.10.1 Antenna Diversity

2.10.1.2 Selection Diversity (1)

Principle

selection of the highest baseband signal-to-noise ratio (S/N) or of the strongest signal (S+N)

Correlation of signal levels

a lower correlation between signal levels of different branches improves the total signal level

Correlation of signal levels should be low

The algorithm for the selective diversity combining technique is based on the principle of selecting the best signal among all of the signals received from different branches, at the receiving end.

Page 280: RNE Fundamental B10.pdf

Section 1 - Module - Page 2803FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 280

Time [sec]

Fieldstrength

[dBm]

0.1 0.2 0.3 0.4

-80

-90

-100

Antenna 1

Antenna 2

2.10.1 Antenna Diversity

2.10.1.3 Selection Diversity (2)

Difference in signal level

a high difference in signal levels of two branches doesn’t improve the total signal level

Difference in signal levels should be low

Page 281: RNE Fundamental B10.pdf

Section 1 - Module - Page 2813FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 281

2.10.1 Antenna Diversity

2.10.1.4 Selection Diversity (3)

Theoretical diversity gain

10dB for two-branch diversity at the 99% reliability level

16dB for four branches at the 99% reliability level

The theoretical diversity gain doesn’t improve linear with the number of branches

Page 282: RNE Fundamental B10.pdf

Section 1 - Module - Page 2823FL 11820 ACAA WBZZA Edition 3

In comparison with MRC, in this technique the branch weights are all set to unity but the signal from each branch are co-phased to provide equal gain combining diversity.

The possibility of producing an acceptable signal from a number of unacceptable inputs is still retained, and performance is only marginally inferior to maximal ratio combining an superior to selection diversity.

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 282

2.10.1 Antenna Diversity

2.10.1.5 Equal Gain Combining (1)

Principle

cophase signal branches

sum up signals

Coherent addition of signals and incoherent addition of noises

Theoretical diversity gain

11dB for two-branch diversity at the 99% reliability level

Page 283: RNE Fundamental B10.pdf

Section 1 - Module - Page 2833FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 283

2.10.1 Antenna Diversity

2.10.1.6 Equal Gain Combining (2)

Difference in signal level

Assuming equal noise in the branches, the higher the difference in signal levels is, the higher is the loss of S/N ratio of the better signal branch after summation

Difference in signal levels should be low

Correlation of signal levels

a lower correlation between signal levels of different branches improves the total S/N ratio

Correlation of signal levels should be low

Page 284: RNE Fundamental B10.pdf

Section 1 - Module - Page 2843FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 284

2.10.1 Antenna Diversity

2.10.1.7 Maximum Ratio Combining (1)

Principle

weight signals proportionally to their S/N ratios

cophase signal branches

sum up the weighted signals

Coherent addition of signals and incoherent addition of noises

Improved S/N

In this method the signals from all the branches are weighted according to their individual S/N and then summed. Here the individual signals must be co-phased before being summed ( unlike selection diversity ) which generally requires an individual receiver and phasing circuit for each antenna .

Maximal ratio combining produces an output SNR equal to the sum of the individual SNRs. Thus, it has the advantage of producing an output with an acceptable SNR even when none of the individual signals are themselves acceptable.

This technique gives the best statistical reduction of fading of any known diversity combiner. Modern DSPs and digital receivers are now making this optimal form of diversity practical.

Page 285: RNE Fundamental B10.pdf

Section 1 - Module - Page 2853FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 285

Correlation of signal levels

a lower correlation between signal levels of different branches improves the total S/N ratio

Correlation of signal levels should be low

2.10.1 Antenna Diversity

2.10.1.8 Maximum Ratio Combining (2)

Difference in signal level

Assuming equal noise in the branches, the higher the difference in signal levels is, the higher is the loss of S/N ratio of the better signal branch after summation

comparing to equal ratio combining, this combining reduces influence of worse signal branches

Difference in signal levels should be low

Page 286: RNE Fundamental B10.pdf

Section 1 - Module - Page 2863FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 286

2.10.1 Antenna Diversity

2.10.1.9 Comparison of combining methods

Improvement of average SNR from a diversity combiner compared to one branch

(a) Maximum Ratio Combining

(b) Equal Gain Combining

(c) Selection Diversity

The maximum ratio combining, which is used in the ALCATEL BTS, gives the best statistical reduction of any known linear diversity combiner.

Page 287: RNE Fundamental B10.pdf

Section 1 - Module - Page 2873FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 287

2.10.1 Antenna Diversity

2.10.1.10 Enhanced Diversity Combining (1)

Principle:

2 algorithms

• Beam forming algorithm (available also for MRC)

• Interference reduction algorithm (new)

best efficiency when the useful signal and the interfering signals come from different directions.

Requirements to benefit from this feature:

Hardware: G4 (onwards) TRE (Edge capable TRX) installed in EvoliumEvolution BTS step1 resp. step 2 (internal name: G3 resp. G4)

Software release: from B6.2 onwards

For a maximum gain: antenna engineering rules respected

• Correct antenna choice for the considered environment

• Correct antenna spacings and orientations (in case of space diversity)

The TRX module supports enhanced diversity combining in all frequency bands, which is based on several algorithms:

A beam-forming algorithm to improve the received signal by steering a beam in the direction of the mobile. This is one way of doing smart antennas,

An algorithm to reduce interference: this mitigates the influence of interferers by steering a null beam in the direction of the main interferer (the phase difference between the two antennas for the strongest interfering signal is estimated and then this interfering signal is strongly attenuated by summing the signals with an inversed phase).

Maximum efficiency of enhanced diversity combining is achieved when the useful/desired signal and the interfering signals emanate from different directions. In interference-limited environments, beam-forming algorithms will provide a much greater diversity gain compared to traditional maximum ratio combining.

The above mentioned algorithms are working together in a way to combat spatial interferer signals while keeping optimal sensitivity perfomance for undisturbed but week reception.

Page 288: RNE Fundamental B10.pdf

Section 1 - Module - Page 2883FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 288

2.10.1 Antenna Diversity

2.10.1.11 Enhanced Diversity Combining (2)

-114.5dBm3.5 dBRural (RA100)

-116dBm5 dBSub Urban (TU50)

-117dBm6 dBDense Urban (TU3)

Equivalent RX sensitivity (without TMA)Total 2RX diversity gain

Environment

Diversity gain coming from the fact that the signals received on both antennas are de-correlated (this requires using Xpol antennas or largely spaced antennas)Array-Gain or Beamforming gain : coming from the fact, that co-phased signals are added (stronger combined signal power) for this directionNull Steering / Interference Reduction (with a spatial interferer) coming from a algorithm which reduces the interference (the figures below assume a standard interference margin is considered for the link budget)

Page 289: RNE Fundamental B10.pdf

Section 1 - Module - Page 2893FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 289

2.10.1 Antenna Diversity

2.10.1.12 Tx Diversity

GSM900: 50.5dBm (113W)GSM1800: 49.4dBm (88W)

4 dBRural (RA100)

GSM900: 51.1dBm (129W)GSM1800: 50dBm (100W)

4.6 dBSub Urban (TU50)

GSM900: 52.4dBm (175W)GSM1800: 51.3dBm (136W)

5.9 dBDense Urban (TU3)

Equivalent TX output power (GMSK)Total TX diversity gain

Environment

Basic Idea:Transmit twice the same signal from two antennasNo combining losses (on air combining) 3dB gain

Possible Issue:Coherence between signal can lead to destructive effectsThis effect depends on the environment a short delay is introduced between two antennas (2 symbols)

BTS MS

0011000101001

0011000101001

short delay

TX Diversity works with all types of Mobile stations since it is fully transparent to the receiver; this feature takes advantage of the MS equalizer which can already handle multiple paths with different times of arrival.

Consequently, the equivalent TX output power is very high, up to 6dB above the nominal TX output power, which improves the coverage and reduces the number of sites needed to cover a given area, provided the link budget remains balanced or downlink-limited

The table provides the typical gains achieved thanks to TX Diversity and the equivalent TX output power that can be considered for link budget calculations. Note that such gains are environment-dependent

since they are highly related to the level of de-correlation between paths.

In 8-PSK, the TX diversity gain is highly dependent on the coding scheme, the environment and the level of Carrier to Interference+Noise Ratio. No significant gains are expected.

Page 290: RNE Fundamental B10.pdf

Section 1 - Module - Page 2903FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 290

2.10.1 Antenna Diversity

2.10.1.12 Tx Diversity

Diversity Gain:

On top of the output power increase

TxDiv artificially increases the number of multi-paths

The higher the de-correlation between paths, the higher the gain

Other features: a) high power TRX or b) Transmit Coherent Combining do not benefit from this effect

First channel

Second channel

Time

Attenuation

Fading hole

Example:

2 paths (blue and red)

They show independent amplitude (fast) fading

Probability to fall in a hole is reduced

Fading holes of a channel are often compensated by the other channel

Additional gain

Page 291: RNE Fundamental B10.pdf

Section 1 - Module - Page 2913FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 291

2.10.1 Antenna Diversity

2.10.1.12 Tx Diversity

Delay Trade-Off

Higher delay between antennas implies

• Less destructive effect, more de-correlated paths and so higher diversity gain: Higher Gains

• Higher channel delay spread: More Self-interference

Alcatel found the optimal trade-off

• For all environments

• Based on extensive simulations and lab measurements

0011000101001

0011000101001

short delay

Page 292: RNE Fundamental B10.pdf

Section 1 - Module - Page 2923FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 292

2.10.1 Antenna Diversity

2.10.1.12 Tx Diversity

Summary of the Transmit Diversity effects

3dB increase of the signal strength

Additional up to 2.9dB diversity gain for un-correlated fast fading:• Diversity gains are maximum in dense urban because there are a lot of scatterers

• Diversity gains are reduced in rural because we have Line of Sight propagation

Self-interference due to the artificial increase of the delay spread

Environment Fading Profile

Power increase

Diversity gain

Total TxDivgain

Dense Urban TU3 3dB 2.9dB 5.9dB

Sub-Urban TU50 3dB 1.6dB 4.6dB

Rural RA100 3dB 1dB 4dB

Page 293: RNE Fundamental B10.pdf

Section 1 - Module - Page 2933FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 293

2.10.1 Antenna Diversity

2.10.1.12 Diversity systems in Mobile Radio Networks

Two diversity systems are used in Mobile Radio Networks :

Space DiversitySpace Diversity

• horizontal

• vertical

Polarization DiversityPolarization Diversity

dH

RXA RXB

+45° -45°

RXA RXB

dH

TXA TXB

+45° -45°

TXA TXBTXA

TXB

dv

Page 294: RNE Fundamental B10.pdf

Section 1 - Module - Page 2943FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 294

2.10.1 Antenna Diversity

2.10.1.13 Space Diversity Systems

Diversity gain depends on spatial separation of antennas

dH

RXA RXB

dV

RXA

RXB

Horizontal separation(e.g. Roof Top)

Vertical separation(e.g. Mast)

For Optimum Diversity GaindH = 20λλλλ dV =

15λλλλGSM900 = 6m GSM900 = 4.5mGSM1800 = 3m GSM1800 = 2.25m

Page 295: RNE Fundamental B10.pdf

Section 1 - Module - Page 2953FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 295

The larger the separation the higher the diversity gain

Prefer horizontal separation (more effective)

The higher the antenna the higher the required

separation, rule: d > h/10

Highest diversity gain from the "broadside”

Select orientation of diversity setup according to orientation of cell / traffic

h

d

Optimum diversity Gain

2.10.1 Antenna Diversity

2.10.1.14 Space Diversity - General Rules

Page 296: RNE Fundamental B10.pdf

Section 1 - Module - Page 2963FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 296

2.10.1 Antenna Diversity

2.10.1.15 Achievable Diversity Gain

Depends on fading conditions

Varies in between 2.5 - 6dB

Higher diversity gain in areas with multipath propagation (urban and suburban areas)

General rule: consider diversity gain with 3dB in the link budget

Page 297: RNE Fundamental B10.pdf

Section 1 - Module - Page 2973FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 297

Horizontal / vertical polarization:Hor/Ver Antenna

Polarization of +/- 45°:cross polarized antennaor Slant antenna

Big Advantage: Only one panel antenna is required to profit from diversity gain using this configuration

V H +45° -45°

RXA RXB RXA RXB

2.10.1 Antenna Diversity

2.10.1.16 Polarization Diversity

Diversity gain in using orthogonal orientated antennas

Page 298: RNE Fundamental B10.pdf

Section 1 - Module - Page 2983FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 298

Diversity

Gain

multipath-

propagation

reflection,

diffraction

reception with

reception with

a hor / ver

polarised

antenna

a X-polarised

antenna

EV

EH

EX2

EX1

G = f( ρ,∆ )

Time [sec]

Ex1 or Ev

Ex2 or Eh

2.10.1 Antenna Diversity

2.10.1.17 Principle of Polarization Diversity

ρρρρ correlation coeficient (0.7)

∆∆∆∆ difference in signal level

---> diversity gain with dual polarized antennas depends on :

ρ, ∆ and the orientation of the sending and receiving antenna

To achieve low correlation and low differences in signal level, reflection and diffraction under multipath condition is necessary. ---->

In rural areas neglectible diversity gain can be expected from polarization diversity.

Page 299: RNE Fundamental B10.pdf

Section 1 - Module - Page 2993FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 299

2.10.1 Antenna Diversity

2.10.1.18 Air Combining

Features

only one TX per antenna

combining signals "on air" and not in a combiner

3dB combiner loss can be saved to increase coverage

Can be realized with

two vertical polarized antennas

one cross polarized panel antennaTX1 TX2

TX1 TX2

The idea of air combining is to combine transmitted signals in the air and not with an internal combiner, in order to save combining losses. Thus the maximum achievable coverage range will be increased.

Air combining can be realized with

• two sector or omni antennas

• one cross polar antenna transmitting different carriers on +/-45°.

Page 300: RNE Fundamental B10.pdf

Section 1 - Module - Page 3003FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 300

2.10.1 Antenna Diversity

2.10.1.19 Air Combining with Polarization Diversity

One antenna system

cross polarized antennas recommended for urban/suburban area (less space req.)

No Air combiningBandfilter if De-coupling too low

Air combiningRecommended forEvolium BTS

V H

DUPL BF

TX RXA RXB

DUPL

TX1 RX1 TX2 RX2RX2D RX1D

DUPL

or

1 TRX 2 TRX

Page 301: RNE Fundamental B10.pdf

Section 1 - Module - Page 3013FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 301

2.10.1 Antenna Diversity

2.10.1.20 Air Combining with Space Diversity

Two antenna system

Vertical or horizontal spacing (recommended for rural area)

RXA RXB TX

or or

RXARXB

TX

Page 302: RNE Fundamental B10.pdf

Section 1 - Module - Page 3023FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 302

2.10.1 Antenna Diversity

2.10.1.21 Decoupling of Signal Branches

One antenna system: TX / RX decoupling cannot be achieved by spatial separation

Decoupling between both polarization branches needs to be sufficiently high to avoid

blocking problems

intermodulation problems

Required decoupling values

G2 BTS: 30 dB

Evolium A9100 BTS: 25dB (Integrated duplexer Anx)

Page 303: RNE Fundamental B10.pdf

Section 1 - Module - Page 3033FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 303

2.10.1 Antenna Diversity

2.10.1.22 Cross Polarized or Hor/Ver Antenna? (1)

Receiving Application

same diversity gain for cross polarized and hor/ver antennas

in urban and suburban area polarization diversity gainpolarization diversity gain equal to space space diversity gaindiversity gain (2.5 - 6dB)

negligible polarization diversity gain polarization diversity gain in rural areas (not recommended)

accordingly consider polarization diversity gainpolarization diversity gain with 3dB in the link budget

Page 304: RNE Fundamental B10.pdf

Section 1 - Module - Page 3043FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 304

2.10.1 Antenna Diversity

2.10.1.23 Cross Polarized or Hor/Ver Antenna? (2)

Transmission Application: Air combining

3dB loss when transmitting horizontal/vertical polarized (use of combiner)

1-2dB losses when transmitting at 45° (optimum antenna is straighten vertically)

Air combining only recommended with cross polarized antenna

3dB2dB

Page 305: RNE Fundamental B10.pdf

Section 1 - Module - Page 3053FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 305

2.10.1 Antenna Diversity

2.10.1.24 Conclusion on Antenna Diversity

Rural Areas

installation space not limited

apply Space Diversity (higher gain)

Urban and Suburban Area

apply space or polarization diversity

use cross polarized antennas for air combining

Diversity Gain

consider diversity gain in link budget with 3dB

Page 306: RNE Fundamental B10.pdf

Section 1 - Module - Page 3063FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 306

2.10. Coveradge Improvement

2.10.2 Repeater Systems

Page 307: RNE Fundamental B10.pdf

Section 1 - Module - Page 3073FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 307

2.10.2 Repeater Systems

2.10.2.1 Repeater Application

BTS (donor cell)repeater

original service areaarea covered by repeater

Page 308: RNE Fundamental B10.pdf

Section 1 - Module - Page 3083FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 308

2.10.2 Repeater Systems

2.10.2.2 Repeater Block Diagram

Required Isolation > 70…90 dB

A repeater is a bi-directional amplifier. It receives the downlink signal from the BTS, amplifies it and transmits the signal to the mobile. In the uplink direction, the signal of the mobile is received, amplified and transmitted to the BTS.

Page 309: RNE Fundamental B10.pdf

Section 1 - Module - Page 3093FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 309

2.10.2 Repeater Systems

2.10.2.3 Repeater Applications (2)

Coverage Improvement of Cells (‘Cell Enhancer’)

removal of coverage holes caused by

• topography (hills, ravines, ...)

• man made obstacles

Provision of tunnel coverage

street, railway tunnels

underground stations

Provision of indoor coverage at places of low additional traffic

Page 310: RNE Fundamental B10.pdf

Section 1 - Module - Page 3103FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 310

2.10.2 Repeater Systems

2.10.2.4 Repeater Types

Channel selective repeaters

high selectivity of certain channels

high traffic areas, small cell sizes

Band selective repeaters

adjustment to operator’s frequency band

no (accidental) usage by competitors

Broad band repeaters

low cost solution for low traffic areas (rural environment)

medium to high repeater gain

Personal repeaters

low gain

broad band

indoor coverage improvement for certain rooms

Page 311: RNE Fundamental B10.pdf

Section 1 - Module - Page 3113FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 311

Antennato donor cell

Repeater

Radiatingcable

Tunnel

2.10.2 Repeater Systems

2.10.2.5 Repeater for Tunnel Coverage

Choice of repeater type due to

tunnel dimensions

wall materials

feeding by

directional antennas

leaky feeder cables

long tunnels

chains of several repeaters

fiber optic backbone for repeater feeding

Page 312: RNE Fundamental B10.pdf

Section 1 - Module - Page 3123FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 312

Personal repeater

Antennatodonor cell

Fiber opticdistribution

Remoteunits

Master unit

Radiatingcable

2.10.2 Repeater Systems

2.10.2.4 Repeater for Indoor coverage

For smaller buildings

Compensation for wall losses, window losses (heat insulated windows)

Low cost personal repeaters installed in certain rooms

For larger buildings (shopping malls, convention centers, sport centers)

multispot transmission using

• co-axial distribution network

• fiber-optic distribution network

Page 313: RNE Fundamental B10.pdf

Section 1 - Module - Page 3133FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 313

2.10.2 Repeater Systems

2.10.2.5 Planning Aspects

Repeater does not provide additional traffic capacity

risk of blocking if additional coverage area catches more traffic

possible carrier upgrading required

Repeater causes additional signal delay

delay: 4..8µs → max. cell range of 35 km reduced by 1 to 2km

special care needed for total delay of repeater chain!

delayed signal and original signal could cause outage in urban environment if total delay exceeds 16 ... 22µs

Page 314: RNE Fundamental B10.pdf

Section 1 - Module - Page 3143FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 314

2.10.2 Repeater Systems

2.10.2.6 Repeater Gain Limitation (1)

Intermodulation products should be low

when amplifier reaches saturation point, intermodulation products go up

Signal to noise ratio should be high

when amplifier reaches saturation point, signal to noise ratio is getting worse

Antenna isolation between transmission and receiving antenna should be high

if signal feedback from transmission antenna to receiving antenna is too high, amplifier goes into saturation

Page 315: RNE Fundamental B10.pdf

Section 1 - Module - Page 3153FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 315

2.10.2 Repeater Systems

2.10.2.7 Repeater Gain Limitation (2)

Pin Poutgain78 dB

isolation90 dB

Pback =Pin - 12 dB

Repeater gain limited by antenna isolation:

GRepeater < IDonor, Repeater - M M (Margin) ~ 12 dB

Measure isolation after installation

inMAmplifierGI argδ+=

Page 316: RNE Fundamental B10.pdf

Section 1 - Module - Page 3163FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 316

2.10.2 Repeater Systems

2.10.2.8 Intermodulation Products

A Non-linear system produces higher-order intermodulation

products as soon as output power reaches the saturation point

Parameter 1 dB compression point

3rd order intercept point (ICP3)

Intermodulation reduction (IMR)

Amplifier back-off

GSM900/GSM1800 requirements IM products ≤ -36 dBm or

IM distance > 70 dBc whichever is higher

Each amplifier has a limited linear operation range.

In the linear range the input power is amplified by the amplification factor v. But this is only valid until a certain maximum input power. As soon as you feed the amplifier with too high input power the input signal will less and less amplified. The point were the degradation from the specified amplification is 1dB is called the one dB compression point.

Lower amplification is one effect when you operate an amplifier in the non linear region, another effect which can cause even worse problems is the intermodulation. Especially the 3rd order intermodulation product (2f1+-f2) is very significant. The amplifier produces interfering signals based on available frequencies (f1 and f2).

dbc = is the power of one signal referenced to a carrier signal

Page 317: RNE Fundamental B10.pdf

Section 1 - Module - Page 3173FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 317

Uplink Loss = Downlink Loss ⇒ Uplink Gain = Downlink Gain!

2.10.2 Repeater Systems

2.10.2.9 Repeater Link Budget

Different gains may be needed in Up- and Downlink if the

sensitivity of the repeater is worse than the sensitivity of the BTS

!

Downlink Path Unit ValueReceived power at repeater dBm -65Link antenna gain dBi +19Cable loss dB -2Repeater input power dBm -48Repeater gain dB +78Repeater output power dBm 30Cable loss dB -2Repeater antenna gain dBi +18EIRP dBm 46

Page 318: RNE Fundamental B10.pdf

Section 1 - Module - Page 3183FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 318

2.10.2 Repeater Systems

2.10.2.10 High Power TRXs

High Power TRXs: solution for coverage improvement

HP must be used together with TMA: due to unbalanced Link Budget

A9100 BTS supports

High Power TRX

Medium Power

TRX type is chosen by:

• environment conditions

• required data throughput (GPRS/EDGE)

TX power of EVOLIUM™ Evolution step 2 TRX :

Frequency band TX output power, GMSK TX output power, 8-PSK (EDGE)

GSM 900 HP 60 W = 47.8 dBm 25 W = 44.0 dBm

GSM 1800 HP 60 W = 47.8 dBm 25 W = 44.0 dBm

Page 319: RNE Fundamental B10.pdf

Section 1 - Module - Page 3193FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 319

2.10.2 Repeater Systems

2.10.2.13 3x6 TRXs High Power Configuration

Configuration made with EVOLIUM™ A9100 Base Station

Obs:

All TRX are HP

The configuration is using cell split feature

Cabinet1(High power 3x3TRX)

Sector3: 1x6 TRXSector2: 1x6 TRXSector1: 1x6 TRX

Cabinet2(High power 3x3TRX)

No-com-bining

ANc

HPTRX1 HPTRX 2

Combi-ning

MPTRX 3

No-com-bining

ANc

HPTRX1 HPTRX 2

Combi-ning

MPTRX 3

No-com-bining

ANc

HPTRX1 HPTRX 2

Combi-ning

MPTRX 3

No-com-bining

ANc

HPTRX1 HPTRX 2

Combi-ning

MPTRX 3

No-com-bining

ANc

HPTRX1 HPTRX 2

Combi-ning

MPTRX 3

No-com-bining

ANc

HPTRX1 HPTRX 2

Combi-ning

MPTRX 3

Page 320: RNE Fundamental B10.pdf

Section 1 - Module - Page 3203FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 320

2.10.2 Repeater Systems

2.10.2.14 Mixed TRX Configuration

BTS EVOLIUM™ supports a mix of:

EVOLIUM™ TRX (TRE) - supports GSM/GPRS and EDGE

EVOLIUM™ Evolution step 2 TRX (TRA) with Medium Power

EVOLIUM™ Evolution step 2 TRX (TRA) with High Power

T

R

E

T

R

E

T

R

A

MP

T

R

A

HP

Hardware configuration

Logical cell

TRX1 (BCCH)

TRX2 (1 SDCCH)

TRX3

TRX4

Packet VoiceAllocation

Page 321: RNE Fundamental B10.pdf

Section 1 - Module - Page 3213FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 321

3 Traffic & Frequency Planning

Page 322: RNE Fundamental B10.pdf

Section 1 - Module - Page 3223FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 322

3 Fraffic & Frequency Planning

3.1 Traffic Caspacity

Page 323: RNE Fundamental B10.pdf

Section 1 - Module - Page 3233FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 323

3.1 Traffic Capacity

3.1.1 Telephone System

subscriber

1

2

3

4

line to PSTN

sub 1

sub 2

sub 3

sub 4

timeobservation period, e.g.main busy hour (MBH)

blocked callattempts

Parameters:

λ: arrival rate [1/h]µ: release rate [1/h]1/µ: mean holding time [sec]

"offered" traffic = # of calls arriving in MBH × mean holding time ρ = λ ×ρ = λ ×ρ = λ ×ρ = λ × 1/µµµµ [Erlang]

automaticswitch

Page 324: RNE Fundamental B10.pdf

Section 1 - Module - Page 3243FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 324

3.1 Traffic Capacity

3.1.2 Offered Traffic and Traffic Capacity

Handled Traffic, Traffic Capacity: T

Blocking Probability, Grade of Service (GoS): pblock = R / ρ System load: ττττ = T / n, i.e. T < n

Loss System(n slots)

HandledTraffic (T)

OfferedTraffic (ρ)

Rejected Traffic (R)

T = ρ - R

Page 325: RNE Fundamental B10.pdf

Section 1 - Module - Page 3253FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 325

3.1 Traffic Capacity

3.1.3 Definition of Erlang

ERLANG : Unit used to quantify traffic

T = (resource usage duration)/(total observation duration) [ERLANG]

Page 326: RNE Fundamental B10.pdf

Section 1 - Module - Page 3263FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 326

3.1 Traffic Capacity

3.1.4 Call Mix and Erlang Calculation

CALL MIX EXAMPLE

• 350 call/hour

• 3 LU/call

• TCH duration : 85 sec

• SDCCH duration : 4,5 sec

ERLANG COMPUTATION

• TCH = (350 * 85)/3600 = 8,26 ERLANG

• SDCCH = [ (350 + 350*3) * 4,5 ] / 3600 = 1.75 ERLANG

Page 327: RNE Fundamental B10.pdf

Section 1 - Module - Page 3273FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 327

3.1 Traffic Capacity

3.1.5 ERLANG B LAW

ERLANG B LAW

Relationship between

• Offered traffic

• Number of resources

• Blocking rate

Page 328: RNE Fundamental B10.pdf

Section 1 - Module - Page 3283FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 328

3.1 Traffic Capacity

3.1.5 ERLANG B LAW (2)

call request arrival rate (and leaving) is not stable

number of resources = average number of requests mean duration

is sometime not sufficent => probability of blocking

=> Erlang B law

Pblock : blocking probability

N : number of resources

E : offered traffic [Erlang]

Calculated with Excel - Makro or Table

Page 329: RNE Fundamental B10.pdf

Section 1 - Module - Page 3293FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 329

3.1 Traffic Capacity

3.1.6 Erlang´s Formula

How to calculate the traffic capacity T?

Basics: Markov Chain (queue statistics)

Calculation of the blocking probability using Erlang´s formula (Erlang B statistics):

Varation of ρρρρ until pblock reached: ρρρρ →→→→ T

pn i

block

n i

i

n= ∑

=

ρρρρ ρρρρ! !0

p0 p1

2µµ

λpi

λpn

p2

no callestablishe

d

i channels occupied

all channels occupied

Page 330: RNE Fundamental B10.pdf

Section 1 - Module - Page 3303FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 330

3.1 Traffic Capacity

3.1.7 Blocking Probability (Erlang B)

Nr. of Blocking Probability Erlang Bchannels 0.1% 0.2% 0.5% 1% 2% 3% 4% 5% 10% 15% 20% 50%

1 0.001 0.002 0.005 0.010 0.020 0.031 0.042 0.053 0.111 0.176 0.250 1.0002 0.046 0.065 0.105 0.153 0.223 0.282 0.333 0.381 0.595 0.796 1.000 2.7323 0.194 0.249 0.349 0.455 0.602 0.715 0.812 0.899 1.271 1.602 1.930 4.5914 0.439 0.535 0.701 0.869 1.092 1.259 1.399 1.525 2.045 2.501 2.945 6.5015 0.762 0.900 1.132 1.361 1.657 1.875 2.057 2.218 2.881 3.454 4.010 8.4376 1.146 1.325 1.622 1.909 2.276 2.543 2.765 2.960 3.758 4.445 5.109 10.3897 1.579 1.798 2.157 2.501 2.935 3.250 3.509 3.738 4.666 5.461 6.230 12.3518 2.051 2.311 2.730 3.128 3.627 3.987 4.283 4.543 5.597 6.498 7.369 14.3209 2.557 2.855 3.333 3.783 4.345 4.748 5.080 5.370 6.546 7.551 8.522 16.294

10 3.092 3.427 3.961 4.461 5.084 5.529 5.895 6.216 7.511 8.616 9.685 18.27311 3.651 4.022 4.610 5.160 5.842 6.328 6.727 7.076 8.487 9.691 10.857 20.25412 4.231 4.637 5.279 5.876 6.615 7.141 7.573 7.950 9.474 10.776 12.036 22.23813 4.831 5.270 5.964 6.607 7.402 7.967 8.430 8.835 10.470 11.867 13.222 24.22414 5.446 5.919 6.663 7.352 8.200 8.803 9.298 9.730 11.473 12.965 14.413 26.21215 6.077 6.582 7.376 8.108 9.010 9.650 10.174 10.633 12.484 14.068 15.608 28.20116 6.721 7.258 8.099 8.875 9.828 10.505 11.059 11.544 13.500 15.176 16.807 30.19117 7.378 7.946 8.834 9.652 10.656 11.368 11.952 12.461 14.522 16.289 18.010 32.18218 8.046 8.644 9.578 10.437 11.491 12.238 12.850 13.385 15.548 17.405 19.216 34.17319 8.724 9.351 10.331 11.230 12.333 13.115 13.755 14.315 16.579 18.525 20.424 36.16620 9.411 10.068 11.092 12.031 13.182 13.997 14.665 15.249 17.613 19.647 21.635 38.15921 10.108 10.793 11.860 12.838 14.036 14.885 15.581 16.189 18.651 20.773 22.848 40.15322 10.812 11.525 12.635 13.651 14.896 15.778 16.500 17.132 19.692 21.901 24.064 42.14723 11.524 12.265 13.416 14.470 15.761 16.675 17.425 18.080 20.737 23.031 25.281 44.14224 12.243 13.011 14.204 15.295 16.631 17.577 18.353 19.031 21.784 24.164 26.499 46.13725 12.969 13.763 14.997 16.125 17.505 18.483 19.284 19.985 22.833 25.298 27.720 48.13230 16.684 17.606 19.034 20.337 21.932 23.062 23.990 24.802 28.113 30.995 33.840 58.11335 20.517 21.559 23.169 24.638 26.435 27.711 28.758 29.677 33.434 36.723 39.985 68.09940 24.444 25.599 27.382 29.007 30.997 32.412 33.575 34.596 38.787 42.475 46.147 78.08845 28.447 29.708 31.656 33.432 35.607 37.155 38.430 39.550 44.165 48.245 52.322 88.07950 32.512 33.876 35.982 37.901 40.255 41.933 43.316 44.533 49.562 54.029 58.508 98.072

Page 331: RNE Fundamental B10.pdf

Section 1 - Module - Page 3313FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 331

3.1 Traffic Capacity

3.1.8 BTS Traffic Capacity (Full Rate)

Number of Speech Traffic (Erlang B) Signalling Traffic (Erlang B)

TRX SDCCH TCH 1% 2% 5% 0.1% 0.2% 0.5%

1 4 7 2.501 2.935 3.738 0.439 0.535 0.701

2 8 14 7.352 8.2 9.73 2.051 2.311 2.73

3 8 22 13.651 14.896 17.132 2.051 2.311 2.73

4 16 29 19.487 21.039 23.833 6.721 7.258 8.099

5 16 37 26.379 28.254 31.64 6.721 7.258 8.099

6 24 44 32.543 34.682 38.557 12.243 13.011 14.204

7 24 52 39.7 42.124 46.533 12.243 13.011 14.204

8 32 59 46.039 48.7 53.559 18.205 19.176 20.678

Page 332: RNE Fundamental B10.pdf

Section 1 - Module - Page 3323FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 332

3 Fraffic & Frequency Planning

3.2 Network Evolution

Page 333: RNE Fundamental B10.pdf

Section 1 - Module - Page 3333FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 333

3.2 Network Evolution

3.2.1 Network Evolution - Capacity Approach (1)

The roll out of a network is dedicated to provide coverage

Network design changes rapidly

Planning method must be flexible and fast (group method)

Manual frequency planning possible

Page 334: RNE Fundamental B10.pdf

Section 1 - Module - Page 3343FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 334

3.2 Network Evolution

3.2.2 Network Evolution - Capacity Approach (2)

With the growing amount of subscribers, the need for more installed capacity is rising

Possible Solutions:

Installing more TRXs on the existing BTS

Implementing additional sites

Discussion!

Also new services like GPRS are demanding more capacity

Page 335: RNE Fundamental B10.pdf

Section 1 - Module - Page 3353FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 335

3.2 Network Evolution

3.2.3 Network Evolution - Capacity Approach (3)

Installing more TRXs - Advantages

No site search/acquisition process

No additional sites to rent (saves cost)

Trunking efficiency Higher capacity per cell

Installing more TRXs - Disadvantages

More antennas on roof top (Air combining)

Additional losses if WBC has to be used

• Less (indoor) coverage

More frequencies per site needed

Tighter reuse necessary decreasing quality

Trunking efficiency

1TRX 2.7 Erl. +2.7 Erl

2TRX 8.2 Erl +5.3 Erl (+1 Signalling TS)

3TRX 14.9 Erl +6.7 Erl

4TRX 21.0 Erl +6.1 Erl (+1 Signalling TS)

5TRX 28.3 Erl +7.3 Erl

6TRX 34.7 Erl +6.4 Erl (+1 Signalling TS)

7TRX 42.1 Erl +7.4 Erl

….

Page 336: RNE Fundamental B10.pdf

Section 1 - Module - Page 3363FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 336

3.2 Network Evolution

3.2.4 Network Evolution - Capacity Approach (4)

Implementing additional sites - Advantages

Reuse can remain the same (smaller cell sizes)

Needs less frequency spectrum

• higher spectrum efficiency

Implementing additional sites - Disadvantages

Additional site cost (rent)

Re-design of old cells necessary (often not done)

Page 337: RNE Fundamental B10.pdf

Section 1 - Module - Page 3373FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 337

3 Fraffic & Frequency Planning

3.3 Cell Structures

Page 338: RNE Fundamental B10.pdf

Section 1 - Module - Page 3383FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 338

3.3 Cell Structures

3.3.1 Cell Structures and Quality

Frequency re-use in cellular radio networks

allow efficient usage of the frequency spectrum

but causes interference

Interdependence of

Cell size

Cluster size

Re-use distance

Interference level

Network Quality

interfererregion

Page 339: RNE Fundamental B10.pdf

Section 1 - Module - Page 3393FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 339

3.3 Cell Structures

3.3.2 Cell Re-use Cluster (Omni Sites) (1)

1

2 3

47

6 5 1

2 3

47

6 5RD

Page 340: RNE Fundamental B10.pdf

Section 1 - Module - Page 3403FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 340

3.3 Cell Structures

3.3.2 Cell Re-use Cluster (Omni Sites)(2)

5 64

1 2 3

7 8 9

10 11 12

D

Page 341: RNE Fundamental B10.pdf

Section 1 - Module - Page 3413FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 341

3.3 Cell Structures

3.3.4 Cell Re-use Cluster (Sector Site) (1)

Page 342: RNE Fundamental B10.pdf

Section 1 - Module - Page 3423FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 342

3.3 Cell Structures

3.3.5 4x3 Cell Re-use Cluster (Sector Site) (2)

Page 343: RNE Fundamental B10.pdf

Section 1 - Module - Page 3433FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 343

3.3 Cell Structures

3.3.6 Irregular (Real) Cell Shapes

12 3

4

56

5

7Network Border

CoverageHole Island

Page 344: RNE Fundamental B10.pdf

Section 1 - Module - Page 3443FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 344

3 Fraffic & Frequency Planning

3.4 Frequency Reuse

Page 345: RNE Fundamental B10.pdf

Section 1 - Module - Page 3453FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 345

3.4 Frequency Reuse

3.4.1 GSM Frequency Spectrum

GSM 900

DL: 935-960 MHz UL: 890-915 MHz

200 kHz channel spacing 124 channels

ARFCN 1 - 124

E-GSM

DL: 925-935 MHz UL: 880-890 MHz

200 kHz channel spacing Additional 50 channels

ARFCN 0, 975 - 1023

200 kHz channel spacing 124 channels

GSM 850

DL: 869-894 MHz UL: 824-849 MHz

ARFCN: 128 - 251

GSM 1800

DL: 1805-1880 MHz UL: 1710-1785 MHz

200 kHz channel spacing 374 channels

ARFCN 512 - 885

Page 346: RNE Fundamental B10.pdf

Section 1 - Module - Page 3463FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 346

3.4 Frequency Reuse

3.4.2 Impact of limited Frequency Spectrum

Bandwidth is an expensive resource

Best usage necessary

Efficient planning necessary to contain good QoS when the traffic in

the network is increasing

smaller reuse

Multiple reuse pattern (MRP) usage

implementation of concentric cells / microcells/dual band

implementation of Frequency Hopping

• Baseband

• Synthezised

Page 347: RNE Fundamental B10.pdf

Section 1 - Module - Page 3473FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 347

3.4 Frequency Reuse

3.4.3 What is frequency reuse?

As the GSM spectrum is limited, frequencies have to be reused to provide enough capacity

The more often a frequency is reused within a certain amount of cells, the smaller the frequency reuse

Aim:Minimizing the frequency reuse for providing more capacity

REUSE CLUSTER:Area including cells which do not reuse the same frequency (or frequency group)

Page 348: RNE Fundamental B10.pdf

Section 1 - Module - Page 3483FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 348

3.4 Frequency Reuse

3.4.4 RCS and ARCS (1)

Reuse Cluster Size - RCS

If all cells within the reuse cluster have the same amount of TRXs, the reuse per TRX layer can be calculated:

cellTRX

BRCS

/#=

cellTRX

BARCS

/#=

Average Reuse Cluster Size - ARCS

If the cells are different equiped, the average number of TRXs has to be used for calculating the average reuse cluster size:

Page 349: RNE Fundamental B10.pdf

Section 1 - Module - Page 3493FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 349

3.4 Frequency Reuse

3.4.5 RCS and ARCS (2)

The ARCS is giving the average reuse of the network when using the whole bandwidth and all TRXs per cell

E.g: if we want to have the reuse of all non hopping TCH TRXs, we have to use the dedicated bandwidth and the average number of non hopping TCH TRXs per cell to get the ARCS of this layer type.

Each cell has only one BCCH. Therefore the BCCH reuse is an RCS and not an ARCS!

Page 350: RNE Fundamental B10.pdf

Section 1 - Module - Page 3503FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 350

3.4 Frequency Reuse

3.4.6 Reuse Cluster Size (1)

Sectorized sites

4 sites per reuse cluster

3 cells per site

REUSE Cluster Size:4X3 =12

1 2

3

4 5

6

7 8

9

10 11

12

1 2

3

4 5

6

7 8

9

10 11

12

Page 351: RNE Fundamental B10.pdf

Section 1 - Module - Page 3513FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 351

3.4 Frequency Reuse

3.4.7 Reuse Cluster Size (2)

Sectorized sites

3 sites per reuse cluster

3 cells per site

REUSE Cluster Size3X3 = 9

1 2

3

4 5

6

7 8

9

1 2

3

4 5

6

7 8

9

Page 352: RNE Fundamental B10.pdf

Section 1 - Module - Page 3523FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 352

3.4 Frequency Reuse

3.4.8 Reuse Distance

RCSRfD ⋅⋅⋅= 3

=cells sectorized-three

3

2cells ionalomnidirect1

f

re-use distancecell A

cell B

interfererregion

In theory reuse distance and reuse shouldn’t be dependent.

In reality, when the cells are not well designed: bigger cell overlapp =>higher frequency reuse, smaller reuse distance

Page 353: RNE Fundamental B10.pdf

Section 1 - Module - Page 3533FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 353

3.4 Frequency Reuse

3.4.9 Frequency Reuse Distance

site A site B

distance DR

D = distance between cell sites with the same frequenciesR = service radius of a cellB = number of frequencies in total bandwidthRCS = reuse cluster size, i.e. one cell uses B/RCS frequencies

In hexagonal cell geometry: D/R = f · 3 RCS

omni cells: f=1; sector cells: f=2/3

Examples (omni):RCS = 7: D/R = 4.6RCS = 9: D/R = 5.2RCS =12: D/R = 6.0

Received Power

Frec

σC/I

Frec, A Frec, B

0

Page 354: RNE Fundamental B10.pdf

Section 1 - Module - Page 3543FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 354

3.4 Frequency Reuse

3.4.10 Frequency Reuse: Example

No sectorization

7 cells per cluster BCCH RCS = 7

TCH Reuse: Depending on BW and Number of installed TRXs per cell

Example: B= 26

4TRXs per cell

interfererregion

63

1726 =−−= GuardBCCHRCSTCH

RCSTCH

RCSBCCH

BCCH reuse is always RCS, because we don’t need to use an average (always one BCCH per cell).

Omni cells

To calculate the TCH reuse in the example, the BCCH RCS is subtracted from the bandwidth B and the average number of TCH TRX per cell is4 minus 1 BCCH = 3

Page 355: RNE Fundamental B10.pdf

Section 1 - Module - Page 3553FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 355

3 Fraffic & Frequency Planning

3.5 Cell Planning

Page 356: RNE Fundamental B10.pdf

Section 1 - Module - Page 3563FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 356

3.5 Cell Planning

3.5.1 Cell Planning - Frequency Planning (1)

Can frequency planning be seen independently from cell planning?

Discussion

Page 357: RNE Fundamental B10.pdf

Section 1 - Module - Page 3573FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 357

3.5 Cell Planning

3.5.2 Cell Planning - Frequency Planning (2)

Bad cell planning

Island coverage disturbing the reuse pattern

Big overlap areas bigger reuse necessary

Good cell planning

Sharp cell borders good containment of frequency

Small overlap areas tighter reuse possible

Page 358: RNE Fundamental B10.pdf

Section 1 - Module - Page 3583FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 358

3.5 Cell Planning

3.5.3 Influencing Factors on Frequency Reuse Distance

Topography

Hilly terrain Usage of natural obstacles to define sharp cell borders tighter frequency reuse possible

Flat terrain Achieveable reuse much more dependent on the accurate cell design

Morphology

Water low attenuation high reuse distance

City high attenuation low reuse distance

Page 359: RNE Fundamental B10.pdf

Section 1 - Module - Page 3593FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 359

3.5 Cell Planning

3.5.4 Conclusion

In cellular mobile networks, the frequency reuse pattern has a direct influence on the interference and hence the network quality

Regular hexagonal patterns allow the deduction of engineering formulas

In real networks, cell sizes and shapes are irregular due to

Variation in traffic density

Topography

Land usage

Engineering formulas allow the assessment of the network quality and worst-case considerations, but the real situation must be proved!

Page 360: RNE Fundamental B10.pdf

Section 1 - Module - Page 3603FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 360

3.5 Cell Planning

3.5.5 Examples for different frequency reuses

Big city in the south of Africa:

BCCH reuse 26

• Irregular cell design

• Mixed morphology

• Lots of water

• Flat terrain plus some high sites

Big city in eastern Europe

BCCH reuse 12

• Regular cell design

• Flat area

• Only urban environment

Page 361: RNE Fundamental B10.pdf

Section 1 - Module - Page 3613FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 361

3 Fraffic & Frequency Planning

3.6 Interference Probability

Page 362: RNE Fundamental B10.pdf

Section 1 - Module - Page 3623FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 362

3.6 Interference Probability

3.6.1 Interference Theory (1)

C/I restrictions

9dB for co-channel interference

-9 dB for adjacent channel interference

distance DR

Received PowerP rec

σC/ I

Prec, A Prec, B

0

C/I is the difference between the two received power lines

when shifting the two transmitters towards each other, the area where the C/I is > 9dB shrinks

At a certain distance of the two transmitters, the C/I can never fulfil the GSM criteria -> minimum site distance.

It has to be kept in mind, that of course other cells will be inbetween two cells transmitting at the same frequency!

Page 363: RNE Fundamental B10.pdf

Section 1 - Module - Page 3633FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 363

3.6 Interference Probability

3.6.2 Interference Theory (2)

Probability density function [%]

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

C/I [dB] →C/ImedC/Ithr

Margin

Interferer probability [%]

0%

20%

40%

60%

80%

100%

-20 -15 -10 -5 0 5 10 15 20

C/I - C/Ithr[dB]

Interference probability

C/Imed is the calculated carrier tointerference ratio at a certain location (pixel)

ARCS Pint[%]6.5..9.0 107.0..9.5 7.58.5..11.0 5.012.0..16.0 2.5

3.6 Interference Probability

The marked area left of C/Ithr is the area of interference. Although the received level is above the threshold, there is a certain probability to get interference because of the standard deviation of the received signal.

Page 364: RNE Fundamental B10.pdf

Section 1 - Module - Page 3643FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 364

3.6 Interference Probability

3.6.3 CPDF - Cumulative Probability Density Function

Pint = P ( C/I < C/I thr)

00,10,20,30,40,50,60,70,80,91

P int

Distance from serving cellDR

CPDF - Cumulative Probability Density Function

Page 365: RNE Fundamental B10.pdf

Section 1 - Module - Page 3653FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 365

3.6 Interference Probability

3.6.4 Interference Probability dependent on Average Reuse

ARCS =# of frequencies in used bandwidth

average # of carriers per cellPint [%]

ARCS0

3

6

9

12

5 10 15 20 25

Examples:Pint[%] ARCS10 6.5...97.5 7...9.55 8.5...112.5

12...16

Page 366: RNE Fundamental B10.pdf

Section 1 - Module - Page 3663FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 366

3 Fraffic & Frequency Planning

3.7 Carrier Types

Page 367: RNE Fundamental B10.pdf

Section 1 - Module - Page 3673FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 367

3.7 Carrier Types

3.7.1 Carrier Types - BCCH carrier

BCCH frequency is on air all the time

If there is no traffic/signaling on TS 1 to 7 dummy bursts are transmitted

PC (Power Control) and DTX (Discontinuous Transmission) are not allowed

Important for measurements of the mobile

The BCCH frequency must be transmitted with full power all the time!

Otherwise the measurements of the neighborcell levels would be useless.

Page 368: RNE Fundamental B10.pdf

Section 1 - Module - Page 3683FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 368

3.7 Carrier Types

3.7.2 Carrier Types - TCH carrier

PC allowed and recommended for UL and DL

Reduction of transmit power according to the actual path loss

Careful parameter tuning for DL necessary

DTX allowed and recommended for UL and DL

Discontinuous Transmission

If there is no speech, nothing is transmitted

Generation of comfort noise at receiving mobile

TCH not in use no signal is transmitted

Special case: Concentric cells

Different re-uses for inner and outer zone are possible

PC and DTX are reducing the overall interference in the network.

As a TCH is not transmitting anything when not in use, the interference level is strongly related to the traffic on the interfereing cells.

Page 369: RNE Fundamental B10.pdf

Section 1 - Module - Page 3693FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 369

3 Fraffic & Frequency Planning

3.8 Multiple Reuse Pattern MRP

Page 370: RNE Fundamental B10.pdf

Section 1 - Module - Page 3703FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 370

3.8 Multiple reuse pattern

3.8.1 Meaning of multiple reuse pattern (1)

For different types of carriers, different interference potential is expected

As the BCCH carrier has the highest interferer potential because of being on air all the time and the BCCH channel itself is accepting only low interference, the REUSE on the BCCH layer is higher then on other layers

TCH layers can be planned with a smaller REUSE

Inner zones of concentric cells are able to deal with the smallest reuse in non hopping networks

Page 371: RNE Fundamental B10.pdf

Section 1 - Module - Page 3713FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 371

3.8 Multiple reuse pattern

3.8.2 Meaning of multiple reuse pattern (2)

REUSE clusters for

INNER ZONE layer

TCH layer

BCCH layer

When applying different reuses in the different cell layers, of course separated bands are necessary!

Page 372: RNE Fundamental B10.pdf

Section 1 - Module - Page 3723FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 372

3.8 Multiple reuse pattern

3.8.3 GSM restrictions

Intra site minimum channel spacing 2

Intra cell minimum channel spacing 2 (ETSI recommends 3, but with Alcatel EVOLIUM capabilities this value can be set to 2)

constrains:

• Uplink power control enabled

• Intra cell interference handover enabledf A

1,f

A2,f

A3,...

fB1 ,f

B2 ,fB3 ,...

f C1,f C2

,f C3,...

Frequencies fAx,fBx,fCx,… must have at

least 2 channels spacing

Frequencies fx1,fx2,fx3,… must have at

least 3 channels spacing

The Intra cell minimum channel spacing of 3 is given by the combiner in the BTS, to avaoid IM problems

Important remark: the whole training is compliant to the co-cell constraint of 3 channels ; this is more restrictive than the BTS capability of filtering the channels on frequency n*200 kHz

Acc to A.Krause: for Evolium BTS standard equipped with WBC the co-cell constraint can be only 2 channels.

(A channel spacing of 2 was tested @Vodacom in 1999 but the result was not better than with channel spacingof 3.)

Page 373: RNE Fundamental B10.pdf

Section 1 - Module - Page 3733FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 373

3 Fraffic & Frequency Planning

3.9 Intermodulation

Page 374: RNE Fundamental B10.pdf

Section 1 - Module - Page 3743FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 374

3.9 Intermodulation

3.9.1 Intermodulation problems (1)

IM Products GSM900

In a GSM 900 system intermodulation products of 3rd and 5th order can cause interference

• 2 * f1,t – f2,t = f2,r / 2 * f2,t – f1,t = f1,r

• 3 * f1,t – 2 * f2,t = f2,r / 3 * f2,t – 2 * f1,t = f1,r

Frequency planning must avoid fulfilling these equations

Both frequencies must be on the same duplexer

To avoid intra band IM inside GSM900 the following frequency separations shall be avoided:

• 75/112/113 channels

IM5 IM3

Info from techn. dept: If a WBC has to be used because of the number of TRXs, the output power is not high enough to cause problems. -> No intermodulation problems .

Page 375: RNE Fundamental B10.pdf

Section 1 - Module - Page 3753FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 375

3.9 Intermodulation

3.9.2 Intermodulation problems (2)

IM Products GSM1800

In a GSM 1800 system, only intermodulation products of 3rd order can cause measurable interference

2 * f1,t – f2,t = f2,r / 2 * f2,t – f1,t = f1,r

Frequency separations to be avoided

• 237/238 channels

IM Products Dual Band (GSM900/GSM1800)

f1800,t – f900,t = f900,r Decoupling between the GSM 1800 TX path and the GSM 900 RX path

is less than 30 dB (e.g. same antenna used!)

Page 376: RNE Fundamental B10.pdf

Section 1 - Module - Page 3763FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 376

3.9 Intermodulation

3.9.3 Intermodulation problems (3) - Summary

carrier/antenna restriction

G3 900 1 no

G3 900 2 ore more 112/113 (IM3) and 75 (IM5)G3 1800 1 no

G3 1800 2 or more 237/238 (IM3) no IM5 quality degradation measurable

carrier/antenna

G2 900 w/o dupl 1 no

2 or more no

G2 900 with dupl 1 no

2 or more 112/113 (IM3) and 75 (IM5)

G2 1800 w/o dupl 1 no

2 or more no

G2 1800 with dupl 1 no

2

2

G3 900 G2/G3 1800 f(1800,t) - f(900,t) = f(900,r)

G2 900 w/o dupl G2/G3 1800 no

G2 900 with dupl G2/G3 1800 f(1800,t) - f(900,t) = f(900,r)

Colocated BTSs

dud2(high Power) -> no

dupd -> 237/238

OUTSIDE Problem: Dual Band

INSIDE Problem: IM3 / IM5

Problem only for non hopping and BCCH carriers

Problem can be solved by hopping over more than 10 frequencies

Caution: SFH doesn’t bring additional benefits when hopping over more than 4 frequencies

Page 377: RNE Fundamental B10.pdf

Section 1 - Module - Page 3773FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 377

3.9 Intermodulation

3.9.4 Treating “neighbor” cells

Cells, which are not declared as neighbor cells but are located in the neighborhood may use adjacent frequencies if it is not avoidable, but no co channel frequencies

Cells which are declared as neighbors, thus have HO relationships, must not use co or adjacent frequencies

If an adjacent frequency is used, the HO will be risky and at least audible by the user

Page 378: RNE Fundamental B10.pdf

Section 1 - Module - Page 3783FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 378

3.9 Intermodulation

3.9.5 Where can I find neighbor cells?

At the OMC-R for each cell a list of neighbor cells is defined

Maximum number of neighbors: 32

The list of neighbors and their frequencies is transmitted to the mobile to be able to perform measurements on these frequencies

In case of a HO cause, the HO will be performed towards the bestneighbor

Page 379: RNE Fundamental B10.pdf

Section 1 - Module - Page 3793FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 379

3 Fraffic & Frequency Planning

3.10 Manual Frequency Planning

Page 380: RNE Fundamental B10.pdf

Section 1 - Module - Page 3803FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 380

3.10 Manual Frequency Planning

3.10.1 Frequency planning (1)

No fixed method

Free frequency assignment possible, but very time consuming for larger networks

For easy and fast frequency planning: use group assignment

Example:18 channels, 2TRX per cell ARCS 9

Page 381: RNE Fundamental B10.pdf

Section 1 - Module - Page 3813FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 381

3.10 Manual Frequency Planning

3.10.2 Frequency planning (2)

GSM restrictions are automatically fulfilled, if on one site only groups A* or only B* are used

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A1

B1

A2

B2

A3

B3

A4

B4

A5

Page 382: RNE Fundamental B10.pdf

Section 1 - Module - Page 3823FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 382

3.10 Manual Frequency Planning

3.10.3 Exercise: Manual frequency planning (1)

A1

A2A3

A2

A4 A5

B4

B1

B2 B3

B1

B2

A1

A2A3A2A4

A5

B4

B1B2

A1

A2A3

Page 383: RNE Fundamental B10.pdf

Section 1 - Module - Page 3833FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 383

3.10 Manual Frequency Planning

3.10.4 Exercise: Manual frequency planning (2)

A1

A2A3

A2

A4 A5

B4

B1

B2 B3

B1

B2

A1

A2A3A2A4

A5

B2

B4B1

A3

A2A1

Page 384: RNE Fundamental B10.pdf

Section 1 - Module - Page 3843FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 384

3.10 Manual Frequency Planning

3.10.5 Discussion: Subdivide Frequency Band?

Any subdivision of the frequency band is reducing the spectrum efficiency!

Separations should be avoided if possible!

As the BCCH has to be very clean, it is nevertheless recommendedto use a separated band and select a bigger reuse

The focus in the discussion is not the fx band splitting by fx management authorities.

Page 385: RNE Fundamental B10.pdf

Section 1 - Module - Page 3853FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 385

3.10 Manual Frequency Planning

3.10.6 Hint for creating a future proofed frequency plan

If a frequency plan is implemented, using all available frequencies in the most efficient way, it is very difficult to implement new sites in the future!

New sites would make a complete re-planning of the surrounding area or the whole frequency plan necessary

To avoid replanning every time when introducing new sites, it is recommended to keep some Joker frequencies free

These Joker frequencies can be used for new sites (especially BCCH TRXs) unless it is impossible to implement new sites without changing a big part of the frequency plan

New frequency plan necessary!

Page 386: RNE Fundamental B10.pdf

Section 1 - Module - Page 3863FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 386

3.10 Manual Frequency Planning

3.10.7 Implementing a frequency plan

If only a few frequencies have to be changed, the changes can bedone at the OMC-R

Disadvantage: Every cell has to be modified separately

Downtime of the cell approx. 5 minutes

If lots of changes have to be done, it is of advantage to use external tools

Since B6.2 the complete frequency plan can be uploaded from the OMC

the uploaded file can be modified by the tool (A9155 PRC Generator)

the the new plan is downloaded into the network and activated at once

Page 387: RNE Fundamental B10.pdf

Section 1 - Module - Page 3873FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 387

3 Fraffic & Frequency Planning

3.11 BSCI Planning

Page 388: RNE Fundamental B10.pdf

Section 1 - Module - Page 3883FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 388

3.11 BSIC Planning

3.11.1 BSCI allocation

Together with the frequencies the Base Transceiver Station Identity Code (BSIC) has to be planned

The BSIC is to distinguish between cells using the same BCCH frequency

BSIC = NCC (3bits) + BCC (3bits)

NCC Network (PLMN) Colour Code BCC - Base Transceiver Station (BTS) Colour Code

BSIC planning is supported by the A9155 (Alcatel Radio Network Planning Tool)

Page 389: RNE Fundamental B10.pdf

Section 1 - Module - Page 3893FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 389

3.11 BSIC Planning

3.11.2 BSIC Planning Rules

The same combination BCCH/BSIC must not be used on cell influencing on each other (having a mutual interference <>0)

BSIC allocation rules:

Avoid using same BCCH/BSIC combination of:

• neighbours cells

• second order neighbour cells (the neighbours of neighbour cell (OMC limitation))

Neighbour Cell

BCCH:24

BSIC:36

Neighbour Cell

BCCH:24

BSIC: must NOT be

36

Serving Cell

BCCH:10

BSIC: any

A

B C

Page 390: RNE Fundamental B10.pdf

Section 1 - Module - Page 3903FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 390

3.11 BSIC Planning

3.11.3 Spurious RACH

Bad BSIC planning can cause SDCCH congestion cause by the spurious RACH problem, also known as “Ghost RACH”

This problem occurs, when a mobile sends an HO access burst to aTRX of cell A using the same frequency as a nearby cell B uses on the BCCH

Both cells using the same BSIC and Training Sequence Code TSQC, the HO access burst is understood by the cell B as a RACH for call setup

Therefore on cell B SDCCHs are allocated everytime a HO access burst is sent from the mobile to the cell A

If in cell B the BCCH and TRX 2 exchange their frequencies (BCCH gets the fx of TRX2 and TRX2 gets the fx of BCCH): no problem with spurious RACH

Cell BF1 F2

BSIC=1

Cell AF5F1

BSIC=1

Cell C

Page 391: RNE Fundamental B10.pdf

Section 1 - Module - Page 3913FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 391

3.11 BSIC Planning

3.11.4 Summary

For optimal usage of your frequency spectrum a good cell design is essential

Use larger reuse for BCCH frequencies

Use spectrum splitting only when necessary

Page 392: RNE Fundamental B10.pdf

Section 1 - Module - Page 3923FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 392

3 Fraffic & Frequency Planning

3.12 Capacity Enhancement Techniques

Page 393: RNE Fundamental B10.pdf

Section 1 - Module - Page 3933FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 393

3.12 Capacity Enhancement Techniques

3.12.1 Capacity enhancement by planning

Interference reduction of cells

Check of antenna type, direction and down tilt

• This is a check of cell size, border and orientation

Check of proper cabling

• Is TX and RX path on the same sector antenna?

Check of the frequency plan

• Introduction of a better frequency plan

Page 394: RNE Fundamental B10.pdf

Section 1 - Module - Page 3943FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 394

3.12 Capacity Enhancement Techniques

3.12.2 Capacity enhancement by adding feature

Frequency hopping

Base band hopping

Synthesized frequency hopping

Concentric cells

Half rate

Page 395: RNE Fundamental B10.pdf

Section 1 - Module - Page 3953FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 395

3.12 Capacity Enhancement Techniques

3.12.3 Capacity enhancement by adding TRX

Adding TRX to existing cells

Multi band cells

Concentric cells

Page 396: RNE Fundamental B10.pdf

Section 1 - Module - Page 3963FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 396

3.12 Capacity Enhancement Techniques

3.12.4 Capacity enhancement by adding cells

Adding of cells at existing site locations

Adding new cell = adding new BCCH

Dual band

Adding cells using another frequency band

Cell splitting

Reduction of cell size

Change of one omni cell into several cells/sector cells

Page 397: RNE Fundamental B10.pdf

Section 1 - Module - Page 3973FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 397

3.12 Capacity Enhancement Techniques

3.12.5 Capacity enhancement by adding sites

Dual band/multi band network

Adding of new sites in new frequency band

Multi layer network

Adding of new sites in another layer

• E.g. adding micro cells for outdoor coverage

Indoor coverage

Adding micro cells indoor coverage

Adding macro cells indoor coverage

Page 398: RNE Fundamental B10.pdf

Section 1 - Module - Page 3983FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 398

4 Radio Interface

Page 399: RNE Fundamental B10.pdf

Section 1 - Module - Page 3993FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 399

4 Radio Interface

4.1 GSM Air Interface

Page 400: RNE Fundamental B10.pdf

Section 1 - Module - Page 4003FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 400

4.1 GSM Air Interface

4.1.1 Radio Resources

Radio Spectrum Allocation

Frequency(FDMA)

Time(TDMA)

Timeslot0<TN<7

TDMA Frames0<FN<FN_MAX

Carrier Frequencies (ARFCN)

Cell Allocation(CA)

Mobile Allocation(MA)

FDMA Frequency division multiple accessTDMA Time division multiple accessARFCN Absolute radio frequency channel numberTN Timeslot numberFN Frame number

Page 401: RNE Fundamental B10.pdf

Section 1 - Module - Page 4013FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 401

FDMA and TDMA with 8 time slots per carrier

RF frequency band

(E)GSM: (880) 890 ... 915 MHz Uplink (MS → BS)(925) 935 ... 960 MHz Downlink (BS → MS)

GSM1800: 1710 ... 1785 MHz Uplink1805 ... 1880 MHz Downlink

200 kHz bandwidth

Number of carriers: 124 (GSM); 374 (DCS); 49 (E-GSM)

4.1 GSM Air Interface

4.1.2 GSM Transmission Principles (1)

GSM: Flower (n) = 890 + 0.2 · n MHz with 1 ≤ n ≤ 124E-GSM: Flower (n) = 890 + 0.2 · n MHz with 0 ≤ n ≤ 124

Flower (n) = 890 + 0.2 · (n -1024) MHz with 975 ≤ n ≤ 1023DCS : Flower (n) = 1710.2 + 0.2 · (n - 512) MHz with 512 ≤ n ≤ 885

(E)GSM: Fupper (n) = Flower (n) + 45 MHzDCS: Fupper (n) = Flower (n) + 95 MHz

Page 402: RNE Fundamental B10.pdf

Section 1 - Module - Page 4023FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 402

4.1 GSM Air Interface

4.1.3 GSM Transmission Principles (2)

Channel types

Traffic Channels (TCH)

• Full rate

• Half rate

Control Channels (CCH)

• Broadcast Control Channel (BCCH)

• Common Control Channel (CCCH)

• Dedicated Control Channel (DCCH)

TDMA frame cycles 26 cycle for traffic channels 51 cycle for control channels

Page 403: RNE Fundamental B10.pdf

Section 1 - Module - Page 4033FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 403

4.1 GSM Air Interface

4.1.4 Advantages of Signal Processing

Spectrum limitationsBad propagation

conditions

P

t

Good spectrum efficiency Good transmission quality

Operator

Page 404: RNE Fundamental B10.pdf

Section 1 - Module - Page 4043FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 404

4.1 GSM Air Interface

4.1.5 Signal Processing Chain

stealing bit and FACCH

speechcoding

errorprotection

interleaving encryption modulation

radiochannel

stealing bit and FACCH

speechinput

speechdecoding

errorcorrection

de-interleaving decryption demodulation

speechoutput

LossNoise

InterferenceFading

Page 405: RNE Fundamental B10.pdf

Section 1 - Module - Page 4053FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 405

4 Radio Interface

4.2 Channel Coding

Page 406: RNE Fundamental B10.pdf

Section 1 - Module - Page 4063FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 406

4.2 Channel Coding

4.2.1 Speech Coding

260 bits speech block

182 class 1 bits

20 ms of coded speech

78 class 2 bits

sensitive to bit errorsmust be protected

robust to bit errors

Coding algorithm: RPE-LTP

Pre-computation

RPE = Regular Pulse Excitation

• Model of human voice generation

LTP = Long Term Prediction

• Reduction of bit rate

Bit rate: 13 kBit/s

Coding at fixed network: PCM A-law

Bit rate: 64 kBit/s

Page 407: RNE Fundamental B10.pdf

Section 1 - Module - Page 4073FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 407

4.2 Channel Coding

4.2.2 Error Protection

Messages (signalling data)

Fire Code

184 bits

184 40

4

Convolutional Coder = 1/2, K = 5

456 = 24 x 19

456 bits in 20 ms = 22.6kbit/s

Convolutional Coder = 1/2, K = 5

Tail bits

Parity check

Cycliccode

Speech (full rate)

Tail bits

Class 1a50 bits

Class 1b132 bits

Class 278 bits

= 456= 8 x 5737

878

50

3 132 4

260 bits

Page 408: RNE Fundamental B10.pdf

Section 1 - Module - Page 4083FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 408

4.2 Channel Coding

4.2.3 Interleaving and TDMA Frame Mapping

1 2 3 4 5 6 70 1 2 3 4 5 6 70

Mappingonto bursts

....

.

....

.

Addition of stealing flags

....

.

Interleaving

....

.

....

.

....

.

2 x 57 bits

Block n-1 (456 bits)

57 bits Block n (456 bits) Block n+1 (456 bits)

1 2 3 4 5 6 70

1 time slot

114 bits 114 bits 114 bits 114 bits 114 bits 114 bits 114 bits 114 bits

116 bits 116 bits 116 bits 116 bits 116 bits 116 bits 116 bits 116 bits

burst n-3 burst n-2 burst n-1 burst n burst n+1 burst n+2 burst n+3 burst n+4

Page 409: RNE Fundamental B10.pdf

Section 1 - Module - Page 4093FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 409

4.2 Channel Coding

4.2.4 Encryption

AlgorithmA3

Randomnumber

generator

AlgorithmA8

IMSIKi

Ki RAND (128 bit)

+

Authentication

yes/no

AlgorithmA3

AlgorithmA8

RAND

SRES (32 bit)

SIMCard

Ki

AlgorithmA5

AlgorithmA5

+

Kc (64 bit)

+

RAND

Kc

originaldata

originaldata

encrypted

data

encrypted

data

Network Mobile station

AuC

Page 410: RNE Fundamental B10.pdf

Section 1 - Module - Page 4103FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 410

4.2 Channel Coding

4.2.5 Burst Structure

0 1 2 3 4 5 6 7

TDMA frame = 4.615 ms

DataTrainingSequence

Data

57 bits3 26 bits1 31 57 bits

tail bits tail bitsstealing flags

156.25 bit periods = 0.577 ms

GP GP

A burst contains one data "portion" of one timeslot

TDMA frame: time between two bursts with same timeslot number

The burst also consists of: Guard period (GP): allows for

transition and settling times Tail bits: allow for small shifts in

time delay (synchronisation) Stealing flags: to indicate FACCH

(control channel) data Training sequence: for

equalization purposes

Normal Burst

0

Page 411: RNE Fundamental B10.pdf

Section 1 - Module - Page 4113FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 411

4.2 Channel Coding

4.2.4 Synchronisation

received at MS(downlink)

transmitted from MS(uplink)

transmitted from BTS(downlink)

received at BTS(uplink)

Transmitted bursts need a travelling time (TT) to the receiver

For network access, the MS sends a (non-synchronized) shortened RACH burst

The BSS measures the TT and generates a timing advance value TA which is transmitted to the MS

0 1 2 3

1 2

0 1 2

1 2

TT TT

non-synchronized

3 TSdelay

0 1 2 3 4 5 6 7 0 1

0 1 2 3 4 5 6 7 0 1

0 1 2 3 4 5 6 7 0 1

0 1 2 3 4 5 6 7 0 1

TT

TT

synchronized

RACH

MS delay line setting

1

4

2

3

Page 412: RNE Fundamental B10.pdf

Section 1 - Module - Page 4123FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 412

4.2 Channel Coding

4.2.5 Modulation

Gaussian minimum shift keying

Based on phase shift keying

Reduction of required bandwidth

• Maximum phase change during one bit duration

• Baseband filtering to achieve continuous phase changes

cos

sin

+

x

x

≈90°

to RF modulatorDataϕ

Page 413: RNE Fundamental B10.pdf

Section 1 - Module - Page 4133FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 413

4.2 Channel Coding

4.2.6 Propagation Environment

Radio propagation is characterised by dispersive multi-path caused by reflection and scattering

Moving MS causes Doppler spectrum→ Definition of propagation models in the time

domain to allow channel simulations

TUxx (Typical Urban)

RAxx (Rural Area)

HTxx (Hilly Terrain)

xx = speed in km/h

see also GSM 05.05, 11.20, 11.21

Page 414: RNE Fundamental B10.pdf

Section 1 - Module - Page 4143FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 414

4.2 Channel Coding

4.2.7 Equalizing

Purpose: equalize distortions in transmission spectrum

Adaptive filtering required

Filter parameters determined out of the training sequence

Filter parameters change from burst to burst

Equalizer takes advantage from multipath propagation (path diversity)

0.001

0.01

0.1

0 1 2 3 4 5 6 7 8

Delay of second path [chips]

BE

R

none

Alcatel

MLSE

Equalizer

Page 415: RNE Fundamental B10.pdf

Section 1 - Module - Page 4153FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 415

4.2 Channel Coding

4.2.8 Definition of Bit Error Rates

FER = Frame Erasure Rate

Ratio of corrupted frames, indicated by a wrong CRC (cyclic redundancy checksum) and BFI (bad frame indicator)

RBER = Residual Bit Error Rate

considering corrupted frames not recognized as bad frames

BER = total bit error rate

Consideration of class 1 or 2 bits → e.g. RBER1b, RBER2

see also GSM 05.05, 11.20, 11.21

Page 416: RNE Fundamental B10.pdf

Section 1 - Module - Page 4163FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 416

BER Quality

>0.01 no communication<0.005 “bad”<0.0025 “marginal”<0.0003 “good”<0.0001 “excellent”

Thresholds:

C/I: 9 dBEc/No: 8 dBBTS (GSM900): -104 dBmHH (GSM900): -102 dBmBTS (GSM1800): -104 dBmHH (GSM1800): -100 dBm

4.2 Channel Coding

4.2.9 Speech Quality

HH - handheld

RXQUAL_0 BER <0,2%

RXQUAL_1 0,2%<BER<0,4%

RXQUAL_2 0,4%<BER<0,8%

RXQUAL_3 0,8%<BER<1,6%

RXQUAL_4 1,6%<BER<3,2%

RXQUAL_5 3,2%<BER<6,4%

RXQUAL_6 6,4%<BER<12,8%

RXQUAL_7 12,8%<BER

Page 417: RNE Fundamental B10.pdf

Section 1 - Module - Page 4173FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 417

4.2 Channel Coding

4.2.10 Dependence of BER on Noise and Interference

Variation of BER1 over C/I

Parameter: Ec/N0

How to find a quality figure?

BER1 for marginal speech quality: 0.25%

required C/I ≈ 9 dB for TU50 environment

but: signal must not be close to noise floor!

C/I [dB] →

TU50BER1 →

Page 418: RNE Fundamental B10.pdf

Section 1 - Module - Page 4183FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 418

4.2 Channel Coding

4.2.13 Frequency Hopping (1)

-70

-60

-50

-40

-30

-20

-10

0

0.1

2.8

5.4

8.0

10.6

13.2

15.9

18.5

21.1

23.7

26.3

29.0

31.6

34.2

36.8

39.4

42.1

44.7

47.3

49.9

Distance [m]

Rec

eive

d P

ower

[dB

m]

Lognormal fading

Raleygh fading

Problem: specific fading pattern for each used frequency

Fast MS cope with the situation (due to signal processing)

Slow MS suffer from fading holes

Solution: change the fading pattern by frequency hopping

Fading holes

Page 419: RNE Fundamental B10.pdf

Section 1 - Module - Page 4193FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 419

4.2 Channel Coding

4.2.14 Frequency Hopping (2)

Variation of BER1 over Ec/N0

TU environment, flat fading, v = 0 km/h (worst case)

Parameter: number of hopping frequencies

Compensation with 4 hopping frequencies possible

Ec/N0 [dB] →

BER →

Page 420: RNE Fundamental B10.pdf

Section 1 - Module - Page 4203FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 420

4.2 Channel Coding

4.2.15 The OSI Reference Model

Definition in GSM recommendations: layers 1 to 3

Notion of "Physical" channels and "Logical" channels

7

6

5

4

3

2

1

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

End system End systemTransportation system

04.0408.54

04.05/0608.56

04.07/0808.58/4.0

8

Page 421: RNE Fundamental B10.pdf

Section 1 - Module - Page 4213FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 421

4.2 Channel Coding

4.2.16 GSM Burst Types (1)

Normal Burst For regular transmission

Frequency Correction Burst Contains 142 zeros (0) → pure sine wave Allows synchronisation of the mobile's local oscillator

Synchronisation Burst Consists of an enlarged unique training sequence code (TSC) Contains the actual FN → time synchronisation

Access Burst Shortened burst (unique TSC and enlarged guard period) Timeslot overlapping avoided at BTS when MS accesses network

Dummy Burst "Filler" for unused BCCH timeslots → BCCH permanently on air Similar to normal burst (defined mixed bits for data, no stealing flag)

Page 422: RNE Fundamental B10.pdf

Section 1 - Module - Page 4223FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 422

4.2 Channel Coding

4.2.17 GSM Burst Types (2)

TB3

57 data bits 126 bit training

sequence1 57 data bits

TB3

Normal burstGP8.25

TB3

142 fixed bits (pure sine wave)TB3

Frequency correction burstGP8.25

TB3

39 data bits64 bit training

sequence39 data bits

TB3

Synchronisation burstGP8.25

TB8

36 data bits41 bit synchronisation

sequence

Access burstenlarged GP68.25 bit

TB3

Page 423: RNE Fundamental B10.pdf

Section 1 - Module - Page 4233FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 423

4.2 Channel Coding

4.2.18 Logical Channels

Trafficchannel

Controlchannel

Speech Data

TCH/FS

TCH/HS

TCH/F9.6

TCH/F4.8

TCH/F2.4

TCH/H4.8

TCH/H2.4

CCCHBroadcastchannel

Associatedchannel

Dedicatedchannel

FCCH

SCH

BCCH

RACH

PCH

AGCH

FACCH

SACCH

SDCCH

CBCH

Page 424: RNE Fundamental B10.pdf

Section 1 - Module - Page 4243FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 424

4.2 Channel Coding

4.2.19 Possible Channel Combinations

1

2

3

4

5

6

7

TCH/F+FACCH/F+SACCH/TF

TCH/H(0.1)+FACCH/H(0.1)+SACCH/TH(0.1)

TCH/H(0.0)+FACCH/H(0.1)+SACCH/TH(0.1)+TCH/H(1.1)

FCCH+SCH+BCCH+CCCH

FCCH+SCH+BCCH+CCCH+SDCCH/4(0..3)+SACCH/C4(0..3)

BCCH+CCCH

SDCCH/8(0..7)+SACCH/C8(0..7)

CCCH = PCH+RACH+AGCH

Combination 4 and 5 is only possible on TS0 of the first (BCCH) carrier

Combination 6 is possible on TS2, TS4, or TS6 of the BCCH carrier

Page 425: RNE Fundamental B10.pdf

Section 1 - Module - Page 4253FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 425

4.2 Channel Coding

4.2.20 Channel Mapping (1)

time

.......

.......

.......

0 0 0 01 1 112 2 223 3 334 4 445 556 6 67 7 7

one TDMA frame = 4.616 ms

Information packages are always related to the same timeslot number!

Bursts are transmitted and received every TDMA frame duration (4.616 ms)Presentation of consecutive

TDMA frames on the vertical axis

Page 426: RNE Fundamental B10.pdf

Section 1 - Module - Page 4263FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 426

4.2 Channel Coding

4.2.21 Channel Mapping (2)

SCH

FCCH RACH

SCH

FCCH

SCH

FCCH

SCH

FCCH

SCH

FCCH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

SCH

FCCH

SCH

FCCH

SCH

FCCH

SCH

FCCH

SCH

FCCH

SCH

FCCH

SCH

FCCH

SCH

FCCH

SCH

FCCH

SCH

FCCH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

RACH

BCCH

CCCH

CCCH

CCCH

CCCH

CCCH

CCCH

CCCH

CCCH

CCCH

BCCH BCCH

CCCH

CCCH

CCCH

CCCH

CCCH

CCCH

SDCCH0

SDCCH1

SDCCH2

SDCCH3

SDCCH0

SDCCH1

SDCCH2

SDCCH3

SDCCH0

SDCCH1

SDCCH0

SDCCH1

SDCCH2

SDCCH3

SDCCH2

SDCCH3

SACCH0

SACCH1

SACCH2

SACCH3

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

SACCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

SACCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

TCH

SDCCH0

SDCCH1

SDCCH2

SDCCH3

SDCCH4

SDCCH5

SDCCH6

SDCCH7

SACCH0

SACCH1

SACCH2

SACCH3

SACCH0

SACCH1

SACCH2

SACCH3

SDCCH0

SDCCH1

SDCCH2

SDCCH3

SDCCH4

SDCCH5

SDCCH6

SDCCH7

SACCH4

SACCH5

SACCH6

SACCH7

SDCCH0

SDCCH1

SDCCH2

SDCCH3

SDCCH4

SDCCH5

SDCCH6

SDCCH7

SACCH0

SDCCH0

SDCCH1

SDCCH2

SDCCH3

SDCCH4

SDCCH5

SDCCH6

SDCCH7

SACCH1

SACCH2

SACCH3

SACCH4

SACCH5

SACCH6

SACCH7

0

10

20

30

40

50

0

10

20

30

40

50

0

12

25

0

12

25

not combined BCCH

downlink uplink downlink uplink downlink uplink

combined BCCH TCH SDCCH

up/downlink

Control channels

Follows a 51-cycle

Duration: 235.4 msec

Consists mostly of four consecutive blocks

Synchronisation with FCCH and SCH

Traffic channels

Follows a 26-cycle

Duration: 120 msec

Page 427: RNE Fundamental B10.pdf

Section 1 - Module - Page 4273FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 427

4.2 Channel Coding

4.2.22 TDMA Frame Structure for TCHs

TB3

57 data bits 126 bit training

sequence1 57 data bits

TB3

GP8.25

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Time slot

Frame

Multiframe

Superframe

Hyperframe

51 multiframes of 120 ms duration

2048 superframes of 6.12 s duration

0.577 ms

4.615 ms

120 ms

6.12 s

3 h 28 m 53 s

Page 428: RNE Fundamental B10.pdf

Section 1 - Module - Page 4283FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 428

Abbreviations and Acronyms

AMR Advanced Multi Rate (TC)

AMSS Aeronautical Mobile Satellite Services

AN Antenna Network (BTS)

ARCS Average Reuse Cluster Size

ARFCN Absolute Radio Frequency Channel

AS Access Switch (BSC)

AS Alarm Surveillance (O&M)

ASMA A-ter Submultiplexer A

ASMB A-ter Submultiplexer B

AuC Authentication Center

BC Broadcast

BCU Broadcast Unit

BCLA BSC Clock A

BCR Broadcast Register

BCU Broadcast Unit

BCCH Broadcast Common Control Channel(GSM TS)

BCF Base station Control Function (BTS)

BG Border Gate (GPRS)

BIE Base Station Interface Equipment

BIEC Base Station Interface Equipment (BSC)

BIUA Base Station Interface Unit A

BPA Back Panel Assembly

BSC Base Station Controller

BSIC Base Transceiver Station Identity Code

BSS Base Station (sub)System

BSSGP Base Station System GPRS Protocol(GPRS)

BTS Base Transceiver Station

CAE Customer Application Engineering

CAL Current Alarm List (O&M)

CBC Cell Broadcast Center

CBCH Cell Broadcast Channel (GSM TS)

CBE Cell Broadcast Entity

CCCH Common Control Channel (GSM TS)

CCU Channel Coding Unit

Page 429: RNE Fundamental B10.pdf

Section 1 - Module - Page 4293FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 429

Abbreviations and Acronyms [cont.]

CDMA Code Division Multiple Access

CE Control Element (BSC)

CEK Control Element Kernel

C/I Carrier to Interferer ratio

CLK Clock

CLSI Custom Large Scale Integrated circuit

CMA Configuration Management Application (O&M)

CMDA Common Memory Disk A

CMFA Common Memory Flash A

CPR Common Processor (Type: CPRA, CPRC)

CRC Cyclic Redundancy Check

CS Circuit Switching (Telecom)

CS Coding Scheme (GPRS):CS-1, CS-2, CS-3, CS-4

CU Carrier Unit (BTS)

DCE Data Circuit Terminating Equipment

DCN Data Communication Network

DL DownLink

DLS Data Load Segment

DMA Direct Memory Access

DRFU Dual Rate Frame Unit

DRX Discontinuous Reception (GSM TS)

DSE Digital Switching Element

DSN Digital Switching Network

DTX Discontinuous Transmission (GSM TS)

DTC Digital Trunk Controller(Type: DTCA, DTCC)

DTE Data Terminal Equipment

EDGE Enhanced Data rates for GSM Evolution

EI Extension interface

EML Element Management Level

EPROM Erasable Programmable Read OnlyMemory

ETSI European Telecom Standard Institute

FPE Functional and Protective Earth

FR Full Rate (GSM TS)

Page 430: RNE Fundamental B10.pdf

Section 1 - Module - Page 4303FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 430

Abbreviations and Acronyms [cont.]

Switch to notes view!FR Frame Relay (Telecom)

FRDN Frame Relay Data Network (Telecom)

FU Frame Unit (BTS)

FW Firmware

GCR Group Call Register

GGSN Gateway GPRS Support Node (GPRS)

GMLC Gateway Mobile Location Center

GMM GPRS Mobility Management (GPRS)

GMSC Gateway Mobile Switching Center

GPRS General Packet Radio Service

GPU GPRS Packet Unit

GS-1 Group Switch of stage 1 (BSC)

GS-2 Group Switch of stage 2 (BSC)

GSL GPRS Signalling Link

GSM Global System for Mobile Communications

GSM TS GSM Technical Specification

HAL Historical Alarm List (O&M)

HDSL High rate Digital Subscriber Line

HDLC High Level Datalink Control

HLR Home Location Register

HMI Human Machine Interface

HO HandOver

HR Half Rate

HW Hardware

IDR Internal Directed Retry

ILCS ISDN Link Controller

IMT Installation and Maintenance Terminal(MFS)

IND Indoor (BTS)

IP Internet Protocol

ISDN Integrated Services Data Network

IT Intelligent Terminal

LA Location Area (GSM TS)

LAC Location Area Code (GSM TS)

LAN Local Area Network

LED Light Emitting Diode

LEO Low Earth Orbit (Satellite)

LCS Location Services

Page 431: RNE Fundamental B10.pdf

Section 1 - Module - Page 4313FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 431

Abbreviations and Acronyms [cont.]

Switch to notes view!PCH Paging CHannel (GSM TS)

PCM Pulse Coded Modulation

PCU Packet Control Unit (GPRS)

PDCH Packet Data CHannel

PDN Packet Data Network (Telecom)

PDU Protocol Data Unit (generic terminology)

PLL Phase Locked Loop

PLMN Public Land Mobile Network

PMA Prompt Maintenance Alarm (O&M)

PMC Permanent Measurement Campaign

(O&M)

PPCH Packet Paging CHannel (GPRS)

PRACH Packet Random Access CHannel (GPRS)

Prec Received Power

PRC Provisioning Radio Configuration (O&M)

PSDN Packet Switching Data Network

(Telecom)

PSTN Public Switching Telephone Network(Telecom)

PTP-CNLS Point To Point CoNnectionLeSs datatransfer (GPRS)

QoS Quality of Service

RA Radio Access

RACH Random Access CHannel (GSM TS)

RAM Random Access Memory

RCP Radio Control Point

RLC Radio Link Control (GPRS)

RLP Radio Link Protocol (GSM TS)

RML Radio Management Level

RNO Radio Network Optimisation

RNP Radio Network Planning

RSL Radio Signalling Link

Page 432: RNE Fundamental B10.pdf

Section 1 - Module - Page 4323FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 432

Abbreviations and Acronyms [cont.]

Switch to notes view!RTS Radio Time Slot

RxLev Received Level

RxQual Received Quality

SACCH Slow Associated Control Channel(GSM TS)

SAU Subrack assembly unit (BSC)

SC Supervised Configuration (O&M)

SCC Serial Communication Controller

SCP Service Control Point

SCCP Signalling Connection Control Part

SCSI Small Computer Systems Interface

SDCCH Standalone Dedicated Control Channel(GSM TS)

SDU Service Data Unit (generic terminology)

SGSN Serving GPRS Support Node (GPRS)

SIEA SCSI Interface Extension A

SM Submultiplexer

SMLC Serving Mobile Location Center

SMP Service Management Point

SMS Short Message Service

SMS-CB Short Message Service - Cell Broadcast

SM-GMSC Short Message Gateway Mobile SwitchingCenter

SRAM Static RAM

SRS SubRate Switch

SS7 Signalling System ITU-T N°7 (ex CCITT)

SSD Solid State Disk

SSP Service Switching Point

SW Software

SWEL Switch Element

TBF Temporary Block Flow (GPRS)

TAF Terminal Adaptor Function

Page 433: RNE Fundamental B10.pdf

Section 1 - Module - Page 4333FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 433

Abbreviations and Acronyms [cont.]

Switch to notes view!TC Transcoder

TC Terminating Call

TCC Trunk Controller Chip

TCH Traffic CHannel (GSM TS)

TCIL TransCoder Internal Link

TCSM TransCoder / SubMultiplexer equipment

TCU TRX Control Unit (Type: TCUA, TCUC)

TDMA Time Division Multiple Access

TFO Tandem Free Operation (TC)

TFTS Terrestrial Flight Telecom Systems

TLD Top Level Design

TMN Telecommunication ManagementNetwork

TRAC Trunk Access Circuit

TRAU Transcoder and Rate Adapter Unit

TRCU Transcoder Unit

TRE Transceiver Equipment

TRS Technical Requirement Specification

TRU Top Rack Unit

TRX Transceiver

TS Time Slot

TS Technical Specification (GSM TS)

TSS Time Space Switch

TSCA Transmission Sub-System Controller A(BSC)

TSU Terminal Sub Unit (BSC)

TU Terminal Unit (BSC)

UL UpLink

UMTS Universal Mobile Transmission System

USSD Unstructured Supplementary Services Data

VBS Voice Broadcast Service

VGCS Voice Group Code Service

VLR Visitor Location Register

VPLMN Visited PLMN

VSWR Voltage Standing Wave Ratio (BTS)

WAN Wide Area Network

WAP Wireless Application Protocol

WBC Wide Band Combiner

Page 434: RNE Fundamental B10.pdf

Section 1 - Module - Page 4343FL 11820 ACAA WBZZA Edition 3

RNE Fundamentals -

All rights reserved © 2005, AlcatelEvolium BSS - RNE Fundamentals

1 - - 434

End of Module