risk analysis of coastal flood defences- a vietnam case cong v. mai 1, p. van gelder 1, j.k....

26
Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1 , P. van Gelder 1 , J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology, The Netherlands 2) UNESCO-IHE Delft, The Netherlands

Upload: nora-julien

Post on 01-Apr-2015

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Risk analysis of coastal flood defences- A Vietnam caseCong V. Mai1, P. van Gelder1, J.K. Vrijling1 and Tri C. Mai2

1) Delft University of Technology, The Netherlands2) UNESCO-IHE Delft, The Netherlands

Page 2: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Backgrounds

Last years: - New Orleans is still recovering- River floods in the UK and Asia- Floods in Bangladesh, thousands fatalities

More attentions to reduce flood risk, e.g.:• Preparing emergency as well as longterm

management for floods (e.g. FLOODsite project);• Safety chain concept is introduced; more

preference for other types of measures: insurance, evacuation, or compartiment dikes, etc.

Page 3: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Damrey typhoon 25-28th SEP 2005

With wind force at Beaufort scale 12 (118 to 133 km per hour), >50 year return period

Consequences: -25 kilometers of sea dikes were broken - Sea water flooding of 5 km coastal strips- Total direct losses: $US 500 Mil.

Page 4: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,
Page 5: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Outline

• Flood defences in Vietnam• Research question and Study approach• Application: Vietnam coastal flood defences• Conclusions

Page 6: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Flood defences in Vietnam

• Tropical monsoon area• Typhoons: 6-10

times/year• Extensive river networks• Long, narrow low-lying

coastal strip, but high populated (>1500 inha/km2)

Page 7: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Flood defences in Vietnam

• Flood defence system: 6000 km primary river dikes and 2000 km of sea dikes

• Dike Department, belongs to Ministry of Agricultural and Rural Development (MARD), is responsible for maintenance and management of the dikes system

Page 8: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Flood defences in Vietnam

Current Safety standards: The dikes are divided in two main categories:

- Red dikes, protecting areas with a large number of inhabitants and of great economic interest,

- Yellow dikes, protecting areas of less vulnerable- The red dikes are sub-divided in four grades, I-IV,

by reducing importance and dike crest free board - River dikes: 1/100 to 1/50 per year; - Sea dikes: 1/25 to 1/10 per year

Page 9: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Flood defences in VietnamAssessment of current situation: - Water defense system of Viet Nam is relatively at low

safety levels- fails regularly, mostly with sea dikes system (Sea dikes

are designed for 1/20 year, but it fails once in every 3 years)

- Since 1953, there are numbers of flood disasters which caused loss of more than 20,000 lives and $US 7.5 billion.

- Annual economic damages due to typhoon and flood ~1.5% of Vietnam GDP (experiences from last 10 years)

Page 10: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Sea dike failure due to overtopping (Cat Hai June 2005)

Page 11: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,
Page 12: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,
Page 13: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

1998 2007

Page 14: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

How to deal with floods?

Safety Chain concept• Pro-action

• Prevention• Preparation• Repression/Mitigation• Repair• Learning

… by answering the question: how safe is safe enough and to find out a “sufficient protection level” (e.g. 1/20 years; 1/50 years; 1/100 years …or 1/10000 years

Page 15: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Study approach

Risk based approach to determine the acceptable risk level.

Based on the acceptable risk the Safety level/standard can be set/re-set for the flood defence system

Page 16: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Acceptable risk?

Three points of view: - Individual risk - Societal risk- Economic risk

Page 17: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Individual risk

• IR is defined as the probability that an average unprotected person, permanently present at a certain location, is killed due to an accident resulting from a hazardous activity.

• Not feasible to model=> look at accident statistics

• Dutch Standards (VROM): 410 (1/year)iIR Policy factor

=100, in the case of complete freedom of choice (e.g. mountaineering)…=0.01, in the case of an imposed risk without any perceived direct benefit (e.g flood)

Page 18: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Societal risk

• “The relation between frequency and the number of people suffering from a specified level of harm in a given population from the realisation of specified hazards"

• If the specified level of harm is limited to loss of life

=>The societal risk can be modelled by FN-curve:

* *di di iE( ) + k ( ) < MFN N

1 ( ) ( ) ( )N N

x

F x P N x f x dx

Acceptable level:

Page 19: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Societal risk

where k: risk aversion index, in range of 1 to 3MF: multification factor, depends on:- the averaged death rate; - the number of hazardous activities- the size of the population

* *di di iE( ) + k ( ) < MFN N Acceptable level:

Page 20: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Economic risk

• The total costs=Sum of the expenditure for a safer system + the expected value of the economic damage.

• Search for minimum point

-ln(P )

Co

st

PV(P*S)

f

I

f

Q: total cost

-ln(P )fopt.

Opt. point

Min c

ost

Figure 5.

Page 21: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Application to the case of Vietnam(1)Accident statistics

• Total population: 85 million

• Road traffic accident statistics: Pf=1.45x10-4

• Averaged death rate: r=6x10-3 per year

VNMF = 550

* *550di di iE( ) + k ( ) < N N =>Acceptable level:

Page 22: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Application to the case of Vietnam(2)Societal riskFN-CurveData from DDMFC of Vietnam &ADRC in Japan;

E(N)=541 fat;(N)=1169.7 fat;

101

102

103

104

10-2

10-1

100

Number of fatalities

1-F

r (p

er y

ear)

101

102

103

104

10-3

10-2

10-1

100

Number of fatalities

1-F

r (p

er y

ear)

1970-2007 data VN

Lognormal fit data

1970-2007 data VN

incl. historical events

Lognormal fit data

Page 23: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Application to the case of Vietnam(4)Societal risk

k TR Dutch

1 1710.7 3.1 0.01

2 2880.4 5.2 0.1

3 4050.1 7.4 1.0

Factor 10 to 100 is found comparing to the Dutch caseSafety level of 1/1000 to 1/100 per year may be set

Page 24: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Application to the case of Vietnam(5)Economic risk analysis: Nam Dinh case

101

102

103

104

10-2

10-1

100

Economic damages [$ million]

1-F

r (p

er

year)

100

101

102

103

104

10-2

10-1

100

Economic damages [$ million]

1-F

r (p

er

year)

1970-2007 data VN

Lognormal fit data

1970-2007 data VN

incl. historical eventsLognormal fit data

FD-Curve

E(D)=$181.3 Mil;(D)=$309.5 Mil;

Page 25: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Application to the case of Vietnam(7)Economic risk analysis: Nam Dinh caseEconomic risk based optimal of satety level

10-3

10-2

10-1

100

0

200

400

600

800

(b) Design Frequency [1/year]

costs

[$U

S M

illio

n]

Investment

RiskTotal costs

Optimal point

10-3

10-2

10-1

100

4

6

8

10

12

(a) Design Frequency [1/year]

Dik

e h

eig

ht

[m]

Required dike height Existing dikes

Page 26: Risk analysis of coastal flood defences- A Vietnam case Cong V. Mai 1, P. van Gelder 1, J.K. Vrijling 1 and Tri C. Mai 2 1) Delft University of Technology,

Conclusions• Risk related to illness, accidents in traffic and other

causes in Vietnam is in the same order of magnitude as in Netherlands. However, flood risk in Vietnam is much higher than in NL (factor 10-100);

• The policy factor of Vietnam was found in the range of 3 to 7.5 => Flood safety standards should be set at 1/1000-1/100 per year;

• The current safety standard of coastal flood defences of the case study in Vietnam (1/20 years) is not safe enough; An optimal choice of the acceptable risk level is recommended at 1/100 years

• The situation of the Nam Dinh sea defences is a representative for sea defences in Vietnam. Therefore, updating safety standards for coastal flood defences of the whole country is necessary