research article coefficient estimates for certain classes of bi … · 2019. 7. 31. ·...

5
Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2013, Article ID 190560, 4 pages http://dx.doi.org/10.1155/2013/190560 Research Article Coefficient Estimates for Certain Classes of Bi-Univalent Functions Jay M. Jahangiri 1 and Samaneh G. Hamidi 2 1 Department of Mathematical Sciences, Kent State University, Burton, OH 44021-9500, USA 2 Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence should be addressed to Jay M. Jahangiri; [email protected] Received 29 April 2013; Revised 27 July 2013; Accepted 31 July 2013 Academic Editor: Heinrich Begehr Copyright © 2013 J. M. Jahangiri and S. G. Hamidi. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A function analytic in the open unit disk D is said to be bi-univalent in D if both the function and its inverse map are univalent there. e bi-univalency condition imposed on the functions analytic in D makes the behavior of their coefficients unpredictable. Not much is known about the behavior of the higher order coefficients of classes of bi-univalent functions. We use Faber polynomial expansions of bi-univalent functions to obtain estimates for their general coefficients subject to certain gap series as well as providing bounds for early coefficients of such functions. 1. Introduction Let A denote the class of functions which are analytic in the open unit disk D := { ∈ C : || < 1} and normalized by () = + =2 . (1) Let S denote the class of functions A that are univalent in D and let P be the class of functions () = 1+∑ =1 that are analytic in D and satisfy the condition Re(()) > 0 in D. By the Caratheodory lemma (e.g., see [1]) we have | |≤2. For 0≤<1 and ≥1 we let D(; ) denote the family of analytic functions A so that Re ((1 − ) () + ()) > , D. (2) We note that D(0; 1) is the class of bounded boundary turning functions and also that D(; ) ⊂ D(; ) if 0≤< . For A, the class D(; ) ⊂ S and was first defined and investigated by Ding et al. [2]. It is well known that every function S has an inverse −1 satisfying −1 (()) = for D and ( −1 ()) = for || < 1/4, according to Kobe One Quarter eorem (e.g., see [1]). A function A is said to be bi-univalent in D if both S and = −1 S. Finding bounds for the coefficients of classes of bi-univalent functions dates back to 1967 (see Lewin [3]). But the interest on the bounds for the coefficients of classes of bi-univalent functions picked up by the publications of Brannan and Taha [4], Srivastava et al. [5], Frasin and Aouf [6], Ali et al. [7], and Hamidi et al. [8]. e bi-univalency condition imposed on the functions A makes the behavior of their coefficients unpredictable. Not much is known about the behavior of the higher order coefficients of classes of bi-univalent functions, as Ali et al. [7] also remarked that finding the bounds for | | when ≥4 is an open problem. Here in this paper we let D(; ) and = −1 D(; ) and use the Faber polynomial coefficient expansions to provide bounds for the general coefficients | | of such functions with a given gap series. We also obtain estimates for the first two coefficients | 2 | and | 3 | of these functions as well as providing an estimate for their coefficient body ( 2 , 3 ). e bounds provided in this paper prove to be better than those estimates provided by Srivastava et al. [5] and Frasin and Aouf [6].

Upload: others

Post on 07-Sep-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Coefficient Estimates for Certain Classes of Bi … · 2019. 7. 31. · InternationalJournal of Mathematics and Mathematical Sciences [] H. Airault and J. Ren, An

Hindawi Publishing CorporationInternational Journal of Mathematics and Mathematical SciencesVolume 2013 Article ID 190560 4 pageshttpdxdoiorg1011552013190560

Research ArticleCoefficient Estimates for Certain Classes ofBi-Univalent Functions

Jay M Jahangiri1 and Samaneh G Hamidi2

1 Department of Mathematical Sciences Kent State University Burton OH 44021-9500 USA2 Institute of Mathematical Sciences Faculty of Science University of Malaya 50603 Kuala Lumpur Malaysia

Correspondence should be addressed to Jay M Jahangiri jjahangikentedu

Received 29 April 2013 Revised 27 July 2013 Accepted 31 July 2013

Academic Editor Heinrich Begehr

Copyright copy 2013 J M Jahangiri and S G Hamidi This is an open access article distributed under the Creative CommonsAttribution License which permits unrestricted use distribution and reproduction in any medium provided the original work isproperly cited

A function analytic in the open unit disk D is said to be bi-univalent in D if both the function and its inverse map are univalentthere The bi-univalency condition imposed on the functions analytic in Dmakes the behavior of their coefficients unpredictableNotmuch is known about the behavior of the higher order coefficients of classes of bi-univalent functionsWe use Faber polynomialexpansions of bi-univalent functions to obtain estimates for their general coefficients subject to certain gap series aswell as providingbounds for early coefficients of such functions

1 Introduction

Let A denote the class of functions 119891 which are analytic inthe open unit disk D = 119911 isin C |119911| lt 1 and normalized by

119891 (119911) = 119911 +infin

sum119899=2

119886119899119911119899 (1)

Let S denote the class of functions 119891 isin A that areunivalent in D and let P be the class of functions 119901(119911) =1 + sum

infin

119899=1119901119899119911119899 that are analytic in D and satisfy the condition

Re(119901(119911)) gt 0 in D By the Caratheodory lemma (eg see [1])we have |119901

119899| le 2

For 0 le 120572 lt 1 and 120582 ge 1 we letD(120572 120582) denote the familyof analytic functions 119891 isin A so that

Re((1 minus 120582)119891 (119911)

119911+ 1205821198911015840 (119911)) gt 120572 119911 isin D (2)

We note that D(0 1) is the class of bounded boundaryturning functions and also thatD(120572 120582) sub D(120573 120582) if 0 le 120573 lt120572 For 119891 isin A the classD(120572 120582) sub S and was first defined andinvestigated by Ding et al [2]

It is well known that every function 119891 isin S has an inverse119891minus1 satisfying 119891minus1(119891(119911)) = 119911 for 119911 isin D and 119891(119891minus1(119908)) = 119908

for |119908| lt 14 according to Kobe One QuarterTheorem (egsee [1])

A function 119891 isin A is said to be bi-univalent in D ifboth 119891 isin S and 119892 = 119891minus1 isin S Finding bounds for thecoefficients of classes of bi-univalent functions dates backto 1967 (see Lewin [3]) But the interest on the bounds forthe coefficients of classes of bi-univalent functions pickedup by the publications of Brannan and Taha [4] Srivastavaet al [5] Frasin and Aouf [6] Ali et al [7] and Hamidi etal [8]The bi-univalency condition imposed on the functions119891 isin Amakes the behavior of their coefficients unpredictableNot much is known about the behavior of the higher ordercoefficients of classes of bi-univalent functions as Ali et al[7] also remarked that finding the bounds for |119886

119899| when 119899 ge 4

is an open problem Here in this paper we let119891 isin D(120572 120582) and119892 = 119891minus1 isin D(120572 120582) and use the Faber polynomial coefficientexpansions to provide bounds for the general coefficients |119886

119899|

of such functions with a given gap series We also obtainestimates for the first two coefficients |119886

2| and |119886

3| of these

functions as well as providing an estimate for their coefficientbody (119886

2 1198863) The bounds provided in this paper prove to be

better than those estimates provided by Srivastava et al [5]and Frasin and Aouf [6]

2 International Journal of Mathematics and Mathematical Sciences

2 Main Results

Using the Faber polynomial expansion of functions 119891 isin A ofthe form (1) the coefficients of its inverse map 119892 = 119891minus1 maybe expressed as [9]

119892 (119908) = 119891minus1 (119908) = 119908 +infin

sum119899=2

1

119899119870minus119899119899minus1

(1198862 1198863 ) 119908119899 (3)

where

119870minus119899119899minus1

=(minus119899)

(minus2119899 + 1) (119899 minus 1)119886119899minus12

+(minus119899)

(2 (minus119899 + 1)) (119899 minus 3)119886119899minus32

1198863

+(minus119899)

(minus2119899 + 3) (119899 minus 4)119886119899minus42

1198864

+(minus119899)

(2 (minus119899 + 2)) (119899 minus 5)119886119899minus52

[1198865

+ (minus119899 + 2) 11988623]

+(minus119899)

(minus2119899 + 5) (119899 minus 6)119886119899minus62

[1198866

+ (minus2119899 + 5) 11988631198864]

+ sum119895ge7

119886119899minus119895

2119881119895

(4)

such that 119881119895with 7 le 119895 le 119899 is a homogeneous polynomial

in the variables 1198862 1198863 119886

119899[10] In particular the first three

terms of 119870minus119899119899minus1

are

1

2119870minus21

= minus1198862

1

3119870minus32

= 211988622

minus 1198863

1

4119870minus43

= minus (511988632

minus 511988621198863

+ 1198864)

(5)

In general for any 119901 isin N an expansion of 119870119901119899is as [9 page

183]

119870119901119899

= 119901119886119899

+119901 (119901 minus 1)

21198632119899

+119901

(119901 minus 3)31198633119899

+ sdot sdot sdot +119901

(119901 minus 119899)119899119863119899119899

(6)

where 119863119901119899

= 119863119901119899

(1198862 1198863 ) and by [11] or [12]

119863119898119899

(1198861 1198862 119886

119899) =infin

sum119898=1

119898(1198861)1205831 sdot sdot sdot (119886

119899)120583119899

1205831 sdot sdot sdot 120583119899

(7)

while 1198861

= 1 and the sum is taken over all nonnegativeintegers 120583

1 120583

119899satisfying

1205831

+ 1205832

+ sdot sdot sdot + 120583119899

= 119898

1205831

+ 21205832

+ sdot sdot sdot + 119899120583119899

= 119899(8)

Evidently 119863119899119899(1198861 1198862 119886

119904+119898) = 1198861198991 [13]

Theorem 1 For 0 le 120572 lt 1 and 120582 ge 1 let 119891 isin D(120572 120582) and119892 isin D(120572 120582) If 119886

119896= 0 2 le 119896 le 119899 minus 1 then

10038161003816100381610038161198861198991003816100381610038161003816 le

2 (1 minus 120572)

1 + (119899 minus 1) 120582 119899 ge 4 (9)

Proof For analytic functions 119891 of the form (1) we have

(1 minus 120582)119891 (119911)

119911+ 1205821198911015840 (119911)

= 1 +infin

sum119899=2

(1 + (119899 minus 1) 120582) 119886119899119911119899minus1

(10)

and for its inverse map 119892 = 119891minus1 we have

(1 minus 120582)119892 (119908)

119908+ 1205821198921015840 (119908)

= 1 +infin

sum119899=2

(1 + (119899 minus 1) 120582) 119887119899119908119899minus1

= 1 +infin

sum119899=2

(1 + (119899 minus 1) 120582)

times1

119899119870minus119899119899minus1

(1198862 1198863 119886

119899) 119908119899minus1

(11)

On the other hand since 119891 isin D(120572 120582) and 119892 = 119891minus1 isinD(120572 120582) by definition there exist two positive real partfunctions 119901(119911) = 1 + sum

infin

119899=1119888119899119911minus119899 and 119902(119908) = 1 + sum

infin

119899=1119889119899119908minus119899

where Re119901(119911) gt 0 and Re 119902(119908) gt 0 inD so that

(1 minus 120582)119891 (119911)

119911+ 1205821198911015840 (119911)

= 1 + (1 minus 120572)infin

sum119899=1

1198701119899

(1198881 1198882 119888

119899) 119911119899

(12)

(1 minus 120582)119892 (119908)

119908+ 1205821198921015840 (119908)

= 1 + (1 minus 120572)infin

sum119899=1

1198701119899

(1198891 1198892 119889

119899) 119908119899

(13)

Comparing the corresponding coefficients of (10) and (12)yields

(1 + 120582 (119899 minus 1)) 119886119899

= (1 minus 120572) 1198701119899minus1

(1198881 1198882 119888

119899minus1) (14)

and similarly from (11) and (13) we obtain

1

119899(1 + (119899 minus 1) 120582) 119870minus119899

119899minus1(1198870 1198871 119887

119899)

= (1 minus 120572) 1198701119899minus1

(1198891 1198892 119889

119899minus1)

(15)

Note that for 119886119896

= 0 2 le 119896 le 119899 minus 1 we have 119887119899

= minus119886119899and so

(1 + (119899 minus 1) 120582) 119886119899

= (1 minus 120572) 119888119899minus1

minus (1 + (119899 minus 1) 120582) 119886119899

= (1 minus 120572) 119889119899minus1

(16)

International Journal of Mathematics and Mathematical Sciences 3

Now taking the absolute values of either of the above twoequations and applying the Caratheodory lemma we obtain

10038161003816100381610038161198861198991003816100381610038161003816 le

(1 minus 120572)1003816100381610038161003816119888119899minus1

1003816100381610038161003816|1 + (119899 minus 1) 120582|

=(1 minus 120572)

1003816100381610038161003816119889119899minus11003816100381610038161003816

|1 + (119899 minus 1) 120582|le

2 (1 minus 120572)

1 + (119899 minus 1) 120582

(17)

Theorem 2 For 0 le 120572 lt 1 and 120582 ge 1 let 119891 isin D(120572 120582) and119892 isin D(120572 120582) Then one has the following

(i) 100381610038161003816100381611988621003816100381610038161003816 le

radic2 (1 minus 120572)

1 + 2120582 0 le 120572 lt

1 + 2120582 minus 1205822

2 (1 + 2120582)

2 (1 minus 120572)

1 + 120582

1 + 2120582 minus 1205822

2 (1 + 2120582)le 120572 lt 1

(ii) 100381610038161003816100381611988631003816100381610038161003816 le

2 (1 minus 120572)

1 + 2120582

(iii) 100381610038161003816100381610038161198863 minus 211988622

10038161003816100381610038161003816 le2 (1 minus 120572)

1 + 2120582

(18)

Proof Replacing 119899 by 2 and 3 in (14) and (15) respectively wededuce

(1 + 120582) 1198862

= (1 minus 120572) 1198881 (19)

(1 + 2120582) 1198863

= (1 minus 120572) 1198882 (20)

minus (1 + 120582) 1198862

= (1 minus 120572) 1198891 (21)

(1 + 2120582) (211988622

minus 1198863) = (1 minus 120572) 119889

2 (22)

Dividing (19) or (21) by (1 + 120582) taking their absolutevalues and applying the Caratheodory lemma we obtain

100381610038161003816100381611988621003816100381610038161003816 le

(1 minus 120572)10038161003816100381610038161198881

10038161003816100381610038161 + 120582

=(1 minus 120572)

100381610038161003816100381611988911003816100381610038161003816

1 + 120582le

2 (1 minus 120572)

1 + 120582 (23)

Adding (20) to (22) implies

2 (1 + 2120582) 11988622

= (1 minus 120572) (1198882

+ 1198892) (24)

or

11988622

=(1 minus 120572) (119888

2+ 1198892)

2 (1 + 2120582) (25)

An application of Caratheodory lemma followed bytaking the square roots yields

100381610038161003816100381611988621003816100381610038161003816 le

2radic(1 minus 120572) (

100381610038161003816100381611988821003816100381610038161003816 +

100381610038161003816100381611988921003816100381610038161003816)

2 (1 + 2120582)le2radic

2 (1 minus 120572)

1 + 2120582 (26)

Now the bounds given in Theorem 2 (i) for |1198862| follow

upon noting that if (1 + 2120582 minus 1205822)2(1 + 2120582) le 120572 lt 1 then

2 (1 minus 120572)

1 + 120582le2radic

2 (1 minus 120572)

1 + 2120582 (27)

Dividing (20) by (1 + 2120582) taking the absolute values of bothsides and applying the Caratheodory lemma yield

100381610038161003816100381611988631003816100381610038161003816 =

(1 minus 120572)10038161003816100381610038161198882

10038161003816100381610038161 + 2120582

le2 (1 minus 120572)

1 + 2120582 (28)

Dividing (22) by (1 + 2120582) taking the absolute values of bothsides and applying the Caratheodory lemma we obtain

100381610038161003816100381610038161198863 minus 211988622

10038161003816100381610038161003816 le2 (1 minus 120572)

1 + 2120582 (29)

Corollary 3 For 0 le 120572 lt 1 let 119891 isin D(120572 1) and 119892 isin D(120572 1)Then one has the following

(i) 100381610038161003816100381611988621003816100381610038161003816 le

radic2 (1 minus 120572)

3 0 le 120572 lt

1

3

1 minus 1205721

3le 120572 lt 1

(ii) 100381610038161003816100381611988631003816100381610038161003816 le

2 (1 minus 120572)

3

(30)

Remark 4 The above two estimates for |1198862| and |119886

3| show that

the bounds given in Theorem 2 are better than those givenby Srivastava et al ([5 page 1191 Theorem 2] and Frasin andAouf [6 page 1572 Theorem 32])

References

[1] P L Duren Univalent Functions vol 259 of Grundlehren derMathematischenWissenschaften Springer New York NY USA1983

[2] S S Ding Y Ling and G J Bao ldquoSome properties of a classof analytic functionsrdquo Journal of Mathematical Analysis andApplications vol 195 no 1 pp 71ndash81 1995

[3] M Lewin ldquoOn a coefficient problem for bi-univalent functionsrdquoProceedings of the American Mathematical Society vol 18 pp63ndash68 1967

[4] D A Brannan and T S Taha ldquoOn some classes of bi-univalentfunctionsrdquo Studia Universitatis Babes-Bolyai Mathematica vol31 no 2 pp 70ndash77 1986

[5] H M Srivastava A K Mishra and P Gochhayat ldquoCertainsubclasses of analytic and bi-univalent functionsrdquo AppliedMathematics Letters vol 23 no 10 pp 1188ndash1192 2010

[6] B A Frasin and M K Aouf ldquoNew subclasses of bi-univalentfunctionsrdquoAppliedMathematics Letters vol 24 no 9 pp 1569ndash1573 2011

[7] R M Ali S K Lee V Ravichandran and S SupramaniamldquoCoefficient estimates for bi-univalent Ma-Minda starlike andconvex functionsrdquo Applied Mathematics Letters vol 25 no 3pp 344ndash351 2012

[8] S G Hamidi S A Halim and J M Jahangiri ldquoFaber poly-nomial coefficient estimates for meromorphic bi-starlike func-tionsrdquo International Journal of Mathematics and MathematicalSciences vol 2013 Article ID 498159 4 pages 2013

[9] H Airault and A Bouali ldquoDifferential calculus on the Faberpolynomialsrdquo Bulletin des Sciences Mathematiques vol 130 no3 pp 179ndash222 2006

4 International Journal of Mathematics and Mathematical Sciences

[10] H Airault and J Ren ldquoAn algebra of differential operators andgenerating functions on the set of univalent functionsrdquo Bulletindes Sciences Mathematiques vol 126 no 5 pp 343ndash367 2002

[11] P G Todorov ldquoOn the Faber polynomials of the univalentfunctions of class Σrdquo Journal of Mathematical Analysis andApplications vol 162 no 1 pp 268ndash276 1991

[12] H Airault ldquoSymmetric sums associated to the factorization ofGrunsky coefficientsrdquo in Conference Groups and SymmetriesMontreal Canada April 2007

[13] H Airault ldquoRemarks on Faber polynomialsrdquo InternationalMathematical Forum Journal for Theory and Applications vol3 no 9-12 pp 449ndash456 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Coefficient Estimates for Certain Classes of Bi … · 2019. 7. 31. · InternationalJournal of Mathematics and Mathematical Sciences [] H. Airault and J. Ren, An

2 International Journal of Mathematics and Mathematical Sciences

2 Main Results

Using the Faber polynomial expansion of functions 119891 isin A ofthe form (1) the coefficients of its inverse map 119892 = 119891minus1 maybe expressed as [9]

119892 (119908) = 119891minus1 (119908) = 119908 +infin

sum119899=2

1

119899119870minus119899119899minus1

(1198862 1198863 ) 119908119899 (3)

where

119870minus119899119899minus1

=(minus119899)

(minus2119899 + 1) (119899 minus 1)119886119899minus12

+(minus119899)

(2 (minus119899 + 1)) (119899 minus 3)119886119899minus32

1198863

+(minus119899)

(minus2119899 + 3) (119899 minus 4)119886119899minus42

1198864

+(minus119899)

(2 (minus119899 + 2)) (119899 minus 5)119886119899minus52

[1198865

+ (minus119899 + 2) 11988623]

+(minus119899)

(minus2119899 + 5) (119899 minus 6)119886119899minus62

[1198866

+ (minus2119899 + 5) 11988631198864]

+ sum119895ge7

119886119899minus119895

2119881119895

(4)

such that 119881119895with 7 le 119895 le 119899 is a homogeneous polynomial

in the variables 1198862 1198863 119886

119899[10] In particular the first three

terms of 119870minus119899119899minus1

are

1

2119870minus21

= minus1198862

1

3119870minus32

= 211988622

minus 1198863

1

4119870minus43

= minus (511988632

minus 511988621198863

+ 1198864)

(5)

In general for any 119901 isin N an expansion of 119870119901119899is as [9 page

183]

119870119901119899

= 119901119886119899

+119901 (119901 minus 1)

21198632119899

+119901

(119901 minus 3)31198633119899

+ sdot sdot sdot +119901

(119901 minus 119899)119899119863119899119899

(6)

where 119863119901119899

= 119863119901119899

(1198862 1198863 ) and by [11] or [12]

119863119898119899

(1198861 1198862 119886

119899) =infin

sum119898=1

119898(1198861)1205831 sdot sdot sdot (119886

119899)120583119899

1205831 sdot sdot sdot 120583119899

(7)

while 1198861

= 1 and the sum is taken over all nonnegativeintegers 120583

1 120583

119899satisfying

1205831

+ 1205832

+ sdot sdot sdot + 120583119899

= 119898

1205831

+ 21205832

+ sdot sdot sdot + 119899120583119899

= 119899(8)

Evidently 119863119899119899(1198861 1198862 119886

119904+119898) = 1198861198991 [13]

Theorem 1 For 0 le 120572 lt 1 and 120582 ge 1 let 119891 isin D(120572 120582) and119892 isin D(120572 120582) If 119886

119896= 0 2 le 119896 le 119899 minus 1 then

10038161003816100381610038161198861198991003816100381610038161003816 le

2 (1 minus 120572)

1 + (119899 minus 1) 120582 119899 ge 4 (9)

Proof For analytic functions 119891 of the form (1) we have

(1 minus 120582)119891 (119911)

119911+ 1205821198911015840 (119911)

= 1 +infin

sum119899=2

(1 + (119899 minus 1) 120582) 119886119899119911119899minus1

(10)

and for its inverse map 119892 = 119891minus1 we have

(1 minus 120582)119892 (119908)

119908+ 1205821198921015840 (119908)

= 1 +infin

sum119899=2

(1 + (119899 minus 1) 120582) 119887119899119908119899minus1

= 1 +infin

sum119899=2

(1 + (119899 minus 1) 120582)

times1

119899119870minus119899119899minus1

(1198862 1198863 119886

119899) 119908119899minus1

(11)

On the other hand since 119891 isin D(120572 120582) and 119892 = 119891minus1 isinD(120572 120582) by definition there exist two positive real partfunctions 119901(119911) = 1 + sum

infin

119899=1119888119899119911minus119899 and 119902(119908) = 1 + sum

infin

119899=1119889119899119908minus119899

where Re119901(119911) gt 0 and Re 119902(119908) gt 0 inD so that

(1 minus 120582)119891 (119911)

119911+ 1205821198911015840 (119911)

= 1 + (1 minus 120572)infin

sum119899=1

1198701119899

(1198881 1198882 119888

119899) 119911119899

(12)

(1 minus 120582)119892 (119908)

119908+ 1205821198921015840 (119908)

= 1 + (1 minus 120572)infin

sum119899=1

1198701119899

(1198891 1198892 119889

119899) 119908119899

(13)

Comparing the corresponding coefficients of (10) and (12)yields

(1 + 120582 (119899 minus 1)) 119886119899

= (1 minus 120572) 1198701119899minus1

(1198881 1198882 119888

119899minus1) (14)

and similarly from (11) and (13) we obtain

1

119899(1 + (119899 minus 1) 120582) 119870minus119899

119899minus1(1198870 1198871 119887

119899)

= (1 minus 120572) 1198701119899minus1

(1198891 1198892 119889

119899minus1)

(15)

Note that for 119886119896

= 0 2 le 119896 le 119899 minus 1 we have 119887119899

= minus119886119899and so

(1 + (119899 minus 1) 120582) 119886119899

= (1 minus 120572) 119888119899minus1

minus (1 + (119899 minus 1) 120582) 119886119899

= (1 minus 120572) 119889119899minus1

(16)

International Journal of Mathematics and Mathematical Sciences 3

Now taking the absolute values of either of the above twoequations and applying the Caratheodory lemma we obtain

10038161003816100381610038161198861198991003816100381610038161003816 le

(1 minus 120572)1003816100381610038161003816119888119899minus1

1003816100381610038161003816|1 + (119899 minus 1) 120582|

=(1 minus 120572)

1003816100381610038161003816119889119899minus11003816100381610038161003816

|1 + (119899 minus 1) 120582|le

2 (1 minus 120572)

1 + (119899 minus 1) 120582

(17)

Theorem 2 For 0 le 120572 lt 1 and 120582 ge 1 let 119891 isin D(120572 120582) and119892 isin D(120572 120582) Then one has the following

(i) 100381610038161003816100381611988621003816100381610038161003816 le

radic2 (1 minus 120572)

1 + 2120582 0 le 120572 lt

1 + 2120582 minus 1205822

2 (1 + 2120582)

2 (1 minus 120572)

1 + 120582

1 + 2120582 minus 1205822

2 (1 + 2120582)le 120572 lt 1

(ii) 100381610038161003816100381611988631003816100381610038161003816 le

2 (1 minus 120572)

1 + 2120582

(iii) 100381610038161003816100381610038161198863 minus 211988622

10038161003816100381610038161003816 le2 (1 minus 120572)

1 + 2120582

(18)

Proof Replacing 119899 by 2 and 3 in (14) and (15) respectively wededuce

(1 + 120582) 1198862

= (1 minus 120572) 1198881 (19)

(1 + 2120582) 1198863

= (1 minus 120572) 1198882 (20)

minus (1 + 120582) 1198862

= (1 minus 120572) 1198891 (21)

(1 + 2120582) (211988622

minus 1198863) = (1 minus 120572) 119889

2 (22)

Dividing (19) or (21) by (1 + 120582) taking their absolutevalues and applying the Caratheodory lemma we obtain

100381610038161003816100381611988621003816100381610038161003816 le

(1 minus 120572)10038161003816100381610038161198881

10038161003816100381610038161 + 120582

=(1 minus 120572)

100381610038161003816100381611988911003816100381610038161003816

1 + 120582le

2 (1 minus 120572)

1 + 120582 (23)

Adding (20) to (22) implies

2 (1 + 2120582) 11988622

= (1 minus 120572) (1198882

+ 1198892) (24)

or

11988622

=(1 minus 120572) (119888

2+ 1198892)

2 (1 + 2120582) (25)

An application of Caratheodory lemma followed bytaking the square roots yields

100381610038161003816100381611988621003816100381610038161003816 le

2radic(1 minus 120572) (

100381610038161003816100381611988821003816100381610038161003816 +

100381610038161003816100381611988921003816100381610038161003816)

2 (1 + 2120582)le2radic

2 (1 minus 120572)

1 + 2120582 (26)

Now the bounds given in Theorem 2 (i) for |1198862| follow

upon noting that if (1 + 2120582 minus 1205822)2(1 + 2120582) le 120572 lt 1 then

2 (1 minus 120572)

1 + 120582le2radic

2 (1 minus 120572)

1 + 2120582 (27)

Dividing (20) by (1 + 2120582) taking the absolute values of bothsides and applying the Caratheodory lemma yield

100381610038161003816100381611988631003816100381610038161003816 =

(1 minus 120572)10038161003816100381610038161198882

10038161003816100381610038161 + 2120582

le2 (1 minus 120572)

1 + 2120582 (28)

Dividing (22) by (1 + 2120582) taking the absolute values of bothsides and applying the Caratheodory lemma we obtain

100381610038161003816100381610038161198863 minus 211988622

10038161003816100381610038161003816 le2 (1 minus 120572)

1 + 2120582 (29)

Corollary 3 For 0 le 120572 lt 1 let 119891 isin D(120572 1) and 119892 isin D(120572 1)Then one has the following

(i) 100381610038161003816100381611988621003816100381610038161003816 le

radic2 (1 minus 120572)

3 0 le 120572 lt

1

3

1 minus 1205721

3le 120572 lt 1

(ii) 100381610038161003816100381611988631003816100381610038161003816 le

2 (1 minus 120572)

3

(30)

Remark 4 The above two estimates for |1198862| and |119886

3| show that

the bounds given in Theorem 2 are better than those givenby Srivastava et al ([5 page 1191 Theorem 2] and Frasin andAouf [6 page 1572 Theorem 32])

References

[1] P L Duren Univalent Functions vol 259 of Grundlehren derMathematischenWissenschaften Springer New York NY USA1983

[2] S S Ding Y Ling and G J Bao ldquoSome properties of a classof analytic functionsrdquo Journal of Mathematical Analysis andApplications vol 195 no 1 pp 71ndash81 1995

[3] M Lewin ldquoOn a coefficient problem for bi-univalent functionsrdquoProceedings of the American Mathematical Society vol 18 pp63ndash68 1967

[4] D A Brannan and T S Taha ldquoOn some classes of bi-univalentfunctionsrdquo Studia Universitatis Babes-Bolyai Mathematica vol31 no 2 pp 70ndash77 1986

[5] H M Srivastava A K Mishra and P Gochhayat ldquoCertainsubclasses of analytic and bi-univalent functionsrdquo AppliedMathematics Letters vol 23 no 10 pp 1188ndash1192 2010

[6] B A Frasin and M K Aouf ldquoNew subclasses of bi-univalentfunctionsrdquoAppliedMathematics Letters vol 24 no 9 pp 1569ndash1573 2011

[7] R M Ali S K Lee V Ravichandran and S SupramaniamldquoCoefficient estimates for bi-univalent Ma-Minda starlike andconvex functionsrdquo Applied Mathematics Letters vol 25 no 3pp 344ndash351 2012

[8] S G Hamidi S A Halim and J M Jahangiri ldquoFaber poly-nomial coefficient estimates for meromorphic bi-starlike func-tionsrdquo International Journal of Mathematics and MathematicalSciences vol 2013 Article ID 498159 4 pages 2013

[9] H Airault and A Bouali ldquoDifferential calculus on the Faberpolynomialsrdquo Bulletin des Sciences Mathematiques vol 130 no3 pp 179ndash222 2006

4 International Journal of Mathematics and Mathematical Sciences

[10] H Airault and J Ren ldquoAn algebra of differential operators andgenerating functions on the set of univalent functionsrdquo Bulletindes Sciences Mathematiques vol 126 no 5 pp 343ndash367 2002

[11] P G Todorov ldquoOn the Faber polynomials of the univalentfunctions of class Σrdquo Journal of Mathematical Analysis andApplications vol 162 no 1 pp 268ndash276 1991

[12] H Airault ldquoSymmetric sums associated to the factorization ofGrunsky coefficientsrdquo in Conference Groups and SymmetriesMontreal Canada April 2007

[13] H Airault ldquoRemarks on Faber polynomialsrdquo InternationalMathematical Forum Journal for Theory and Applications vol3 no 9-12 pp 449ndash456 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Coefficient Estimates for Certain Classes of Bi … · 2019. 7. 31. · InternationalJournal of Mathematics and Mathematical Sciences [] H. Airault and J. Ren, An

International Journal of Mathematics and Mathematical Sciences 3

Now taking the absolute values of either of the above twoequations and applying the Caratheodory lemma we obtain

10038161003816100381610038161198861198991003816100381610038161003816 le

(1 minus 120572)1003816100381610038161003816119888119899minus1

1003816100381610038161003816|1 + (119899 minus 1) 120582|

=(1 minus 120572)

1003816100381610038161003816119889119899minus11003816100381610038161003816

|1 + (119899 minus 1) 120582|le

2 (1 minus 120572)

1 + (119899 minus 1) 120582

(17)

Theorem 2 For 0 le 120572 lt 1 and 120582 ge 1 let 119891 isin D(120572 120582) and119892 isin D(120572 120582) Then one has the following

(i) 100381610038161003816100381611988621003816100381610038161003816 le

radic2 (1 minus 120572)

1 + 2120582 0 le 120572 lt

1 + 2120582 minus 1205822

2 (1 + 2120582)

2 (1 minus 120572)

1 + 120582

1 + 2120582 minus 1205822

2 (1 + 2120582)le 120572 lt 1

(ii) 100381610038161003816100381611988631003816100381610038161003816 le

2 (1 minus 120572)

1 + 2120582

(iii) 100381610038161003816100381610038161198863 minus 211988622

10038161003816100381610038161003816 le2 (1 minus 120572)

1 + 2120582

(18)

Proof Replacing 119899 by 2 and 3 in (14) and (15) respectively wededuce

(1 + 120582) 1198862

= (1 minus 120572) 1198881 (19)

(1 + 2120582) 1198863

= (1 minus 120572) 1198882 (20)

minus (1 + 120582) 1198862

= (1 minus 120572) 1198891 (21)

(1 + 2120582) (211988622

minus 1198863) = (1 minus 120572) 119889

2 (22)

Dividing (19) or (21) by (1 + 120582) taking their absolutevalues and applying the Caratheodory lemma we obtain

100381610038161003816100381611988621003816100381610038161003816 le

(1 minus 120572)10038161003816100381610038161198881

10038161003816100381610038161 + 120582

=(1 minus 120572)

100381610038161003816100381611988911003816100381610038161003816

1 + 120582le

2 (1 minus 120572)

1 + 120582 (23)

Adding (20) to (22) implies

2 (1 + 2120582) 11988622

= (1 minus 120572) (1198882

+ 1198892) (24)

or

11988622

=(1 minus 120572) (119888

2+ 1198892)

2 (1 + 2120582) (25)

An application of Caratheodory lemma followed bytaking the square roots yields

100381610038161003816100381611988621003816100381610038161003816 le

2radic(1 minus 120572) (

100381610038161003816100381611988821003816100381610038161003816 +

100381610038161003816100381611988921003816100381610038161003816)

2 (1 + 2120582)le2radic

2 (1 minus 120572)

1 + 2120582 (26)

Now the bounds given in Theorem 2 (i) for |1198862| follow

upon noting that if (1 + 2120582 minus 1205822)2(1 + 2120582) le 120572 lt 1 then

2 (1 minus 120572)

1 + 120582le2radic

2 (1 minus 120572)

1 + 2120582 (27)

Dividing (20) by (1 + 2120582) taking the absolute values of bothsides and applying the Caratheodory lemma yield

100381610038161003816100381611988631003816100381610038161003816 =

(1 minus 120572)10038161003816100381610038161198882

10038161003816100381610038161 + 2120582

le2 (1 minus 120572)

1 + 2120582 (28)

Dividing (22) by (1 + 2120582) taking the absolute values of bothsides and applying the Caratheodory lemma we obtain

100381610038161003816100381610038161198863 minus 211988622

10038161003816100381610038161003816 le2 (1 minus 120572)

1 + 2120582 (29)

Corollary 3 For 0 le 120572 lt 1 let 119891 isin D(120572 1) and 119892 isin D(120572 1)Then one has the following

(i) 100381610038161003816100381611988621003816100381610038161003816 le

radic2 (1 minus 120572)

3 0 le 120572 lt

1

3

1 minus 1205721

3le 120572 lt 1

(ii) 100381610038161003816100381611988631003816100381610038161003816 le

2 (1 minus 120572)

3

(30)

Remark 4 The above two estimates for |1198862| and |119886

3| show that

the bounds given in Theorem 2 are better than those givenby Srivastava et al ([5 page 1191 Theorem 2] and Frasin andAouf [6 page 1572 Theorem 32])

References

[1] P L Duren Univalent Functions vol 259 of Grundlehren derMathematischenWissenschaften Springer New York NY USA1983

[2] S S Ding Y Ling and G J Bao ldquoSome properties of a classof analytic functionsrdquo Journal of Mathematical Analysis andApplications vol 195 no 1 pp 71ndash81 1995

[3] M Lewin ldquoOn a coefficient problem for bi-univalent functionsrdquoProceedings of the American Mathematical Society vol 18 pp63ndash68 1967

[4] D A Brannan and T S Taha ldquoOn some classes of bi-univalentfunctionsrdquo Studia Universitatis Babes-Bolyai Mathematica vol31 no 2 pp 70ndash77 1986

[5] H M Srivastava A K Mishra and P Gochhayat ldquoCertainsubclasses of analytic and bi-univalent functionsrdquo AppliedMathematics Letters vol 23 no 10 pp 1188ndash1192 2010

[6] B A Frasin and M K Aouf ldquoNew subclasses of bi-univalentfunctionsrdquoAppliedMathematics Letters vol 24 no 9 pp 1569ndash1573 2011

[7] R M Ali S K Lee V Ravichandran and S SupramaniamldquoCoefficient estimates for bi-univalent Ma-Minda starlike andconvex functionsrdquo Applied Mathematics Letters vol 25 no 3pp 344ndash351 2012

[8] S G Hamidi S A Halim and J M Jahangiri ldquoFaber poly-nomial coefficient estimates for meromorphic bi-starlike func-tionsrdquo International Journal of Mathematics and MathematicalSciences vol 2013 Article ID 498159 4 pages 2013

[9] H Airault and A Bouali ldquoDifferential calculus on the Faberpolynomialsrdquo Bulletin des Sciences Mathematiques vol 130 no3 pp 179ndash222 2006

4 International Journal of Mathematics and Mathematical Sciences

[10] H Airault and J Ren ldquoAn algebra of differential operators andgenerating functions on the set of univalent functionsrdquo Bulletindes Sciences Mathematiques vol 126 no 5 pp 343ndash367 2002

[11] P G Todorov ldquoOn the Faber polynomials of the univalentfunctions of class Σrdquo Journal of Mathematical Analysis andApplications vol 162 no 1 pp 268ndash276 1991

[12] H Airault ldquoSymmetric sums associated to the factorization ofGrunsky coefficientsrdquo in Conference Groups and SymmetriesMontreal Canada April 2007

[13] H Airault ldquoRemarks on Faber polynomialsrdquo InternationalMathematical Forum Journal for Theory and Applications vol3 no 9-12 pp 449ndash456 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Coefficient Estimates for Certain Classes of Bi … · 2019. 7. 31. · InternationalJournal of Mathematics and Mathematical Sciences [] H. Airault and J. Ren, An

4 International Journal of Mathematics and Mathematical Sciences

[10] H Airault and J Ren ldquoAn algebra of differential operators andgenerating functions on the set of univalent functionsrdquo Bulletindes Sciences Mathematiques vol 126 no 5 pp 343ndash367 2002

[11] P G Todorov ldquoOn the Faber polynomials of the univalentfunctions of class Σrdquo Journal of Mathematical Analysis andApplications vol 162 no 1 pp 268ndash276 1991

[12] H Airault ldquoSymmetric sums associated to the factorization ofGrunsky coefficientsrdquo in Conference Groups and SymmetriesMontreal Canada April 2007

[13] H Airault ldquoRemarks on Faber polynomialsrdquo InternationalMathematical Forum Journal for Theory and Applications vol3 no 9-12 pp 449ndash456 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Coefficient Estimates for Certain Classes of Bi … · 2019. 7. 31. · InternationalJournal of Mathematics and Mathematical Sciences [] H. Airault and J. Ren, An

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of