review of digital comm-akm 081110

Upload: saumen-mondal

Post on 06-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Review of Digital Comm-AKM 081110

    1/45

    Review of Digital Modulation

    Dr. A.K.MukhopadhyayDepartment of ECE, Dr. B.C.Roy Engg

    College, Durgapur

    AKM/DigCom/Mod/1

    AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    2/45

    AKM lecture notes onAKM/DigCom/Mod

    Types of Signal Transmission

  • 8/2/2019 Review of Digital Comm-AKM 081110

    3/45

    fCfC

    Modulation Basic Principles

    Modulating

    Signal m(t), at

    baseband(fB)

    Carrier (fC)

    Modulation on carriers

    amplitude, frequencyor phase

    Modulated Signal

    carrying theinformation of

    m(t), bandpass (fC)

    AKM/DigCom/Mod AKM lecture notes on

    The modulating signal is represented as a time-sequence of symbolsor pulses. Each symbol has mfinite states and carries nbits of informationwhere n= log2m bits/symbol.

    One symbol (has mstates voltage levels)

    (represents n= log2mbits of information)

    ...

    0 1 2 3 TModulator

  • 8/2/2019 Review of Digital Comm-AKM 081110

    4/45

    Digital Modulation Features

    The input is discrete signal (pulses or symbols in time sequence)

    Robust against channel impairmentsEasier multiplexing of voice, data, video informations

    Digital error-control codes

    Encryption of the transferred signals

    More secure link

    Modulating signal is a binary or M-ary data

    The carrier is usually a sinusoidal wave.

    Change in Amplitude (ASK), Frequency (FSK), Phase(PSK)and combination of more than one parameters

    (Hybrid/Multilevel ). Ex. : QAM (Phase and Amplitude

    change), M-ary

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    5/45

    Digital Modulation Benefits

    Provides low bit-error rates at low SNRsPower efficiency

    Performance in multipath and fading conditionsNoise immunity efficiency

    Minimum RF channel bandwidthBandwidth efficiency

    Easy and cost-effective implementationTradeoffs for selecting a digital modulation scheme depending

    on particular system or application.

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    6/45

    AKM lecture notes onAKM/DigCom/Mod

    Modulation: representation

    Any modulated signal can be represented as

    s(t) = A(t) cos [wct + f(t)]

    s(t) = A(t) cos f(t) cos wct - A(t) sin f(t) sin wct

    amplitude

    in-phase quadrature

    phase or frequency

    Linear versus nonlinear modulation impact on spectral efficiency

    Constant envelope versus non-constantenvelope

    hardware implications with impact on power efficiency

    Linear: Amplitude or phase

    Non-linear: frequency: spectral broadening

    (=> reliability: i.e. target BER at lower SNRs)

  • 8/2/2019 Review of Digital Comm-AKM 081110

    7/45

    AKM lecture notes onAKM/DigCom/Mod

    Linear Modulation Techniques

    s(t)=[Sang(t-nT)]cos wct-[S bng(t-nT)] sin wct(t), in-phase Q(t), quadrature

    LINEAR MODULATIONS

    CONVENTIONAL

    4-PSK

    (QPSK)

    OFFSET

    4-PSK

    (OQPSK)

    DIFFERENTIAL

    4-PSK

    (DQPSK, p/4-DQPSK)

    M-ARY QUADRATURE

    AMPLITUDEMOD.(M-QAM)

    M-ARY PHASE

    SHIFT KEYING(M-PSK)

    M 4 M 4M=4(4-QAM = 4-PSK)

    Square

    Constellations

    Circular

    Constellations

    n n

  • 8/2/2019 Review of Digital Comm-AKM 081110

    8/45

    Generic Digital ModulatorsASK

    AM

    FSKVCOV1 and V2

    BPSKMixer-V and +V

    M-ary

    DSPSource: Tomasi Electronic Comm

  • 8/2/2019 Review of Digital Comm-AKM 081110

    9/45

    AKM lecture notes onAKM/DigCom/Mod

    PAM Circuits

    Modulation

    DetectionPeak detection, AM

    http://www.tpub.com/content/neets/14184/css/14184_175.htm

    http://www.tpub.com/content/neets/14184/css/14184_175.htmhttp://www.tpub.com/content/neets/14184/css/14184_175.htm
  • 8/2/2019 Review of Digital Comm-AKM 081110

    10/45

    Binary

    Amplitude Shift Keying

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    11/45

    Frequency Shift Keying

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    12/45

    AKM lecture notes onAKM/DigCom/Mod

    Simple FSK Circuit

    http://www.edn.com/contents/images/101101di.pdf

    Transceivershttp://jap.hu/electronic/rf.html

    http://www.edn.com/contents/images/101101di.pdfhttp://jap.hu/electronic/rf.htmlhttp://jap.hu/electronic/rf.htmlhttp://www.edn.com/contents/images/101101di.pdf
  • 8/2/2019 Review of Digital Comm-AKM 081110

    13/45

    Phase Shift Keying

    Binary

    QuadratureM-ary

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    14/45

    Comparison of Modulation Techniques

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    15/45

    Power and Bandwidth Efficiency

    Power efficiencyrefers to the ability of the modulation technique

    to retain the message fidelityeven at low power level. Normally,the signal power needs to be increased to improve fidelity.

    Tradeoff between fidelity and signal powerPower efficiency describes how efficient this tradeoff is

    made

    Eb: signal energy per bit N0: noise power spectral density P: Error probability

    AKM/DigCom/Mod AKM lecture notes on

    Bandwidth efficiency refers to the ability of a modulation scheme to

    accommodate data within a limited bandwidth. It indicates how

    efficiently the allocated bandwidth is utilized

    R: the data rate (bps) B: bandwidth occupied by the modulated RF signal

  • 8/2/2019 Review of Digital Comm-AKM 081110

    16/45

    Tradeoff Between Bandwidth Efficiency and Power Efficiency

    Adding error control codes

    Improves the power efficiency -Reduces the requires receivedpower for a particular bit error rateDecreases the bandwidth efficiency -Consumes more

    bandwidth.

    M-ary keying modulationIncreases the bandwidth efficiencyDecreases the power efficiency - More power is requires at the

    receiver

    M-FSK keying modulationIncrease the power efficiencyDecrease the bandwidth efficiency

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    17/45

    Shannons Upper Limit on Bandwidth

    The fundamental upper limit on bandwidth efficiency may be

    achieved using Shannons theorem (1948) that relates thechannel bandwidth with the maximum data rate that can be

    transmitted over a noisychannel.

    Shannons Theorem:

    C: channel capacity (maximum data-rate) in bps,B: RF bandwidth S/N: signal-to-noise ratio

    AKM/DigCom/Mod AKM lecture notes on

    Example:SNR for a wireless channel is 30dB and RF bandwidth is 200kHz. Compute the

    theoretical maximum data rate that can be transmitted over this channel.Solution:

  • 8/2/2019 Review of Digital Comm-AKM 081110

    18/45

    AKM lecture notes onAKM/DigCom/Mod

    Condition ForError Free Communications as per

    Shanons Formula

    Required channel quality

    for error free communications

  • 8/2/2019 Review of Digital Comm-AKM 081110

    19/45

    Bandwidth ExpressionsBandwidth depends on whether the signal is at baseband or at Passband. For

    baseband, Bandwidth = (1/2)Rb(1 + ) (using a Nyquist LPF )For passband digital signal, Bandwidth = Rb(1 + ) (using Nyquist BPF)

    NOTE: Symbol Rate that is key to bandwidth, not the Bit RateDifferent modulation schemes pack different no. of bits in a single symbol. BPSKhas 1

    bit per symbol, QPSKhas 2 bits per symbol.

    AKM/DigCom/Mod AKM lecture notes on

    Occupied Bandwidth, B = Rs ( 1 + ) where Rs is the symbol rateand is the filter roll-off factor

    Noise Bandwidth, BN, for a channel will not be affected by the roll-off factor of filter. Thus BN= Rs

  • 8/2/2019 Review of Digital Comm-AKM 081110

    20/45

    ExampleGIVEN:QPSK modulation, Bit rate 512 kbit/s, Filter roll-off, =0.3FIND: Occupied Bandwidth, B, and Noise Bandwidth, BN

    SOLUTION:

    Symbol Rate = Rs = (1/2) (512 103) = 256 103Occupied Bandwidth, B = Rs (1 + )=256 103 ( 1 + 0.3) = 332.8 KHz

    Noise Bandwidth is, BN = Rs = 256 kHzSame Example with FEC: We use 1/2-rate FEC.

    Symbol Rate, Rs = (1/2) (2) (512 103) = 512 103 symbols/s

    Occupied Bandwidth, B = Rs ( 1 + ) = 665.6 kHz

    2 bits per

    symbolNumber of

    bits/s

    2 bits per

    symbol 2-rateFEC

    Number of

    bits/s

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    21/45

    AKM lecture notes onAKM/DigCom/Mod

    DetectionCoherent Detection

    Local oscillatorSynchronizationRF carrier

    Mixer, LPF; PLL

    Incoherent Detection

    No local oscillatorEnvelope detector; DiscriminatorDifferential PSK

    ComparisonReceiver Circuits

    S/NTiming

  • 8/2/2019 Review of Digital Comm-AKM 081110

    22/45

    Coherent and Non-coherent Detection

    Coherent Detection (most PSK, some FSK):Exact replicas of the possible arriving signals are available at thereceiver.This means knowledge of the phase reference (phased-locked).Detection by cross-correlating the received signal with each one of

    the replicas, and then making a decision based on comparisons withpre-selected thresholds.

    Non-coherent Detection (some FSK, DPSK):Knowledge of the carriers wave phase not required.Less complexity.Inferior error performance.

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    23/45

    AKM lecture notes onAKM/DigCom/Mod

    Coherent Detection

    ASKFSKPSK

    Source: Tomasi Electronic Comm

  • 8/2/2019 Review of Digital Comm-AKM 081110

    24/45

    AKM lecture notes onAKM/DigCom/Mod

    Coherent Detection

    Carrier RecoveryNo carrier pilotSquare loopCostas loop

    RemodulatorReferencehttp://www.mwrf.com/Art

    icles/Print.cfm?Ad=1&Articl

    eID=9366

    http://www.mwrf.com/Articles/Print.cfm?Ad=1&ArticleID=9366http://www.mwrf.com/Articles/Print.cfm?Ad=1&ArticleID=9366http://www.mwrf.com/Articles/Print.cfm?Ad=1&ArticleID=9366http://www.mwrf.com/Articles/Print.cfm?Ad=1&ArticleID=9366http://www.mwrf.com/Articles/Print.cfm?Ad=1&ArticleID=9366http://www.mwrf.com/Articles/Print.cfm?Ad=1&ArticleID=9366
  • 8/2/2019 Review of Digital Comm-AKM 081110

    25/45

    Design Trade-offs

    Primary resources:Transmitted Power.Channel Bandwidth.

    Design goals:Maximum data rate.

    Minimum error probability.Minimum transmitted power.Minimum channel bandwidth.Robust against interfering signals.Minimum circuit complexity.

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    26/45

    Coherent Binary PSK (BPSK)

    Two signals, one representing 0, the other 1.

    Each of the two signals represents a single bit of information.Each signal persists for a single bit period (T) and then may be replaced by

    either state.

    Signal energy (ES) = Bit Energy (Eb), given by:

    Therefore

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    27/45

    BPSK representation

    Lets consider the unidimensional base (N=1) where:

    Lets also rewrite the signal amplitudes as a function of their

    energy:

    AKM/DigCom/Mod AKM lecture notes on

    Therefore, we can write the signals s1(t) and s2(t) in terms

    of 1(t):

    This can be graphically

    represented by signal

    space diagram as:

  • 8/2/2019 Review of Digital Comm-AKM 081110

    28/45

    BPSK Modulation

    -A

    +A

    AKM/DigCom/Mod AKM lecture notes on

    Noise consideration in BPSK Detection

    Actual BPSK signal is received with noise

    AWGN is a good approximation of noiseOther noise models are more complex

    Constellation becomes a distribution because of noisevariations to signal

  • 8/2/2019 Review of Digital Comm-AKM 081110

    29/45

    Bit Error Rate (BER) for BPSK

    BER is given by

    Eb/No(dB) BER

    0 0.082 0.044 0.0146 0.00278 2*10-410 4*10-610.543 10-6

    Approximationvalid for Eb/Nogreater than ~4 dB

    Note that these calculations are for synchronous detection

    AKM/DigCom/Mod AKM lecture notes on

    erfc(z)= complementary error function of z = 1-erf(z)=

  • 8/2/2019 Review of Digital Comm-AKM 081110

    30/45

    AKM lecture notes onAKM/DigCom/Mod

    Non-Coherent Modulation: DPSK

    Information in MPSK, MQAM carried in signal phase.Requires coherent demodulation: i.e. phase of the transmitted signal carrier 0 must

    be matched to the phase of the receiver carrier More cost, susceptible to carrier phase drift.Harder to obtain in fading channels

    Differential modulation: do not require phase reference.More general: modulation with memory: depends upon prior symbolstransmitted.Use previous symbol as the a phase reference for current symbol

    Information bits encoded as the differential phase between current & previoussymbolLess sensitive to carrier phase drift (f-domain) ; more sensitive to doppler effects:decorrelation of signal phase in time-domain

    Differential PSKSimplicity

    TransmitterReceiver

  • 8/2/2019 Review of Digital Comm-AKM 081110

    31/45

    AKM lecture notes onAKM/DigCom/Mod

    DPSK

    A 0 bit is encoded by no change in phase, whereas a 1 bit is encoded as a phase change of.

    If symbol over time [(k1)Ts, kTs) has phase (k 1) = eji, i= 0, ,

    then to encode a 0 bit over [kTs, (k+ 1)Ts), the symbol would have

    phase: (k) = ejiand

    to encode a 1 bit the symbol would have

    phase (k) = ej(i+).DQPSK: gray coding:

  • 8/2/2019 Review of Digital Comm-AKM 081110

    32/45

    Coherent Quaternary PSK (QPSK)Four signals are used to convey information. This leads to a constellation of:

    when shown as a phasor with reference to the signal phase, q,Each of thetwo states represents a two-bit information.

    Constant Modulus =>

    AKM/DigCom/Mod AKM lecture notes on

    we use the following ortho-normal basis:

    This gives, (after some trigonometricmanipulations), the constellation

    representation or Signal space diagram

    of coherent QPSK

  • 8/2/2019 Review of Digital Comm-AKM 081110

    33/45

    QPSK Implementation

    Note that the QPSK

    signal can be seen tobe two BPSK signalsin phase quadrature

    AKM/DigCom/Mod AKM lecture notes on

  • 8/2/2019 Review of Digital Comm-AKM 081110

    34/45

    QPSK Detection

    Resources for DetectionMini Circuitshttp://www.minicircuits.com/pages/app_notes.htmlIntel

    http://www.intel.com/netcomms/technologies/wimax/303788.pdf

    AKM/DigCom/Mod AKM lecture notes on

    Bit Error Rate (BER) for QPSKThe BER is the probability of choosing the wrong signal (symbol) stateBecause the signal is Gray coded the BER for QPSK is that for BPSK:BER (after a lot of derivation) is given by:

    Approximationvalid for Eb/Nogreater than ~4 dBNote that Eb is here, not Es!

    http://www.minicircuits.com/pages/app_notes.htmlhttp://www.minicircuits.com/pages/app_notes.htmlhttp://www.intel.com/netcomms/technologies/wimax/303788.pdfhttp://www.intel.com/netcomms/technologies/wimax/303788.pdfhttp://www.intel.com/netcomms/technologies/wimax/303788.pdfhttp://www.intel.com/netcomms/technologies/wimax/303788.pdfhttp://www.minicircuits.com/pages/app_notes.htmlhttp://www.minicircuits.com/pages/app_notes.html
  • 8/2/2019 Review of Digital Comm-AKM 081110

    35/45

    QPSK Waveform

    AKM/DigCom/Mod AKM lecture notes on

    d li d d l i ( )

  • 8/2/2019 Review of Digital Comm-AKM 081110

    36/45

    Ak x

    cos(2pfct)

    Yi(t) =Akcos(2pfct)

    Bk x

    sin(2pfct)

    Yq(t) = Bksin(2pfct)

    + Y(t)

    Yi(t) and Yq(t) both occupy the bandpass channel QAM sends 2 pulses/Hz

    Quadrature Amplitude Modulation (QAM)

    QAM uses two-dimensional signalingAkmodulates in-phase cos(2pfct)

    Bkmodulates quadrature phase cos(2pfct+ p/4) = sin(2pfct)Transmit sum of inphase & quadrature phase components

    Transmitted

    Signal

    AKM/DigCom/Mod AKM lecture notes on

    QAM D d l i

  • 8/2/2019 Review of Digital Comm-AKM 081110

    37/45

    QAM Demodulation

    Y(t) x

    2cos(2 fct)2cos2(2 fct)+2Bk cos(2 fct)sin(2 fct)

    = Ak{1 + cos(4 fct)}+Bk{0 + sin(4 fct)}

    Lowpassfilter(smoother)

    Ak

    2Bksin2(2 fct)+2Ak cos(2 fct)sin(2 fct)

    = Bk{1 - cos(4 fct)}+Ak{0 + sin(4 fct)}

    x

    2sin(2 fct)

    BkLowpassfilter(smoother)

    smoothed to zero

    smoothed to zero

    AKM/DigCom/Mod AKM lecture notes on

    Si l C ll i P

  • 8/2/2019 Review of Digital Comm-AKM 081110

    38/45

    Signal Constellation PatternsEach pair (Ak, Bk) defines a point in the plane

    Signal constellation is a set of signaling points

    4 possible points per Tsec.

    2 bits / pulse

    Ak

    Bk

    16 possible points per Tsec.

    4 bits / pulse

    Ak

    Bk(A, A)

    (A,-A)(-A,-A)

    (-A,A)

    AKM/DigCom/Mod AKM lecture notes on

    Ak

    Bk

    4 possible points per Tsec.

    Ak

    Bk

    16 possible points per Tsec.

    Point selected by amplitude & phase

    Akcos(2pfct)+Bksin(2pfct)= Ak2+Bk2cos(2pfct+tan-1(Bk/Ak))

  • 8/2/2019 Review of Digital Comm-AKM 081110

    39/45

    QAM Constellations

    Euclidean Distance

    Constellation Displayhttp://www.lecroy.com/tm/library

    /LABs/PDF/LAB303B.pdf

    AKM/DigCom/Mod AKM lecture notes on

    http://www.lecroy.com/tm/library/LABs/PDF/LAB303B.pdfhttp://www.lecroy.com/tm/library/LABs/PDF/LAB303B.pdfhttp://www.lecroy.com/tm/library/LABs/PDF/LAB303B.pdfhttp://www.lecroy.com/tm/library/LABs/PDF/LAB303B.pdf
  • 8/2/2019 Review of Digital Comm-AKM 081110

    40/45

    AKM lecture notes onAKM/DigCom/Mod

    M-PSK and M-QAM

    M-PSK (Circular Constellations)

    16-PSK

    an

    bn4-PSK

    M-QAM (Square Constellations)

    16-QAM

    4-PSK

    an

    bn

    Tradeoffs

    Higher-order modulations (M large) are more spectrallyefficientbut less power efficient (i.e. BER higher).

    M-QAM is more spectrally efficient than M-PSK butalso more sensitive to system nonlinearities.

    O h M d l i S h

  • 8/2/2019 Review of Digital Comm-AKM 081110

    41/45

    Other Modulation SchemesOffset QPSK (OQPSK)

    One of the bit streams delayed by Tb/2

    Same BER performance as QPSKMinimum Shift Keying (MSK)

    QPSK - also constant envelope, continuous phase FSK

    minimum bandwidth, sidelobes large

    1/2-cycle sine symbol rather than rectangular

    Same BER performance as QPSK

    can be implemented using I-Q receiverGaussian MSK (GMSK)

    -- Reduces sidelobes of MSK using a pre-modulation filter

    Used by RAM Mobile Data, GSM, CDPD, and HIPERLAN

    AKM/DigCom/Mod AKM lecture notes on

    http://www.emc.york.ac.uk/reports/linkpcp/appD.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://www.ictp.trieste.it/~radionet/2001_school/lectures/fitton/digital_mod.pdfhttp://www.plextek.com/papers/schmsv6.pdf

    http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://www.ictp.trieste.it/~radionet/2001_school/lectures/fitton/digital_mod.pdfhttp://www.ictp.trieste.it/~radionet/2001_school/lectures/fitton/digital_mod.pdfhttp://www.plextek.com/papers/schmsv6.pdfhttp://www.ictp.trieste.it/~radionet/2001_school/lectures/fitton/digital_mod.pdfhttp://www.plextek.com/papers/schmsv6.pdfhttp://www.plextek.com/papers/schmsv6.pdfhttp://www.ictp.trieste.it/~radionet/2001_school/lectures/fitton/digital_mod.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-976High-Speed-Communication-Circuits-and-SystemsSpring2003/D5DCBE3A-60CD-48A6-977E-78BD8CBEF42E/0/proj2.pdfhttp://www.emc.york.ac.uk/reports/linkpcp/appD.pdf
  • 8/2/2019 Review of Digital Comm-AKM 081110

    42/45

    Minimum Shift Keying (MSK) spectra

    AKM lecture notes on Modulation

  • 8/2/2019 Review of Digital Comm-AKM 081110

    43/45

    AKM lecture notes onAKM/DigCom/Mod

    System Performance

    Eye DiagramSuperposition of sampled pulses

    Eye OpeningContrast between 0 and 1http://www.complextoreal.com/chapters/eye.pdf

    http://www.complextoreal.com/chapters/eye.pdfhttp://www.complextoreal.com/chapters/eye.pdf
  • 8/2/2019 Review of Digital Comm-AKM 081110

    44/45

    Summary of Digital Communications Parameters

    M = modulation size. Bw= Bandwidth in Hertz = Roll-off factor (from 0 to 1)

    Gc = Coding Gain (convert from dB to linear) Ov= Channel Overhead (0 to1)Bits per Symbol: Symbol Rate [symbol/second]

    Gross Bit Rate [bps]:

    Net Data Rate [bps]:

    Required Eb/No (using coding gain):

    Required C/N:

    Required Signal Strength [Watts]:

    Where ,k = Boltzman constant = 1.38e-23 J/HzTS = System Noise TemperatureT0 = ambient temperature (usually 290 K)F = System Noise figure in linear scale (not in dB)

    AKM lecture notes on ModulationAKM/DigCom/Mod

  • 8/2/2019 Review of Digital Comm-AKM 081110

    45/45