research article approximations for equilibrium problems...

8
Research Article Approximations for Equilibrium Problems and Nonexpansive Semigroups Huan-chun Wu and Cao-zong Cheng Department of Mathematics, Beijing University of Technology, Beijing 100124, China Correspondence should be addressed to Huan-chun Wu; [email protected] Received 29 November 2013; Accepted 4 February 2014; Published 16 March 2014 Academic Editor: Hassen Aydi Copyright © 2014 H.-c. Wu and C.-z. Cheng. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce a new iterative method for finding a common element of the set of solutions of an equilibrium problem and the set of all common fixed points of a nonexpansive semigroup and prove the strong convergence theorem in Hilbert spaces. Our result extends the recent result of Zegeye and Shahzad (2013). In the last part of the paper, by the way, we point out that there is a slight flaw in the proof of the main result in Shehu’s paper (2012) and perfect the proof. 1. Introduction Let be a real Hilbert space, and let be a nonempty closed convex subset of . A mapping : is called nonexpansive if ‖ − ‖ ≤ ‖ − ‖ for all , ∈ . We denote the set of fixed points of by (). It is known that () is closed and convex. A family S = {() : 0 ≤ < ∞} of mappings from into itself is called a nonexpansive semigroup on if it satisfies the following conditions: (i) (0) = for all ; (ii) ( + ) = ()() for all , ≥ 0; (iii) ‖() − ()‖ ≤ ‖ − ‖ for all , ∈ and ≥0; (iv) for all ∈ , → () is continuous. We denote by (S) the set of all common fixed points of S; that is, (S)=⋂ 0≤<∞ (()). It is clear that (S) is a closed convex subset. e equilibrium problem for : × R is to find such that ( ,) ≥ 0 for all . e set of such solutions is denoted by EP(). Numerous problems in physics, optimization, and economics can be reduced to find a solution of the equilibrium problem (for instance, see [1]). For solving equilibrium problem, we assume that the bifunction satisfies the following conditions: (A1) (, ) = 0 for all ; (A2) is monotone; that is, (, ) + (, ) ≤ 0 for any , ∈ ; (A3) for each ,, ∈ , lim sup ↓0 ( + (1 − ), ) ≤ (, ); (A4) (, ⋅) is convex and lower semicontinuous for each . Several methods have been proposed to solve the equilib- rium problem; see [17]. For finding common fixed points of a nonexpansive semigroup, Nakajo and Takahashi [8] intro- duced a convergent sequence for nonexpansive semigroup S = {() : 0 ≤ < ∞} as follows: 0 = ∈ , = + (1 − ) 1 0 () , = { ∈ : }, = { ∈ : ⟨ − , 0 ⟩ ≥ 0} , +1 = ( 0 ). (1) Some authors have paid more attention to find an element ∈ (S)∩ EP(). Buong and Duong [9] constructed the fol- lowing iterative sequence and proved the weak convergence Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 351372, 7 pages http://dx.doi.org/10.1155/2014/351372

Upload: others

Post on 20-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Approximations for Equilibrium Problems ...downloads.hindawi.com/journals/aaa/2014/351372.pdf · Step . e sequence { } is bounded. Step . e following equalities hold:

Research ArticleApproximations for Equilibrium Problems andNonexpansive Semigroups

Huan-chun Wu and Cao-zong Cheng

Department of Mathematics Beijing University of Technology Beijing 100124 China

Correspondence should be addressed to Huan-chun Wu wuhuanchunemailsbjuteducn

Received 29 November 2013 Accepted 4 February 2014 Published 16 March 2014

Academic Editor Hassen Aydi

Copyright copy 2014 H-c Wu and C-z Cheng This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

We introduce a new iterative method for finding a common element of the set of solutions of an equilibrium problem and the setof all common fixed points of a nonexpansive semigroup and prove the strong convergence theorem in Hilbert spaces Our resultextends the recent result of Zegeye and Shahzad (2013) In the last part of the paper by the way we point out that there is a slightflaw in the proof of the main result in Shehursquos paper (2012) and perfect the proof

1 Introduction

Let119867 be a real Hilbert space and let 119862 be a nonempty closedconvex subset of 119867 A mapping 119879 119862 rarr 119862 is callednonexpansive if 119879119909 minus 119879119910 le 119909 minus 119910 for all 119909 119910 isin 119862 Wedenote the set of fixed points of 119879 by 119865(119879) It is known that119865(119879) is closed and convex A family S = 119879(119905) 0 le 119905 lt

infin of mappings from 119862 into itself is called a nonexpansivesemigroup on 119862 if it satisfies the following conditions

(i) 119879(0)119909 = 119909 for all 119909 isin 119862(ii) 119879(119904 + 119905) = 119879(119904)119879(119905) for all 119904 119905 ge 0(iii) 119879(119904)119909 minus 119879(119904)119910 le 119909 minus 119910 for all 119909 119910 isin 119862 and 119904 ge 0(iv) for all 119909 isin 119862 119904 997891rarr 119879(119904)119909 is continuous

We denote by 119865(S) the set of all common fixed points of Sthat is119865(S) = ⋂

0le119905ltinfin119865(119879(119905)) It is clear that119865(S) is a closed

convex subsetThe equilibrium problem for 119891 119862 times 119862 rarr R is to

find 119909 isin 119862 such that 119891(119909 119910) ge 0 for all 119910 isin 119862 The set ofsuch solutions is denoted by EP(119891) Numerous problems inphysics optimization and economics can be reduced to finda solution of the equilibrium problem (for instance see [1])

For solving equilibrium problem we assume that thebifunction 119891 satisfies the following conditions

(A1) 119891(119909 119909) = 0 for all 119909 isin 119862

(A2) 119891 is monotone that is 119891(119909 119910) + 119891(119910 119909) le 0 for any119909 119910 isin 119862

(A3) for each 119909 119910 119911 isin 119862 lim sup119905darr0119891(119905119911 + (1 minus 119905)119909 119910) le

119891(119909 119910)(A4) 119891(119909 sdot) is convex and lower semicontinuous for each

119909 isin 119862

Several methods have been proposed to solve the equilib-rium problem see [1ndash7] For finding common fixed points ofa nonexpansive semigroup Nakajo and Takahashi [8] intro-duced a convergent sequence for nonexpansive semigroupS = 119879(119905) 0 le 119905 lt infin as follows

1199090= 119909 isin 119862

119910119899= 120572119899119909119899+ (1 minus 120572

119899)1

119905119899

int

119905119899

0

119879 (119904) 119909119899119889119904

119862119899= 119911 isin 119862

1003817100381710038171003817119910119899 minus 1199111003817100381710038171003817 le

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

119876119899= 119911 isin 119862 ⟨119909

119899minus 119911 119909

0minus 119909119899⟩ ge 0

119909119899+1

= 119875119862119899⋂119876119899

(1199090)

(1)

Some authors have paidmore attention to find an element119901 isin 119865(S)capEP(119891) Buong and Duong [9] constructed the fol-lowing iterative sequence and proved the weak convergence

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014 Article ID 351372 7 pageshttpdxdoiorg1011552014351372

2 Abstract and Applied Analysis

theorem for an equilibrium problem and a nonexpansivesemigroup in Hilbert spaces

1199090isin 119867

119906119896isin 119862 119891 (119906

119896 119910) +

1

119903119896

⟨119910 minus 119906119896 119906119896minus 119909119896⟩ ge 0 forall119910 isin 119862

119909119896+1

= 120583119896119909119896+ (1 minus 120583

119896)1

119905119896

int

119905119896

0

119879 (119904) 119906119896119889119904

(2)

In 2012 Shehu [10] studied iterative methods for fixedpoint problem variational inequality and generalized mixedequilibrium problem and introduced a new algorithm whichdoes not involve the CQ algorithm and viscosity approxima-tion method However we discover that there is a slight flawin the proof of Theorem 31 in [10]

Motivated by Nakajo and Takahashi [8] Buong andDuong [9] and especially Shehu [10] andZegeye and Shahzad[11] we present a new iterative method for finding a commonelement of the set of solutions of an equilibrium problemand the set of all common fixed points of a nonexpansivesemigroup and prove the strong convergence theorem inHilbert spaces Our result extends the recent result of [11] Inthe last part of the paper we perfect and simplify the proof ofTheorem 31 in [10]

2 Preliminaries

Throughout this paper let119867be a realHilbert spacewith innerproduct ⟨sdot sdot⟩ and norm sdot and let 119862 be a nonempty closedconvex subset of 119867 We write 119909

119899rarr 119909 to indicate that the

sequence 119909119899 converges strongly to 119909 Similarly 119909

119899 119909 will

symbolize weak convergence It is well known that119867 satisfiesOpialrsquos condition that is for any sequence 119909

119899 sub 119867 with

119909119899 119909 we have

lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199091003817100381710038171003817 lt lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199101003817100381710038171003817 forall119910 = 119909 (3)

For any 119909 isin 119867 there exists a unique point 119875119862119909 isin 119862 such that

1003817100381710038171003817119909 minus 1198751198621199091003817100381710038171003817 le

1003817100381710038171003817119909 minus 1199101003817100381710038171003817 forall119910 isin 119862 (4)

119875119862is called the metric projection of119867 onto 119862 We know that

119875119862is a nonexpansive mapping of119867 onto 119862 and 119875

119862satisfies

⟨119909 minus 119910 119875119862119909 minus 119875119862119910⟩ ge

1003817100381710038171003817119875119862119909 minus 1198751198621199101003817100381710038171003817

2 forall119909 119910 isin 119867 (5)

For 119909 isin 119867 and 119911 isin 119862 we have

119911 = 119875119862119909 lArrrArr ⟨119909 minus 119911 119910 minus 119911⟩ le 0 for every119910 isin 119862 (6)

The following lemmas will be used in the proof of ourresults

Lemma 1 (see [1]) Let 119862 be a nonempty closed convex subsetof119867 and let119891 be a bifunction from119862times119862 toR satisfying (A1)ndash(A4) If 119903 gt 0 and 119909 isin 119867 then there exists 119911 isin 119862 such that

119891 (119911 119910) +1

119903⟨119910 minus 119911 119911 minus 119909⟩ ge 0 forall119910 isin 119862 (7)

Lemma2 (see [2]) For 119903 gt 0 define amapping 119879119903 119867 rarr 2

119862

as follows

119879119903 (119909) = 119911 isin 119862 119891 (119911 119910) +

1

119903⟨119910 minus 119911 119911 minus 119909⟩ ge 0 forall119910 isin 119862

(8)

Then the following hold

(i) 119879119903is single valued

(ii) 119879119903is firmly nonexpansive that is for any 119909 119910 isin 119867

⟨119909 minus 119910 119879119903119909 minus 119879119903119910⟩ ge 119879

119903119909 minus 1198791199031199102

(iii) 119865(119879119903) = 119864119875(119891)

(iv) 119864119875(119891) is closed and convex

Lemma 3 (see [12]) Suppose that (A1)ndash(A4) hold If 119909 119910 isin 119867and 1199031 1199032gt 0 then

100381710038171003817100381710038171198791199032

119910 minus 1198791199031

11990910038171003817100381710038171003817le1003817100381710038171003817119910 minus 119909

1003817100381710038171003817 +

10038161003816100381610038161199032 minus 11990311003816100381610038161003816

1199032

100381710038171003817100381710038171198791199032

119910 minus 11991010038171003817100381710038171003817 (9)

Lemma 4 (see [13]) Let 119862 be a nonempty bounded closedsubset of 119867 and let 119879(119904) 0 le 119904 lt infin be a nonexpansivesemigroup on 119862 Then for every ℎ ge 0

lim119905rarr+infin

sup119909isin119862

10038171003817100381710038171003817100381710038171003817

1

119905int

119905

0

119879 (119904) 119909 119889119904 minus 119879 (ℎ)1

119905int

119905

0

119879 (119904) 119909 119889119904

10038171003817100381710038171003817100381710038171003817

= 0 (10)

Lemma 5 (see [14]) Let 119909119899 and 119910

119899 be bounded sequences

in a Banach space 119883 and let 120573119899 be a sequence in [0 1]

with 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1 Suppose

that 119909119899+1

= (1 minus 120573119899)119909119899+ 120573119899119910119899for all integers 119899 ge 1

and lim sup119899rarrinfin

(119910119899+1

minus 119910119899 minus 119909

119899+1minus 119909119899) le 0 Then

lim119899rarrinfin

119910119899minus 119909119899 = 0

Lemma 6 (see [15]) Let 119886119899 be a sequence of nonnegative real

numbers satisfying 119886119899+1

le (1 minus 120572119899)119886119899+ 120572119899120573119899 where

(i) 120572119899 sub (0 1) suminfin

119899=1120572119899= infin

(ii) lim sup119899rarrinfin

120573119899le 0

Then lim119899rarrinfin

119886119899= 0

3 Strong Convergence Theorems

In this section we introduce a new iterative method forfinding a common element of the set of solutions of anequilibriumproblemand the set of all commonfixedpoints ofa nonexpansive semigroup and prove the strong convergencetheorem in Hilbert spaces

Theorem 7 Let 119862 be a nonempty closed convex subset of areal Hilbert space 119867 and let 119891 be a bifunction from 119862 times 119862 toR satisfying (A1)ndash(A4) Suppose that S = 119879(119905) 0 le 119905 lt infin

Abstract and Applied Analysis 3

is a nonexpansive semigroup on 119862 such that 119865(S) cap119864119875(119891) = 0For 119906 isin 119867 let 119909

119899 119910119899 and 119911

119899 be generated by

1199091isin 119862 chosen arbitrarily

119910119899= 120572119899119906 + (1 minus 120572

119899) 119909119899

119911119899isin 119862 such that119891 (119911

119899 119910) +

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 0

forall119910 isin 119862

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

(11)

where the real sequences 120572119899 120573119899 in (0 1) and 119903

119899 sub (0infin)

satisfy the following conditions

(1) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(3) 0 lt 119888 le 119903119899lt infin lim

119899rarrinfin|119903119899+1

minus 119903119899| = 0

(4) 119905119899 sub (0infin) lim

119899rarrinfin119905119899= infin and lim

119899rarrinfin(|119905119899+1

minus

119905119899|119905119899+1) = 0

Then the sequence 119909119899 converges strongly to 119875

119865(S)cap119864119875(119891)119906

Proof Note that the set 119865(S) cap EP(119891) is closed and convexsince 119865(S) and EP(119891) are closed and convex For simplicitywe writeΩ = 119865(S) cap EP(119891)

From Lemmas 1 and 2 we have 119911119899= 119879119903119899

119910119899 and for any

119901 isin Ω

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817 =

10038171003817100381710038171003817119879119903119899

119910119899minus 119879119903119899

11990110038171003817100381710038171003817le1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817 (12)

Observe that1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817 le 1205721198991003817100381710038171003817119906 minus 119901

1003817100381710038171003817 + (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 (13)

It follows that

1003817100381710038171003817119909119899+1 minus 1199011003817100381710038171003817 =

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119901

10038171003817100381710038171003817100381710038171003817

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

+ 120573119899

1

119905119899

int

119905119899

0

1003817100381710038171003817119879 (119904) 119911119899 minus 119879 (119904) 1199011003817100381710038171003817 119889119904

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 + 1205731198991003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

+ 120573119899[120572119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817 + (1 minus 120572119899)

1003817100381710038171003817119909119899 minus 1199011003817100381710038171003817]

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 + 1205721198991205731198991003817100381710038171003817119906 minus 119901

1003817100381710038171003817

le max 1003817100381710038171003817119909119899 minus 1199011003817100381710038171003817 1003817100381710038171003817119906 minus 119901

1003817100381710038171003817

(14)

From a simple inductive process one has1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817 le max 10038171003817100381710038171199091 minus 1199011003817100381710038171003817 1003817100381710038171003817119906 minus 119901

1003817100381710038171003817 (15)

which yields that 119909119899 is bounded So are 119910

119899 and 119911

119899

Set 120590119899= (1119905

119899) int119905119899

0119879(119904)119911119899119889119904 For any 119901 isin Ω we have

1003817100381710038171003817120590119899+1 minus 1205901198991003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899+1119889119904 minus

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899+1119889119904 minus

1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899119889119904

+1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899119889119904 minus

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

(119879 (119904) 119911119899+1

minus 119879 (119904) 119911119899) 119889119904

+(1

119905119899+1

minus1

119905119899

)int

119905119899

0

119879 (119904) 119911119899119889119904 +1

119905119899+1

int

119905119899+1

119905119899

119879 (119904) 119911119899119889119904

100381710038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

(119879 (119904) 119911119899+1

minus 119879 (119904) 119911119899) 119889119904

+ (1

119905119899+1

minus1

119905119899

)int

119905119899

0

(119879 (119904) 119911119899minus 119879 (119904) 119901) 119889119904

+(1

119905119899+1

minus1

119905119899

)int

119905119899

0

119879 (119904) 119901 119889119904 +1

119905119899+1

int

119905119899+1

119905119899

119879 (119904) 119911119899119889119904

100381710038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

(119879 (119904) 119911119899+1

minus 119879 (119904) 119911119899) 119889119904

+ (1

119905119899+1

minus1

119905119899

)int

119905119899

0

(119879 (119904) 119911119899minus 119879 (119904) 119901) 119889119904

+1

119905119899+1

int

119905119899+1

119905119899

(119879 (119904) 119911119899 minus 119879 (119904) 119901) 119889119904

100381710038171003817100381710038171003817100381710038171003817

le1003817100381710038171003817119911119899+1 minus 119911119899

1003817100381710038171003817 +21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

(16)

It follows from Lemma 3 that

1003817100381710038171003817119911119899+1 minus 1199111198991003817100381710038171003817 le

1003817100381710038171003817119910119899+1 minus 1199101198991003817100381710038171003817 +

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119903119899+1

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817

(17)

Hence

1003817100381710038171003817120590119899+1 minus 1205901198991003817100381710038171003817

le1003817100381710038171003817119910119899+1 minus 119910119899

1003817100381710038171003817 +

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119903119899+1

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817

+21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

le1003817100381710038171003817120572119899+1119906 + (1 minus 120572119899+1) 119909119899+1 minus 120572119899119906 minus (1 minus 120572119899) 119909119899

1003817100381710038171003817

4 Abstract and Applied Analysis

+

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119903119899+1

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817 +

21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 + 120572119899+1 (119906 +1003817100381710038171003817119909119899+1

1003817100381710038171003817) + 120572119899 (119906 +1003817100381710038171003817119909119899

1003817100381710038171003817)

+

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119888

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817 +

21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

(18)

This implies that

lim sup119899rarrinfin

(1003817100381710038171003817120590119899+1 minus 120590119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817) le 0 (19)

It follows from Lemma 5 that lim119899rarrinfin

120590119899minus 119909119899 = 0 Thus

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 1199091198991003817100381710038171003817 = lim119899rarrinfin

120573119899

1003817100381710038171003817120590119899 minus 1199091198991003817100381710038171003817 = 0 (20)

For any 119901 isin Ω we have1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2=10038171003817100381710038171003817119879119903119899

119910119899minus 119879119903119899

11990110038171003817100381710038171003817

2

le ⟨119910119899minus 119901 119911

119899minus 119901⟩

=1

2[1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2+1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

(21)

Thus1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2le1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2 (22)

From the convexity of sdot 2 it follows that1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817

2

=

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) (119909119899minus 119901) + 120573

119899(1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119901)

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2

+ 120573119899

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

(119879 (119904) 119911119899 minus 119879 (119904) 119901) 119889119904

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[1003817100381710038171003817120572119899119906 + (1 minus 120572119899) 119909119899 minus 119901

1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[(1 minus 120572

119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2

+120572119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

(23)

Hence

120573119899

1003817100381710038171003817119911119899 minus 1199101198991003817100381710038171003817

2le1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817

2+ 120572119899120573119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 (1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817)

+ 120572119899120573119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2

(24)

Since lim119899rarrinfin

119909119899+1

minus 119909119899 = 0 and lim

119899rarrinfin120572119899= 0 one has

lim119899rarrinfin

1003817100381710038171003817119911119899 minus 1199101198991003817100381710038171003817 = 0 (25)

Observe thatlim119899rarrinfin

1003817100381710038171003817119910119899 minus 1199091198991003817100381710038171003817 = lim119899rarrinfin

120572119899

1003817100381710038171003817119906 minus 1199091198991003817100381710038171003817 = 0 (26)

As 119911119899minus 119909119899 le 119911

119899minus 119910119899 + 119910

119899minus 119909119899 the following equality

holdslim119899rarrinfin

1003817100381710038171003817119911119899 minus 1199091198991003817100381710038171003817 = 0 (27)

Now we show thatlim119899rarrinfin

1003817100381710038171003817119879 (119904) 119911119899 minus 1199111198991003817100381710038171003817 = 0 forall0 le 119904 lt infin (28)

In fact we have1003817100381710038171003817119879 (119904) 119911119899 minus 119911119899

1003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

119879 (119904) 119911119899 minus 119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

+ 119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

+1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le

10038171003817100381710038171003817100381710038171003817

119879 (119904) 119911119899minus 119879 (119904)

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le 2

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

(29)

Notice that10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119909

119899

10038171003817100381710038171003817100381710038171003817

+1003817100381710038171003817119909119899 minus 119911119899

1003817100381710038171003817

=1

120573119899

1003817100381710038171003817119909119899+1 minus 1199091198991003817100381710038171003817 +

1003817100381710038171003817119909119899 minus 1199111198991003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin

(30)

For any 119901 isin Ω let 119866 = 119909 isin 119862 119909 minus 119901 le max1199091minus 119901 119906 minus

119901 It is easy to see that119866 is a bounded closed convex subsetand 119879(119904)119866 is a subset of 119866 Since

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817 =

10038171003817100381710038171003817119879119903119899

119910119899minus 119901

10038171003817100381710038171003817

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 + 1205721198991003817100381710038171003817119906 minus 119901

1003817100381710038171003817

le max 10038171003817100381710038171199091 minus 1199011003817100381710038171003817 1003817100381710038171003817119906 minus 119901

1003817100381710038171003817

(31)

Abstract and Applied Analysis 5

the sequence 119911119899 is contained in 119866 It follows from Lemma 4

that

lim119899rarrinfin

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119879 (119904)

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

= 0 (32)

From (29) (30) and (32) the expression (28) is obtainedNext we prove that

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ le 0 (33)

where 119909 = 119875Ω119906 In order to show this inequality we can

choose a subsequence 119909119899119895

of 119909119899 such that

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ = lim

119895rarrinfin

⟨119906 minus 119909 119909119899119895

minus 119909⟩ (34)

Due to the boundedness of 119909119899119895

there exists a subsequence119909119899119895119894

of 119909119899119895

such that 119909119899119895119894

120596 Without loss of generalitywe assume that 119909

119899119895

120596 From (27) we see that 119911119899119895

120596Since 119911

119899119895

sub 119862 and 119862 is closed and convex we get 120596 isin 119862We first show that 120596 isin EP(119891) By 119911

119899= 119879119903119899

119910119899 we have

119891 (119911119899 119910) +

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 0 forall119910 isin 119862 (35)

It follows from the monotonicity of 119891 that

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 119891 (119910 119911

119899) forall119910 isin 119862 (36)

Replacing 119899 by 119899119895 we obtain

⟨119910 minus 119911119899119895

119911119899119895

minus 119910119899119895

119903119899119895

⟩ ge 119891(119910 119911119899119895

) forall119910 isin 119862 (37)

From (25) (27) and (A4) we have

119891 (119910 120596) le 0 forall119910 isin 119862 (38)

For 0 lt 119905 le 1 119910 isin 119862 set 119910119905= 119905119910 + (1 minus 119905)120596 We have 119910

119905isin 119862

and 119891(119910119905 120596) le 0 Hence

0 = 119891 (119910119905 119910119905) le 119905119891 (119910

119905 119910) + (1 minus 119905) 119891 (119910

119905 120596) le 119905119891 (119910

119905 119910)

(39)

Dividing by 119905 we see that

119891 (119910119905 119910) ge 0 (40)

Letting 119905 darr 0 and from (A3) we get

119891 (120596 119910) ge 0 forall119910 isin 119862 (41)

That is 120596 isin EP(119891)Second we prove that 120596 isin 119865(S) Note that the equality

(27) implies that 119911119899119895

120596 Suppose for contradiction that 120596 notin119865(S) that is

there exists 1199040gt 0 such that 119879 (119904

0) 120596 = 120596 (42)

Then from Opialrsquos condition and (28) we obtain

lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

= lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 119879 (1199040) 119911119899119895

+ 119879 (1199040) 119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

= lim inf119895rarrinfin

100381710038171003817100381710038171003817119879 (1199040) 119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

le lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 120596100381710038171003817100381710038171003817

(43)

which is a contradictionTherefore 120596 isin 119865(S) Consequentlyone gets 120596 isin Ω

From (34) and the property of metric projection we have

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ = lim

119895rarrinfin

⟨119906 minus 119909 119909119899119895

minus 119909⟩

= ⟨119906 minus 119909 120596 minus 119909⟩ le 0

(44)

The inequality (33) arrivesFinally we show that 119909

119899rarr 119909 From (11) we have

1003817100381710038171003817119909119899+1 minus 1199091003817100381710038171003817

2

=

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119909

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119911119899 minus 1199091003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1199091003817100381710038171003817

2

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨119906 minus 119909 119909

119899minus 119909⟩ + 120572

119899119906 minus 1199092]

(45)

It follows from (33) and Lemma 6 that 119909119899 converges strongly

to 119909

Remark 8 Let119867 = R and 119862 = [0 1] Setting 119891(119909 119910) = 1199102 minus1199092 we see that 119891(119909 119910) satisfies (A1)ndash(A4) For 0 le 119905 lt +infin

let

119879 (119905) 119909 =119909

1 + 119905119909 forall119909 isin [0 1] (46)

Thus it follows thatS = 119879(119905) 0 le 119905 lt infin is a nonexpansivesemigroup such that 119865(S) cap EP(119891) = 0 If we take

120572119899=

1

119899 + 1 1205731= 1205732=1

2 120573119899=1

2minus1

119899 forall119899 ge 3

119903119899equiv 119888 gt 0 119905

119899= 119899

(47)

then all assumptions and conditions in Theorem 7 aresatisfied

Remark 9 Taking 119906 = 0 inTheorem 7 we obtain the iterativemethod for minimum-norm solution of an equilibriumproblem and a nonexpansive semigroup

6 Abstract and Applied Analysis

As a direct consequence of Theorem 7 we obtain thefollowing corollary

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert space119867 and assume that S = 119879(119905) 0 le 119905 lt infin

is a nonexpansive semigroup on 119862 such that 119865(S) = 0 Let 120572119899

and 120573119899 be real sequences in (0 1) and let 119909

119899 and 119911

119899 be

generated by

1199091isin 119862 chosen arbitrarily

119911119899= 119875119862[(1 minus 120572

119899) 119909119899]

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

(48)

Suppose that the following conditions are satisfied

(1) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(3) 119905119899 sub (0infin) lim

119899rarrinfin119905119899= infin and lim

119899rarrinfin(|119905119899+1

minus

119905119899|119905119899+1) = 0

Then the sequence 119909119899 converges strongly to 119875

119865(S)0

Proof Letting 119891(119909 119910) = 0 for all 119909 119910 isin 119862 119903119899= 1 and 119906 = 0

in Theorem 7 we get the result

Remark 11 Corollary 10 extends the recent results of Zegeyeand Shahzad [11 Corollaries 32 and 33] from finite family ofnonexpansive mappings to a nonexpansive semigroup

4 A Note on Shehursquos Paper lsquolsquoIterative Methodfor Fixed Point Problem VariationalInequality and Generalized MixedEquilibrium Problems with Applicationsrsquorsquo

In 2012 Shehu [10] studied iterative methods for fixedpoint problem variational inequality and generalized mixedequilibrium problem and gave an interesting convergencetheorem However there is a slight flaw in the proof of themain result (Theorem 31 in [10])

Shehu obtained the following result (for more details see[10])

Theorem 12 (see [10]) Let 119870 be a closed convex subset ofa real Hilbert space 119867 let 119865 be a bifunction from 119870 times 119870

satisfying (A1)ndash(A4) let 120593 119870 rarr R cup +infin be a properlower semicontinuous and convex function with assumption(B1) or (B2) let A be a 120583-Lipschitzian relaxed (120582 120574)-cocoercivemapping of 119870 into 119867 and let 120595 be an 120572-inverse stronglymonotone mapping of 119870 into 119867 Suppose that 119879 119870 rarr 119870

is a nonexpansive mapping of 119870 into itself such that Ω =

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875 = 0 Let 120572119899 and 120573

119899 be two real

sequences in (0 1) and 119903119899 119904119899 sub (0infin) Let 119909

119899 119910119899 and

119906119899 be generated by 119909

1isin 119870

119910119899= 119875119870[(1 minus 120572

119899) 119909119899]

119906119899= 119879(119865120593)

119903119899

(119910119899minus 119903119899120595119910119899)

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899119879119875119870(119906119899minus 119904119899119860119906119899)

(49)

Suppose that the following conditions are satisfied

(a) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(b) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(c) 0 lt 119886 le 119904119899le 119887 lt 2(120574minus120582120583

2)1205832 lim119899rarrinfin

|119904119899+1minus119904119899| = 0

(d) 0 lt 119888 le 119903119899le 119889 lt 2120572 lim

119899rarrinfin|119903119899+1

minus 119903119899| = 0

Then the sequence 119909119899 converges strongly to an element of

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875

This theorem is proved in [10] by the following steps

Step 1 The sequence 119909119899 is bounded

Step 2 The following equalities hold

lim119899rarrinfin

1003817100381710038171003817119860119906119899 minus 119860119909lowast1003817100381710038171003817 = 0 lim

119899rarrinfin

1003817100381710038171003817120595119910119899 minus 120595119909lowast1003817100381710038171003817 = 0

forall119909lowastisin Ω

(50)

Step 3 If 120596 is a weak limit of 119909119899119895

which is a subsequence of119909119899 then 120596 isin Ω

Step 4 The sequence 119909119899 converges strongly to 120596

In Step 4 in order to show that the sequence 119909119899 con-

verges strongly to 120596 the author shows the inequalitylim sup

119899rarrinfin⟨minus120596 119909

119899minus 120596⟩ le 0 by defining a mapping 120601

119867 rarr 119877 as follows 120601(119909) = 120583119899119909119899minus 1199092 where 120583 is a Banach

limit It is proved that the set 119870lowast = 119909 isin 119867 120601(119909) =

min119906isin119867

120601(119906) = 0 and119870lowastcap119865(119879) = 0 An element of119870lowastcap119865(119879)is taken arbitrarily and is denoted by120596 Of course the element120596 is not necessarily the weak sequential cluster point of 119909

119899

However in Step 3 the symbol 120596 stands for the weak limit of119909119899119895

which is a subsequence of 119909119899 In the sequel the author

obtains

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2le (1 minus 120573

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2 (51)

The meaning of the element 120596 in (51) is ambiguous It isdifficult to ensure consistency

Now we perfect and simplify the proof of Step 4 Accord-ing to the equality in Step 2 lim

119899rarrinfin119860119906119899minus119860119909lowast = 0 for all

119909lowastisin Ω we see that the set 119860119909lowast 119909lowast isin Ω contains only one

element Since 119860 is a relaxed (120582 120574)-cocoercive mapping of 119870into119867 that is there exist 120582 120574 gt 0 such that

⟨119860119909 minus 119860119910 119909 minus 119910⟩ ge minus1205821003817100381710038171003817119860119909 minus 119860119910

1003817100381710038171003817

2+ 120574

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

forall119909 119910 isin 119870

(52)

Abstract and Applied Analysis 7

it follows that themapping119860 is one-to-oneTherefore the setΩ is a singleton By Step 3 the sequence 119909

119899 possesses only

oneweak sequential cluster point It follows fromLemma238in [16] that 119909

119899 converges weakly to 120596 and so

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817(1 minus 120572119899) 119909119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120573119899[(1 minus 120572

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+2120572119899(1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

2

1198991205962]

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

1198991205962]

(53)

Since 119909119899 converges weakly to 120596 it follows from Lemma 22

in [10] or Lemma 6 in this paper that 119909119899 converges strongly

to 120596 isin Ω

Conflict of Interests

The authors declare that there is no conflict of interests

Acknowledgment

The authors would like to thank referees and editors for theirvaluable comments and suggestions

References

[1] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1-4 pp 123ndash145 1994

[2] P L Combettes and S A Hirstoaga ldquoEquilibrium program-ming in Hilbert spacesrdquo Journal of Nonlinear and ConvexAnalysis vol 6 no 1 pp 117ndash136 2005

[3] Y Liu ldquoA general iterative method for equilibrium problemsand strict pseudo-contractions in Hilbert spacesrdquo NonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4852ndash4861 2009

[4] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[5] D-N Qu and C-Z Cheng ldquoA strong convergence theoremon solving common solutions for generalized equilibriumproblems and fixed-point problems in Banach spacerdquo FixedPoint Theory and Applications vol 2011 article 17 2011

[6] R D Chen X L Shen and S J Cui ldquoWeak and strongconvergence theorems for equilibrium problems and countablestrict pseudocontractions mappings in Hilbert spacerdquo Journalof Inequalities and Applications vol 2010 Article ID 474813 11pages 2010

[7] C Jaiboon and P Kumam ldquoStrong convergence for general-ized equilibrium problems fixed point problems and relaxedcocoercive variational inequalitiesrdquo Journal of Inequalities andApplications vol 2010 Article ID 728028 43 pages 2010

[8] K Nakajo and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and nonexpansive semigroupsrdquoJournal of Mathematical Analysis and Applications vol 279 no2 pp 372ndash379 2003

[9] N Buong and N D Duong ldquoWeak convergence theorem for anequilibrium problem and a nonexpansive semigroup in Hilbertspacesrdquo InternationalMathematical Forum vol 5 no 53ndash56 pp2775ndash2786 2010

[10] Y Shehu ldquoIterative method for fixed point problem variationalinequality and generalized mixed equilibrium problems withapplicationsrdquo Journal of Global Optimization vol 52 no 1 pp57ndash77 2012

[11] H Zegeye and N Shahzad ldquoApproximation of the commonminimum-norm fixed point of a finite family of asymptoticallynonexpansive mappingsrdquo Fixed Point Theory and Applicationsvol 2013 article 1 2013

[12] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[13] T Shimizu andW Takahashi ldquoStrong convergence to commonfixed points of families of nonexpansive mappingsrdquo Journal ofMathematical Analysis and Applications vol 211 no 1 pp 71ndash83 1997

[14] T Suzuki ldquoStrong convergence theorems for infinite families ofnonexpansive mappings in general Banach spacesrdquo Fixed PointTheory and Applications vol 2005 Article ID 685918 2005

[15] H-K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

[16] H H Bauschke and P L Combettes Convex Analysis andMonotone Operator Theory in Hilbert Spaces Springer NewYork NY USA 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Approximations for Equilibrium Problems ...downloads.hindawi.com/journals/aaa/2014/351372.pdf · Step . e sequence { } is bounded. Step . e following equalities hold:

2 Abstract and Applied Analysis

theorem for an equilibrium problem and a nonexpansivesemigroup in Hilbert spaces

1199090isin 119867

119906119896isin 119862 119891 (119906

119896 119910) +

1

119903119896

⟨119910 minus 119906119896 119906119896minus 119909119896⟩ ge 0 forall119910 isin 119862

119909119896+1

= 120583119896119909119896+ (1 minus 120583

119896)1

119905119896

int

119905119896

0

119879 (119904) 119906119896119889119904

(2)

In 2012 Shehu [10] studied iterative methods for fixedpoint problem variational inequality and generalized mixedequilibrium problem and introduced a new algorithm whichdoes not involve the CQ algorithm and viscosity approxima-tion method However we discover that there is a slight flawin the proof of Theorem 31 in [10]

Motivated by Nakajo and Takahashi [8] Buong andDuong [9] and especially Shehu [10] andZegeye and Shahzad[11] we present a new iterative method for finding a commonelement of the set of solutions of an equilibrium problemand the set of all common fixed points of a nonexpansivesemigroup and prove the strong convergence theorem inHilbert spaces Our result extends the recent result of [11] Inthe last part of the paper we perfect and simplify the proof ofTheorem 31 in [10]

2 Preliminaries

Throughout this paper let119867be a realHilbert spacewith innerproduct ⟨sdot sdot⟩ and norm sdot and let 119862 be a nonempty closedconvex subset of 119867 We write 119909

119899rarr 119909 to indicate that the

sequence 119909119899 converges strongly to 119909 Similarly 119909

119899 119909 will

symbolize weak convergence It is well known that119867 satisfiesOpialrsquos condition that is for any sequence 119909

119899 sub 119867 with

119909119899 119909 we have

lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199091003817100381710038171003817 lt lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199101003817100381710038171003817 forall119910 = 119909 (3)

For any 119909 isin 119867 there exists a unique point 119875119862119909 isin 119862 such that

1003817100381710038171003817119909 minus 1198751198621199091003817100381710038171003817 le

1003817100381710038171003817119909 minus 1199101003817100381710038171003817 forall119910 isin 119862 (4)

119875119862is called the metric projection of119867 onto 119862 We know that

119875119862is a nonexpansive mapping of119867 onto 119862 and 119875

119862satisfies

⟨119909 minus 119910 119875119862119909 minus 119875119862119910⟩ ge

1003817100381710038171003817119875119862119909 minus 1198751198621199101003817100381710038171003817

2 forall119909 119910 isin 119867 (5)

For 119909 isin 119867 and 119911 isin 119862 we have

119911 = 119875119862119909 lArrrArr ⟨119909 minus 119911 119910 minus 119911⟩ le 0 for every119910 isin 119862 (6)

The following lemmas will be used in the proof of ourresults

Lemma 1 (see [1]) Let 119862 be a nonempty closed convex subsetof119867 and let119891 be a bifunction from119862times119862 toR satisfying (A1)ndash(A4) If 119903 gt 0 and 119909 isin 119867 then there exists 119911 isin 119862 such that

119891 (119911 119910) +1

119903⟨119910 minus 119911 119911 minus 119909⟩ ge 0 forall119910 isin 119862 (7)

Lemma2 (see [2]) For 119903 gt 0 define amapping 119879119903 119867 rarr 2

119862

as follows

119879119903 (119909) = 119911 isin 119862 119891 (119911 119910) +

1

119903⟨119910 minus 119911 119911 minus 119909⟩ ge 0 forall119910 isin 119862

(8)

Then the following hold

(i) 119879119903is single valued

(ii) 119879119903is firmly nonexpansive that is for any 119909 119910 isin 119867

⟨119909 minus 119910 119879119903119909 minus 119879119903119910⟩ ge 119879

119903119909 minus 1198791199031199102

(iii) 119865(119879119903) = 119864119875(119891)

(iv) 119864119875(119891) is closed and convex

Lemma 3 (see [12]) Suppose that (A1)ndash(A4) hold If 119909 119910 isin 119867and 1199031 1199032gt 0 then

100381710038171003817100381710038171198791199032

119910 minus 1198791199031

11990910038171003817100381710038171003817le1003817100381710038171003817119910 minus 119909

1003817100381710038171003817 +

10038161003816100381610038161199032 minus 11990311003816100381610038161003816

1199032

100381710038171003817100381710038171198791199032

119910 minus 11991010038171003817100381710038171003817 (9)

Lemma 4 (see [13]) Let 119862 be a nonempty bounded closedsubset of 119867 and let 119879(119904) 0 le 119904 lt infin be a nonexpansivesemigroup on 119862 Then for every ℎ ge 0

lim119905rarr+infin

sup119909isin119862

10038171003817100381710038171003817100381710038171003817

1

119905int

119905

0

119879 (119904) 119909 119889119904 minus 119879 (ℎ)1

119905int

119905

0

119879 (119904) 119909 119889119904

10038171003817100381710038171003817100381710038171003817

= 0 (10)

Lemma 5 (see [14]) Let 119909119899 and 119910

119899 be bounded sequences

in a Banach space 119883 and let 120573119899 be a sequence in [0 1]

with 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1 Suppose

that 119909119899+1

= (1 minus 120573119899)119909119899+ 120573119899119910119899for all integers 119899 ge 1

and lim sup119899rarrinfin

(119910119899+1

minus 119910119899 minus 119909

119899+1minus 119909119899) le 0 Then

lim119899rarrinfin

119910119899minus 119909119899 = 0

Lemma 6 (see [15]) Let 119886119899 be a sequence of nonnegative real

numbers satisfying 119886119899+1

le (1 minus 120572119899)119886119899+ 120572119899120573119899 where

(i) 120572119899 sub (0 1) suminfin

119899=1120572119899= infin

(ii) lim sup119899rarrinfin

120573119899le 0

Then lim119899rarrinfin

119886119899= 0

3 Strong Convergence Theorems

In this section we introduce a new iterative method forfinding a common element of the set of solutions of anequilibriumproblemand the set of all commonfixedpoints ofa nonexpansive semigroup and prove the strong convergencetheorem in Hilbert spaces

Theorem 7 Let 119862 be a nonempty closed convex subset of areal Hilbert space 119867 and let 119891 be a bifunction from 119862 times 119862 toR satisfying (A1)ndash(A4) Suppose that S = 119879(119905) 0 le 119905 lt infin

Abstract and Applied Analysis 3

is a nonexpansive semigroup on 119862 such that 119865(S) cap119864119875(119891) = 0For 119906 isin 119867 let 119909

119899 119910119899 and 119911

119899 be generated by

1199091isin 119862 chosen arbitrarily

119910119899= 120572119899119906 + (1 minus 120572

119899) 119909119899

119911119899isin 119862 such that119891 (119911

119899 119910) +

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 0

forall119910 isin 119862

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

(11)

where the real sequences 120572119899 120573119899 in (0 1) and 119903

119899 sub (0infin)

satisfy the following conditions

(1) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(3) 0 lt 119888 le 119903119899lt infin lim

119899rarrinfin|119903119899+1

minus 119903119899| = 0

(4) 119905119899 sub (0infin) lim

119899rarrinfin119905119899= infin and lim

119899rarrinfin(|119905119899+1

minus

119905119899|119905119899+1) = 0

Then the sequence 119909119899 converges strongly to 119875

119865(S)cap119864119875(119891)119906

Proof Note that the set 119865(S) cap EP(119891) is closed and convexsince 119865(S) and EP(119891) are closed and convex For simplicitywe writeΩ = 119865(S) cap EP(119891)

From Lemmas 1 and 2 we have 119911119899= 119879119903119899

119910119899 and for any

119901 isin Ω

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817 =

10038171003817100381710038171003817119879119903119899

119910119899minus 119879119903119899

11990110038171003817100381710038171003817le1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817 (12)

Observe that1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817 le 1205721198991003817100381710038171003817119906 minus 119901

1003817100381710038171003817 + (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 (13)

It follows that

1003817100381710038171003817119909119899+1 minus 1199011003817100381710038171003817 =

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119901

10038171003817100381710038171003817100381710038171003817

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

+ 120573119899

1

119905119899

int

119905119899

0

1003817100381710038171003817119879 (119904) 119911119899 minus 119879 (119904) 1199011003817100381710038171003817 119889119904

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 + 1205731198991003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

+ 120573119899[120572119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817 + (1 minus 120572119899)

1003817100381710038171003817119909119899 minus 1199011003817100381710038171003817]

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 + 1205721198991205731198991003817100381710038171003817119906 minus 119901

1003817100381710038171003817

le max 1003817100381710038171003817119909119899 minus 1199011003817100381710038171003817 1003817100381710038171003817119906 minus 119901

1003817100381710038171003817

(14)

From a simple inductive process one has1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817 le max 10038171003817100381710038171199091 minus 1199011003817100381710038171003817 1003817100381710038171003817119906 minus 119901

1003817100381710038171003817 (15)

which yields that 119909119899 is bounded So are 119910

119899 and 119911

119899

Set 120590119899= (1119905

119899) int119905119899

0119879(119904)119911119899119889119904 For any 119901 isin Ω we have

1003817100381710038171003817120590119899+1 minus 1205901198991003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899+1119889119904 minus

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899+1119889119904 minus

1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899119889119904

+1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899119889119904 minus

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

(119879 (119904) 119911119899+1

minus 119879 (119904) 119911119899) 119889119904

+(1

119905119899+1

minus1

119905119899

)int

119905119899

0

119879 (119904) 119911119899119889119904 +1

119905119899+1

int

119905119899+1

119905119899

119879 (119904) 119911119899119889119904

100381710038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

(119879 (119904) 119911119899+1

minus 119879 (119904) 119911119899) 119889119904

+ (1

119905119899+1

minus1

119905119899

)int

119905119899

0

(119879 (119904) 119911119899minus 119879 (119904) 119901) 119889119904

+(1

119905119899+1

minus1

119905119899

)int

119905119899

0

119879 (119904) 119901 119889119904 +1

119905119899+1

int

119905119899+1

119905119899

119879 (119904) 119911119899119889119904

100381710038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

(119879 (119904) 119911119899+1

minus 119879 (119904) 119911119899) 119889119904

+ (1

119905119899+1

minus1

119905119899

)int

119905119899

0

(119879 (119904) 119911119899minus 119879 (119904) 119901) 119889119904

+1

119905119899+1

int

119905119899+1

119905119899

(119879 (119904) 119911119899 minus 119879 (119904) 119901) 119889119904

100381710038171003817100381710038171003817100381710038171003817

le1003817100381710038171003817119911119899+1 minus 119911119899

1003817100381710038171003817 +21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

(16)

It follows from Lemma 3 that

1003817100381710038171003817119911119899+1 minus 1199111198991003817100381710038171003817 le

1003817100381710038171003817119910119899+1 minus 1199101198991003817100381710038171003817 +

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119903119899+1

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817

(17)

Hence

1003817100381710038171003817120590119899+1 minus 1205901198991003817100381710038171003817

le1003817100381710038171003817119910119899+1 minus 119910119899

1003817100381710038171003817 +

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119903119899+1

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817

+21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

le1003817100381710038171003817120572119899+1119906 + (1 minus 120572119899+1) 119909119899+1 minus 120572119899119906 minus (1 minus 120572119899) 119909119899

1003817100381710038171003817

4 Abstract and Applied Analysis

+

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119903119899+1

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817 +

21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 + 120572119899+1 (119906 +1003817100381710038171003817119909119899+1

1003817100381710038171003817) + 120572119899 (119906 +1003817100381710038171003817119909119899

1003817100381710038171003817)

+

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119888

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817 +

21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

(18)

This implies that

lim sup119899rarrinfin

(1003817100381710038171003817120590119899+1 minus 120590119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817) le 0 (19)

It follows from Lemma 5 that lim119899rarrinfin

120590119899minus 119909119899 = 0 Thus

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 1199091198991003817100381710038171003817 = lim119899rarrinfin

120573119899

1003817100381710038171003817120590119899 minus 1199091198991003817100381710038171003817 = 0 (20)

For any 119901 isin Ω we have1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2=10038171003817100381710038171003817119879119903119899

119910119899minus 119879119903119899

11990110038171003817100381710038171003817

2

le ⟨119910119899minus 119901 119911

119899minus 119901⟩

=1

2[1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2+1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

(21)

Thus1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2le1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2 (22)

From the convexity of sdot 2 it follows that1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817

2

=

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) (119909119899minus 119901) + 120573

119899(1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119901)

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2

+ 120573119899

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

(119879 (119904) 119911119899 minus 119879 (119904) 119901) 119889119904

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[1003817100381710038171003817120572119899119906 + (1 minus 120572119899) 119909119899 minus 119901

1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[(1 minus 120572

119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2

+120572119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

(23)

Hence

120573119899

1003817100381710038171003817119911119899 minus 1199101198991003817100381710038171003817

2le1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817

2+ 120572119899120573119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 (1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817)

+ 120572119899120573119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2

(24)

Since lim119899rarrinfin

119909119899+1

minus 119909119899 = 0 and lim

119899rarrinfin120572119899= 0 one has

lim119899rarrinfin

1003817100381710038171003817119911119899 minus 1199101198991003817100381710038171003817 = 0 (25)

Observe thatlim119899rarrinfin

1003817100381710038171003817119910119899 minus 1199091198991003817100381710038171003817 = lim119899rarrinfin

120572119899

1003817100381710038171003817119906 minus 1199091198991003817100381710038171003817 = 0 (26)

As 119911119899minus 119909119899 le 119911

119899minus 119910119899 + 119910

119899minus 119909119899 the following equality

holdslim119899rarrinfin

1003817100381710038171003817119911119899 minus 1199091198991003817100381710038171003817 = 0 (27)

Now we show thatlim119899rarrinfin

1003817100381710038171003817119879 (119904) 119911119899 minus 1199111198991003817100381710038171003817 = 0 forall0 le 119904 lt infin (28)

In fact we have1003817100381710038171003817119879 (119904) 119911119899 minus 119911119899

1003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

119879 (119904) 119911119899 minus 119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

+ 119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

+1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le

10038171003817100381710038171003817100381710038171003817

119879 (119904) 119911119899minus 119879 (119904)

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le 2

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

(29)

Notice that10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119909

119899

10038171003817100381710038171003817100381710038171003817

+1003817100381710038171003817119909119899 minus 119911119899

1003817100381710038171003817

=1

120573119899

1003817100381710038171003817119909119899+1 minus 1199091198991003817100381710038171003817 +

1003817100381710038171003817119909119899 minus 1199111198991003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin

(30)

For any 119901 isin Ω let 119866 = 119909 isin 119862 119909 minus 119901 le max1199091minus 119901 119906 minus

119901 It is easy to see that119866 is a bounded closed convex subsetand 119879(119904)119866 is a subset of 119866 Since

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817 =

10038171003817100381710038171003817119879119903119899

119910119899minus 119901

10038171003817100381710038171003817

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 + 1205721198991003817100381710038171003817119906 minus 119901

1003817100381710038171003817

le max 10038171003817100381710038171199091 minus 1199011003817100381710038171003817 1003817100381710038171003817119906 minus 119901

1003817100381710038171003817

(31)

Abstract and Applied Analysis 5

the sequence 119911119899 is contained in 119866 It follows from Lemma 4

that

lim119899rarrinfin

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119879 (119904)

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

= 0 (32)

From (29) (30) and (32) the expression (28) is obtainedNext we prove that

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ le 0 (33)

where 119909 = 119875Ω119906 In order to show this inequality we can

choose a subsequence 119909119899119895

of 119909119899 such that

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ = lim

119895rarrinfin

⟨119906 minus 119909 119909119899119895

minus 119909⟩ (34)

Due to the boundedness of 119909119899119895

there exists a subsequence119909119899119895119894

of 119909119899119895

such that 119909119899119895119894

120596 Without loss of generalitywe assume that 119909

119899119895

120596 From (27) we see that 119911119899119895

120596Since 119911

119899119895

sub 119862 and 119862 is closed and convex we get 120596 isin 119862We first show that 120596 isin EP(119891) By 119911

119899= 119879119903119899

119910119899 we have

119891 (119911119899 119910) +

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 0 forall119910 isin 119862 (35)

It follows from the monotonicity of 119891 that

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 119891 (119910 119911

119899) forall119910 isin 119862 (36)

Replacing 119899 by 119899119895 we obtain

⟨119910 minus 119911119899119895

119911119899119895

minus 119910119899119895

119903119899119895

⟩ ge 119891(119910 119911119899119895

) forall119910 isin 119862 (37)

From (25) (27) and (A4) we have

119891 (119910 120596) le 0 forall119910 isin 119862 (38)

For 0 lt 119905 le 1 119910 isin 119862 set 119910119905= 119905119910 + (1 minus 119905)120596 We have 119910

119905isin 119862

and 119891(119910119905 120596) le 0 Hence

0 = 119891 (119910119905 119910119905) le 119905119891 (119910

119905 119910) + (1 minus 119905) 119891 (119910

119905 120596) le 119905119891 (119910

119905 119910)

(39)

Dividing by 119905 we see that

119891 (119910119905 119910) ge 0 (40)

Letting 119905 darr 0 and from (A3) we get

119891 (120596 119910) ge 0 forall119910 isin 119862 (41)

That is 120596 isin EP(119891)Second we prove that 120596 isin 119865(S) Note that the equality

(27) implies that 119911119899119895

120596 Suppose for contradiction that 120596 notin119865(S) that is

there exists 1199040gt 0 such that 119879 (119904

0) 120596 = 120596 (42)

Then from Opialrsquos condition and (28) we obtain

lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

= lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 119879 (1199040) 119911119899119895

+ 119879 (1199040) 119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

= lim inf119895rarrinfin

100381710038171003817100381710038171003817119879 (1199040) 119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

le lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 120596100381710038171003817100381710038171003817

(43)

which is a contradictionTherefore 120596 isin 119865(S) Consequentlyone gets 120596 isin Ω

From (34) and the property of metric projection we have

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ = lim

119895rarrinfin

⟨119906 minus 119909 119909119899119895

minus 119909⟩

= ⟨119906 minus 119909 120596 minus 119909⟩ le 0

(44)

The inequality (33) arrivesFinally we show that 119909

119899rarr 119909 From (11) we have

1003817100381710038171003817119909119899+1 minus 1199091003817100381710038171003817

2

=

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119909

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119911119899 minus 1199091003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1199091003817100381710038171003817

2

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨119906 minus 119909 119909

119899minus 119909⟩ + 120572

119899119906 minus 1199092]

(45)

It follows from (33) and Lemma 6 that 119909119899 converges strongly

to 119909

Remark 8 Let119867 = R and 119862 = [0 1] Setting 119891(119909 119910) = 1199102 minus1199092 we see that 119891(119909 119910) satisfies (A1)ndash(A4) For 0 le 119905 lt +infin

let

119879 (119905) 119909 =119909

1 + 119905119909 forall119909 isin [0 1] (46)

Thus it follows thatS = 119879(119905) 0 le 119905 lt infin is a nonexpansivesemigroup such that 119865(S) cap EP(119891) = 0 If we take

120572119899=

1

119899 + 1 1205731= 1205732=1

2 120573119899=1

2minus1

119899 forall119899 ge 3

119903119899equiv 119888 gt 0 119905

119899= 119899

(47)

then all assumptions and conditions in Theorem 7 aresatisfied

Remark 9 Taking 119906 = 0 inTheorem 7 we obtain the iterativemethod for minimum-norm solution of an equilibriumproblem and a nonexpansive semigroup

6 Abstract and Applied Analysis

As a direct consequence of Theorem 7 we obtain thefollowing corollary

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert space119867 and assume that S = 119879(119905) 0 le 119905 lt infin

is a nonexpansive semigroup on 119862 such that 119865(S) = 0 Let 120572119899

and 120573119899 be real sequences in (0 1) and let 119909

119899 and 119911

119899 be

generated by

1199091isin 119862 chosen arbitrarily

119911119899= 119875119862[(1 minus 120572

119899) 119909119899]

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

(48)

Suppose that the following conditions are satisfied

(1) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(3) 119905119899 sub (0infin) lim

119899rarrinfin119905119899= infin and lim

119899rarrinfin(|119905119899+1

minus

119905119899|119905119899+1) = 0

Then the sequence 119909119899 converges strongly to 119875

119865(S)0

Proof Letting 119891(119909 119910) = 0 for all 119909 119910 isin 119862 119903119899= 1 and 119906 = 0

in Theorem 7 we get the result

Remark 11 Corollary 10 extends the recent results of Zegeyeand Shahzad [11 Corollaries 32 and 33] from finite family ofnonexpansive mappings to a nonexpansive semigroup

4 A Note on Shehursquos Paper lsquolsquoIterative Methodfor Fixed Point Problem VariationalInequality and Generalized MixedEquilibrium Problems with Applicationsrsquorsquo

In 2012 Shehu [10] studied iterative methods for fixedpoint problem variational inequality and generalized mixedequilibrium problem and gave an interesting convergencetheorem However there is a slight flaw in the proof of themain result (Theorem 31 in [10])

Shehu obtained the following result (for more details see[10])

Theorem 12 (see [10]) Let 119870 be a closed convex subset ofa real Hilbert space 119867 let 119865 be a bifunction from 119870 times 119870

satisfying (A1)ndash(A4) let 120593 119870 rarr R cup +infin be a properlower semicontinuous and convex function with assumption(B1) or (B2) let A be a 120583-Lipschitzian relaxed (120582 120574)-cocoercivemapping of 119870 into 119867 and let 120595 be an 120572-inverse stronglymonotone mapping of 119870 into 119867 Suppose that 119879 119870 rarr 119870

is a nonexpansive mapping of 119870 into itself such that Ω =

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875 = 0 Let 120572119899 and 120573

119899 be two real

sequences in (0 1) and 119903119899 119904119899 sub (0infin) Let 119909

119899 119910119899 and

119906119899 be generated by 119909

1isin 119870

119910119899= 119875119870[(1 minus 120572

119899) 119909119899]

119906119899= 119879(119865120593)

119903119899

(119910119899minus 119903119899120595119910119899)

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899119879119875119870(119906119899minus 119904119899119860119906119899)

(49)

Suppose that the following conditions are satisfied

(a) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(b) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(c) 0 lt 119886 le 119904119899le 119887 lt 2(120574minus120582120583

2)1205832 lim119899rarrinfin

|119904119899+1minus119904119899| = 0

(d) 0 lt 119888 le 119903119899le 119889 lt 2120572 lim

119899rarrinfin|119903119899+1

minus 119903119899| = 0

Then the sequence 119909119899 converges strongly to an element of

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875

This theorem is proved in [10] by the following steps

Step 1 The sequence 119909119899 is bounded

Step 2 The following equalities hold

lim119899rarrinfin

1003817100381710038171003817119860119906119899 minus 119860119909lowast1003817100381710038171003817 = 0 lim

119899rarrinfin

1003817100381710038171003817120595119910119899 minus 120595119909lowast1003817100381710038171003817 = 0

forall119909lowastisin Ω

(50)

Step 3 If 120596 is a weak limit of 119909119899119895

which is a subsequence of119909119899 then 120596 isin Ω

Step 4 The sequence 119909119899 converges strongly to 120596

In Step 4 in order to show that the sequence 119909119899 con-

verges strongly to 120596 the author shows the inequalitylim sup

119899rarrinfin⟨minus120596 119909

119899minus 120596⟩ le 0 by defining a mapping 120601

119867 rarr 119877 as follows 120601(119909) = 120583119899119909119899minus 1199092 where 120583 is a Banach

limit It is proved that the set 119870lowast = 119909 isin 119867 120601(119909) =

min119906isin119867

120601(119906) = 0 and119870lowastcap119865(119879) = 0 An element of119870lowastcap119865(119879)is taken arbitrarily and is denoted by120596 Of course the element120596 is not necessarily the weak sequential cluster point of 119909

119899

However in Step 3 the symbol 120596 stands for the weak limit of119909119899119895

which is a subsequence of 119909119899 In the sequel the author

obtains

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2le (1 minus 120573

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2 (51)

The meaning of the element 120596 in (51) is ambiguous It isdifficult to ensure consistency

Now we perfect and simplify the proof of Step 4 Accord-ing to the equality in Step 2 lim

119899rarrinfin119860119906119899minus119860119909lowast = 0 for all

119909lowastisin Ω we see that the set 119860119909lowast 119909lowast isin Ω contains only one

element Since 119860 is a relaxed (120582 120574)-cocoercive mapping of 119870into119867 that is there exist 120582 120574 gt 0 such that

⟨119860119909 minus 119860119910 119909 minus 119910⟩ ge minus1205821003817100381710038171003817119860119909 minus 119860119910

1003817100381710038171003817

2+ 120574

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

forall119909 119910 isin 119870

(52)

Abstract and Applied Analysis 7

it follows that themapping119860 is one-to-oneTherefore the setΩ is a singleton By Step 3 the sequence 119909

119899 possesses only

oneweak sequential cluster point It follows fromLemma238in [16] that 119909

119899 converges weakly to 120596 and so

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817(1 minus 120572119899) 119909119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120573119899[(1 minus 120572

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+2120572119899(1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

2

1198991205962]

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

1198991205962]

(53)

Since 119909119899 converges weakly to 120596 it follows from Lemma 22

in [10] or Lemma 6 in this paper that 119909119899 converges strongly

to 120596 isin Ω

Conflict of Interests

The authors declare that there is no conflict of interests

Acknowledgment

The authors would like to thank referees and editors for theirvaluable comments and suggestions

References

[1] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1-4 pp 123ndash145 1994

[2] P L Combettes and S A Hirstoaga ldquoEquilibrium program-ming in Hilbert spacesrdquo Journal of Nonlinear and ConvexAnalysis vol 6 no 1 pp 117ndash136 2005

[3] Y Liu ldquoA general iterative method for equilibrium problemsand strict pseudo-contractions in Hilbert spacesrdquo NonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4852ndash4861 2009

[4] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[5] D-N Qu and C-Z Cheng ldquoA strong convergence theoremon solving common solutions for generalized equilibriumproblems and fixed-point problems in Banach spacerdquo FixedPoint Theory and Applications vol 2011 article 17 2011

[6] R D Chen X L Shen and S J Cui ldquoWeak and strongconvergence theorems for equilibrium problems and countablestrict pseudocontractions mappings in Hilbert spacerdquo Journalof Inequalities and Applications vol 2010 Article ID 474813 11pages 2010

[7] C Jaiboon and P Kumam ldquoStrong convergence for general-ized equilibrium problems fixed point problems and relaxedcocoercive variational inequalitiesrdquo Journal of Inequalities andApplications vol 2010 Article ID 728028 43 pages 2010

[8] K Nakajo and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and nonexpansive semigroupsrdquoJournal of Mathematical Analysis and Applications vol 279 no2 pp 372ndash379 2003

[9] N Buong and N D Duong ldquoWeak convergence theorem for anequilibrium problem and a nonexpansive semigroup in Hilbertspacesrdquo InternationalMathematical Forum vol 5 no 53ndash56 pp2775ndash2786 2010

[10] Y Shehu ldquoIterative method for fixed point problem variationalinequality and generalized mixed equilibrium problems withapplicationsrdquo Journal of Global Optimization vol 52 no 1 pp57ndash77 2012

[11] H Zegeye and N Shahzad ldquoApproximation of the commonminimum-norm fixed point of a finite family of asymptoticallynonexpansive mappingsrdquo Fixed Point Theory and Applicationsvol 2013 article 1 2013

[12] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[13] T Shimizu andW Takahashi ldquoStrong convergence to commonfixed points of families of nonexpansive mappingsrdquo Journal ofMathematical Analysis and Applications vol 211 no 1 pp 71ndash83 1997

[14] T Suzuki ldquoStrong convergence theorems for infinite families ofnonexpansive mappings in general Banach spacesrdquo Fixed PointTheory and Applications vol 2005 Article ID 685918 2005

[15] H-K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

[16] H H Bauschke and P L Combettes Convex Analysis andMonotone Operator Theory in Hilbert Spaces Springer NewYork NY USA 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Approximations for Equilibrium Problems ...downloads.hindawi.com/journals/aaa/2014/351372.pdf · Step . e sequence { } is bounded. Step . e following equalities hold:

Abstract and Applied Analysis 3

is a nonexpansive semigroup on 119862 such that 119865(S) cap119864119875(119891) = 0For 119906 isin 119867 let 119909

119899 119910119899 and 119911

119899 be generated by

1199091isin 119862 chosen arbitrarily

119910119899= 120572119899119906 + (1 minus 120572

119899) 119909119899

119911119899isin 119862 such that119891 (119911

119899 119910) +

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 0

forall119910 isin 119862

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

(11)

where the real sequences 120572119899 120573119899 in (0 1) and 119903

119899 sub (0infin)

satisfy the following conditions

(1) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(3) 0 lt 119888 le 119903119899lt infin lim

119899rarrinfin|119903119899+1

minus 119903119899| = 0

(4) 119905119899 sub (0infin) lim

119899rarrinfin119905119899= infin and lim

119899rarrinfin(|119905119899+1

minus

119905119899|119905119899+1) = 0

Then the sequence 119909119899 converges strongly to 119875

119865(S)cap119864119875(119891)119906

Proof Note that the set 119865(S) cap EP(119891) is closed and convexsince 119865(S) and EP(119891) are closed and convex For simplicitywe writeΩ = 119865(S) cap EP(119891)

From Lemmas 1 and 2 we have 119911119899= 119879119903119899

119910119899 and for any

119901 isin Ω

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817 =

10038171003817100381710038171003817119879119903119899

119910119899minus 119879119903119899

11990110038171003817100381710038171003817le1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817 (12)

Observe that1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817 le 1205721198991003817100381710038171003817119906 minus 119901

1003817100381710038171003817 + (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 (13)

It follows that

1003817100381710038171003817119909119899+1 minus 1199011003817100381710038171003817 =

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119901

10038171003817100381710038171003817100381710038171003817

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

+ 120573119899

1

119905119899

int

119905119899

0

1003817100381710038171003817119879 (119904) 119911119899 minus 119879 (119904) 1199011003817100381710038171003817 119889119904

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 + 1205731198991003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

+ 120573119899[120572119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817 + (1 minus 120572119899)

1003817100381710038171003817119909119899 minus 1199011003817100381710038171003817]

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 + 1205721198991205731198991003817100381710038171003817119906 minus 119901

1003817100381710038171003817

le max 1003817100381710038171003817119909119899 minus 1199011003817100381710038171003817 1003817100381710038171003817119906 minus 119901

1003817100381710038171003817

(14)

From a simple inductive process one has1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817 le max 10038171003817100381710038171199091 minus 1199011003817100381710038171003817 1003817100381710038171003817119906 minus 119901

1003817100381710038171003817 (15)

which yields that 119909119899 is bounded So are 119910

119899 and 119911

119899

Set 120590119899= (1119905

119899) int119905119899

0119879(119904)119911119899119889119904 For any 119901 isin Ω we have

1003817100381710038171003817120590119899+1 minus 1205901198991003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899+1119889119904 minus

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899+1119889119904 minus

1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899119889119904

+1

119905119899+1

int

119905119899+1

0

119879 (119904) 119911119899119889119904 minus

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

(119879 (119904) 119911119899+1

minus 119879 (119904) 119911119899) 119889119904

+(1

119905119899+1

minus1

119905119899

)int

119905119899

0

119879 (119904) 119911119899119889119904 +1

119905119899+1

int

119905119899+1

119905119899

119879 (119904) 119911119899119889119904

100381710038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

(119879 (119904) 119911119899+1

minus 119879 (119904) 119911119899) 119889119904

+ (1

119905119899+1

minus1

119905119899

)int

119905119899

0

(119879 (119904) 119911119899minus 119879 (119904) 119901) 119889119904

+(1

119905119899+1

minus1

119905119899

)int

119905119899

0

119879 (119904) 119901 119889119904 +1

119905119899+1

int

119905119899+1

119905119899

119879 (119904) 119911119899119889119904

100381710038171003817100381710038171003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

1

119905119899+1

int

119905119899+1

0

(119879 (119904) 119911119899+1

minus 119879 (119904) 119911119899) 119889119904

+ (1

119905119899+1

minus1

119905119899

)int

119905119899

0

(119879 (119904) 119911119899minus 119879 (119904) 119901) 119889119904

+1

119905119899+1

int

119905119899+1

119905119899

(119879 (119904) 119911119899 minus 119879 (119904) 119901) 119889119904

100381710038171003817100381710038171003817100381710038171003817

le1003817100381710038171003817119911119899+1 minus 119911119899

1003817100381710038171003817 +21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

(16)

It follows from Lemma 3 that

1003817100381710038171003817119911119899+1 minus 1199111198991003817100381710038171003817 le

1003817100381710038171003817119910119899+1 minus 1199101198991003817100381710038171003817 +

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119903119899+1

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817

(17)

Hence

1003817100381710038171003817120590119899+1 minus 1205901198991003817100381710038171003817

le1003817100381710038171003817119910119899+1 minus 119910119899

1003817100381710038171003817 +

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119903119899+1

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817

+21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

le1003817100381710038171003817120572119899+1119906 + (1 minus 120572119899+1) 119909119899+1 minus 120572119899119906 minus (1 minus 120572119899) 119909119899

1003817100381710038171003817

4 Abstract and Applied Analysis

+

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119903119899+1

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817 +

21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 + 120572119899+1 (119906 +1003817100381710038171003817119909119899+1

1003817100381710038171003817) + 120572119899 (119906 +1003817100381710038171003817119909119899

1003817100381710038171003817)

+

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119888

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817 +

21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

(18)

This implies that

lim sup119899rarrinfin

(1003817100381710038171003817120590119899+1 minus 120590119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817) le 0 (19)

It follows from Lemma 5 that lim119899rarrinfin

120590119899minus 119909119899 = 0 Thus

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 1199091198991003817100381710038171003817 = lim119899rarrinfin

120573119899

1003817100381710038171003817120590119899 minus 1199091198991003817100381710038171003817 = 0 (20)

For any 119901 isin Ω we have1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2=10038171003817100381710038171003817119879119903119899

119910119899minus 119879119903119899

11990110038171003817100381710038171003817

2

le ⟨119910119899minus 119901 119911

119899minus 119901⟩

=1

2[1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2+1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

(21)

Thus1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2le1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2 (22)

From the convexity of sdot 2 it follows that1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817

2

=

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) (119909119899minus 119901) + 120573

119899(1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119901)

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2

+ 120573119899

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

(119879 (119904) 119911119899 minus 119879 (119904) 119901) 119889119904

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[1003817100381710038171003817120572119899119906 + (1 minus 120572119899) 119909119899 minus 119901

1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[(1 minus 120572

119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2

+120572119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

(23)

Hence

120573119899

1003817100381710038171003817119911119899 minus 1199101198991003817100381710038171003817

2le1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817

2+ 120572119899120573119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 (1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817)

+ 120572119899120573119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2

(24)

Since lim119899rarrinfin

119909119899+1

minus 119909119899 = 0 and lim

119899rarrinfin120572119899= 0 one has

lim119899rarrinfin

1003817100381710038171003817119911119899 minus 1199101198991003817100381710038171003817 = 0 (25)

Observe thatlim119899rarrinfin

1003817100381710038171003817119910119899 minus 1199091198991003817100381710038171003817 = lim119899rarrinfin

120572119899

1003817100381710038171003817119906 minus 1199091198991003817100381710038171003817 = 0 (26)

As 119911119899minus 119909119899 le 119911

119899minus 119910119899 + 119910

119899minus 119909119899 the following equality

holdslim119899rarrinfin

1003817100381710038171003817119911119899 minus 1199091198991003817100381710038171003817 = 0 (27)

Now we show thatlim119899rarrinfin

1003817100381710038171003817119879 (119904) 119911119899 minus 1199111198991003817100381710038171003817 = 0 forall0 le 119904 lt infin (28)

In fact we have1003817100381710038171003817119879 (119904) 119911119899 minus 119911119899

1003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

119879 (119904) 119911119899 minus 119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

+ 119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

+1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le

10038171003817100381710038171003817100381710038171003817

119879 (119904) 119911119899minus 119879 (119904)

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le 2

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

(29)

Notice that10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119909

119899

10038171003817100381710038171003817100381710038171003817

+1003817100381710038171003817119909119899 minus 119911119899

1003817100381710038171003817

=1

120573119899

1003817100381710038171003817119909119899+1 minus 1199091198991003817100381710038171003817 +

1003817100381710038171003817119909119899 minus 1199111198991003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin

(30)

For any 119901 isin Ω let 119866 = 119909 isin 119862 119909 minus 119901 le max1199091minus 119901 119906 minus

119901 It is easy to see that119866 is a bounded closed convex subsetand 119879(119904)119866 is a subset of 119866 Since

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817 =

10038171003817100381710038171003817119879119903119899

119910119899minus 119901

10038171003817100381710038171003817

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 + 1205721198991003817100381710038171003817119906 minus 119901

1003817100381710038171003817

le max 10038171003817100381710038171199091 minus 1199011003817100381710038171003817 1003817100381710038171003817119906 minus 119901

1003817100381710038171003817

(31)

Abstract and Applied Analysis 5

the sequence 119911119899 is contained in 119866 It follows from Lemma 4

that

lim119899rarrinfin

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119879 (119904)

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

= 0 (32)

From (29) (30) and (32) the expression (28) is obtainedNext we prove that

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ le 0 (33)

where 119909 = 119875Ω119906 In order to show this inequality we can

choose a subsequence 119909119899119895

of 119909119899 such that

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ = lim

119895rarrinfin

⟨119906 minus 119909 119909119899119895

minus 119909⟩ (34)

Due to the boundedness of 119909119899119895

there exists a subsequence119909119899119895119894

of 119909119899119895

such that 119909119899119895119894

120596 Without loss of generalitywe assume that 119909

119899119895

120596 From (27) we see that 119911119899119895

120596Since 119911

119899119895

sub 119862 and 119862 is closed and convex we get 120596 isin 119862We first show that 120596 isin EP(119891) By 119911

119899= 119879119903119899

119910119899 we have

119891 (119911119899 119910) +

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 0 forall119910 isin 119862 (35)

It follows from the monotonicity of 119891 that

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 119891 (119910 119911

119899) forall119910 isin 119862 (36)

Replacing 119899 by 119899119895 we obtain

⟨119910 minus 119911119899119895

119911119899119895

minus 119910119899119895

119903119899119895

⟩ ge 119891(119910 119911119899119895

) forall119910 isin 119862 (37)

From (25) (27) and (A4) we have

119891 (119910 120596) le 0 forall119910 isin 119862 (38)

For 0 lt 119905 le 1 119910 isin 119862 set 119910119905= 119905119910 + (1 minus 119905)120596 We have 119910

119905isin 119862

and 119891(119910119905 120596) le 0 Hence

0 = 119891 (119910119905 119910119905) le 119905119891 (119910

119905 119910) + (1 minus 119905) 119891 (119910

119905 120596) le 119905119891 (119910

119905 119910)

(39)

Dividing by 119905 we see that

119891 (119910119905 119910) ge 0 (40)

Letting 119905 darr 0 and from (A3) we get

119891 (120596 119910) ge 0 forall119910 isin 119862 (41)

That is 120596 isin EP(119891)Second we prove that 120596 isin 119865(S) Note that the equality

(27) implies that 119911119899119895

120596 Suppose for contradiction that 120596 notin119865(S) that is

there exists 1199040gt 0 such that 119879 (119904

0) 120596 = 120596 (42)

Then from Opialrsquos condition and (28) we obtain

lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

= lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 119879 (1199040) 119911119899119895

+ 119879 (1199040) 119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

= lim inf119895rarrinfin

100381710038171003817100381710038171003817119879 (1199040) 119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

le lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 120596100381710038171003817100381710038171003817

(43)

which is a contradictionTherefore 120596 isin 119865(S) Consequentlyone gets 120596 isin Ω

From (34) and the property of metric projection we have

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ = lim

119895rarrinfin

⟨119906 minus 119909 119909119899119895

minus 119909⟩

= ⟨119906 minus 119909 120596 minus 119909⟩ le 0

(44)

The inequality (33) arrivesFinally we show that 119909

119899rarr 119909 From (11) we have

1003817100381710038171003817119909119899+1 minus 1199091003817100381710038171003817

2

=

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119909

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119911119899 minus 1199091003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1199091003817100381710038171003817

2

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨119906 minus 119909 119909

119899minus 119909⟩ + 120572

119899119906 minus 1199092]

(45)

It follows from (33) and Lemma 6 that 119909119899 converges strongly

to 119909

Remark 8 Let119867 = R and 119862 = [0 1] Setting 119891(119909 119910) = 1199102 minus1199092 we see that 119891(119909 119910) satisfies (A1)ndash(A4) For 0 le 119905 lt +infin

let

119879 (119905) 119909 =119909

1 + 119905119909 forall119909 isin [0 1] (46)

Thus it follows thatS = 119879(119905) 0 le 119905 lt infin is a nonexpansivesemigroup such that 119865(S) cap EP(119891) = 0 If we take

120572119899=

1

119899 + 1 1205731= 1205732=1

2 120573119899=1

2minus1

119899 forall119899 ge 3

119903119899equiv 119888 gt 0 119905

119899= 119899

(47)

then all assumptions and conditions in Theorem 7 aresatisfied

Remark 9 Taking 119906 = 0 inTheorem 7 we obtain the iterativemethod for minimum-norm solution of an equilibriumproblem and a nonexpansive semigroup

6 Abstract and Applied Analysis

As a direct consequence of Theorem 7 we obtain thefollowing corollary

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert space119867 and assume that S = 119879(119905) 0 le 119905 lt infin

is a nonexpansive semigroup on 119862 such that 119865(S) = 0 Let 120572119899

and 120573119899 be real sequences in (0 1) and let 119909

119899 and 119911

119899 be

generated by

1199091isin 119862 chosen arbitrarily

119911119899= 119875119862[(1 minus 120572

119899) 119909119899]

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

(48)

Suppose that the following conditions are satisfied

(1) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(3) 119905119899 sub (0infin) lim

119899rarrinfin119905119899= infin and lim

119899rarrinfin(|119905119899+1

minus

119905119899|119905119899+1) = 0

Then the sequence 119909119899 converges strongly to 119875

119865(S)0

Proof Letting 119891(119909 119910) = 0 for all 119909 119910 isin 119862 119903119899= 1 and 119906 = 0

in Theorem 7 we get the result

Remark 11 Corollary 10 extends the recent results of Zegeyeand Shahzad [11 Corollaries 32 and 33] from finite family ofnonexpansive mappings to a nonexpansive semigroup

4 A Note on Shehursquos Paper lsquolsquoIterative Methodfor Fixed Point Problem VariationalInequality and Generalized MixedEquilibrium Problems with Applicationsrsquorsquo

In 2012 Shehu [10] studied iterative methods for fixedpoint problem variational inequality and generalized mixedequilibrium problem and gave an interesting convergencetheorem However there is a slight flaw in the proof of themain result (Theorem 31 in [10])

Shehu obtained the following result (for more details see[10])

Theorem 12 (see [10]) Let 119870 be a closed convex subset ofa real Hilbert space 119867 let 119865 be a bifunction from 119870 times 119870

satisfying (A1)ndash(A4) let 120593 119870 rarr R cup +infin be a properlower semicontinuous and convex function with assumption(B1) or (B2) let A be a 120583-Lipschitzian relaxed (120582 120574)-cocoercivemapping of 119870 into 119867 and let 120595 be an 120572-inverse stronglymonotone mapping of 119870 into 119867 Suppose that 119879 119870 rarr 119870

is a nonexpansive mapping of 119870 into itself such that Ω =

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875 = 0 Let 120572119899 and 120573

119899 be two real

sequences in (0 1) and 119903119899 119904119899 sub (0infin) Let 119909

119899 119910119899 and

119906119899 be generated by 119909

1isin 119870

119910119899= 119875119870[(1 minus 120572

119899) 119909119899]

119906119899= 119879(119865120593)

119903119899

(119910119899minus 119903119899120595119910119899)

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899119879119875119870(119906119899minus 119904119899119860119906119899)

(49)

Suppose that the following conditions are satisfied

(a) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(b) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(c) 0 lt 119886 le 119904119899le 119887 lt 2(120574minus120582120583

2)1205832 lim119899rarrinfin

|119904119899+1minus119904119899| = 0

(d) 0 lt 119888 le 119903119899le 119889 lt 2120572 lim

119899rarrinfin|119903119899+1

minus 119903119899| = 0

Then the sequence 119909119899 converges strongly to an element of

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875

This theorem is proved in [10] by the following steps

Step 1 The sequence 119909119899 is bounded

Step 2 The following equalities hold

lim119899rarrinfin

1003817100381710038171003817119860119906119899 minus 119860119909lowast1003817100381710038171003817 = 0 lim

119899rarrinfin

1003817100381710038171003817120595119910119899 minus 120595119909lowast1003817100381710038171003817 = 0

forall119909lowastisin Ω

(50)

Step 3 If 120596 is a weak limit of 119909119899119895

which is a subsequence of119909119899 then 120596 isin Ω

Step 4 The sequence 119909119899 converges strongly to 120596

In Step 4 in order to show that the sequence 119909119899 con-

verges strongly to 120596 the author shows the inequalitylim sup

119899rarrinfin⟨minus120596 119909

119899minus 120596⟩ le 0 by defining a mapping 120601

119867 rarr 119877 as follows 120601(119909) = 120583119899119909119899minus 1199092 where 120583 is a Banach

limit It is proved that the set 119870lowast = 119909 isin 119867 120601(119909) =

min119906isin119867

120601(119906) = 0 and119870lowastcap119865(119879) = 0 An element of119870lowastcap119865(119879)is taken arbitrarily and is denoted by120596 Of course the element120596 is not necessarily the weak sequential cluster point of 119909

119899

However in Step 3 the symbol 120596 stands for the weak limit of119909119899119895

which is a subsequence of 119909119899 In the sequel the author

obtains

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2le (1 minus 120573

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2 (51)

The meaning of the element 120596 in (51) is ambiguous It isdifficult to ensure consistency

Now we perfect and simplify the proof of Step 4 Accord-ing to the equality in Step 2 lim

119899rarrinfin119860119906119899minus119860119909lowast = 0 for all

119909lowastisin Ω we see that the set 119860119909lowast 119909lowast isin Ω contains only one

element Since 119860 is a relaxed (120582 120574)-cocoercive mapping of 119870into119867 that is there exist 120582 120574 gt 0 such that

⟨119860119909 minus 119860119910 119909 minus 119910⟩ ge minus1205821003817100381710038171003817119860119909 minus 119860119910

1003817100381710038171003817

2+ 120574

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

forall119909 119910 isin 119870

(52)

Abstract and Applied Analysis 7

it follows that themapping119860 is one-to-oneTherefore the setΩ is a singleton By Step 3 the sequence 119909

119899 possesses only

oneweak sequential cluster point It follows fromLemma238in [16] that 119909

119899 converges weakly to 120596 and so

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817(1 minus 120572119899) 119909119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120573119899[(1 minus 120572

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+2120572119899(1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

2

1198991205962]

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

1198991205962]

(53)

Since 119909119899 converges weakly to 120596 it follows from Lemma 22

in [10] or Lemma 6 in this paper that 119909119899 converges strongly

to 120596 isin Ω

Conflict of Interests

The authors declare that there is no conflict of interests

Acknowledgment

The authors would like to thank referees and editors for theirvaluable comments and suggestions

References

[1] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1-4 pp 123ndash145 1994

[2] P L Combettes and S A Hirstoaga ldquoEquilibrium program-ming in Hilbert spacesrdquo Journal of Nonlinear and ConvexAnalysis vol 6 no 1 pp 117ndash136 2005

[3] Y Liu ldquoA general iterative method for equilibrium problemsand strict pseudo-contractions in Hilbert spacesrdquo NonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4852ndash4861 2009

[4] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[5] D-N Qu and C-Z Cheng ldquoA strong convergence theoremon solving common solutions for generalized equilibriumproblems and fixed-point problems in Banach spacerdquo FixedPoint Theory and Applications vol 2011 article 17 2011

[6] R D Chen X L Shen and S J Cui ldquoWeak and strongconvergence theorems for equilibrium problems and countablestrict pseudocontractions mappings in Hilbert spacerdquo Journalof Inequalities and Applications vol 2010 Article ID 474813 11pages 2010

[7] C Jaiboon and P Kumam ldquoStrong convergence for general-ized equilibrium problems fixed point problems and relaxedcocoercive variational inequalitiesrdquo Journal of Inequalities andApplications vol 2010 Article ID 728028 43 pages 2010

[8] K Nakajo and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and nonexpansive semigroupsrdquoJournal of Mathematical Analysis and Applications vol 279 no2 pp 372ndash379 2003

[9] N Buong and N D Duong ldquoWeak convergence theorem for anequilibrium problem and a nonexpansive semigroup in Hilbertspacesrdquo InternationalMathematical Forum vol 5 no 53ndash56 pp2775ndash2786 2010

[10] Y Shehu ldquoIterative method for fixed point problem variationalinequality and generalized mixed equilibrium problems withapplicationsrdquo Journal of Global Optimization vol 52 no 1 pp57ndash77 2012

[11] H Zegeye and N Shahzad ldquoApproximation of the commonminimum-norm fixed point of a finite family of asymptoticallynonexpansive mappingsrdquo Fixed Point Theory and Applicationsvol 2013 article 1 2013

[12] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[13] T Shimizu andW Takahashi ldquoStrong convergence to commonfixed points of families of nonexpansive mappingsrdquo Journal ofMathematical Analysis and Applications vol 211 no 1 pp 71ndash83 1997

[14] T Suzuki ldquoStrong convergence theorems for infinite families ofnonexpansive mappings in general Banach spacesrdquo Fixed PointTheory and Applications vol 2005 Article ID 685918 2005

[15] H-K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

[16] H H Bauschke and P L Combettes Convex Analysis andMonotone Operator Theory in Hilbert Spaces Springer NewYork NY USA 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Approximations for Equilibrium Problems ...downloads.hindawi.com/journals/aaa/2014/351372.pdf · Step . e sequence { } is bounded. Step . e following equalities hold:

4 Abstract and Applied Analysis

+

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119903119899+1

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817 +

21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 + 120572119899+1 (119906 +1003817100381710038171003817119909119899+1

1003817100381710038171003817) + 120572119899 (119906 +1003817100381710038171003817119909119899

1003817100381710038171003817)

+

1003816100381610038161003816119903119899+1 minus 1199031198991003816100381610038161003816

119888

1003817100381710038171003817119911119899+1 minus 119910119899+11003817100381710038171003817 +

21003816100381610038161003816119905119899+1 minus 119905119899

1003816100381610038161003816

119905119899+1

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

(18)

This implies that

lim sup119899rarrinfin

(1003817100381710038171003817120590119899+1 minus 120590119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817) le 0 (19)

It follows from Lemma 5 that lim119899rarrinfin

120590119899minus 119909119899 = 0 Thus

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 1199091198991003817100381710038171003817 = lim119899rarrinfin

120573119899

1003817100381710038171003817120590119899 minus 1199091198991003817100381710038171003817 = 0 (20)

For any 119901 isin Ω we have1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2=10038171003817100381710038171003817119879119903119899

119910119899minus 119879119903119899

11990110038171003817100381710038171003817

2

le ⟨119910119899minus 119901 119911

119899minus 119901⟩

=1

2[1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2+1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

(21)

Thus1003817100381710038171003817119911119899 minus 119901

1003817100381710038171003817

2le1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2 (22)

From the convexity of sdot 2 it follows that1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817

2

=

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) (119909119899minus 119901) + 120573

119899(1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119901)

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2

+ 120573119899

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

(119879 (119904) 119911119899 minus 119879 (119904) 119901) 119889119904

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[1003817100381710038171003817119910119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[1003817100381710038171003817120572119899119906 + (1 minus 120572119899) 119909119899 minus 119901

1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2+ 120573119899[(1 minus 120572

119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2

+120572119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2minus1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2]

(23)

Hence

120573119899

1003817100381710038171003817119911119899 minus 1199101198991003817100381710038171003817

2le1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817

2minus1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817

2+ 120572119899120573119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 (1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119901

1003817100381710038171003817)

+ 120572119899120573119899

1003817100381710038171003817119906 minus 1199011003817100381710038171003817

2

(24)

Since lim119899rarrinfin

119909119899+1

minus 119909119899 = 0 and lim

119899rarrinfin120572119899= 0 one has

lim119899rarrinfin

1003817100381710038171003817119911119899 minus 1199101198991003817100381710038171003817 = 0 (25)

Observe thatlim119899rarrinfin

1003817100381710038171003817119910119899 minus 1199091198991003817100381710038171003817 = lim119899rarrinfin

120572119899

1003817100381710038171003817119906 minus 1199091198991003817100381710038171003817 = 0 (26)

As 119911119899minus 119909119899 le 119911

119899minus 119910119899 + 119910

119899minus 119909119899 the following equality

holdslim119899rarrinfin

1003817100381710038171003817119911119899 minus 1199091198991003817100381710038171003817 = 0 (27)

Now we show thatlim119899rarrinfin

1003817100381710038171003817119879 (119904) 119911119899 minus 1199111198991003817100381710038171003817 = 0 forall0 le 119904 lt infin (28)

In fact we have1003817100381710038171003817119879 (119904) 119911119899 minus 119911119899

1003817100381710038171003817

=

10038171003817100381710038171003817100381710038171003817

119879 (119904) 119911119899 minus 119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

+ 119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

+1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le

10038171003817100381710038171003817100381710038171003817

119879 (119904) 119911119899minus 119879 (119904)

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le 2

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

+

10038171003817100381710038171003817100381710038171003817

119879 (119904)1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

(29)

Notice that10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119911

119899

10038171003817100381710038171003817100381710038171003817

le

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119909

119899

10038171003817100381710038171003817100381710038171003817

+1003817100381710038171003817119909119899 minus 119911119899

1003817100381710038171003817

=1

120573119899

1003817100381710038171003817119909119899+1 minus 1199091198991003817100381710038171003817 +

1003817100381710038171003817119909119899 minus 1199111198991003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin

(30)

For any 119901 isin Ω let 119866 = 119909 isin 119862 119909 minus 119901 le max1199091minus 119901 119906 minus

119901 It is easy to see that119866 is a bounded closed convex subsetand 119879(119904)119866 is a subset of 119866 Since

1003817100381710038171003817119911119899 minus 1199011003817100381710038171003817 =

10038171003817100381710038171003817119879119903119899

119910119899minus 119901

10038171003817100381710038171003817

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 + 1205721198991003817100381710038171003817119906 minus 119901

1003817100381710038171003817

le max 10038171003817100381710038171199091 minus 1199011003817100381710038171003817 1003817100381710038171003817119906 minus 119901

1003817100381710038171003817

(31)

Abstract and Applied Analysis 5

the sequence 119911119899 is contained in 119866 It follows from Lemma 4

that

lim119899rarrinfin

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119879 (119904)

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

= 0 (32)

From (29) (30) and (32) the expression (28) is obtainedNext we prove that

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ le 0 (33)

where 119909 = 119875Ω119906 In order to show this inequality we can

choose a subsequence 119909119899119895

of 119909119899 such that

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ = lim

119895rarrinfin

⟨119906 minus 119909 119909119899119895

minus 119909⟩ (34)

Due to the boundedness of 119909119899119895

there exists a subsequence119909119899119895119894

of 119909119899119895

such that 119909119899119895119894

120596 Without loss of generalitywe assume that 119909

119899119895

120596 From (27) we see that 119911119899119895

120596Since 119911

119899119895

sub 119862 and 119862 is closed and convex we get 120596 isin 119862We first show that 120596 isin EP(119891) By 119911

119899= 119879119903119899

119910119899 we have

119891 (119911119899 119910) +

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 0 forall119910 isin 119862 (35)

It follows from the monotonicity of 119891 that

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 119891 (119910 119911

119899) forall119910 isin 119862 (36)

Replacing 119899 by 119899119895 we obtain

⟨119910 minus 119911119899119895

119911119899119895

minus 119910119899119895

119903119899119895

⟩ ge 119891(119910 119911119899119895

) forall119910 isin 119862 (37)

From (25) (27) and (A4) we have

119891 (119910 120596) le 0 forall119910 isin 119862 (38)

For 0 lt 119905 le 1 119910 isin 119862 set 119910119905= 119905119910 + (1 minus 119905)120596 We have 119910

119905isin 119862

and 119891(119910119905 120596) le 0 Hence

0 = 119891 (119910119905 119910119905) le 119905119891 (119910

119905 119910) + (1 minus 119905) 119891 (119910

119905 120596) le 119905119891 (119910

119905 119910)

(39)

Dividing by 119905 we see that

119891 (119910119905 119910) ge 0 (40)

Letting 119905 darr 0 and from (A3) we get

119891 (120596 119910) ge 0 forall119910 isin 119862 (41)

That is 120596 isin EP(119891)Second we prove that 120596 isin 119865(S) Note that the equality

(27) implies that 119911119899119895

120596 Suppose for contradiction that 120596 notin119865(S) that is

there exists 1199040gt 0 such that 119879 (119904

0) 120596 = 120596 (42)

Then from Opialrsquos condition and (28) we obtain

lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

= lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 119879 (1199040) 119911119899119895

+ 119879 (1199040) 119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

= lim inf119895rarrinfin

100381710038171003817100381710038171003817119879 (1199040) 119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

le lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 120596100381710038171003817100381710038171003817

(43)

which is a contradictionTherefore 120596 isin 119865(S) Consequentlyone gets 120596 isin Ω

From (34) and the property of metric projection we have

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ = lim

119895rarrinfin

⟨119906 minus 119909 119909119899119895

minus 119909⟩

= ⟨119906 minus 119909 120596 minus 119909⟩ le 0

(44)

The inequality (33) arrivesFinally we show that 119909

119899rarr 119909 From (11) we have

1003817100381710038171003817119909119899+1 minus 1199091003817100381710038171003817

2

=

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119909

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119911119899 minus 1199091003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1199091003817100381710038171003817

2

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨119906 minus 119909 119909

119899minus 119909⟩ + 120572

119899119906 minus 1199092]

(45)

It follows from (33) and Lemma 6 that 119909119899 converges strongly

to 119909

Remark 8 Let119867 = R and 119862 = [0 1] Setting 119891(119909 119910) = 1199102 minus1199092 we see that 119891(119909 119910) satisfies (A1)ndash(A4) For 0 le 119905 lt +infin

let

119879 (119905) 119909 =119909

1 + 119905119909 forall119909 isin [0 1] (46)

Thus it follows thatS = 119879(119905) 0 le 119905 lt infin is a nonexpansivesemigroup such that 119865(S) cap EP(119891) = 0 If we take

120572119899=

1

119899 + 1 1205731= 1205732=1

2 120573119899=1

2minus1

119899 forall119899 ge 3

119903119899equiv 119888 gt 0 119905

119899= 119899

(47)

then all assumptions and conditions in Theorem 7 aresatisfied

Remark 9 Taking 119906 = 0 inTheorem 7 we obtain the iterativemethod for minimum-norm solution of an equilibriumproblem and a nonexpansive semigroup

6 Abstract and Applied Analysis

As a direct consequence of Theorem 7 we obtain thefollowing corollary

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert space119867 and assume that S = 119879(119905) 0 le 119905 lt infin

is a nonexpansive semigroup on 119862 such that 119865(S) = 0 Let 120572119899

and 120573119899 be real sequences in (0 1) and let 119909

119899 and 119911

119899 be

generated by

1199091isin 119862 chosen arbitrarily

119911119899= 119875119862[(1 minus 120572

119899) 119909119899]

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

(48)

Suppose that the following conditions are satisfied

(1) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(3) 119905119899 sub (0infin) lim

119899rarrinfin119905119899= infin and lim

119899rarrinfin(|119905119899+1

minus

119905119899|119905119899+1) = 0

Then the sequence 119909119899 converges strongly to 119875

119865(S)0

Proof Letting 119891(119909 119910) = 0 for all 119909 119910 isin 119862 119903119899= 1 and 119906 = 0

in Theorem 7 we get the result

Remark 11 Corollary 10 extends the recent results of Zegeyeand Shahzad [11 Corollaries 32 and 33] from finite family ofnonexpansive mappings to a nonexpansive semigroup

4 A Note on Shehursquos Paper lsquolsquoIterative Methodfor Fixed Point Problem VariationalInequality and Generalized MixedEquilibrium Problems with Applicationsrsquorsquo

In 2012 Shehu [10] studied iterative methods for fixedpoint problem variational inequality and generalized mixedequilibrium problem and gave an interesting convergencetheorem However there is a slight flaw in the proof of themain result (Theorem 31 in [10])

Shehu obtained the following result (for more details see[10])

Theorem 12 (see [10]) Let 119870 be a closed convex subset ofa real Hilbert space 119867 let 119865 be a bifunction from 119870 times 119870

satisfying (A1)ndash(A4) let 120593 119870 rarr R cup +infin be a properlower semicontinuous and convex function with assumption(B1) or (B2) let A be a 120583-Lipschitzian relaxed (120582 120574)-cocoercivemapping of 119870 into 119867 and let 120595 be an 120572-inverse stronglymonotone mapping of 119870 into 119867 Suppose that 119879 119870 rarr 119870

is a nonexpansive mapping of 119870 into itself such that Ω =

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875 = 0 Let 120572119899 and 120573

119899 be two real

sequences in (0 1) and 119903119899 119904119899 sub (0infin) Let 119909

119899 119910119899 and

119906119899 be generated by 119909

1isin 119870

119910119899= 119875119870[(1 minus 120572

119899) 119909119899]

119906119899= 119879(119865120593)

119903119899

(119910119899minus 119903119899120595119910119899)

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899119879119875119870(119906119899minus 119904119899119860119906119899)

(49)

Suppose that the following conditions are satisfied

(a) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(b) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(c) 0 lt 119886 le 119904119899le 119887 lt 2(120574minus120582120583

2)1205832 lim119899rarrinfin

|119904119899+1minus119904119899| = 0

(d) 0 lt 119888 le 119903119899le 119889 lt 2120572 lim

119899rarrinfin|119903119899+1

minus 119903119899| = 0

Then the sequence 119909119899 converges strongly to an element of

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875

This theorem is proved in [10] by the following steps

Step 1 The sequence 119909119899 is bounded

Step 2 The following equalities hold

lim119899rarrinfin

1003817100381710038171003817119860119906119899 minus 119860119909lowast1003817100381710038171003817 = 0 lim

119899rarrinfin

1003817100381710038171003817120595119910119899 minus 120595119909lowast1003817100381710038171003817 = 0

forall119909lowastisin Ω

(50)

Step 3 If 120596 is a weak limit of 119909119899119895

which is a subsequence of119909119899 then 120596 isin Ω

Step 4 The sequence 119909119899 converges strongly to 120596

In Step 4 in order to show that the sequence 119909119899 con-

verges strongly to 120596 the author shows the inequalitylim sup

119899rarrinfin⟨minus120596 119909

119899minus 120596⟩ le 0 by defining a mapping 120601

119867 rarr 119877 as follows 120601(119909) = 120583119899119909119899minus 1199092 where 120583 is a Banach

limit It is proved that the set 119870lowast = 119909 isin 119867 120601(119909) =

min119906isin119867

120601(119906) = 0 and119870lowastcap119865(119879) = 0 An element of119870lowastcap119865(119879)is taken arbitrarily and is denoted by120596 Of course the element120596 is not necessarily the weak sequential cluster point of 119909

119899

However in Step 3 the symbol 120596 stands for the weak limit of119909119899119895

which is a subsequence of 119909119899 In the sequel the author

obtains

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2le (1 minus 120573

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2 (51)

The meaning of the element 120596 in (51) is ambiguous It isdifficult to ensure consistency

Now we perfect and simplify the proof of Step 4 Accord-ing to the equality in Step 2 lim

119899rarrinfin119860119906119899minus119860119909lowast = 0 for all

119909lowastisin Ω we see that the set 119860119909lowast 119909lowast isin Ω contains only one

element Since 119860 is a relaxed (120582 120574)-cocoercive mapping of 119870into119867 that is there exist 120582 120574 gt 0 such that

⟨119860119909 minus 119860119910 119909 minus 119910⟩ ge minus1205821003817100381710038171003817119860119909 minus 119860119910

1003817100381710038171003817

2+ 120574

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

forall119909 119910 isin 119870

(52)

Abstract and Applied Analysis 7

it follows that themapping119860 is one-to-oneTherefore the setΩ is a singleton By Step 3 the sequence 119909

119899 possesses only

oneweak sequential cluster point It follows fromLemma238in [16] that 119909

119899 converges weakly to 120596 and so

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817(1 minus 120572119899) 119909119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120573119899[(1 minus 120572

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+2120572119899(1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

2

1198991205962]

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

1198991205962]

(53)

Since 119909119899 converges weakly to 120596 it follows from Lemma 22

in [10] or Lemma 6 in this paper that 119909119899 converges strongly

to 120596 isin Ω

Conflict of Interests

The authors declare that there is no conflict of interests

Acknowledgment

The authors would like to thank referees and editors for theirvaluable comments and suggestions

References

[1] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1-4 pp 123ndash145 1994

[2] P L Combettes and S A Hirstoaga ldquoEquilibrium program-ming in Hilbert spacesrdquo Journal of Nonlinear and ConvexAnalysis vol 6 no 1 pp 117ndash136 2005

[3] Y Liu ldquoA general iterative method for equilibrium problemsand strict pseudo-contractions in Hilbert spacesrdquo NonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4852ndash4861 2009

[4] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[5] D-N Qu and C-Z Cheng ldquoA strong convergence theoremon solving common solutions for generalized equilibriumproblems and fixed-point problems in Banach spacerdquo FixedPoint Theory and Applications vol 2011 article 17 2011

[6] R D Chen X L Shen and S J Cui ldquoWeak and strongconvergence theorems for equilibrium problems and countablestrict pseudocontractions mappings in Hilbert spacerdquo Journalof Inequalities and Applications vol 2010 Article ID 474813 11pages 2010

[7] C Jaiboon and P Kumam ldquoStrong convergence for general-ized equilibrium problems fixed point problems and relaxedcocoercive variational inequalitiesrdquo Journal of Inequalities andApplications vol 2010 Article ID 728028 43 pages 2010

[8] K Nakajo and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and nonexpansive semigroupsrdquoJournal of Mathematical Analysis and Applications vol 279 no2 pp 372ndash379 2003

[9] N Buong and N D Duong ldquoWeak convergence theorem for anequilibrium problem and a nonexpansive semigroup in Hilbertspacesrdquo InternationalMathematical Forum vol 5 no 53ndash56 pp2775ndash2786 2010

[10] Y Shehu ldquoIterative method for fixed point problem variationalinequality and generalized mixed equilibrium problems withapplicationsrdquo Journal of Global Optimization vol 52 no 1 pp57ndash77 2012

[11] H Zegeye and N Shahzad ldquoApproximation of the commonminimum-norm fixed point of a finite family of asymptoticallynonexpansive mappingsrdquo Fixed Point Theory and Applicationsvol 2013 article 1 2013

[12] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[13] T Shimizu andW Takahashi ldquoStrong convergence to commonfixed points of families of nonexpansive mappingsrdquo Journal ofMathematical Analysis and Applications vol 211 no 1 pp 71ndash83 1997

[14] T Suzuki ldquoStrong convergence theorems for infinite families ofnonexpansive mappings in general Banach spacesrdquo Fixed PointTheory and Applications vol 2005 Article ID 685918 2005

[15] H-K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

[16] H H Bauschke and P L Combettes Convex Analysis andMonotone Operator Theory in Hilbert Spaces Springer NewYork NY USA 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Approximations for Equilibrium Problems ...downloads.hindawi.com/journals/aaa/2014/351372.pdf · Step . e sequence { } is bounded. Step . e following equalities hold:

Abstract and Applied Analysis 5

the sequence 119911119899 is contained in 119866 It follows from Lemma 4

that

lim119899rarrinfin

10038171003817100381710038171003817100381710038171003817

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119879 (119904)

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

10038171003817100381710038171003817100381710038171003817

= 0 (32)

From (29) (30) and (32) the expression (28) is obtainedNext we prove that

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ le 0 (33)

where 119909 = 119875Ω119906 In order to show this inequality we can

choose a subsequence 119909119899119895

of 119909119899 such that

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ = lim

119895rarrinfin

⟨119906 minus 119909 119909119899119895

minus 119909⟩ (34)

Due to the boundedness of 119909119899119895

there exists a subsequence119909119899119895119894

of 119909119899119895

such that 119909119899119895119894

120596 Without loss of generalitywe assume that 119909

119899119895

120596 From (27) we see that 119911119899119895

120596Since 119911

119899119895

sub 119862 and 119862 is closed and convex we get 120596 isin 119862We first show that 120596 isin EP(119891) By 119911

119899= 119879119903119899

119910119899 we have

119891 (119911119899 119910) +

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 0 forall119910 isin 119862 (35)

It follows from the monotonicity of 119891 that

1

119903119899

⟨119910 minus 119911119899 119911119899minus 119910119899⟩ ge 119891 (119910 119911

119899) forall119910 isin 119862 (36)

Replacing 119899 by 119899119895 we obtain

⟨119910 minus 119911119899119895

119911119899119895

minus 119910119899119895

119903119899119895

⟩ ge 119891(119910 119911119899119895

) forall119910 isin 119862 (37)

From (25) (27) and (A4) we have

119891 (119910 120596) le 0 forall119910 isin 119862 (38)

For 0 lt 119905 le 1 119910 isin 119862 set 119910119905= 119905119910 + (1 minus 119905)120596 We have 119910

119905isin 119862

and 119891(119910119905 120596) le 0 Hence

0 = 119891 (119910119905 119910119905) le 119905119891 (119910

119905 119910) + (1 minus 119905) 119891 (119910

119905 120596) le 119905119891 (119910

119905 119910)

(39)

Dividing by 119905 we see that

119891 (119910119905 119910) ge 0 (40)

Letting 119905 darr 0 and from (A3) we get

119891 (120596 119910) ge 0 forall119910 isin 119862 (41)

That is 120596 isin EP(119891)Second we prove that 120596 isin 119865(S) Note that the equality

(27) implies that 119911119899119895

120596 Suppose for contradiction that 120596 notin119865(S) that is

there exists 1199040gt 0 such that 119879 (119904

0) 120596 = 120596 (42)

Then from Opialrsquos condition and (28) we obtain

lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

= lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 119879 (1199040) 119911119899119895

+ 119879 (1199040) 119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

= lim inf119895rarrinfin

100381710038171003817100381710038171003817119879 (1199040) 119911119899119895

minus 119879 (1199040) 120596100381710038171003817100381710038171003817

le lim inf119895rarrinfin

100381710038171003817100381710038171003817119911119899119895

minus 120596100381710038171003817100381710038171003817

(43)

which is a contradictionTherefore 120596 isin 119865(S) Consequentlyone gets 120596 isin Ω

From (34) and the property of metric projection we have

lim sup119899rarrinfin

⟨119906 minus 119909 119909119899minus 119909⟩ = lim

119895rarrinfin

⟨119906 minus 119909 119909119899119895

minus 119909⟩

= ⟨119906 minus 119909 120596 minus 119909⟩ le 0

(44)

The inequality (33) arrivesFinally we show that 119909

119899rarr 119909 From (11) we have

1003817100381710038171003817119909119899+1 minus 1199091003817100381710038171003817

2

=

10038171003817100381710038171003817100381710038171003817

(1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904 minus 119909

10038171003817100381710038171003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119911119899 minus 1199091003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1199091003817100381710038171003817

2

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 119909

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨119906 minus 119909 119909

119899minus 119909⟩ + 120572

119899119906 minus 1199092]

(45)

It follows from (33) and Lemma 6 that 119909119899 converges strongly

to 119909

Remark 8 Let119867 = R and 119862 = [0 1] Setting 119891(119909 119910) = 1199102 minus1199092 we see that 119891(119909 119910) satisfies (A1)ndash(A4) For 0 le 119905 lt +infin

let

119879 (119905) 119909 =119909

1 + 119905119909 forall119909 isin [0 1] (46)

Thus it follows thatS = 119879(119905) 0 le 119905 lt infin is a nonexpansivesemigroup such that 119865(S) cap EP(119891) = 0 If we take

120572119899=

1

119899 + 1 1205731= 1205732=1

2 120573119899=1

2minus1

119899 forall119899 ge 3

119903119899equiv 119888 gt 0 119905

119899= 119899

(47)

then all assumptions and conditions in Theorem 7 aresatisfied

Remark 9 Taking 119906 = 0 inTheorem 7 we obtain the iterativemethod for minimum-norm solution of an equilibriumproblem and a nonexpansive semigroup

6 Abstract and Applied Analysis

As a direct consequence of Theorem 7 we obtain thefollowing corollary

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert space119867 and assume that S = 119879(119905) 0 le 119905 lt infin

is a nonexpansive semigroup on 119862 such that 119865(S) = 0 Let 120572119899

and 120573119899 be real sequences in (0 1) and let 119909

119899 and 119911

119899 be

generated by

1199091isin 119862 chosen arbitrarily

119911119899= 119875119862[(1 minus 120572

119899) 119909119899]

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

(48)

Suppose that the following conditions are satisfied

(1) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(3) 119905119899 sub (0infin) lim

119899rarrinfin119905119899= infin and lim

119899rarrinfin(|119905119899+1

minus

119905119899|119905119899+1) = 0

Then the sequence 119909119899 converges strongly to 119875

119865(S)0

Proof Letting 119891(119909 119910) = 0 for all 119909 119910 isin 119862 119903119899= 1 and 119906 = 0

in Theorem 7 we get the result

Remark 11 Corollary 10 extends the recent results of Zegeyeand Shahzad [11 Corollaries 32 and 33] from finite family ofnonexpansive mappings to a nonexpansive semigroup

4 A Note on Shehursquos Paper lsquolsquoIterative Methodfor Fixed Point Problem VariationalInequality and Generalized MixedEquilibrium Problems with Applicationsrsquorsquo

In 2012 Shehu [10] studied iterative methods for fixedpoint problem variational inequality and generalized mixedequilibrium problem and gave an interesting convergencetheorem However there is a slight flaw in the proof of themain result (Theorem 31 in [10])

Shehu obtained the following result (for more details see[10])

Theorem 12 (see [10]) Let 119870 be a closed convex subset ofa real Hilbert space 119867 let 119865 be a bifunction from 119870 times 119870

satisfying (A1)ndash(A4) let 120593 119870 rarr R cup +infin be a properlower semicontinuous and convex function with assumption(B1) or (B2) let A be a 120583-Lipschitzian relaxed (120582 120574)-cocoercivemapping of 119870 into 119867 and let 120595 be an 120572-inverse stronglymonotone mapping of 119870 into 119867 Suppose that 119879 119870 rarr 119870

is a nonexpansive mapping of 119870 into itself such that Ω =

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875 = 0 Let 120572119899 and 120573

119899 be two real

sequences in (0 1) and 119903119899 119904119899 sub (0infin) Let 119909

119899 119910119899 and

119906119899 be generated by 119909

1isin 119870

119910119899= 119875119870[(1 minus 120572

119899) 119909119899]

119906119899= 119879(119865120593)

119903119899

(119910119899minus 119903119899120595119910119899)

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899119879119875119870(119906119899minus 119904119899119860119906119899)

(49)

Suppose that the following conditions are satisfied

(a) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(b) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(c) 0 lt 119886 le 119904119899le 119887 lt 2(120574minus120582120583

2)1205832 lim119899rarrinfin

|119904119899+1minus119904119899| = 0

(d) 0 lt 119888 le 119903119899le 119889 lt 2120572 lim

119899rarrinfin|119903119899+1

minus 119903119899| = 0

Then the sequence 119909119899 converges strongly to an element of

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875

This theorem is proved in [10] by the following steps

Step 1 The sequence 119909119899 is bounded

Step 2 The following equalities hold

lim119899rarrinfin

1003817100381710038171003817119860119906119899 minus 119860119909lowast1003817100381710038171003817 = 0 lim

119899rarrinfin

1003817100381710038171003817120595119910119899 minus 120595119909lowast1003817100381710038171003817 = 0

forall119909lowastisin Ω

(50)

Step 3 If 120596 is a weak limit of 119909119899119895

which is a subsequence of119909119899 then 120596 isin Ω

Step 4 The sequence 119909119899 converges strongly to 120596

In Step 4 in order to show that the sequence 119909119899 con-

verges strongly to 120596 the author shows the inequalitylim sup

119899rarrinfin⟨minus120596 119909

119899minus 120596⟩ le 0 by defining a mapping 120601

119867 rarr 119877 as follows 120601(119909) = 120583119899119909119899minus 1199092 where 120583 is a Banach

limit It is proved that the set 119870lowast = 119909 isin 119867 120601(119909) =

min119906isin119867

120601(119906) = 0 and119870lowastcap119865(119879) = 0 An element of119870lowastcap119865(119879)is taken arbitrarily and is denoted by120596 Of course the element120596 is not necessarily the weak sequential cluster point of 119909

119899

However in Step 3 the symbol 120596 stands for the weak limit of119909119899119895

which is a subsequence of 119909119899 In the sequel the author

obtains

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2le (1 minus 120573

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2 (51)

The meaning of the element 120596 in (51) is ambiguous It isdifficult to ensure consistency

Now we perfect and simplify the proof of Step 4 Accord-ing to the equality in Step 2 lim

119899rarrinfin119860119906119899minus119860119909lowast = 0 for all

119909lowastisin Ω we see that the set 119860119909lowast 119909lowast isin Ω contains only one

element Since 119860 is a relaxed (120582 120574)-cocoercive mapping of 119870into119867 that is there exist 120582 120574 gt 0 such that

⟨119860119909 minus 119860119910 119909 minus 119910⟩ ge minus1205821003817100381710038171003817119860119909 minus 119860119910

1003817100381710038171003817

2+ 120574

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

forall119909 119910 isin 119870

(52)

Abstract and Applied Analysis 7

it follows that themapping119860 is one-to-oneTherefore the setΩ is a singleton By Step 3 the sequence 119909

119899 possesses only

oneweak sequential cluster point It follows fromLemma238in [16] that 119909

119899 converges weakly to 120596 and so

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817(1 minus 120572119899) 119909119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120573119899[(1 minus 120572

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+2120572119899(1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

2

1198991205962]

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

1198991205962]

(53)

Since 119909119899 converges weakly to 120596 it follows from Lemma 22

in [10] or Lemma 6 in this paper that 119909119899 converges strongly

to 120596 isin Ω

Conflict of Interests

The authors declare that there is no conflict of interests

Acknowledgment

The authors would like to thank referees and editors for theirvaluable comments and suggestions

References

[1] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1-4 pp 123ndash145 1994

[2] P L Combettes and S A Hirstoaga ldquoEquilibrium program-ming in Hilbert spacesrdquo Journal of Nonlinear and ConvexAnalysis vol 6 no 1 pp 117ndash136 2005

[3] Y Liu ldquoA general iterative method for equilibrium problemsand strict pseudo-contractions in Hilbert spacesrdquo NonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4852ndash4861 2009

[4] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[5] D-N Qu and C-Z Cheng ldquoA strong convergence theoremon solving common solutions for generalized equilibriumproblems and fixed-point problems in Banach spacerdquo FixedPoint Theory and Applications vol 2011 article 17 2011

[6] R D Chen X L Shen and S J Cui ldquoWeak and strongconvergence theorems for equilibrium problems and countablestrict pseudocontractions mappings in Hilbert spacerdquo Journalof Inequalities and Applications vol 2010 Article ID 474813 11pages 2010

[7] C Jaiboon and P Kumam ldquoStrong convergence for general-ized equilibrium problems fixed point problems and relaxedcocoercive variational inequalitiesrdquo Journal of Inequalities andApplications vol 2010 Article ID 728028 43 pages 2010

[8] K Nakajo and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and nonexpansive semigroupsrdquoJournal of Mathematical Analysis and Applications vol 279 no2 pp 372ndash379 2003

[9] N Buong and N D Duong ldquoWeak convergence theorem for anequilibrium problem and a nonexpansive semigroup in Hilbertspacesrdquo InternationalMathematical Forum vol 5 no 53ndash56 pp2775ndash2786 2010

[10] Y Shehu ldquoIterative method for fixed point problem variationalinequality and generalized mixed equilibrium problems withapplicationsrdquo Journal of Global Optimization vol 52 no 1 pp57ndash77 2012

[11] H Zegeye and N Shahzad ldquoApproximation of the commonminimum-norm fixed point of a finite family of asymptoticallynonexpansive mappingsrdquo Fixed Point Theory and Applicationsvol 2013 article 1 2013

[12] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[13] T Shimizu andW Takahashi ldquoStrong convergence to commonfixed points of families of nonexpansive mappingsrdquo Journal ofMathematical Analysis and Applications vol 211 no 1 pp 71ndash83 1997

[14] T Suzuki ldquoStrong convergence theorems for infinite families ofnonexpansive mappings in general Banach spacesrdquo Fixed PointTheory and Applications vol 2005 Article ID 685918 2005

[15] H-K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

[16] H H Bauschke and P L Combettes Convex Analysis andMonotone Operator Theory in Hilbert Spaces Springer NewYork NY USA 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Approximations for Equilibrium Problems ...downloads.hindawi.com/journals/aaa/2014/351372.pdf · Step . e sequence { } is bounded. Step . e following equalities hold:

6 Abstract and Applied Analysis

As a direct consequence of Theorem 7 we obtain thefollowing corollary

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert space119867 and assume that S = 119879(119905) 0 le 119905 lt infin

is a nonexpansive semigroup on 119862 such that 119865(S) = 0 Let 120572119899

and 120573119899 be real sequences in (0 1) and let 119909

119899 and 119911

119899 be

generated by

1199091isin 119862 chosen arbitrarily

119911119899= 119875119862[(1 minus 120572

119899) 119909119899]

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899

1

119905119899

int

119905119899

0

119879 (119904) 119911119899119889119904

(48)

Suppose that the following conditions are satisfied

(1) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(3) 119905119899 sub (0infin) lim

119899rarrinfin119905119899= infin and lim

119899rarrinfin(|119905119899+1

minus

119905119899|119905119899+1) = 0

Then the sequence 119909119899 converges strongly to 119875

119865(S)0

Proof Letting 119891(119909 119910) = 0 for all 119909 119910 isin 119862 119903119899= 1 and 119906 = 0

in Theorem 7 we get the result

Remark 11 Corollary 10 extends the recent results of Zegeyeand Shahzad [11 Corollaries 32 and 33] from finite family ofnonexpansive mappings to a nonexpansive semigroup

4 A Note on Shehursquos Paper lsquolsquoIterative Methodfor Fixed Point Problem VariationalInequality and Generalized MixedEquilibrium Problems with Applicationsrsquorsquo

In 2012 Shehu [10] studied iterative methods for fixedpoint problem variational inequality and generalized mixedequilibrium problem and gave an interesting convergencetheorem However there is a slight flaw in the proof of themain result (Theorem 31 in [10])

Shehu obtained the following result (for more details see[10])

Theorem 12 (see [10]) Let 119870 be a closed convex subset ofa real Hilbert space 119867 let 119865 be a bifunction from 119870 times 119870

satisfying (A1)ndash(A4) let 120593 119870 rarr R cup +infin be a properlower semicontinuous and convex function with assumption(B1) or (B2) let A be a 120583-Lipschitzian relaxed (120582 120574)-cocoercivemapping of 119870 into 119867 and let 120595 be an 120572-inverse stronglymonotone mapping of 119870 into 119867 Suppose that 119879 119870 rarr 119870

is a nonexpansive mapping of 119870 into itself such that Ω =

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875 = 0 Let 120572119899 and 120573

119899 be two real

sequences in (0 1) and 119903119899 119904119899 sub (0infin) Let 119909

119899 119910119899 and

119906119899 be generated by 119909

1isin 119870

119910119899= 119875119870[(1 minus 120572

119899) 119909119899]

119906119899= 119879(119865120593)

119903119899

(119910119899minus 119903119899120595119910119899)

119909119899+1

= (1 minus 120573119899) 119909119899+ 120573119899119879119875119870(119906119899minus 119904119899119860119906119899)

(49)

Suppose that the following conditions are satisfied

(a) lim119899rarrinfin

120572119899= 0 and suminfin

119899=1120572119899= infin

(b) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(c) 0 lt 119886 le 119904119899le 119887 lt 2(120574minus120582120583

2)1205832 lim119899rarrinfin

|119904119899+1minus119904119899| = 0

(d) 0 lt 119888 le 119903119899le 119889 lt 2120572 lim

119899rarrinfin|119903119899+1

minus 119903119899| = 0

Then the sequence 119909119899 converges strongly to an element of

119865(119879) cap 119881119868(119870119860) cap 119866119872119864119875

This theorem is proved in [10] by the following steps

Step 1 The sequence 119909119899 is bounded

Step 2 The following equalities hold

lim119899rarrinfin

1003817100381710038171003817119860119906119899 minus 119860119909lowast1003817100381710038171003817 = 0 lim

119899rarrinfin

1003817100381710038171003817120595119910119899 minus 120595119909lowast1003817100381710038171003817 = 0

forall119909lowastisin Ω

(50)

Step 3 If 120596 is a weak limit of 119909119899119895

which is a subsequence of119909119899 then 120596 isin Ω

Step 4 The sequence 119909119899 converges strongly to 120596

In Step 4 in order to show that the sequence 119909119899 con-

verges strongly to 120596 the author shows the inequalitylim sup

119899rarrinfin⟨minus120596 119909

119899minus 120596⟩ le 0 by defining a mapping 120601

119867 rarr 119877 as follows 120601(119909) = 120583119899119909119899minus 1199092 where 120583 is a Banach

limit It is proved that the set 119870lowast = 119909 isin 119867 120601(119909) =

min119906isin119867

120601(119906) = 0 and119870lowastcap119865(119879) = 0 An element of119870lowastcap119865(119879)is taken arbitrarily and is denoted by120596 Of course the element120596 is not necessarily the weak sequential cluster point of 119909

119899

However in Step 3 the symbol 120596 stands for the weak limit of119909119899119895

which is a subsequence of 119909119899 In the sequel the author

obtains

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2le (1 minus 120573

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2 (51)

The meaning of the element 120596 in (51) is ambiguous It isdifficult to ensure consistency

Now we perfect and simplify the proof of Step 4 Accord-ing to the equality in Step 2 lim

119899rarrinfin119860119906119899minus119860119909lowast = 0 for all

119909lowastisin Ω we see that the set 119860119909lowast 119909lowast isin Ω contains only one

element Since 119860 is a relaxed (120582 120574)-cocoercive mapping of 119870into119867 that is there exist 120582 120574 gt 0 such that

⟨119860119909 minus 119860119910 119909 minus 119910⟩ ge minus1205821003817100381710038171003817119860119909 minus 119860119910

1003817100381710038171003817

2+ 120574

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

forall119909 119910 isin 119870

(52)

Abstract and Applied Analysis 7

it follows that themapping119860 is one-to-oneTherefore the setΩ is a singleton By Step 3 the sequence 119909

119899 possesses only

oneweak sequential cluster point It follows fromLemma238in [16] that 119909

119899 converges weakly to 120596 and so

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817(1 minus 120572119899) 119909119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120573119899[(1 minus 120572

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+2120572119899(1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

2

1198991205962]

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

1198991205962]

(53)

Since 119909119899 converges weakly to 120596 it follows from Lemma 22

in [10] or Lemma 6 in this paper that 119909119899 converges strongly

to 120596 isin Ω

Conflict of Interests

The authors declare that there is no conflict of interests

Acknowledgment

The authors would like to thank referees and editors for theirvaluable comments and suggestions

References

[1] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1-4 pp 123ndash145 1994

[2] P L Combettes and S A Hirstoaga ldquoEquilibrium program-ming in Hilbert spacesrdquo Journal of Nonlinear and ConvexAnalysis vol 6 no 1 pp 117ndash136 2005

[3] Y Liu ldquoA general iterative method for equilibrium problemsand strict pseudo-contractions in Hilbert spacesrdquo NonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4852ndash4861 2009

[4] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[5] D-N Qu and C-Z Cheng ldquoA strong convergence theoremon solving common solutions for generalized equilibriumproblems and fixed-point problems in Banach spacerdquo FixedPoint Theory and Applications vol 2011 article 17 2011

[6] R D Chen X L Shen and S J Cui ldquoWeak and strongconvergence theorems for equilibrium problems and countablestrict pseudocontractions mappings in Hilbert spacerdquo Journalof Inequalities and Applications vol 2010 Article ID 474813 11pages 2010

[7] C Jaiboon and P Kumam ldquoStrong convergence for general-ized equilibrium problems fixed point problems and relaxedcocoercive variational inequalitiesrdquo Journal of Inequalities andApplications vol 2010 Article ID 728028 43 pages 2010

[8] K Nakajo and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and nonexpansive semigroupsrdquoJournal of Mathematical Analysis and Applications vol 279 no2 pp 372ndash379 2003

[9] N Buong and N D Duong ldquoWeak convergence theorem for anequilibrium problem and a nonexpansive semigroup in Hilbertspacesrdquo InternationalMathematical Forum vol 5 no 53ndash56 pp2775ndash2786 2010

[10] Y Shehu ldquoIterative method for fixed point problem variationalinequality and generalized mixed equilibrium problems withapplicationsrdquo Journal of Global Optimization vol 52 no 1 pp57ndash77 2012

[11] H Zegeye and N Shahzad ldquoApproximation of the commonminimum-norm fixed point of a finite family of asymptoticallynonexpansive mappingsrdquo Fixed Point Theory and Applicationsvol 2013 article 1 2013

[12] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[13] T Shimizu andW Takahashi ldquoStrong convergence to commonfixed points of families of nonexpansive mappingsrdquo Journal ofMathematical Analysis and Applications vol 211 no 1 pp 71ndash83 1997

[14] T Suzuki ldquoStrong convergence theorems for infinite families ofnonexpansive mappings in general Banach spacesrdquo Fixed PointTheory and Applications vol 2005 Article ID 685918 2005

[15] H-K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

[16] H H Bauschke and P L Combettes Convex Analysis andMonotone Operator Theory in Hilbert Spaces Springer NewYork NY USA 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Approximations for Equilibrium Problems ...downloads.hindawi.com/journals/aaa/2014/351372.pdf · Step . e sequence { } is bounded. Step . e following equalities hold:

Abstract and Applied Analysis 7

it follows that themapping119860 is one-to-oneTherefore the setΩ is a singleton By Step 3 the sequence 119909

119899 possesses only

oneweak sequential cluster point It follows fromLemma238in [16] that 119909

119899 converges weakly to 120596 and so

1003817100381710038171003817119909119899+1 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817119910119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2+ 120573119899

1003817100381710038171003817(1 minus 120572119899) 119909119899 minus 1205961003817100381710038171003817

2

le (1 minus 120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120573119899[(1 minus 120572

119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+2120572119899(1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

2

1198991205962]

le (1 minus 120572119899120573119899)1003817100381710038171003817119909119899 minus 120596

1003817100381710038171003817

2

+ 120572119899120573119899[2 (1 minus 120572

119899) ⟨minus120596 119909

119899minus 120596⟩ + 120572

1198991205962]

(53)

Since 119909119899 converges weakly to 120596 it follows from Lemma 22

in [10] or Lemma 6 in this paper that 119909119899 converges strongly

to 120596 isin Ω

Conflict of Interests

The authors declare that there is no conflict of interests

Acknowledgment

The authors would like to thank referees and editors for theirvaluable comments and suggestions

References

[1] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1-4 pp 123ndash145 1994

[2] P L Combettes and S A Hirstoaga ldquoEquilibrium program-ming in Hilbert spacesrdquo Journal of Nonlinear and ConvexAnalysis vol 6 no 1 pp 117ndash136 2005

[3] Y Liu ldquoA general iterative method for equilibrium problemsand strict pseudo-contractions in Hilbert spacesrdquo NonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4852ndash4861 2009

[4] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[5] D-N Qu and C-Z Cheng ldquoA strong convergence theoremon solving common solutions for generalized equilibriumproblems and fixed-point problems in Banach spacerdquo FixedPoint Theory and Applications vol 2011 article 17 2011

[6] R D Chen X L Shen and S J Cui ldquoWeak and strongconvergence theorems for equilibrium problems and countablestrict pseudocontractions mappings in Hilbert spacerdquo Journalof Inequalities and Applications vol 2010 Article ID 474813 11pages 2010

[7] C Jaiboon and P Kumam ldquoStrong convergence for general-ized equilibrium problems fixed point problems and relaxedcocoercive variational inequalitiesrdquo Journal of Inequalities andApplications vol 2010 Article ID 728028 43 pages 2010

[8] K Nakajo and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and nonexpansive semigroupsrdquoJournal of Mathematical Analysis and Applications vol 279 no2 pp 372ndash379 2003

[9] N Buong and N D Duong ldquoWeak convergence theorem for anequilibrium problem and a nonexpansive semigroup in Hilbertspacesrdquo InternationalMathematical Forum vol 5 no 53ndash56 pp2775ndash2786 2010

[10] Y Shehu ldquoIterative method for fixed point problem variationalinequality and generalized mixed equilibrium problems withapplicationsrdquo Journal of Global Optimization vol 52 no 1 pp57ndash77 2012

[11] H Zegeye and N Shahzad ldquoApproximation of the commonminimum-norm fixed point of a finite family of asymptoticallynonexpansive mappingsrdquo Fixed Point Theory and Applicationsvol 2013 article 1 2013

[12] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[13] T Shimizu andW Takahashi ldquoStrong convergence to commonfixed points of families of nonexpansive mappingsrdquo Journal ofMathematical Analysis and Applications vol 211 no 1 pp 71ndash83 1997

[14] T Suzuki ldquoStrong convergence theorems for infinite families ofnonexpansive mappings in general Banach spacesrdquo Fixed PointTheory and Applications vol 2005 Article ID 685918 2005

[15] H-K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

[16] H H Bauschke and P L Combettes Convex Analysis andMonotone Operator Theory in Hilbert Spaces Springer NewYork NY USA 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Approximations for Equilibrium Problems ...downloads.hindawi.com/journals/aaa/2014/351372.pdf · Step . e sequence { } is bounded. Step . e following equalities hold:

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of