responsibilities of harvard atmospheric chemistry …responsibilities of harvard atmospheric...

19
2.1 Objective 1: Compile comprehensive air pollution, weather, emissions, and GIS datasets for the entire continental US for the period spanning 20002015. Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOSChem Simulations. 16years (20002015) 0.5 o x 0.625 o horizontal resolution. NOxVOCPM chemistry informed by our involvement in recent SEAC4RS aircraft campaign. Updated isoprene chemistry. Updated halogen chemistry. Simulations will be started this summer. Loretta Mickley, Lu Shen, Daniel Jacob, and Rachel Silvern

Upload: others

Post on 06-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

2.1 Objective 1: Compile comprehensive air pollution, weather, emissions, and GIS datasets for the entire continental US for the period spanning 2000‐2015.

Responsibilities of Harvard Atmospheric Chemistry Modeling Group

2.1.3 GEOS‐Chem Simulations.• 16‐years (2000‐2015)• 0.5o x 0.625o horizontal resolution.• NOx‐VOC‐PM chemistry informed 

by our involvement in recent SEAC4RS aircraft campaign.

• Updated isoprene chemistry.• Updated halogen chemistry.• Simulations will be started this 

summer.

Loretta Mickley, Lu Shen, Daniel Jacob, and Rachel Silvern

Page 2: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

Two examples from recent research using GEOS‐Chemto understand air quality over the Southeast.

GEOS‐Chem with 60% cut in NOx emissions from mobile and industrial sources better matches observations.

NEI emissions

Travis et al., 2016

Marais et al., 2017

Improved emissions

Improved SOA mechanism    

Old SOA mechanism

1990‐2013 trend in isoprene SOAWe find SOA decreases over 1990‐2013 due to decreasing sulfate, which drives trends in aerosol volume and acidity.

Page 3: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

2.4 Objective 4. Forecast weather and air quality changes for each region for the period of 2015‐2040 using archived results from an ensemble of climate models.

Method. 1. Characterize statistically significant relationships between observed meteorological parameters and observed ozone and PM2.5 for present‐day.

2. Apply the relationships from #1 to an ensemble of climate model projections for the 2040s atmosphere. 

+ Future meteorology

Future air quality

Observed relationships between meteorology and air pollutants

Start with the present‐day.

IPCC models

Page 4: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

Regardless of emission trends, meteorology can strongly perturb air quality.

2012 drought + heat

From Lu Shen’s interactive online tool for tracking US summer ozone:https://lshen2009.github.io/

• EPA actions have led to much cleaner air for millions of people

• There is large interannualvariability in ozone due to the effects of meteorology

Eastern US mean

Site in southern Illinois

1990‐2016 mean JJA MDA8 ozone

Page 5: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

Statistical models have some advantages over dynamical models in projecting future air quality.

2. Statistical modelsBased on observed relationships between meteorological variables and pollutants. 

1. Chemistry‐climate models or chemistry transport models 

• Make it easy to investigate the physical processes.

• May have difficulty in capturing O3 and PM2.5 variability.• High computational expense.

• Low computational expense.• Can take advantage of large ensembles of climate models, 

leading to more robust results. • Can be used to validate dynamical models.

• Need relatively long records of observations.• May fail to include some important physical processes

Page 6: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

Recent results.

Results 1. Completed project that informs current EPA‐ACE projects.

Results 2‐4. New projects, funded by EPA‐ACE.

Page 7: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

We build a model using extreme value theory and daily maximum temperatures.

We find that ozone episodes increase by 3‐9 days per summer in Northeast and California by 2050s.

U.S. average change is 2 more episode days per summer. 

1. We find that number of surface ozone episodes per summer increases across the US by 2050s.

Episode = MDA8 O3 > 75 ppb

-100.51234691215

days(a) Change in ozone episode days in 2050s ozone episode days by 2050s

Sites where inclusion of Tmaxdoes not improve EVT model.

Shen et al., 2016

Page 8: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

Cross‐validated coefficients of determination (R2) between observed and predicted 1999‐2013 monthly PM2.5 in US

2. For annual or seasonal PM2.5, we include synoptic circulation factors into the statistical model.

Shen et al., 2017a

mean R2 mean R2

PM2.5 PM2.5

Meteorological variables: T, RH, precip, windspeeds

Page 9: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

We apply the model to large ensemble of climate model output.

We find that annual mean PM2.5could increase 1‐1.5 μg m‐3 in the eastern US, larger than previous estimates.

Change is especially large in summer, due to faster oxidation and more greater biogenic emissions.

5

0

5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5( ) y μg m‐3 PM2.5 by 2050s

We find that climate change alone could increase annual mean PM2.5 uniformly across the East by the 2050s.

Shen et al., 2017a-3

-2

-1

0

1

2

3( )

annual mean

JJA mean

Page 10: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

We develop a statistical model to predict summertime ozone variability using meteorology from the previous spring.

3. On the large scale, we find that sea surface temperatures can influence US air quality.

Eastern ozone

MAM‐ΔSST

The model relies on:• Memory of springtime SSTs in the following summer.• Dependence of US temperatures on SSTs• Dependence of surface ozone on US temperatures.

Shen et al., 2017b

Correlation of SSTs in spring with JJA ozone in eastern US

Page 11: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

We predict 45% of the variability of JJA MDA8 ozone in the eastern US using patterns of SSTs and sea level pressure in the preceding spring.

Ozone has been detrended via two methods:• 7‐year moving average (MA)• 7‐year Henderson filtered trend (HF)

1980 1985 1990 1995 2000 2005 2010

-6-4

-20

24

6oz

one

anom

aly

(ppb

v)

r(HF) =0.67r(MA) =0.59

obs (HF)prediction (HF)prediction (MA)

Mean JJA MDA8 ozone over eastern US

observations

model, MA methodmodel, HF method

Shen et al., 2017b

Page 12: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

4. We find that teleconnections involving the Atlantic Multidecadal Oscillation can also influence US air quality.

SSTs across the north Atlantic show a decadal long variation known as the AMO.

Temperatures averaged across East correlate with the smoothed AMO index.

Shen et al., 2017c

PM2.5 over one‐half cycle AMO Both PM2.5 and ozone increase over 1/2 cycle AMO.

These effects are overlooked in dynamical models.

Cold AMO

Warm AMO

AMO and summertime temps in East US

Page 13: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

Next steps.• Perform and validate 16‐year GEOS‐Chem simulation.

• Wrap up work on statistical models of future air quality.

• Interface with Project 4: Use knowledge gleaned from statistical models to help interpret trends of past air quality. 

• Interface with Project 5: Provide GEOS‐Chem results for present‐day.

Published papers.Shen L., L.J. Mickley, and L.T. Murray, Influence of 2000‐2050 climate change on particulate matter in the United States: Results from a new statistical model. Atmos. Chem. Phys., 17, 4355‐4367, 2017a.

Shen, L., and L.J. Mickley, Influence of large‐scale climate patterns on summertime U.S. ozone: A seasonal predictive model for air quality management, PNAS, 114, 2491‐2496, 2017b.

Page 14: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •
Page 15: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

The influence of meteorology on air quality can be broken down into different spatial scales.

Local meteorology

Synoptic circulation

Global background

Local T, RH, wind speed, precipitation, etc.

Meteorological patterns on larger spatial scales (~ 1000 km) -- e.g., polar jet wind andBermuda High

Changing climate change – e.g., changes in meridional temperature gradient or water vapor

Page 16: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

Projections of future PM2.5 under a warmer climate using GCM‐CTMs are sometimes inconsistent.

Previous studies have not evaluated the long‐term ( ~10 years) sensitivity of PM2.5 to the major meteorological variables in the CTMs.

ΔPM2.5 by 2050s (July, GRE‐CAPs )

Day et al. [2015]

ΔPM2.5 by 2050s (July, PCM‐CMAQ)

Avise et al. [2009]

Page 17: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

Correlations of PM2.5 in one sample grid box with surrounding meteorology

Mean May‐June‐July,1999‐2013

2. On the regional scale, we find that PM2.5 responds to meteorology across many states.

Sample grid box in Georgia

Anticyclonic circulation affects PM2.5 in gridbox

Shen et al., 2015, 2017a

Page 18: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

The statistical model predicts an especially strong response in PM2.5 to 2050s climate in summer.

-3

-2

-1

0

1

2

3( )

-3

-2

-1

0

1

2

3( ) μg m-3μg m-3∆PM2.5 in JJA ∆PM2.5 in DJF

Faster oxidation rate, more biogenic emission, and stagnation

Volatilization of ammonium nitrate

Shen et al., 2017a

2000‐2050 changes in PM2.5

Page 19: Responsibilities of Harvard Atmospheric Chemistry …Responsibilities of Harvard Atmospheric Chemistry Modeling Group 2.1.3 GEOS‐Chem Simulations. • 16‐years (2000‐2015) •

4. We find that teleconnections involving the Atlantic Multidecadal Oscillation can also influence US air quality.

SSTs across the north Atlantic show a decadal long variation known as the AMO.

Cold AMO

Warm AMO

Temperatures averaged across East correlate with the smoothed AMO index.

Temperatures in the East vary by 0.5 – 1.0 K over one‐half cycle of AMO, suggesting an influence on air quality. 

Shen et al., 2017c