respiratory physiology - euroanaesthesia...

64
Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics and Intensive Care Hôpital Européen Georges Pompidou, Paris, France

Upload: truongquynh

Post on 13-Apr-2018

221 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

Respiratory Physiology

Manuel Otero Lopez Department of Anaesthetics and Intensive Care Hôpital Européen Georges Pompidou, Paris, France

Page 2: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Conflict of interest declaration

I do not have conflict of interest

Page 3: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Programme

• Functional respiratory anatomy

• Ventilation

• Mechanics of breathing (compliance & airway resistance)

• The inefficiency of respiratory gas exchange (Respiratory Dead space and Shunt)

• Ventilation-perfusion relationship

• Gas transport

• Control of ventilation

Page 4: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Functional respiratory anatomy

• Upper respiratory tract (from nostrils to vocal cords)

• Lower respiratory tract (from vocal cords to alveoli)

Page 5: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Functional respiratory anatomy

Muscles of respiration Innervation Diaphragm => Phrenic nerves

(C3-C5 nerve roots)

Intercostal muscles => by their

respective thoracic nerves roots

Vagus => provide sensory innervation

to the tracheobronchial tree (bronchoconstriction, bronchial secretions). Sympathetic activity (T1-T4) causes bronchodilatation and secretions via β2 –receptors. α1 receptors cause bronchoconstriction α1 and β2 receptors are also present in the pulmonary vessels.

Page 6: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Weibel classification of airways

Weibel ER. Morphometry of the human lung. Heidelberg: Springer-Verlag, New York: Academic Press; 1963

Ewald Weibel

Page 7: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Functional respiratory anatomy

Each alveolar sac contains, on average, 17 alveoli. An estimated 300 million alveoli provide a membrane of 50 to 100 m2 for gas exchange. Pulmonary epithelium: - Type 1 pneumocytes - Type 2 pneumocytes (surfactant)

Page 8: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Increase in total cross-sectional area of the airways in the respiratory zone

Page 9: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Ventilation

Page 10: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Total ventilation = tidal volume (VT) x respiratory frequency • Minute volume of ventilation

Anatomic dead space = the volume of the conducting airways, which does not take part in gas exchange (VD)

Alveolar ventilation = (VT - VD) x respiratory frequency

• the amount of fresh inspired air available for gas exchange

Physiologic dead space = the volume of gas that does not eliminate CO2

• VD / VT = 0.3 in spontaneous ventilation

• VD / VT = 0.5 in mechanical ventilation

Page 11: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Page 12: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Lung volumes and capacities

Morgan and Mikhail’s Clinical Anesthesiology, 5th ed.

Volume is the amount of 3D space taken up by an object, e.g. a solid, a liquid or a gas.

Capacity is the measure of an object’s ability to hold a substance, e.g. a solid, a liquid or a gas.

Volume vs. Capacity

Page 13: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Expiratory spirogram

Morgan and Mikhail’s Clinical Anesthesiology, 5th ed.

Page 14: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Peak flowmeter, PEFR

Measurement of the peak

expiratory flow rate which is

sustained for 10 ms

Page 15: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Respiratory failure

An obstructive pattern (COAD) will show :

Low FEV1.0 / FVC ratio, low PEFR, low VC and high RV.

A restrictive pattern will show :

Normal FEV1.0 / FVC ratio, low VC, low PEFR and low RV.

(after resection of the lung, kyphoscoliosis,…)

Page 16: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Closing capacity

• The lung volume present after a maximum expiratory effort is called RV (residual volume). At this minimum volume some of the dependent alveoli are close off.

• The closing capacity is the lung volume at which this closure is first recorded using a marker gas expirogram such as helium.

• Closing capacity is independent of body position but increases with age. If it exceeds FRC, there is some degree of airway closure during respiration (intrapulmonary shunt). Responsible for the normal age-related decline in arterial O2 tension.

Page 17: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Closing capacity

(Morgan and Mikhail’s Clinical Anesthesiology, 5th ed.)

Page 18: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Mechanics of breathing

Page 19: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Pressure volume relationship and compliance

Compliance is an index of distensibility of elastic organs and defined as the change in volume per unit change in pressure (ΔV/ΔP).

Compliance Elastance

Page 20: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Normal lung compliance ~ 0.2-0.3 L/cm H2O (2-3 L/kPa)

Factors which modifie compliance • Body size • Posture • Volume history of the lungs • Pulmonary blood volume • Fibrosis

Page 21: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Surface Tension

Page 22: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Surface Tension and Surfactant

Page 23: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Surface Tension

Page 24: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Start to develop at about 24 weeks of gestation secreting small amounts of surfactant Adequate amounts are not secreted until about 35 weeks of gestation

Electron micrograph of type II epithelial cell (x 10 000)

Type II pneumocyte

Page 25: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Pulmonary Surfactant

• Reduces the surface tension of the alveolar lining layer

• Increases lung compliance

• Increases the stability of alveoli

• Prevents pulmonary edema

• Has a short half-life

Absence

• Low lung compliance, alveolar atelectasis, tendency to pulmonary edema

Page 26: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Airway Resistance

Derived from Hagen–Poiseuille equation

Jean Louis Marie Poiseuille

Page 27: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Main site of airway resistance

Page 28: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Laminar versus turbulent flow

Laminar flow Hagen-Poiseuille equation

Turbulent flow In tubulent flow the resistance to

flow is greater and increases more rapidly when the flow increases.

Reynolds’ number: V x diameter x gas density gas viscosity

Page 29: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

The inefficiency of respiratory gas exchange (Respiratory Dead space

and Shunt) Ventilation-perfusion relationship

Page 30: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

John B. West

Video Lectures in Respiratory Physiology

http://meded.ucsd.edu/ifp/jwest/resp_phys/index.html

Page 31: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Page 32: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Gravitational Distribution of Blood Flow in the Lung

John B. West

The uneven distribution of blood flow can be explained by the hydrostatic pressure differences within the blood vessels (« 30 cm H2O pressure from top to bottom »)

On exercise these regional

differences become less.

Page 33: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

VENTILATION-PERFUSION RELATIONSHIP

Distribution of V, Q and V/Q ratio in the normal, upright lung

Page 34: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Ventilation /perfusion ratios in an erect subject. (Textbook of Anaesthesia, AR Aitkenhead & G Smith, 2nd ed. 1990)

Page 35: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Dead space

The amount of ventilation not taking part in the gas exchange

Page 36: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Ventilation-Perfusion Relationship

Page 37: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Shunt

Cc’ O2 can be calculated from the alveolar gas equation :

Clinically, the alveolar – arterial oxygen partial pressure difference is often used as an approximation for « shunt »

Page 38: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

• alveolar hypoxia constricts small pulmonary arteries

• a compensatory mechanism aimed at reducing blood flow in hypoxic lung regions

• the precise mechanism is not known

• occurs in excised isolated lung

• probably a direct effect of the low PO2 on vascular smooth muscle

Hypoxic Pulmonary Vasoconstriction

Page 39: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

DIFFUSION

Page 40: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

DIFFUSION

Adolf Fick, 1855

Fick's Law of Diffusion

Page 41: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

DIFFUSION

Page 42: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

• At rest PaO2 virtually reaches PAO2 after about 1/3 of its time in capillary

• The diffusion process is challenged by exercise, alveolar hypoxia, and thickening of the blood-gas barrier

• True diffusion defects that create arterial hypoxemia are rare

Diffusion of Oxygen Across the Blood-Gas Barrier

DIFFUSION

Page 43: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

GAS TRANSPORT

•dissolved

• combined with Hb

O2

Page 44: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

GAS TRANSPORT

Dissolved O2

For each mmHg of PO2 0.003 ml O2 · 100 ml-1 of blood

or

0.003 vol. %

In normal arterial blood PO2 of 100 mmHg 0.3 ml O2 · 100 ml-1

Page 45: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

GAS TRANSPORT

O2 capacity: 1 g Hb - 1.39 ml O2

O2 saturation of Hb = O2 combined with Hb X 100 O2 capacity

CO2 = 1.39 x Hb x SO2 (%)/100 + 0.003 PO2

Oxygen carrying capacity of Hb = Hüfner’s constant (1,39 ml/gr)

Page 46: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

O2 dissociation curve

Page 47: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Shifts of the O2 dissociation curve

Page 48: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

GAS TRANSPORT

CO2

• dissolved

• as bicarbonate

• in combination with proteins as carbamino compounds

Page 49: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

CO2 carriage in the blood

Page 50: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Page 51: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

CONTROL OF RESPIRATION

Page 52: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Basic elements of the respiratory control system

West, John B. Respiratory Physiology: The Essentials, 9th Edition Copyright © 2012 Lippincott Williams & Wilkins, a Wolters Kluwer business

Page 53: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Page 54: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Page 55: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

• respond to PO2, PCO2, pH

• little response to normoxia

• very high blood flow

• respond to arterial, not venous PO2

• response to PCO2, pH is < important

• fast response

Carotid bodies

Page 56: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

• pulmonary stretch receptors (slowly adapting pulmonary stretch receptors)

• Hering-Breuer inflation reflex

• irritant receptors (rapidly adapting pulmonary stretch receptors)

• J receptors (juxtacapillary)

• bronchial C fibers

Lung receptors

Page 57: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Mechanisms of hypoxemia

Morgan and Mikhail’s Clinical Anesthesiology, 5th ed.

Page 58: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Page 59: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

NON-RESPIRATORY FUNCTIONS OF THE RESPIRATORY SYSTEM

Page 60: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

NON-RESPIRATORY FUNCTIONS OF THE RESPIRATORY SYSTEM

• Protective functions of respiratory tract

• Non-respiratory functions of pulmonary circulation

• Metabolic functions of the lung

Page 61: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

• Protective functions of respiratory tract

• Warming

• Humidification

• Filtration ------------------------------>

• Removal of filtered particles

• (cough, cilia)

• Defense mechanisms of terminal respiratory units (macrophages and other relevant cells)

• Olfaction

Raises incoming air to 100% humidity

Raises incoming air to 37 Celsius

Page 62: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

NON-RESPIRATORY FUNCTIONS OF THE RESPIRATORY SYSTEM

• Non-respiratory functions of pulmonary circulation

• Reservoir for left ventricle (contains about 500 ml blood)

• Fluid and electrolyte exchange

• Filter to protect the systemic circulation including: small fibrin or blood clots, fat cells, bone marrow, detached cancer cells, gas bubbles, agglutinated RBC's, masses of platelets or WBC's, debris in stored blood, particles in i.v. solutions

Page 63: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

NON-RESPIRATORY FUNCTIONS OF THE RESPIRATORY SYSTEM

• Metabolic functions of the lung

• Uptake or conversion of chemical substances by lungs (conversion of angiotensin I to angiotensin II)

• Formation of chemical substances

• Pulmonary surfactant

• Release into blood of substances stored in pulmonary tissues

• Bradykinin

• Histamine

• Serotonin

• PGE2, PGF2

• Heparin

Page 64: Respiratory Physiology - Euroanaesthesia 2017euroanaesthesia2017.esahq.org/wp-content/uploads/2015/11/2017.06... · Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics

www.esahq.org

Thank you for attention

Manuel Otero Lopez [email protected]

Many tanks to : Dr. Armen Varosyan Department of Anaesthesiology and Intensive Care Yerevan State Medical University, Yerevan, Armenia