renewables global futures report - ren21

69
RENEWABLES GLOBAL FUTURES REPORT Online Supplement SCENARIO PROFILES REPORT Draft January 16, 2013 REN21 Renewable Energy Policy Network for the 21 st Century Institute for Sustainable Energy Policies

Upload: others

Post on 03-Feb-2022

26 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RENEWABLES GLOBAL FUTURES REPORT - REN21

     

RENEWABLES GLOBAL FUTURES REPORT  

  

Online Supplement  

SCENARIO PROFILES REPORT    

Draft January 16, 2013                 

REN21 Renewable Energy Policy Network for the 21st Century  

Institute for Sustainable Energy Policies    

                                         

Page 2: RENEWABLES GLOBAL FUTURES REPORT - REN21

2

DISCLAIMERThescenarioprofilesprovidedinthissupplementaryreportareintendedtoprovidethereaderwithabroadoverviewofanumberofselectedscenariosthatwereusedintheRenewablesGlobalFuturesReport.However,theinformationcontainedinthesescenarioprofilesisnotwarrantedtobeaccuraterelativetotheoriginalsources.Thereaderdesiringtousespecificitemsofdatafromscenariosisadvisedtoconsulttheoriginalsources.OnlyscenariodataemployedinthemaintextoftheFuturesReporthavebeendouble‐checkedforaccuracywiththeoriginalsources.LISTOFSCENARIOSPROFILED(SeeBibliographyforFullReferenceCitations)GLOBAL1. WorldEnergyOutlook2012(InternationalEnergyAgency(IEA),2012) ................................................ 42. EnergyTechnologyPerspectives2012,PathwaystoaCleanEnergySystem(InternationalEnergy

Agency(IEA),2012) ................................................................................................................................ 63. Energy[R]evolution:ASustainableWorldEnergyOutlook(Greenpeace,GlobalWindEnergyCouncil

(GWEC),andEuropeanRenewableEnergyCouncil(EREC),2012)....................................................... 104. TheEnergyReport:100%RenewableEnergyby2050(WorldWideFundforNature(WWF)andEcofys,

2011) .................................................................................................................................................... 125. GlobalEnergyAssessment:TowardaSustainableFuture(GlobalEnergyAssessment(GEA),2012) .. 146. BPEnergyOutlook2030(BP,2012) ..................................................................................................... 187. TheOutlookforEnergy:AViewto2040(ExxonMobil,2012) .............................................................. 198. InternationalEnergyOutlook2011(U.S.DepartmentofEnergy,EnergyInformationAdministration

(USDOEEIA),2011) ............................................................................................................................. 209. GlobalWindEnergyOutlook(GlobalWindEnergyCouncil(GWEC),2010) ........................................ 22

AFRICA10. AfricaEnergyOutlook2040(SOFRECO,2011) ..................................................................................... 2311. ProspectsfortheAfricanPowerSector,ScenariosandStrategiesforAfricaProject(International

RenewableEnergyAgency(IRENA),2012)........................................................................................... 26

CHINA,INDIA,ANDASIA12. WindofChange:EastAsia’sSustainableEnergyFuture(WorldBankandAusAid,2010) ................... 2913. EnergyOutlookforAsiaandthePacific(Asia‐PacificEconomicCooperation(APEC)andAsian

DevelopmentBank,2009).................................................................................................................... 3014. China’sEnergyandCarbonEmissionsOutlookto2050(LawrenceBerkeleyNationalLaboratory,2011)

............................................................................................................................................................. 3215. PotentialSecure,LowCarbonGrowthPathwaysfortheChineseEconomy(ChinaEnergyResearch

Institute,2011)..................................................................................................................................... 3416. ChinaWindPowerOutlook2011(Greenpeace,2011)......................................................................... 3517. “AStudyoftheRolePlayedbyRenewableEnergiesinChina’sSustainableEnergySupply”(Zhang

Xiliang,WangRuoshui,HuoMolin,andEricMartinot,2010).............................................................. 3618. IndianWindEnergyOutlook(GlobalWindEnergyCouncil(GWEC),WorldInstituteofSustainable

Energy(WISE),andIndianWindTurbineManufacturingAssociation(IWTMA),2011) ...................... 3819. Energy[R]evolution:ASustainableIndiaEnergyOutlook(GreenpeaceandEuropeanRenewable

EnergyCouncil(EREC),2008) ............................................................................................................... 3920. “EnergyScenarioandVision2020inIndia”(P.Garg,2012) ................................................................ 4121. “India’sRenewableScenario”(MadhavanNampoothiri,2012) .......................................................... 43

Page 3: RENEWABLES GLOBAL FUTURES REPORT - REN21

3

EUROPE22. PurePower:WindEnergyTargetsfor2020and2030(EuropeanWindEnergyAssociation(EWEA),

2011) .................................................................................................................................................... 4423. Rethinking2050:A100%RenewableEnergyVisionfortheEuropeanUnion(EuropeanRenewable

EnergyCouncil(EREC),2010) ............................................................................................................... 4624. Europe’sShareofClimateChange(StockholmEnvironmentInstitute(SEI)andFriendsoftheEarth,

2009) .................................................................................................................................................... 4825. PowerChoices:PathwaystoCarbon‐NeutralElectricityinEuropeby2050(Associationofthe

ElectricityIndustryinEurope(Eurelectric),2009) ............................................................................... 5026. EnergyRoadmap2050(EuropeanCommission,2011)........................................................................ 5227. PathwaysTowardsa100%RenewableElectricitySystem(GermanAdvisoryCouncilonthe

Environment,2011) ............................................................................................................................. 53

LATINAMERICA28. OutlookforAlternativeRenewableEnergyinBrazil(BrazilianMinistryofMinesandEnergy,2010) . 5529. MeetingtheBalanceofElectricitySupplyandDemandinLatinAmericaandtheCaribbean(TheWorld

Bank,2011) .......................................................................................................................................... 57

UNITEDSTATES30. RenewableElectricityFuturesStudy,volumes1to4(NationalRenewableEnergyLaboratory(NREL),

2012) .................................................................................................................................................... 5931. AnnualEnergyOutlook2012(U.S.DepartmentofEnergy,EnergyInformationAdministration(USDOE

EIA),2012)............................................................................................................................................ 6532. Energy[R]evolution:ASustainable(UnitedStates)EnergyOutlook(GreenpeaceandEuropean

RenewableEnergyCouncil(EREC),2010) ............................................................................................ 6733. Climate2030:ANationalBlueprintforaCleanEnergyEconomy(UnionofConcernedScientists,2009)

............................................................................................................................................................. 69 

Page 4: RENEWABLES GLOBAL FUTURES REPORT - REN21

4

1.World Energy Outlook 2012(InternationalEnergyAgency(IEA),2012)ScenarioDescriptionTheWorldEnergyOutlook(WEO)developsthreemainscenarios;the“CurrentPoliciesScenario,”the“NewPoliciesScenario”(NPS),andthe“450partspermillionofcarbon‐dioxideequivalent(ppmCO2‐eq)Scenario,”andthe“EfficientWorldScenario.”TheNPS,whichisthecentralcase,detailstheimpactofexistingpolicycommitmentsandtheimplementationofthoserecentlyannounced,onthekeyenergydemand,supply,trade,investmentandemissionstrendsintheperiodupto2035.Inthisscenario,fossilfuelsubsidiesareassumedtobephasedoutby2020inallnetenergyimportingcountriesandmoregraduallyinexportingonesthathaveannouncedplanstodoso.Apartfromthisimportantassumption,otherprimaryassumptionsincludepopulationgrowthto8.6billionby2035,andanaveragerateofeconomicgrowthinrealtermsof3.5%peryearthrough2035.By2035,theNPSalsopredictsthatthepriceofcrudeoilimportwillreach$125/barrel(inyear2011dollars),thatthepriceofcoalwillreach$115/tonne,andthatcarbonpriceswillrangefrom$30to$45/tonne.TheWEO2012makesuseoftheWorldEnergyModelthatreplicatesthedynamicsofenergymarketsusinghistoricaldataoneconomicandenergyvariablestogenerateprojections.KeyProjections/ResultsIntheNPS,globalprimaryenergydemandwillincreaseby35%between2010and2035.Approximately90%ofthatincreasewillcomefromnon‐OECDcountriesastheshareofOECDcountriesinworldenergydemandfalltoabout35%in2035(adeclineofroughly10percentagespointscomparedto2010).

FigureA‐1IntheNPS,theshareoffossilfuelswilldecreasefrom81%in2010to75%in2035(FigureA‐1).Oil,coal,andgaswillthusremainthepredominantsourcesofenergy.However,renewableenergysourceswillcontinuetogrow;from13%oftheglobalprimaryenergydemandto18%attheendoftheoutlookperiod.Theshareofnuclearwillremainconstantaround6‐7%.IntheNPS,electricitydemandwillincreasebymorethan70%,withover9,300GWofinstalledcapacityneededby2035.Althoughtheshareoffossilfuelsinelectricitygenerationdecreases;approximatelylessthan10percentagepointscomparedto2010,fossilfuelswillstillprovide57%oftheelectricitysupplyin2035(FigureA‐2).Electricitygeneratedfromrenewableswillalmosttriple,andtheshareofrenewablesintheworldelectricitymixwillincreasefrom20%to31%.Hydroenergyprovidesandwillcontinuetoprovidethelargestshareofrenewables.Thenuclearsharewillremainconstantataround12‐13%.

81  80  79  77  80  75  63 

6  6  6  7  5  7 11 

13  14  15  16  14  18  27 

0% 20% 40% 60% 80% 100% 

Current  NPS  450  Current  NPS  450 

2010  2020  2035 

Share of Primary Energy Sources in the World Energy Demand 

Renewables 

Nuclear 

Fossil fuels 

Page 5: RENEWABLES GLOBAL FUTURES REPORT - REN21

5

Amongallrenewables,windpowerwillplayagrowingrole;thewindpowershareintheelectricitymixwillincreaseto7.3%in2035,upfrom1.6%in2010.ThecontributionofbiomassandsolarPVtechnologiesinpowergenerationwillalsoincrease,buttoalesserextent.

FigureA‐2IntheNPS,intermsofrenewablesinstalledcapacity,thegrowthofwindpowermeansthatthedominanceofhydropowerwilldecline.Bytheendoftheoutlookperiod,thesetwotechnologiescombinedwillaccountforalmostthree‐quartersofthetotalrenewablesinstalledcapacity.Beyondhydroandwind,solarPVcapacitywillexceedbiomasscapacityby2015,andsolarPVwillgrowbymorethan15‐foldtoreachover600GWby2035.ThegrowthrateofCSPwillbesignificant,butitsdeploymentintermsofcapacitywillbelesssignificantthanforsolarPV.Geothermalandoceanremainrelativelysmall.

FigureA‐3IntheNPS,renewables(essentiallybiofuels)willrepresent6%ofthetransportsectorusesby2035.TheUnitedStatesandBrazilwillremainthelargestproducersofbiofuels.IntheNPS,renewableswillrepresent14%oftheheatdemandbytheendoftheoutlookperiod.Solarandgeothermalheatareexpectedtogrowsignificantly.

67  63  57 

13  12  12 

20  25  31 

0% 

20% 

40% 

60% 

80% 

100% 

2010  2020  2035 

Share of Primary Energy Sources in the World Electricity Generation (NPS) 

Renewables 

Nuclear 

Fossil fuels 

1033  1348  1395  1684  1875 135  143 

252 338 

198 

586  655 

1098 

1658 

266  303 

602 

966 

219

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

5000 

5500 

NPS  450  NPS  450 

2010  2020  2035 

GW  Global Cumulative Renewable Energy Capacity   

Ocean

Solarthermal

SolarPV

Geothermal

Wind

Biomass

Hydro

Page 6: RENEWABLES GLOBAL FUTURES REPORT - REN21

6

2.Energy Technology Perspectives 2012, Pathways to a Clean Energy System(InternationalEnergyAgency(IEA),2012)ScenarioDescriptionTheEnergyTechnologyPerspectives(ETP)reportisaguidefordecisionmakersonenergytrendsandwhatneedstobedonetobuildaclean,secureandcompetitiveenergyfuture.Itdemonstrateshowtechnologiescanmakeadecisivedifferenceinlimitingclimatechangeandenhancingenergysecurity.Forinstance,itnotablyshowshowenergysystemswillbecomemorecomplex,whyflexibleelectricitysystemsareincreasinglyimportant,andhowasystemwithsmartergrids,energystorageandflexiblegenerationcanwork.Intheframeworkofthisanalysisthereportpresentsdetailedscenariosandstrategiesto2050.Itstartsfromthetargetoflimitingaverageglobaltemperatureincreaseto2°C.Thenitdevelopsthreepossibleenergyfutures,theboundariesofwhicharesetbytotalenergy‐relatedCO2emissions:• The6°CScenario(6DS),anextensionofcurrenttrendsthatassumesnonewpolicyactionistakentoaddressclimatechangeandenergysecurityconcernswhatresultsinanaverageglobaltemperatureriseofatleast6°Cinthelongterm(consistentwiththeIEAWorldEnergyOutlookCurrentPolicyScenario);• The4°CScenario(4DS),whichrepresentsaconcertedefforttomoveawayfromcurrenttrendsandtechnologies,withthegoalofreducingbothenergydemandandemissionsvis‐a‐visthe6DS(consistentwiththeIEAWEONewPolicyScenario);• The2°CScenario(2DS),whichdescribesavisionofasustainableenergysystemconsistentwithanemissionstrajectorythatrecentclimatescienceresearchindicateswouldgivean80%chanceoflimitingaverageglobaltemperatureincreaseto2°C(consistentwiththeIEAWEO450Scenario).The2DSscenarioreflectsaconcertedefforttoreduceoverallconsumptionandreplacefossilfuelswithamixofrenewableandnuclearenergysources,anddramaticimprovementsintermsofenergyefficiency.Amongthemainassumptionsincorporated:globalgrossdomesticproduct(GDP)increasesby3.3%peryearonaveragethrough2050,globalpopulationisprojectedtoreach9.3billionpeopleby2050,andthepriceofcrudeoilby2050willbe$87/barrelinthe2DSscenarioand$149/barrelinthe6DSscenario.KeyProjections/ResultsTotalprimaryenergysupply(TPES)willgrowinallscenarios.Inthe2DS,TPESincreasesbyapproximately37%from2009to2050.Thisissignificantlylowerthanthe85%riseinthe6DS.IntheOECD,TPESisprojectedtostayalmostconstantinthe2DS,andincreaseonlymoderatelyinthe6DS.Inthenon‐OECDcountries,eveninthe2DSTPESisprojectedtorisebyabout70%in2050comparedto2009.Theshareofrenewablesintheworldenergymixwillbe41%inthe2DS,24%inthe4DSand15%inthe6DSin2050,comparedto13%in2009(FigureB‐1).Inallscenarios,fossilfuelsremainasignificantpartoftheglobalenergysystemfordecades.Eventhoughglobaloilusefalls,itwillremainparticularlysignificantintransportandasafeedstockinindustry.Naturalgaswillremainasignificantfuelinallsectorsthrough2050.

Page 7: RENEWABLES GLOBAL FUTURES REPORT - REN21

7

FigureB‐1Inthe2DS,electricitygeneratedfromrenewableswillincreasebymorethan6‐foldinabsoluteterms.Theshareofrenewablesintheworldelectricitymixwillincreaseto57%by2050(FigureB‐2).Hydrowillrepresent17%ofthetotalelectricitygenerated,wind15%(two‐thirdsonshore,andone‐thirdoffshore),CSP8%,biomass7%,solarPV6%,geothermal2%,andocean1%.Inthe4DSandthe6DS,theshareofrenewablesintheworldelectricitymixby2050isrespectively36%and24%(comparedto19%in2009).Low‐carbonelectricitygenerationisalreadycompetitiveinmanymarketsandwilltakeanincreasingshareofgenerationinthecomingyears,integratingamuchhighershareofvariablegeneration,suchaswindpowerandsolarPV.

FigureB‐2By2050,theshareofelectricityasafractionoftotalfinalconsumptionwillrisefrom17%in2009to26%inthe2DS,and23%inthe4DS.Cumulativeinvestmentsofaround$7.7trillioninpowergenerationarerequiredinthe2DS,inadditiontothe$18trillioninvestmentinthe6DS,between2012and2050.

81  79  75 64 

80 69 

46 

6  6  7 10 

5 7 

12 

13  15  18  26 15  24 

41 

0% 

20% 

40% 

60% 

80% 

100% 

6DS  4DS  2DS  6DS  4DS  2DS 

2009  2030  2050 

Share of Primary Energy Sources in the TPES 

Renewables 

Nuclear 

Fossil fuels 

67 

41 24 

13 

17 

19 

19 42 

57 

0% 

20% 

40% 

60% 

80% 

100% 

2009  2030  2050 

Share of Primary Energy Sources in the World Electricity Generation (2DS)  

Renewables 

Nuclear 

Fossil fuels 

Page 8: RENEWABLES GLOBAL FUTURES REPORT - REN21

8

Theaveragecostofgeneratingelectricitywillriseby40%to50%inallscenariosthrough2050.Inthe2DS,intermsofinstalledcapacity,hydropowerwillremainthemostsignificantrenewableenergysourceuntil2035‐2040.Duringthisperioditwillbeovertakenbywindpower.Bytheendoftheoutlookperiodtherewillbealmost2,350GWofwindpowercapacityintheworld(FigureB‐3),ofwhichabout600GWwillbeoffshore.By2050,withover2,000GWofinstalledcapacitysolarPVwillalsoovertakehydropowertobecomethesecondmostimportantrenewableenergysource.ThegrowthofsolarPVwillmainlyoccurafter2030withalmostatriplingoftheconsideredtechnologycapacitybetween2030and2050.Thegrowthofsolarthermalandoceantechnologieswillbesignificantafter2040withanincreaseofrespectively475GWand155GWinstalledcapacityduringthelastdecadeoftheoutlookperiod.Biomassandgeothermalcapacitieswillrespectivelyincreaseby11–foldand12–foldbetween2009and2050.By2050,withapproximately8,150GWofinstalledcapacityrenewableenergysourceswillaccountforovertwo‐thirdsofglobalpowercapacity,comparedto25%in2009.

FigureB‐3Forthetransportationsector:• Inthe6DSscenario,transportremainsbasedalmostexclusivelyonfossilfuels.Thereislittlepenetrationofplug‐inelectricvehiclesandotheralternativetechnologiesandfuels.• Inthe4DSscenario,penetrationofalternative‐fuelvehicletechnologies(plug‐inhybridelectric,andbatteryelectricvehicles)isslow.Theonlynewalternativetechnologythatgainssignificantmarketshareisgasolinehybridvehicles,reachingsome25%ofsalesin2050.• Inthe2DSscenario,oilispartiallyreplacedbyaportfolioofthreealternativefuels:electricity,hydrogenandbiofuels.After2030,theincreasedshareofelectricandplug‐inhybridelectricvehiclesbecomesincreasinglyimportantforcarsandlight‐dutytrucks,reaching50%ofvehiclesalesin2050.Theuseofbiofuelswillincreasetoapproximately240billionliters(gasolineequivalent)by2020.Achievingthisfigurelargelydependsonthedevelopmentofadvancedbiofuels.

1007  1501  1644  1728  1981 217 336 458

563

159 

910 1403  1544 

2 346 

139 

418 

704 824 

2017 

326

859

229 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

4DS  2DS  4DS  2DS 

2009  2030  2050 

GW  Global Cumulative Renewable Energy Capacity   

Ocean 

Solar thermal 

Solar PV 

Geothermal 

Wind 

Biomass 

Hydro 

Page 9: RENEWABLES GLOBAL FUTURES REPORT - REN21

9

Concerningthebuildingsenergyconsumptionandtheindustrialone;the2DSprojectsanincreasinguseofbiomassandwaste,andofelectricity.Concerningthedistrictheatingandcooling;biomassandamixofotherrenewableenergysourceswillrepresentalmostthree‐quartersofprimaryenergyconsumptioninthe2DSin2050.Thecostofcreatinglow‐carbonenergysystemsintheshortertermwillbeoutweighedbythepotentialfuelsavingsenjoyedbyfuturegenerations;asustainableenergysystemwillrequire$140trillionininvestmentsto2050,butwillgenerateundiscountednetsavingsofmorethan$60trillion.

Page 10: RENEWABLES GLOBAL FUTURES REPORT - REN21

10

3.Energy [R]evolution: A Sustainable World Energy Outlook(Greenpeace,GlobalWindEnergyCouncil(GWEC),andEuropeanRenewableEnergyCouncil(EREC),2012)ScenarioDescriptionThestudyusesabottom‐up,technology‐drivenapproachtoillustratethepossibilityof100%renewablepowerby2050.Twoscenariosareproduced:aReferenceoneandanEnergyAdvanced[R]evolutionone.TheEnergyAdvanced[R]evolutionscenario(“E[R]evolution”)looksatthepotentialofreducingenergydemandthroughenergyefficiencyandprovidingelectricitythroughdecentralizedrenewableenergysources.Itexplorestheuseofsmartgridstoconnectthesedecentralizedsystemsandassumesthathybrid/electriccarswillbepredominantin2050andthatnuclearenergywillbephasedoutby2050.Othermainassumptionsfor2050includeapopulationofnearly9.3billion,averageeconomicgrowthof3.1%,adeclineinenergyintensity(finalenergydemandperunitofGDP)ofalmost70%,anaveragecrudeoilcostofUS$152abarrel,acoalpriceofUS$206pertonne,andacarbonpriceofUS$75pertonne.KeyProjections/ResultsUndertheE[R]evolutionscenario,worldprimaryenergydemandwilldecreaseto481,050petajoules(PJ)in2050asaresultofenergyefficiencymeasures,thephaseoutofnuclear,andreduceddependenceonfossilfuels.Meanwhile,theshareofrenewableenergywillincreaseconsiderably,accountingfor82%ofworldprimaryenergydemandin2050.(SeeFigureB‐1.)

Nearly95%oftheworld’selectricitywillcomefromrenewableenergysourcesin2050,reflectingthefactthatarenewables‐basedfutureispossible.(SeeFigureB‐2.)Wind,solarPV,andgeothermalwillrepresentsome60%ofelectricitygeneration,andapproximately91%ofheatenergywillcomefromrenewables.

81 80 74 7958

79

37

79

18

6 63

6

1

6

0

614 14 23 14

4115

63

16

82

0

20

40

60

80

100

Ref E[R]evo Ref E[R]evo Ref E[R]evo Ref E[R]evo

2009 2020 2030 2040 2050

FigureB‐1.ShareofPrimaryEnergySourcesinWorldEnergyDemand

Renewables

Nuclear

Fossilfuels

Page 11: RENEWABLES GLOBAL FUTURES REPORT - REN21

11

Dueinlargeparttothegrowthofoffshorewind(to892GWin2050),windwillbecometheleadingrenewableenergysource,followedbysolarPVandsolarthermal.(SeeFigureB‐3.)Oceanenergywillalsoexpandsignificantly,surpassinggeothermalandbiomassininstalledcapacity.IntheReferencescenario,hydropowerwillremainthemainrenewableenergysource,followedbyonshorewindandsolarPV.Othersourceswillhaveonlymarginalcontributions.

PathwaystoImplementationToachievethegoalof100%renewablepowerby2050,severalpolicymeasuresarecrucial.Theseincludethephaseoutoffossilfuelsubsidiesandthegradualphaseoutofnuclearenergy.Acap‐and‐tradeemissiontradingschemeisequallyimportant,aswellasadequatereformsintheelectricitymarketthatallowforgreaterrenewableenergyuse.

67 66 57 6637

67

19

67

5

13 126

11

2

10

0

9

19 2237

23

61

24

80

24

94

0

20

40

60

80

100

Ref E[R]evo Ref E[R]evo Ref E[R]evo Ref E[R]evo

2009 2020 2030 2040 2050

FigureB‐2.ShareofPrimaryEnergySourcesinWorldElectricityGeneraUon

Renewables

Nuclear

Fossilfuels

995 1425 1347 1695 1484754

2908 1135

5236

456

1764

471

4548

714

2054610

0

1500

3000

4500

6000

7500

9000

10500

12000

13500

15000

Ref E[R]evo Ref E[R]evo

2009 2030 2050

FigureB‐3.CumulaUveRenewableEnergySourcesWorldwide

Ocean

Solarthermal

SolarPV

Geothermal

Wind

Biomass

Hydro

GW

Page 12: RENEWABLES GLOBAL FUTURES REPORT - REN21

12

4.The Energy Report: 100% Renewable Energy by 2050(WorldWideFundforNature(WWF)andEcofys,2011)ScenarioDescriptionThestudyinvestigatespossiblepathwaystoachieving100%renewableenergy,shapedbytwofundamentalquestions:whatistheminimumamountofenergyneededtodelivervariousfunctions,andhowcanthisbesuppliedinasustainableway?Thekeypathwaysoutlinedareenergyefficiency,electrification,andbioenergy.Althoughthisenergytransformationrequiresahighinvestmentcost,thelaterstagesofthetransitionwillbringacostadvantage,primarilythroughsavings.Thestrategyforachievingthisvisioninvolvesreducingenergydemand,supplyingenergythroughrenewables,andsatisfyingtheremainingdemandviatraditionalenergysourcesprovidedinacleanway.Themodelassumesthatenergydemandistheproductof(a)thevolumeofactivityrequiringenergy,and(b)energyintensity.Activitydependsoneconomicandpopulationgrowth,whereasintensityisdependentonthefastestrolloutofthemostefficienttechnologies.Estimatesofsupplylookatthesupplypotentialforeachenergycarrier:electricity,fuel,andheat.KeyProjections/ResultsThescenarioprojectsthatby2050,95%ofworldfinalenergyconsumptionwillbemetbyrenewableenergysources,withtherestbeingsuppliedbyfossilfuelsandagradualphaseoutofnuclear.(SeeFigureC‐1.)Finalenergyconsumptionwillpeakin2020andthendecreaseto261.4exajoules(EJ)in2050,downfrom327.7EJin2010.

PThistransitiontorenewableenergyispossiblethroughsignificantchangesintheenergymixinfourdistinctsectors:buildings,industry,electricity,andtransport.Inthebuildingsector,actionsaretakenintheexistingstockandalsowithnewbuildings.Inexistingstock,aretrofittingprogramby2050iskeytoreducingheatingneedsby60%.Heatingandhotwaterneedswillbemetbysolarthermalsystemsandheatpumps,whilecoolingwillbeprovidedbylocalrenewablesolutions.Newbuildingswillbenear‐zero‐energyby2030,withresidualheatdemandmetbypassivesolar,solarthermalinstallations,andheatpumps.Buildingswillalsobeall‐electric.Althoughtherewillbeadecreaseinheatingdemand,ariseinelectricitydemandisinevitable.Thesechangeswillcontributetobuildingsbeingpoweredby100%renewablesin2050,comparedtoa60%dependenceonfossilfuelsin2010.Inindustry,theshareofrenewableswillincreasefrom8%in2010to79%in2050,whiledemandwilldecreaseconsiderablytoits2000level.

80 7457

265

3 2

1

0

18 2542

7495

0

20

40

60

80

100

2010 2020 2030 2040 2050

FigureC‐1.ShareofPrimaryEnergySourcesinWorldFinalEnergyConsumpUon

Renewables

Nuclear

Fossilfuels

Page 13: RENEWABLES GLOBAL FUTURES REPORT - REN21

13

Electrificationinvarioussectorswillincreasethedemandforpowerto127EJannuallyin2050,doublethe2010figure.Renewableswillaccountforaprojected100%ofelectricityconsumptionin2050,comparedtojustover20%in2010.(SeeFigureC‐2.)Offshorewindenergywillincreaseby30%andonshorewindby20%annuallythrough2050.SolartechnologiesthatwillplayanimportantrolearePV,solarthermal(CSP),CSH(concentratingsolarhigh‐temperatureheat,usedprimarilyinindustry),andsolarthermallow‐temperatureheatforbuildings.PVwillgrowannuallyby25–30%(includingbuilding‐integratedPVandlarge‐areaPVinstallations),andCSPwillgrowby20%.

Inthetransportsector,therewillbeamodalshiftfromfueltoelectricity;electriccarsandelectricrailsystemswillbemoreprominent,withmore‐efficienttechnologies.Thebasicassumptionsforelectrificationoftransportareashifttoplug‐inhybridandelectriccars,energyefficientheavyvehicles,andshippingfuelfromhydrogenproducedfromrenewableenergy.ElectricvehiclebatterieswillbemainlylithiumIon.Electrificationwillenablethetransportsectortobe100%poweredbyrenewables.(SeeFigureC‐3.)

64 60 46 25

14 95

1

22 31 4974

100

020406080100

2010 2020 2030 2040 2050

FigureC‐2.ShareofPrimaryEnergySourcesinWorldElectricityGeneraUon

Renewables

Nuclear

Fossilfuels

95 89 6827

5 12 3373

100

020406080100

2010 2020 2030 2040 2050

FigureC‐3.ShareofPrimaryEnergySourcesinWorldTransport

Renewables

Fossilfuels

Page 14: RENEWABLES GLOBAL FUTURES REPORT - REN21

14

5.Global Energy Assessment: Toward a Sustainable Future(GEA,2012)ScenarioDescriptionThereportexaminesmajorglobalchallengesandtheirlinkagestoenergy;thetechnologiesandresourcesavailableforprovidingadequate,modern,andaffordableformsofenergy;theplausiblestructureoffutureenergysystemsmostsuitedtoaddressingthecentury’schallenges;andthepolicies,measures,institutions,andcapacitiesneededtorealizesustainableenergyfutures.Thereportdevelops60alternativepathwaysthroughwhichenergysystemscouldbetransformedtosimultaneouslyaddresscriticalsocialandenvironmentalgoals:stabilizingglobalclimatechangeto2°Cabovepre‐industriallevels(tobeachievedinthe21stcentury),enhancingenergysecuritythroughdiversificationoftheenergysupply(particularlybyreducingdependenceonimportedoil),eliminatinghouseholdandambientairpollution,andattaininguniversalaccesstomodernenergyservicesby2030.Thepathwaysaregroupedintothreedifferentapproachesforachievingthesegoals:“GEA‐Supply,”“GEA‐Mix,”and“GEA‐Efficiency.”GEA‐Supplydepictsfutureswithradicaldevelopmentssuchashydrogenorcarboncaptureandstorage,GEA‐Mixreliesmoreontoday’sadvancedinfrastructuresuchasbiofuels,andGEA‐Efficiencyreliesmoreontoday’sadvancedoptionssuchasefficiencyandrenewables.Thethreeapproachesweredevelopedusingtwointegratedassessmentmodelingframeworks:MESSAGEandIMAGE.Themainassumptionsinclude:globalpercapitaGDPincreasesby2%ayearonaveragethrough2050;globalpopulationreaches9billionpeopleby2050;andtoday’sadvancedtechnologies,manyofwhicharenotcommerciallyviableundercurrentmarketconditions,willbeimprovedthroughvigorousR&Danddeploymenttoachievecostreductionsandbettertechnicalperformancethrougheconomiesofscaleandthroughlearningbyusingandbydoing.KeyProjections/Results Accordingtothereport,41ofthe60alternativepathwayssatisfyalloftheGEAgoalssimultaneously.Thus,theanalysisdemonstratesthatasustainablefutureispossibleandthattherearemanyenergyportfoliooptionsandmanywaystotransformenergysystems.Thesinglemostimportantareaofactionisefficiencyimprovementinallsectors.Renewableenergyplaysanimportantroleinallofthetransitionpathways.Stronggrowthinrenewablesisnotonlyexpected,butitbeginsimmediately,expandingto165–650EJofprimaryenergyby2050.Theshareofrenewables(biomass,hydro,wind,solar,andgeothermal)inglobalprimaryenergywillincreasefromthecurrent17%tobetween30%and75%(andinsomeregionsmorethan90%)by2050.InGEA‐Efficiency,renewableswillrepresentapproximately75%ofprimaryenergyby2050,whenprimaryenergydemandisexpectedtoreach700EJ(upfrom490EJin2005),and90%bytheendofthecentury.InGEA‐Supply,renewableswillcontributeabouthalfofprimaryenergyby2050,whenprimaryenergydemandisexpectedtoreach1,050EJ.FigureD‐1showsthecompositionofglobalprimaryenergysupplyin2005,2030,and2050acrosspathwaygroupsunderanunrestrictedsupplyportfolioand“ConventionalTransportation”setup.Itrevealsthateveninanotparticularlyambitiousscenario,biomassandwindpowerwillgrowsignificantlyinallpathwaygroupsby2050,andsolarwillnotonlybetheleadingrenewableenergysource,butalsooneofthetwoleadingenergysources(alongwithnaturalgas)bymid‐century.

Page 15: RENEWABLES GLOBAL FUTURES REPORT - REN21

15

FigureD‐1

SeveraloftheGEApathwaysexplorelimitationsofvariousrenewableenergyoptions.Yetevenundertheseconstraints,relativelymaturetechnologiessuchashydropowerandonshorewindpowerexperiencestronggrowthto2030and2050,withlimitedvariationamongpathwaygroups.SolarPVandsolarthermal(CSP)aremorevariableandshowstrongerdeploymentafter2030,althoughby2020theaveragedeploymentshowsamultifoldincreasecomparedwithtoday’slevels.Biomassandgeothermalelectricitygenerationshowmuchlowerdeploymentlevelsonaveragecomparedwiththeseotherrenewabletechnologies.Inthepowersector,theshareofrenewableswillgrowdependingontherequirementsforenergystoragetechnologies,especiallyinthosepathwayswithveryhighdeploymentofintermittentsources(wind,solarPV,andtoalesserextentCSP).Thistrendwillbemorepronouncedinthemediumandlongterms,whenrenewablesbecomeincreasinglydominantsourcesofenergysupply.Storagewillbesupplementedwithdemand‐sidemanagementand/orsmartgrids,althoughtheserequirementswilldependontheavailabilityofnegativecarbonoptions(BioCCSandcarbonsinks).Ifsuchnegativeemissionstechnologiesdonotbecomeavailableonlargescale,morerapidearlyaction,includinglargercontributionsofwindandsolarPV,willbeneeded.Thesamewillbetrueifnuclearpowerisexcluded,withtheslackagaintakenupbyintermittentrenewablesources.ThisshiftwillbetechnicallyfeasiblesincebothwindandsolarPVpowerarealreadycostcompetitiveinsomemarketsandareprojectedtobecomemoresoinmanymarketsinthenext5–10yearswithoutanypublicsubsidy.FigureD‐2illustratestheelectricitysupplyfromdifferentgenerationtechnologiesin2030and2050,undertheGEApathways.Theboxesrepresentinterquartile(25thto75thpercentile)ranges,andthehorizontallineswithinboxesrepresentmediansacrossallfeasibleGEApathwaysfromMESSAGEandIMAGE.Errorbarsindicatethefullrangeacrossallfeasiblepathways.TheFigureindicatesthatsolarPVandwindwillbethetwomainsourcesofrenewablepowerby2050.

Page 16: RENEWABLES GLOBAL FUTURES REPORT - REN21

16

FigureD‐2

Inthetransportsector,thereportexploresthreedifferentpathways,allofwhichassumeaphaseoutofconventionaloilshortlyafter2050.InGEA‐Efficiency,electricityandbiofuelsdominate,whileInGEA‐Mix,naturalgasandfossil/biofuelliquidsarealsoused.InGEA‐Supply,hydrogenplaysalargerole.Theanalysisconcludesthatmanyvariedcombinationsofenergycarrierswouldbeabletofuelthetransportsector.(SeeFigureD‐3.)

FigureD‐3

FigureD‐4showsworldwidesalesoflight‐dutyvehicles(LDVs)byvehicletype,underthethreepathways.TheresultsindicatethatthefutureoffuelcellandelectricLDVsisrelativelypromisinginthelongterm.

Page 17: RENEWABLES GLOBAL FUTURES REPORT - REN21

17

FigureD‐4

TheGEAdistinguishestwosetsofassumptionsaboutthetransitioninthetransportsector,“AdvancedTransportation”and“ConventionalTransportation.”AdvancedTransportationischaracterizedbyatransitiontoelectricityorhydrogen,orboth,asleadingtransportationfuelsinthemediumtolongterm.By2050,thesetwofuelswoulddeliverbetween20%andmorethan60%ofthesector’sfinalenergy(dependingstronglyonoveralltransportationdemand).IntheConventionalTransportationscenario,currentmodesofoperationcontinuetorelylargelyonliquidfuelsand,insomeregions,ongasoline.Intheindustrialsector,theGEA‐Efficiencypathwayillustratesthataswitchto25%renewableenergythroughoutthemanufacturingindustryisachievable.Intheheatingandcoolingsector,theanalysisdemonstratesthataroughly46%reductionofglobalfinalenergyuseforheatingandcoolingispossibleby2050(comparedwith2005),throughfulluseoftoday’sbestpracticesindesign,construction,andbuildingoperationtechnologyandknow‐how.AninvestmentofUS$15trillionisneededtorealizethispathway.Increasedheatdemandcouldbemetinpartbysolar(mainlyforwaterheatingandpassive‐solarbuildingdesigns),geothermal(fromdirectheatingandground‐sourceheatpumps),andmodernbiomass(includingfromcropandforestresidues,landfillgas,biogas,andcombinedheatandpower).TheanalysisindicatesthatinvestmentinglobalenergysystemsneedstoincreasetosomeUS$1.7–2.2trillionannuallyby2050,withaboutUS$300–550billionofthisrequiredfordemand‐sideefficiency,comparedtotoday’sroughlyUS$1trillionannuallyinsupply‐sideinvestmentsand$300billionindemand‐sideinvestmentsinenergycomponents.Theseinvestmentscorrespondtoabout2%ofworldGDPin2005,andwouldbeabout2–3%by2050.Ofsupply‐sideoptions,thelargestincreaseininvestmentneedsisforrenewablepower,rangingfromUS$160billionannuallyinpathwaysthathaverestrictedrenewablespenetrationtoUS$800billionannuallyinpathwayswithoutcarboncaptureandstorageandnuclearpower—upfromUS$160billionin2010.Anotherinvestmentpriorityisbuildingelectricitytransmissionanddistributionsystemswithsufficientoperationandcapacityreservestoincreasereliability,aswellaspowerstoragetoallowtheintegrationofintermittentrenewables.Globalaverageelectricitygridinvestment(includingstorage)by2050isexpectedtoincreasetoUS$310–$500billionannuallyacrosstheGEApathways,upfromUS$260billionin2010.

Page 18: RENEWABLES GLOBAL FUTURES REPORT - REN21

18

6.BP Energy Outlook 2030(BP,2012)ScenarioDescriptionThereportisneitheranextrapolationnoranattempttomodelpolicytargets.Itisinsteadareflectionofjudgment,whereassumptionsregardingpolicy,technology,andtheeconomyareshapedbyinternalandexternalconsultations.Theoutlookencompassestwosetsofdata:abasecaseandapolicycasethatassessestheimpactofpossiblepolicychanges.Inthebasecase,populationandincomegrowthareassumedtobethemajordrivingforceofenergydemand,whereasinthepolicycase,somestringentpolicymeasuresareadoptedtocuttheCO2emissionsofdevelopedcountriesandtoreducetheenergyintensityofdevelopingcountries.KeyProjections/ResultsAccordingtothereport,worldprimaryenergyconsumptionwillgrowbyalmost40%inthenexttwodecades,with96%ofthisgrowthcomingfromnon‐OECDcountries,mainlyChinaandIndia.Fossilfuelswillmeetapproximately80%ofworldprimaryenergyconsumption,whiletheshareofmodernrenewables(includingbiofuels)willbeonlyabout6%in2030.(SeeFigureE‐1.)FigureE‐1.SharesofWorldPrimaryEnergy

Althoughthethreemainfossilfuels(coal,oil,andnaturalgas)appeartorepresentabout27%eachofworldenergyconsumption,thistrendistheresultofdecliningoiluseandrisingnaturalgasuse.Renewableenergywillgrowbyabout8%annuallyduring2010–2030.By2030,renewables(excludinghydro)willsupply11%ofworldelectricity.Oilwillrepresent87%oftheworldtransportfuel,withbiofuelscomprisingonly7%.

Page 19: RENEWABLES GLOBAL FUTURES REPORT - REN21

19

7.The Outlook for Energy: A View to 2040(ExxonMobil,2012)ScenarioDescriptionThereportoffersExxonMobil’svisionforfutureenergytrends.Itseekstoanswerthefollowingquestions:whattypesofenergywilltheworlduse,andhowmuch?Howwillpatternsofdemandandsourcesofsupplyevolveindifferentcountries?Andhowwillnewtechnologiesaffecttheenergymixandoverallenergyefficiency?Theoutlookassumesthatpopulationandeconomicgrowthwillbethemostimportantdriversofenergydemand.Worldpopulationwillgrowmorethan25%between2010and2040,tonearly9billionpeoplebytheendoftheoutlookperiod,andGDPwillgrowatanaveragerateof2.9%.KeyProjections/ResultsAccordingtothereport,globalenergydemandwillincreasebyabout30%between2010and2040.Electricitygenerationwillremainthesinglebiggestdriverofdemand,accountingformorethan40percentofglobalenergyconsumptionby2040,followedbyindustryandtransport.Energyintensitywilldecreasebyalmost45%.Theshareoffossilfuelsinworldenergydemandwillremainveryhigh,atnearly78%,andtherenewablessharewillincreaseslowlytonearly15%.(SeeFigureF‐1.)

By2040,35%oftheworld’selectricitywillbegeneratedfromrenewablesandnuclear,whiletherestwillbeprovidedbytraditionalfossilfuelsources,withashiftfromcoaltonaturalgas.(SeeFigureF‐2.)

82 81 78

6 6 8

13 13 15

0

20

40

60

80

100

2010 2025 2040

FigureF‐1.ShareofPrimaryEnergySourcesinWorldEnergyDemand

Renewables

Nuclear

Fossilfuels

76 72 65

15 15 19

10 13 16

0

20

40

60

80

100

2010 2025 2040

FigureF‐2.ShareofPrimaryEnergySourcesinWorldElectricityGeneraUon

Renewables

Nuclear

Fossilfuels

Page 20: RENEWABLES GLOBAL FUTURES REPORT - REN21

20

8.International Energy Outlook 2011(U.S.DepartmentofEnergy,EnergyInformationAdministration(USDOEEIA),2011)ScenarioDescriptionThereportistheU.S.EIA’soutlookassessmentofenergymarkets,focusedmainlyonmarketedenergy.ProjectionsaregeneratedfromtheEIA’sWorldEnergyProjectionPlus(WEPS+)model,whichisbasedonassumptionsaboutpopulationgrowth,economicgrowth,energyintensity,andhistoricalenergymarketdata.Itdoesnotreflectthepotentialimpactofproposedlegislation,regulations,ormeasures.ThemainassumptionsarethatworldGDPwillgrow3.4%annuallyonaveragefrom2008to2035;energyintensitywilldeclinebyjustunder40%fromthe2008level,andthatthepriceofoilisUS$125perbarrelin2035.KeyProjections/ResultsUnderthescenario,worldtotalenergyconsumptionwillincreaseby53%from2008to2035,withtheshareofliquidsinenergyconsumptionfallingfromapproximately34%in2008to29%in2035asoilpricesincrease.(SeeFigureG‐1.)Theuseofliquidswillincreaseinthetransportationsector,however,risingbyabout46%during2008–2035;by2035,thesectorwillconsumealmost60%ofliquids.Naturalgasusewillincreasebyalmost53%,mostofitforuseinindustrialprocessesandelectricitygeneration.

Electricitygenerationwillincreasebynearly84%.Generationfromrenewablesourceswillrise3.1%annuallyonaverage,reachingashareofapproximately23%by2035.(SeeFigureG‐2.)

Morethan82%oftheincreaseinelectricitygenerationfromrenewableswillcomefromwindandhydro.(SeeFigureG‐3.)

34 32 29

23 22 23

28 27 27

5 6 710 13 14

0

20

40

60

80

100

2008 2020 2035

FigureG‐1.ShareofPrimaryEnergySourcesinWorldTotalEnergyConsumpUon

Other

Nuclear

Coal

Naturalgas

Liquids

67 61 63

14 15 14

19 25 23

0

20

40

60

80

100

2008 2020 2035

FigureG‐2.ShareofPrimaryEnergySourcesinWorldElectricityGeneraUon

Renewables

Nuclear

Fossilfuels

Page 21: RENEWABLES GLOBAL FUTURES REPORT - REN21

21

Coal‐basedgenerationwillgrowby1.9%annuallyonaveragefrom2008to2035,andcoal’sshareinelectricitygenerationwilldecreaseslightlyfromabout40%to37%.Naturalgasgenerationwillgrowby2.6%,whilenuclearwillgrowby2.4%.Intheelectricitysector,mostrenewablesexcepthydrowillnotbeabletocompetewithfossilfuels,particularlycoalandnaturalgas,dueprimarilytohighconstructioncosts.Theintermittentnatureofwindandsolaralsohinderstheeconomiccompetitivenessoftheseresources,althoughtheuseofenergystoragewillhelpgreatlytocurbthisproblem.

16.3 17.5 16.0

1.14.1

4.21.3

1.92.2

0

5

10

15

20

25

2008 2020 2035

FigureG‐3.ShareofRenewablesinWorldElectricityGeneraUon

Other

Solar

Geothermal

Wind

Hydro

Page 22: RENEWABLES GLOBAL FUTURES REPORT - REN21

22

9.Global Wind Energy Outlook(GlobalWindEnergyCouncil(GWEC),2010)  ScenarioDescriptionThestudyexaminesthefuturepotentialofwindpowerupto2050andisbasedonthreedistinctscenarios:theReferencescenario,theModeratescenario,andtheAdvancedscenario.TheReferencescenarioadoptstheassumptionsoftheIEAWorldEnergyOutlook,withrestrainedprogressinrenewableenergyandwindpower.TheModeratescenarioassumesthatcurrentrenewablesandCO2targetswillbemet,andtheAdvancedscenarioexplorestheimplicationsofachievinganambitiousplantounleashthefullpotentialofthewindindustry.ElectricitydemandisbasedontheIEA’s(WEO2009)projectedincreasefrom15,000terawatt‐hours(TWh)in2005to29,000TWhin2030.KeyProjections/ResultsTheModeratescenarioseesanannualincreaseinglobalwindpowerof63GWperyearby2030,withatotalcapacityof1,800GWby2030.IntheAdvancedscenario,theannualwindmarketwillbe120GWperyearby2020and185GWby2030,withatotalinstalledcapacityof2,300GWby2030.(SeeFigureH‐1.)

Theshareofwindenergyinglobalelectricitygenerationwillalsoincreaseconsiderably,fromonly2.5%in2010tosome25–26%in2050.(SeeFigureH‐2.)

199 202

17782342

37024028

0

1000

2000

3000

4000

Moderate Advanced Moderate Advanced Moderate Advanced

2010 2030 2050

GWFIgureH‐1.CumulaUveInstalledWindPowerCapacity

2.4 2.5

15.118.8

24.7 26.4

0

5

10

15

20

25

30

Moderate Advanced Moderate Advanced Moderate Advanced

2010 2030 2050

FigureH‐2.ShareofWindPowerinWorldElectricityGeneraUon

Page 23: RENEWABLES GLOBAL FUTURES REPORT - REN21

23

10.Africa Energy Outlook 2040(SOFRECO,2011)ScenarioDescriptionThereportprovidesinformationaboutthecurrentstateofenergyinAfrica,aswellasfuturetrendsinthecontinent’sprimaryenergydemandandelectricitysectordevelopmentby2040.Itexploresthepotentialofrenewableenergy(hydro,geothermal,wind,andsolar),although,exceptforhydropower,itdoesnotprovidefiguresassessingthecontributionofrenewablestoAfrica’sfutureenergymix.Africaiscurrentlyhometoabundant,butunevenlydistributed,resourcesofoil(Libya,Nigeria,Algeria,andAngola),naturalgas(Libya,Nigeria,Algeria,andEgypt),coal(SouthAfrica),andhydro(mainlyEastandCentralAfrica).Theseresourcesareunderexploited,anddemandisunderservedbecauseofAfrica’slowcapacitytomobilizefinancingforinvestment,especiallyfromprivatesources,becauseofthehighpoliticalriskandlowcreditworthinessofcountriesandutilities.Africacurrentlyhasonly125GWofinstalledelectricitycapacity,20%ofwhichishydro.(SeeFigureI‐1.)Powerplantsaregenerallysmall(250MWonaverage,166MWforhydro),reflectingthefragmentednatureofAfricanpowersystemsandthenationalautonomyofpowersystems.Thecontinent’stransmissionsystemcoversonly90,000kilometers,anditlacksunifiedorstandardizedspecifications(atleast15levelsoftransmissionlinevoltagesexist,rangingfrom110kilovoltsto700kV).Pipelinesfornaturalgasandpetroleumproductsarelimitedaswell.Overall,thecontinentlacksinfrastructureandregionalinterconnections.

 Thereport’smainassumptionsinclude:averageGDPgrowthof6.2%peryearforAfrica,differentiatedbycountry;accesstoelectricityofover60%inallcountriesby2030;energyefficiencygainsof20%overthecoming20years;andfuelpricesbasedonafutureoilpriceofUS$820pertonne(US$113perbarrel),in2000prices.Tomeetrisingenergydemand,investmentsofUS$43.6billionannuallywillbeneededintheenergysector,42.3ofthisinthepowersector.KeyProjections/ResultsUnderthisscenario,demandforprimaryenergy(excludingbiomass)inAfricawillincreaseby8.9%annually.Theroleofcoalwilldecreasealongsidethedevelopmentofnaturalgasforpowerandindustryandliquidpetroleumproductsfortransportandpower.Nuclearpowerwillexperiencethemostsignificantgrowthduringtheoutlookperiod,withprojectsinSouthAfricaandlaterinEgypt.(SeeFiguresI‐2andI‐3.)

80

191

0

20

40

60

80

100

2008

FigureI‐1.ShareofPrimaryEnergySourcesinAfrica,InstalledCapacity(plants>50MW)

Other

Hydro

Fossilfuels

Page 24: RENEWABLES GLOBAL FUTURES REPORT - REN21

24

FigureI‐2.

FigureI‐3.

Electricitydemandwillincreaseby5.7%annuallyonaverageduring2011–2040,rising5.4‐foldto3,188TWhby2040.Generationcapacitydemandwillincreaseby6.2%,a6‐foldincreaseto694GWby2040.Africa’shydropowerresourcesarelargebutwillbeinsufficienttomeetlong‐termdemand,basedoncurrentlyidentifiedhydrosites.After2030,thecontinentwillcontinuetodependonfossilfuels,particularlynaturalgas,andwillrelyincreasinglyonnuclearunlessrenewableenergysourcesbecomemorecompetitivethanatpresent.Theoutlookconsidersrenewablestobecommerciallyunviablewithoutsubstantialsubsidies,andfocusesonlyontheirpotential,withoutconcreteimplementationinthefuture.Itnotes:• Onlyasmallfractionofthecontinent’shydropotentialhasbeendevelopedsofar,withaninstalled

capacityof22GWin2008comparedwithaconservativelyestimatedeconomicpotentialthatismorethanseventimescurrentannualhydrogeneration.Forinstance,theIngasiteontheCongoRiverhasanestimatedpotentialofbetween39GWand44GW,butonly1,774MWareused.

• Africa’sgeothermalenergypotentialisconcentratedmostlyineasternAfrica.TheRiftValleycould

representanuntappedpotentialrangingfrom2.5GWto14GWofelectricpower.Today,lessthan200MWofthispotentialhasbeendevelopedforelectricitygeneration,mainlyinKenya(167MWofinstalledcapacityin2010).

• Africa’swindenergypotentialissubstantialanduniformlydistributed.Bestprospectsforthe

developmentofwindpowerarelocatednearspecialtopographicalfunnelingfeaturesclosetocoastal

Page 25: RENEWABLES GLOBAL FUTURES REPORT - REN21

25

locations,mountainranges,andothernaturalchannelsinthenorthernandsouthernregionsofthecontinent.ThethreemainAfricancountriesthathavedevelopedwindenergyareEgypt,Morocco,andTunisia,whichtogethersupplyaround95%ofthe563MWofinstalledcapacity.Egypthassetatargetforwindtomakeup12%ofitstotalenergyby2020,withwindfarmsadding7.2GWtothegrid.SouthAfricaisplanningtodevelopitswindenergypotentialthroughindependentproducersandtoadd400MWtothegridby2015.

• Thedistributionofsolarresourcesacrossthecontinentisfairlyuniform,withmorethan80%ofAfrica’s

landscapereceivingalmost2,000kilowatt‐hours(kWh)persquaremeterperyear.ThisgivessolarpowerthepotentialtobringenergytomostlocationsinAfricawithouttheneedforexpensivelarge‐scalegridinfrastructure.

• Solarthermal(CSP)generatingpotentialfor17countriesinAfricavariesfromalowof7TWhannuallyin

Eritreatoahighof40,500TWhannuallyinLibya;themainpotentialisinLibya,Egypt,theKalahariDesert,andsomeinAlgeria.

• SolarPVelectricitygenerationpotentialvariesfromalowof33TWhannuallyinGambiatoahighof

8,700TWhannuallyinSudan,withthemainpotentialinAlgeria,Sudan,andtheDemocraticRepublicoftheCongo.

ThemainprojectbeingconsideredfordevelopingthesolarenergypotentialoftheSaharaistheDesertecproject,basedonCSPtechnology.ThesolarpowerwouldbesuppliedtoregionalmarketsinAfricaandexportedtoEurope.TheprojectisonamassivescaleandenvisagesuptoUS$400billionininvestmentovertheperiod2020–2050.

Page 26: RENEWABLES GLOBAL FUTURES REPORT - REN21

26

11.Prospects for the African Power Sector, Scenarios and Strategies for Africa Project(InternationalRenewableEnergyAgency(IRENA),2012)ScenarioDescriptionThereportaimstoprovideearlyinsightsforAfrica’spowersector.Itfocusesontheperiodto2030,withanoutlookto2050toexaminelong‐termissuesthathaveanimpactoninvestmentdecisionsinthenearfuture.Thereportdevelopstwoscenarios:aReferenceoneandaRenewableone.TheReferencescenarioisacontinuationofexistingeconomic,demographic,andenergysectortrends,takingintoaccountonlyexistingpolicies.Universalelectricityaccessisnotachieved,andaccesshitsonly43%in2030.TheRenewablescenarioexaminestheimpactofpoliciesinAfricatoactivelypromotethetransitiontoarenewable‐basedelectricitysystemtomeetrisingpowerdemand,boosteconomicdevelopment,andimproveelectricityaccess.Itassumesconcertedgovernmentactionintheareaofefficiencystandardsandprograms,aswellasrenewabledeploymentpoliciesandregulation.Specifically,moreambitiousenergyefficiencypoliciesareimplementedthatimproveenergyefficiencyby20–30%in2050comparedtotheReferencescenario.ThescenarioassumesaCO2priceofUS$25pertonne,andthatuniversalelectricityaccessisachievedby2030.ThemainassumptionsoftheanalysisarethatAfrica’spopulationwillincreasefrom1billioncurrentlyto2–3billionby2050andthat62%ofthecontinent’spopulationwillbeurbanby2050(up23percentagepointsfrom2008).Thishasconsequencesforasuccessfulrenewablepowerstrategy,asovertheperiodto2050theemphasiswillshiftfromoff‐gridsolutionstolarge‐scale,grid‐basedsystemswithsignificantdaytimepeakdemands.TheanalysisassumesthatAfrica’sannualGDPgrowthratewillbe5.8%from2008to2015,5.0%from2015to2030,and4.3%from2030to2050.Fossilfuelpricesin2050willreachUS$140abarrelforoil,US$120atonneforcoal,andbetweenUS$9–$14perGJfornaturalgas.TheanalysisreliesontwonewpowerpoolmodelsthatweredevelopedbytheInternationalAtomicEnergyAgency(IAEA)andupdatedbytheInternationalRenewableEnergyAgency(IRENA)tohavearefinedrepresentationofrenewables,aswellasathirdmodeldevelopedbyIRENAthatcomplementsthetwoIAEAones.Inthisthirdmodel,theelectricitysupplyfromthetwopowerpoolmodelsisincorporatedintoafive‐regionmodelforAfricatomodelelectricitysupplyanddemandineachregion.Thisintegrated,regionalmodelisthenusedtodevelopelectricityscenariosonacontinentallevel.KeyProjections/ResultsIntheReferencescenario,fossilfuelswillstilldominatetheAfricanelectricitymix,accountingforaround70%ofthecontinent’spowergenerationin2050.(SeeFigureJ‐1.)TherewillbeanotableshiftfromcoaltonaturalgasbecauseelectricitydemandinsouthernAfricagrowsatamuchslowerratethaninotherAfricanregions,andcoal‐basedpowergenerationisconcentratedinSouthAfrica.Therenewablessharewillincreasefrom17%in2009toapproximately30%in2050thankstolargehydrodeploymentandthedevelopmentofwindpower.Nuclearwillplayamarginalrole.

Page 27: RENEWABLES GLOBAL FUTURES REPORT - REN21

27

 IntheRenewablescenario,electricitygenerationwillincreasefrom620TWhin2008to3,146TWhin2050,15%lowerthanintheReferencescenario.RenewableswillgeneratehalfofAfrica’selectricityin2030andalmost75%in2050.TheshareofsolarPVwillgrowfromvirtuallynonein2008to8%in2030and14%in2050.Solarthermal(CSP)willgrowto6%oftotalgenerationin2030and10%in2050;windwillreach14%in2030and17%in2050;andbiomasstechnologieswillreach4%in2030and10%in2050.Hydro’ssharewillberelativelystableat17%in2030and21%in2050.Fossilfuel‐basedgenerationwillfallto50%in2030and23%by2050,andnuclearwillplayaminorfuturerole.IntheReferencescenario,around410GWoftotalinstalledcapacitywillbeinoperationin2030,whileintheRenewablescenariothisfigurewillreach442GW.Thisgapwillwidenastheshareofrenewablesincreases.By2050,around80GWmorecapacitywillbeinstalledintheRenewablesscenariothanintheReferenceone.(SeeFigureJ‐2.)FigureJ‐2.

 

Africahad147GWofpowergenerationcapacityasofJanuary2011;thisincluded27.8GWofrenewableenergycapacity,25.9GWofwhichwashydro.

83 7850

71

27

17 2250

29

73

020406080100

Ref Renew Ref Renew

2009 2030 2050

FigureJ‐1.ShareofPrimaryEnergySourcesinAfricanElecUcityGeneraUon

Renewables

Fossilfuelsandnuclear

Page 28: RENEWABLES GLOBAL FUTURES REPORT - REN21

28

By2030,intheRenewablescenario,therewillbeapproximately280GWofrenewablesinstalledcapacityinAfrica,with95GWofthiswind,90–100GWsolar,andtherestprimarilyhydro.Then,between2030and2050,therewillbeadramatictransformationoftheelectricitysector.Allgrowthincapacitywillbebasedonrenewabletechnologies,thankstocostreductionsthatincreasetheircompetitiveness.By2050,onshorewind,solarPV,andCSPwillplayakeyrole. Africawillhaveabout810GWofrenewablesinstalledcapacity,ofwhichapproximately240GWwillbewindand325GWsolar.Therestwillmainlybehydroandbiomass,withgeothermalstillplayingamarginalrole.Investmentsfrom2008to2050willreachUS$7,765billionintheReferencescenarioandUS$6,708billionintheRenewableone.ThereportidentifiesseveralissuesandpolicyareasthatrequireattentioniftheRenewablescenarioistobecomeareality,including:• developingclearandstablepolicyframeworksthatenabletheprivatesectortoinvestwithconfidence;• exploringopportunitiesforlocalmanufacturingasameanstoreducecapitalcosts,createlocal

employmentopportunities,andimprovetradebalances;• includingrenewablesineconomicdevelopmentstrategies,developinglong‐termenergysector

scenariosandstrategies,anddevelopingbusiness/entrepreneurshipmodelsforrenewablesandtheirproductiveuse;

• assessingthespecifictechnologyneedsinAfricaatthenationallevel,anddesigningstrategiesand

roadmapstotailorrenewabletechnologiestolocalconditionsandacceleratetheirdeployment;• enhancingthemappingofrenewableenergypotentials(notablysmallhydro,biomass,andonshore

wind)andmakingtheinformationpubliclyavailable;and• cooperatinginthedevelopmentofacontinentalelectricitygridofsufficientcapacitytoconnectremote

renewableresources,improvingsecurityofsupply,andmanaginghighersharesofvariablerenewablesintheelectricitymix.

Page 29: RENEWABLES GLOBAL FUTURES REPORT - REN21

29

12.Wind of Change: East Asia’s Sustainable Energy Future(WorldBankandAusAid,2010)ScenarioDescriptionThereportlooksattheenergyprospectsofChinaandfivemajorEastAsiancountries:Indonesia,Malaysia,thePhilippines,Thailand,andVietnam(the“EAP5”).ItassumesthateconomicgrowthinChinawillbe6.8%by2030,whilethatoftheotherfivecountrieswillbe5%,5%,4.2%,4.4%,and6%,respectively.OilpricesareprojectedatUS$85abarrel,gaspricesat$13.2/mmBTU,andcoalatUS$85pertonnein2030.Thereportdiscussestwoscenarios.TheReferencescenarioassumesthatenergyuseinEastAsiawilldoubleby2030,andreflectsacontinuationofcurrentgovernmentalpolicies,plans,andtargets.TheSustainableEnergyDevelopment(SED)scenarioreflectsenvironmentalfriendlypoliciesandtheuseoflow‐carbontechnologies(excludingcarboncaptureandstorage).KeyProjections/ResultsAccordingtotheanalysis,by2030,theshareofcoalusewillincreaseby60%inChinabutonly21%intheEAP5.GasandoilwillgrowmorerapidlythancoalinChina,butintheEAP5coalwillshowthefastestgrowth,meaningthatcoalwillremaintheregion’smainenergysourcein2035.Theelectricitysupplywillbemultipliedbythreeby2030,reachingatotalinstalledcapacityof2,300GW.Generationfromrenewablesourceswillincrease50%during2010–2030,duemainlytohydropoweruse.Nuclearpowerwillincreaseby12%,largelybecauseofdemandinChina.IntheSEDscenario,whichconsidersdecreasingthecarbonfootprintofthosecountriesandensuringenergysecurity,renewableenergysourceswillmeetapproximately40%ofthepowerdemandby2030,withtheshareofcoaldecliningfromabout73%to37%.(SeeFigureK‐1.)FigureK‐1.

Page 30: RENEWABLES GLOBAL FUTURES REPORT - REN21

30

13.Energy Outlook for Asia and the Pacific(Asia‐PacificEconomicCooperation(APEC)andAsianDevelopmentBank,2009)ScenarioDescriptionThereportprojectstheenergydemandandsupplyoftheregionalmembersoftheAsianDevelopmentBank(ADB)upto2030.Theonlyscenarioconsideredisabusiness‐as‐usualscenario.Assumptionsfor2030are:3.5%averageannualgrowthintheGDPofAsiaandthePacificbetween2005and2030;populationincreaseofapproximately24%,from3.7billiontonearly4.6billion;andenergysectorinvestmentsofaboutUS$7.0–$9.7trillion(inconstant2006prices),60%ofwhicharededicatedtoelectricitygeneration,transmission,anddistribution.ThecrudeoilpriceisfromtheIEA(WEO2008)andisassumedtoreachUS$122perbarrelin2030.Improvementsinenergyefficiencyarealsoconsidered.Thestudyappliesaneconometricapproachtoforecastenergydemand,andusestheInstituteofEnergyEconomicsofJapan(IEEJ)modelinthemajorityofthecountryanalyses.Itestimatesdemandequationseconometricallyusinghistoricaldata,andprojectsfuturevaluesusingexplanatoryvariables.KeyProjections/ResultsInthescenario,primaryenergydemandinAsiaandthePacificisprojectedtoincreasefromjustover4billiontonsofoilequivalent(toe)in2005to7.2billiontoein2030(anincreaseofnearly80%),growingatarateof2.4%annually.FossilfuelswillstilllargelydominatetheAsiaandthePacificenergymix,withanear80%shareoftotalprimaryenergydemand.(SeeFigureL‐1.)

Coalwillmaintainthehighestshareoftotalprimaryenergydemandin2030,at38.3%,followedbyoilat27%(drivenbymotorizationandthedevelopmentofroadtransportinfrastructure).Naturalgaswillgrowthefastestamongfossilfuels,at3.6%peryear,achievingat14.5%shareoftotalprimaryenergydemandin2030.Nuclear’ssharewillbe7.1%,showingthefastestannualgrowthat5.1%annuallyandreflectingtheexpectedexpansionofinstalledcapacityinChina.Renewableenergysources(hydroexcluded),usedmainlyforheatandpower,willrepresent11.2%oftotalprimaryenergydemand,withbiomassstillprovidinganimportantcontribution.Wind,solar,andgeothermalwillincreaseatafasterratethanbiomass,butbecauseoftheirlowcost‐competitivenessandthefactthattheystillarenotconsideredclosetobecomingmaturetechnologies,theirannualgrowthratewillbeonly1.3%.Comparedtootherrenewables,hydrowillincreaseatarelativelyrapidrateof3.0%peryearthrough2030,butitssharewillreachonly2%oftotalprimaryenergydemand.TotalelectricitygenerationinAsiaandthePacificisprojectedtoincreasefrom6,068TWhin2005to14,016TWhin2030—anincreaseofnearly131%—withaverageannualgrowthof3.4%.Almostthree‐quartersofthiswillcomefromChina(45.5%),India(17.2%),andJapan(9.4%).

80 80

4 716 13

0

20

40

60

80

100

2005 2030

FigureL‐1.ShareofPrimaryEnergySourcesinAsia‐PacificEnergyDemand

Renewables

Nuclear

Fossilfuels

Page 31: RENEWABLES GLOBAL FUTURES REPORT - REN21

31

Theelectricitygenerationmixstillwillbedominatedlargelybyfossilfuelsin2030,with70%ofelectricitycomingfromcoal,oil,andnaturalgas.However,thissharewilldecreaseby7.1pointscomparedto2005,mainlyinfavorofnuclearandnewrenewables.(SeeFigureL‐2.)

Despitea4.5‐pointdecrease,coal‐firedgenerationwillaccountforthehighestshareoftotalgenerationin2030,at52%.Oil’ssharewilldecreasefrom6.4%in2005to2%in2030,becomingmarginal,andnaturalgasusewillincreasefrom13.8%to16%.Nuclearwillseethegreatestgrowth,from9.3%to14%.Renewableenergywillaccountfor16%ofgenerationin2030(up2.1percentagepoints),withaslightdecreaseofhydrofrom12.8%in2005to11.9%in2030,andathree‐pointincreaseofotherrenewables,whichwillachievea4.1%sharein2030.

77 70

9 1414 16

0

20

40

60

80

100

2005 2030

FigureL‐2.ShareofPrimaryEnergySourcesinAsia‐PacificElectricityGeneraUon

Renewables

Nuclear

Fossilfuels

Page 32: RENEWABLES GLOBAL FUTURES REPORT - REN21

32

14.China’s Energy and Carbon Emissions Outlook to 2050(LawrenceBerkeleyNationalLaboratory,2011)ScenarioDescriptionThereportexplorespossiblepathwaysforChinesecarbonemissionsto2050,usingacomprehensiverangeofenergyconsumptionprojectionsfordifferenteconomicsectors.Itpresentstwoscenarios:thebaseline“ContinuedImprovementScenario”(CIS)andthealternative“AcceleratedImprovementScenario”(AIS),whichshowsadvancedenergyefficiency.ThescenariosaredesignedtoassesstheimpactofactionsalreadytakenbytheChinesegovernment(plannedorproposed),aswellasactionsthatmaynotyethavebeenconsidered,inordertoevaluateChina’spotentialtocontrolenergydemandgrowthandmitigateCO2emissions.TheCISusesefficiencyimprovementsthatareconsistentwithtrendsin“market‐based”improvement,achievinglevelscommoninindustrializedcountries,whereastheAISassumesamoreaggressivetrajectorytowardcurrentbestpracticeandimplementationofimportantalternativeenergytechnologies.Themainassumptionsare:GDPgrowthratesof7.7%during2010–2020,5.9%during2020–2030,and3.4%during2030–2050,andaChinesepopulationof1.4billionin2050.Theanalysisconsidersimprovementsintheenergyefficiencyofappliances,buildings,heatingandcoolingsystems,lighting,andinternalcombustionengines,aswellasincreasingelectrificationofrailtransportanduseofelectricvehicles.Itassumesadeclineinenergyintensityofbetween76.5%andnearly80%by2050,fromthe2005level.KeyProjections/ResultsUnderthescenario,China’sprimaryenergyconsumptionwillgrowfromthecurrent2,250milliontonsofcoalequivalent(Mtce)toaprojected5,481MtceundertheCISand4,558MtceundertheAISin2050.Fossilfuelswillstilldominatetheenergymix,butunderbothscenariostheshareofcoalwilldeclinesignificantly,fromabout75%in2005to47%(CIS)and30%(AIS)by2050.(SeeFigureM‐1.)

Petroleumusewillgrowbothinabsolutetermsandinitsshareofoverallenergyconsumption,drivenbyChina’sburgeoningtransportsector.Urbanprivatecarownershipisexpectedtoincreasetoover356millionvehiclesby2050,withtheshareofelectricvehiclesbeing30%inCISand70%inAIS.Ingeneral,demandforCO2emission‐freetechnologies,renewableenergy,andnuclearwillgrowsignificantly.Totalelectricitydemandby2050willreach9,100TWhintheCISand7,764TWhintheAIS.Electricitydemandinthecommercialbuildingsectorwillincrease,offsettingthedecreasingdemandinindustry.UndertheCIS,thecommercialsectorwillberesponsiblefornearlyone‐thirdofallelectricitydemand,whereasundertheAIS,thetransportsectoraccountsforagrowingshareofdemandbecauseofmoreaggressiverailandroadelectrification.

97 91 87 83 68

3 9 13 17 32

020406080100

CIS AIS CIS AIS

2005 2030 2050

FigureM‐1.ShareofPrimaryEnergySourcesinChina'sTotalEnergyUse

Nuclearandrenewables

Fossilfuels

Page 33: RENEWABLES GLOBAL FUTURES REPORT - REN21

33

Theshareofcoal,andfossilfuelsoverall,inpowergenerationwilldecrease,buttheextentofthisreductiondifferssignificantlybetweenthetwoscenarios.(SeeFigureM‐2.)IntheCIS,coaldecreasesbutremainsthemajorenergysourceforelectricitygeneration;intheAIS,coalisreplacedbynuclear,whichbecomesChina’smainenergysource,andbyrenewables,theshareofwhichincreasessignificantly.Interestingly,theshareofrenewablescouldrangebetween27%and34%,whiletheshareofnuclearcouldrangebetween25%and54%,makingnuclearappeartobethemainalternativeincoalsubstitution.

IntheCIS,theinstalledcapacityofwind,solar,andbiomasspowergrowsfrom2.3GWin2005to535GWin2050,andnucleargrowsfrom7GWto300GW.IntheAIS,theinstalledcapacityofwind,solar,andbiomasspowerreaches608GWin2050,andnuclear550GW.Inbothscenarios,growthratesforwindandsolarexceedanannualaverageof14%.(SeeFigureM‐3.)

69 53 5111

1319 25

54

19 29 27 34

020406080100120

CIS AIS CIS AIS

2030 2050

FIgureM‐2.ShareofPrimaryEnergySourcesinChina'sPowerGeneraUonMix

Renewables

Nuclear

Fossilfuels

1100 135

450 500

6 10

6070

117

250300

320400

01002003004005006007008009001000

CIS AIS CIS AIS

2005 2020 2050

GWFigureM‐3.Wind,SolarandHydroInstalledCapacityGrowth

Hydro

Solar

Wind

Page 34: RENEWABLES GLOBAL FUTURES REPORT - REN21

34

15.Potential Secure, Low Carbon Growth Pathways for the Chinese Economy(ChinaEnergyResearchInstitute,2011)ScenarioDescriptionThepurposeofthestudyistoexploreChina’soptionsforlow‐carbonpathwaysinthecontextofaggressive,near‐termemissionsreductionsinothercountries,aswellastoexploresomeofthetechnologicalleapsthatChinacouldtaketoachievelow‐carbondevelopmentandavoidthehigh‐carbonpathwaysofotherindustrializedeconomies.Threescenariosaredeveloped:a“Baseline”scenario,whichreflectsexistingpoliciesandmeasures,includingcurrentChinesegovernmenteffortstoincreaseefficiencyandcontrolemissions;a“LowCarbon”scenario,whichassumesthatChinawillmakeanefforttoachievearelativelylow‐carbonfuturebymakingCO2emissionscontroladomesticenvironmentaltargetandbyimplementingdomesticpoliciessuchaseconomicstructuralreformawayfromenergy‐intensiveindustries;andan“EnhancedLowCarbon”scenario,whichassumesthatbypartakinginglobaleffortstoachieveemissionsreductions,Chinawillundertakegreatereffortsonemissionscontrol.Inthisthirdscenario,zero‐emissionvehicles,low‐emissionbuildings,renewableenergysources,andnuclearpowerwouldreachtheirmaximumpotential.Decentralizedpowerwouldbewidespread,andsomecoal‐firedpowerplantswouldemploycarboncaptureandstorage.Themainassumptionsare:averageGDPgrowthrateof6.4%annuallybetween2005and2050;aChinesepopulationof1.46billionin2050;anurbanizationrateof79%by2050;and40%higherenergyefficiencythanpresent.KeyProjections/ResultsAccordingtotheanalysis,China’sprimaryenergydemandwillincreasefromapproximately2,100Mtcein2005toabout6,500MtceundertheBaselinescenario,5,300MtceundertheLowCarbonscenario,and5,100undertheEnhancedLowCarbonscenario,by2050.Allscenariosassumethewidedeploymentofonshorewindgeneration.TheLowCarbonandEnhancedLowCarbonscenariosassumelarge‐scaleconstructionofoffshorewindgenerationaswell.Thecostofsolarenergyin2050is0.39yuan/kWhIntheBaselinescenario,butmorethan30%lowerinthetwootherscenarios,at0.37yuan/kWh.Toachievelow‐carbondevelopment,by2050Chinawillneedtohave400–500GWofnewcapacityeachforwind,hydro,andnuclear,and300–400GWforsolar.

Page 35: RENEWABLES GLOBAL FUTURES REPORT - REN21

35

16.China Wind Power Outlook 2011(Greenpeace,2011)ScenarioDescriptionThestudyanalysesthedevelopmentofChina’swindpowersectorin2010,thedevelopmentofChina’sPVpowersector,andotherrenewableenergytrendsdiscussedinthegovernment’s12thFive‐YearPlan(2011–2015).KeyProjections/ResultsIn2010,MainlandChinaaddedalmost19GWofnewlyinstalledwindpowercapacity,maintainingitsleadintheglobalgrowthranking.Bytheendof2010,ChinaovertooktheUnitedStatestobecometheworldleaderininstalledwindcapacity,at44.7GW,andthisfigureisexpectedtoreach100–150GWbytheendof2015.Chinawillcontinuetoleadinwindgenerationforthenextfiveyears,thankstoimprovementsintheeconomicsofwindpower,thegradualresolutionofissuesrelatedtoconnectingwindpowertothegrid,andstronggovernmentpolicysupport.China’stotalinstalledcapacityofoffshorewindfarmsgrewabout150MWbytheendof2010.Itisexpectedexpandto5GWby2015andabout30GWby2020,accordingtocurrenttargets.In2010,China’sPVmoduleoutputroseto10GW,accountingfor45%ofworldproductionandmaintainingthecountry’sleadasthetopproducerforfourstraightyears.By2010,China’sinstalledPVcapacityreached0.9GW,rankingitamongthetop10nationsintheworld.Chineseoutputofsilicon‐basedthin‐filmpanelsremainedlow,however,astheindustryisstillnotmature.ProblemsfacingChinesePVinclude:insufficientinvestmentinresearchanddevelopment;blindexpansion;backwardproductioncapacity;redundantproduction;lackofasustainable,cleandevelopmentconcept;lackofsupportfordomesticmarketdevelopment;lackoflong‐termdevelopmentgoals;andahighcostofelectricityproduction.China’s12thFive‐YearPlanofRenewableEnergyDevelopmentadoptsdifferentstrategiesandtasksforeachenergyresource.By2015,forexample,annualwindgenerationwillreach190TWh,andsolarinstalledcapacitywillreach5–10GW.InadiscussionpaperonthePlan,theNationalEnergyAdministrationsuggeststhatby2015,China’ssolarinstalledcapacitywillreach10GW,ofwhich5GWwouldbefromgrid‐connected,mid‐sizedpowerplantsinthedesert,3GWfromgrid‐connectedplantsinurbanandruralareas,and2GWfromoff‐gridanddistributedPV.Bythen,Chinawillbetheworld’sbiggestPVmarket.Byabout2020,windpowerandsolarpowerwillreplacehydropowerasthekeypillarsofChina’srenewableenergysector.

Page 36: RENEWABLES GLOBAL FUTURES REPORT - REN21

36

17.“AStudyoftheRolePlayedbyRenewableEnergiesinChina’sSustainableEnergySupply”(ZhangXiliang,WangRuoshui,HuoMolin,andEricMartinot,2010)ScenarioDescriptionThestudyprovidesanoverviewofrenewableenergydevelopmentinChina(includingrecentrelatedlegislation),detailingthecurrentstatusofrenewablesandtheroletheyplayinthenationalenergysupply.Itthenexaminesthenationalindicativetargetsforrenewablesandpresentsalong‐termscenariooftheroleofrenewableenergyinChina’senergytransitionto2050.Finally,itdiscussesthemainrisksinvolvedinthecountry’srenewablesdevelopmentandproposessomepolicymeasuresforriskmanagement.ThescenarioassumesthatimplementationofChina’sRenewableEnergyLawandoftheMediumandLongTermPlanforRenewableEnergyDevelopmentwillcreateanenablingenvironmentforthedevelopmentofrenewableenergysources.KeyProjections/ResultsAccordingtotheanalysis,China’senergydemandwillreach5.4billiontcein2050,upfrom2.3billiontcein2005,reflectingamorethan130%increaseinthecountry’stotalprimaryenergysupplyinunderhalfacentury.In2050,China’senergymixwillstillbedominatedlargelybyfossilfuels,mainlycoalandoil.(SeeFigureN‐1.)

Renewableenergywillcontributeapproximately21%ofChina’stotalprimaryenergysupplyin2050(up3.2percentagepointsfrom2005).Theshareoftraditionalbiomasswilldeclinefrom10.7%in2005to0%in2050andwillbereplacedcompletelybymodernbiomass.Thecontributionfromnewrenewables(modernbiomass,solar,andwind)willgrowfrom0.9%in2005to14.4%in2050.Theshareofhydrowillincreaseslightlyto6.6%(up0.4points).Mostoftherenewableenergysupplyisintheformofelectricity.Nucleargrowthalsowillbesignificant.China’sinstalledpowergenerationcapacitywillgrowfrom511GWin2005to2,620GWin2050.Renewableswillaccountfornearly48%ofthisgrowth.In2005,thetotalinstalledrenewablepowercapacitywasalmost120GW,accountingfor23.4%ofthecountry’stotal.In2050,thesefigureswillreach1,130GWand43.1%,respectively.(SeeFigureN‐2.)Windpowerwillleadthisgrowth,expandingfrom1.27GWofinstalledcapacityin2005to400GWin2050.BiomassandsolarPVwillalsodevelopsignificantly.

81 74 69

1 6 1018 20 21

0

20

40

60

80

100

2005 2030 2050

FigureN‐1.ShareofPrimaryEnergySourcesinChina'sEnergyDemand

Renewables

Nuclear

Fossilfuels

Page 37: RENEWABLES GLOBAL FUTURES REPORT - REN21

37

Toincreasethepenetrationofrenewablesinthefuture,thereportrecommendsimprovingimplementationofChina’sfeed‐intariff,expeditingtheformulationoffiscalandtaxationmeasures,andincreasingpublicR&Dandinformationsupport.

116350 380

50200

300

400

100

30

50

0

200

400

600

800

1000

1200

2005 2030 2050

GW

FigureN‐2.CumulaUveRenewableEnergySourcesinChina

Other

SolarPV

Wind

Biomass

Hydro

Page 38: RENEWABLES GLOBAL FUTURES REPORT - REN21

38

18.Indian Wind Energy Outlook(GlobalWindEnergyCouncil(GWEC),WorldInstituteofSustainableEnergy(WISE),andIndianWindTurbineManufacturingAssociation(IWTMA),2011)ScenarioDescriptionThestudylooksattheprospectsforwindenergyinIndiato2030andelaboratesthreescenarios,a“Reference”onebasedonIEAWEO2009projections(takingintoaccountonlyexistingpoliciesandmeasures),a“Moderate”one(takingintoaccountallpolicyandmeasurestosupportrenewableenergyandprotecttheenvironmentenactedorinplanningstages),andan“Advanced”one(assumingthebestuseofIndia’spotentialwithmoreappropriatepolicies).Itassumes(aspertheIEAWEO2009projections)thatby2030,Indianenergydemandwillbe1,299Mtoeandelectricitydemandwillbe2,700TWh.Indiahas170GWofinstalledpowergenerationcapacity,ofwhich10.9%isrenewableenergy(excludinglargehydro),particularlywind(13GW).Thecountry,withover1billionpeople,consumes645TWhofelectricityannually.India’sNationalActionPlanonClimateChangesetsatargetof15%renewablesinIndia’senergymixby2020.KeyProjections/ResultsIntheReferencescenario,investmentsinwindpowerinIndiawoulddroptoabout$910millionby2030.IntheModeratescenario,thecountrywouldinvestabout$9billioninwindannuallyby2020,representingaquadruplingofthe2009figure.IntheAdvancedscenario,annualinvestmentwouldreach$10.4billionby2020.Dependingontheinvestmentlevel,theprojectedinstalledwindpowercapacitywouldvary.(SeeFigure0‐1.)

10.92624.026

46.10465.181

30.526

108.079

160.741

020406080

100120140160180

2009 2020 2030

GW Figure0‐1.CumulaUveWindPowerCapacityinIndia

Page 39: RENEWABLES GLOBAL FUTURES REPORT - REN21

39

19.Energy [R]evolution: A Sustainable India Energy Outlook(GreenpeaceandEuropeanRenewableEnergyCouncil(EREC),2008)ScenarioDescriptionThereportexaminesthepossibilityofarenewableenergyfutureinIndiagiventhenationalcontextandthecountry’srenewablespotential.Twoscenariosaredeveloped:a“Reference”onethatreflectsthecurrentstateofmatters,andthe“[R]evolution”one,whichexploitsthepotentialofrenewableenergyinIndiawiththephaseoutofnuclearenergyandtheadoptionofenergyefficiencymeasures.KeyProjections/ResultsAccordingtotheanalysis,India’sprimaryenergydemandwillincreasebymorethan230%toreach62,577PJannuallyin2050.Inthe[R]evolutionscenario,theshareofrenewableenergyinfinalenergydemandwillincreasetonearly62%by2050.(SeeFigureP‐1.)About70%ofdemandintheheatandcoolingsectorand29%ofthatinthetransportsectorwillbemetbyrenewables.

By2050,inthe[R]evolutionscenario,approximately69%ofIndia’selectricitygenerationwillcomefromrenewables(thisfigureincludescombinedheatandpowerproduction).(SeeFigureP‐2.)

Inthe[R]evolutionscenario,solarPV,wind,andsolarthermalwillaccountforjustunder55%ofelectricitygenerationin2050.SolarPVwillbecomebyfarthemostprominentrenewableenergysource,representing27%ofelectricitygenerationand66%oftherenewablesinstalledcapacityin2050.(SeeFigureP‐3.)

55 59 57 49 38

45 41 43 51 62

020406080100

2010 2020 2030 2040 2050

FigureP‐1.ShareofPrimaryEnergySourcesinIndia'sFinalEnergyDemand

Renewables

Fossilfuelsandnuclear

82 73 6447

31

23

21

16 25 3553

69

0

20

40

60

80

100

2010 2020 2030 2040 2050

FigureP‐2.ShareofPrimaryEnergySourcesinIndia'sElectricityGeneraUon

Renewables

Nuclear

Fossilfuels

Page 40: RENEWABLES GLOBAL FUTURES REPORT - REN21

40

44 73 80 80 8012 69 143 200 22410

118

486

1093

23

70

151

0200400600800

10001200140016001800

2010 2020 2030 2040 2050

GW

FigureP‐3.CumulaUveRenewableEnergySourcesCapacityinIndia

Ocean

Solarthermal

SolarPV

Geothermal

Wind

Biomass

Hydro

Page 41: RENEWABLES GLOBAL FUTURES REPORT - REN21

41

20.“EnergyScenarioandVision2020inIndia”(P.Garg,2012)ScenarioDescriptionThereportexaminesthecurrentenergysituationinIndia,thepresentcontributionofallenergysources,thepotentialofrenewables,andtheirtotalshareintheenergymixby2022basedonexistingpolicytargets.ItassumesanaverageGDPgrowthrateof8–9%annuallyovertheoutlookperiodandbeyond.KeyProjections/ResultsAttheassumedGDPgrowthrate,Indiawillrequireatotalprimaryenergysupplyofsome1,192Mtoeby2021–22and2,043Mtoeby2031–32,upfromonly616Mtoeatpresent.Electricityconsumptionisexpectedtorisetosome2,280billionkWhby2021–22and4,500billionkWhby2031–32,upfrom645billionkWhatpresent.Meetingtheseneedswillbeagreatchallenge,andshortagesmayoccurbecauseofaninadequatetransmissionanddistributionnetwork.Coalcurrentlysupplies55%ofIndia’senergyneedsandwillremainthemostimportantdomesticenergysourceduetothelowexploitationcostandtothecountry’shugereserves(estimatedat246billiontonnes,ofwhich92billiontonnesareproven).Oil’sfuturesharewilldependonoilpricefluctuationsaswellasthedevelopmentofIndia’stransportsector.NaturalgaspriceswillbekeytoIndia’sfutureuseofgas.Andnuclearwillincreasedramatically,from4.78GWofinstalledcapacityin2010to64GWby2032.Hydropotentialissignificant,butitscontributiontoIndia’senergymixislikelytoremainsmall.Theneedtomitigatetheenvironmentalandsocialimpactsofstorageschemesoftendelayshydrodevelopment,causinghugecostoverruns.Overall,Indiaaimstosupplyaround15.9%ofitstotalenergyneedsfromrenewablesby2022.Windandsolarwillsupplythebulkofthisincrease,accountingformorethan80%ofrenewablesinstalledcapacityby2022.(SeeFigureQ‐1.)

WithregardtothepotentialofnewrenewableenergysourcesinIndia,thereportnotesthat:• Windpoweristhefastestgrowingrenewable,anditsdevelopmentisfinancedalmostentirelybyprivate

sectorinvestments,thankstotheprovisionofaccelerateddepreciationof80%.Indiahasapotentialofaround48.5GW.

• TheJawaharlalNehruNationalSolarMission,launchedin2010,targets20GWofgrid‐connectedsolar

power(basedonsolarthermalsystemsandsolarPVtechnologies)and2GWofoff‐gridcapacity(including20millionsolarlightingsystemsand20millionsquaremetersofsolarthermalcollectorareaby2022).Solartechnologyappearstohavethegreatestpotentialforoff‐gridenergyproduction.

12.8

38.5

20

2.5

7.3

2.8

6.6

0

10

20

30

40

50

60

70

80

2010 2022

GWFigureQ‐1.CumulaUveRenewableEnergySourcesInstalled

CapacityinIndia

smallhydro

biomass

solar

wind

Page 42: RENEWABLES GLOBAL FUTURES REPORT - REN21

42

• Thecurrentpotentialforbiomasspowergenerationfromsurplusagriculturalandagro‐industrial

residuesisestimatedat17GW.Withefficientcogenerationplantsinnewsugarmillsandmodernizationofexistingones,thepotentialofsurpluspowergenerationthroughbagassecogenerationinsugarmillsisestimatedat5GW.

• Theestimatedpotentialforpowergenerationfromsmallhydroplantsisabout15GWfrom5,718

identifiedsites.Sofar,over760smallhydroprojectswith2,803MWofcombinedcapacityhavebeensetuparoundthecountry,and285projectstotalingabout940MWareinvariousstagesofimplementation.Atpresent,acapacityadditionofabout300MWperyearisbeingachieved.

Page 43: RENEWABLES GLOBAL FUTURES REPORT - REN21

43

21.“India’sRenewableScenario”(MadhavanNampoothiri,2012)ScenarioDescriptionThereportprovidesinformationonthecurrentstateandpotentialsofrenewableenergyinIndia.Italsodescribesmajorenergypoliciessupportingthedevelopmentofrenewablestechnologies.KeyProjections/ResultsAccordingtotheanalysis,Indiawillneedover300GWofenergyinstallationby2017,upfromsome191GWofpowergenerationcapacitytoday.Almosthalfofthis(48%)iscoalbased,20%ishydro,and10%isotherrenewables.Nuclear’sshareismarginal,at2%.AsofFebruary2011,Indiahad18.45GWofrenewablesinstalledcapacity(excludinghydro),withanestimatedtotalpotential(excludingsolar)ofabout89GW.RegardingthecurrentstatusandpotentialofvariousrenewablesinIndia,thereportnotes:• Windleadstherenewableenergysectorwithacumulativeinstalledcapacityof13,065MW.India’s

potentialforonshorewindpowerisestimatedat48.5–70GW.• SolardevelopmentwillbedrivenmainlybytheJawaharlalNehruNationalSolarMission,whichtargets

aninstalledcapacityof20GWofgrid‐connectedsolarpowerby2022,upfromabout18MWattheendof2010.AsmorecomponentsaremanufacturedinIndia,thepriceofsolarPVmodulesisexpectedtodropsignificantly,enablingmoresolarpowerinstallationsnationwide.

• Theunpredictableavailabilityoffeedstockwillbethekeychallengetobiomasspowerdevelopment,as

manyofthebiomassproducersarebackwardintegratingtoenergycropfarming,especiallyintobamboofarming.

• India’ssmallhydropotentialisestimatedtobe15GW.TwomajorenergypoliciespromotingthedevelopmentofrenewableenergyInIndiaaretheJNNSMandthetradingofRenewableEnergyCertificates(RECs).Underthelattermechanism,distributioncompaniesaremandatedtopurchaseapercentageoftheirpowerfromrenewables.Intheeventthattheycannotfulfilltheirobligation,theycancompensatebypurchasingRECssoldbyrenewableenergyproducers.ThetradingofRECsisexpectedtomakereturnsoninvestmentsinrenewabletechnologiesmoreattractiveandtoeventuallymakethesectormoremarketdrivenandlesspolicydriven.

Page 44: RENEWABLES GLOBAL FUTURES REPORT - REN21

44

22.Pure Power: Wind Energy Targets for 2020 and 2030(EuropeanWindEnergyAssociation(EWEA),2011) ScenarioDescriptionThestudyexaminesthefutureofwindpowerinEuropefrom2010to2050,undertheassumptionthat100%oftheelectricitygeneratedin2050willcomefromrenewables.Thestartingpointofthestudyisthat34%ofelectricityintheEuropeanUnioncomesfromrenewables,reflectingtheEU’sexistingtarget.Thereportfocusesonhowtomakethetransitionfrom34%to100%renewables,andtherolethatwindpowerwillplayinthisshift.Toensurethecontinuedbuoyancyofthewindsectorandthispathtowardgreenelectricity,theEWEAinsiststhatEUrenewableslegislationisneedednowfortheperiodafter2020.TheEWEAprovidestwoscenariosforeachnationalmarketin2020:a“baseline”scenarioanda“high”scenario.ThebaselinescenarioisbasedonEWEA’straditionallyconservativeapproachtosettingtargetsforwindenergy.The“high”scenarioacknowledgesthatwindpower,asthemostaffordableoftherenewableelectricitytechnologiesinmostEUMemberStates,couldmeetahighersharethaneitherthe14%ofelectricitydemandby2020indicatedbytheNationalRenewableEnergyActionPlansorthe14.2%assumedbytheEuropeanCommissioninitsPRIMESmodel.ButthiswouldhappenonlyifEUpolicycertaintybeyond2020isachievedbefore2014,ifadditionalR&Deffortsaremade,andifthenecessaryinfrastructureinvestmentsandpowermarketreformsareundertaken.KeyProjections/ResultsAccordingtotheanalysis,by2020theEUwillinstall230GWofwindcapacity,including40GWofoffshorewind,torepresent22.9%ofEUtotalinstalledelectricitygeneratingcapacity.Thiswillinvolveannualwindcapacityinstallationsof24.8GW,ofwhich17.8GW,or72%,isonshoreand6.9GW,or28%,isoffshore.Thesefacilitieswillproduce581TWhofpower(433TWhonshoreand148TWhoffshore),meetingfrom15.7%to16.5%ofEUelectricityneedsdependingontotaldemand.TheshareofrenewablesinEUelectricityconsumptionwillreach34%by2020.Thiswillrepresentannualinvestmentsof€26.6billion(€16.2billiononshoreand€10.4billionoffshore)andatotalinvestmentfor2011–2020of€192billion.By2030,theEUwillinstall400GWofwindcapacity,including150GWofoffshore,torepresent36%ofEUtotalinstalledelectricitygeneratingcapacity.Thiswillinvolveannualwindcapacityinstallationsof23.7GW,ofwhich10GW,or42%,isonshoreand13.7GW,or58%,isoffshore.Thesefacilitieswillproduce1,153TWhofpower(591TWhonshoreand562TWhoffshore),meetingapproximately28.5%ofEUelectricityneedsdependingontotaldemand.Theshareofrenewablesinelectricityconsumptionwillreach55%by2030.Thiswillrepresentannualinvestmentsof€25.3billion(€8.2billiononshoreand€17.1billionoffshore)andatotalinvestmentfor2021–2030of€257billion.By2050,theEUwillinstall735GWofwindcapacity,including460GWofoffshore.Thesefacilitieswillproduce2,512TWhofpower(699TWhonshoreand1,813TWhoffshore),meetingapproximately50%ofEUelectricityneedsdependingontotaldemand.Theshareofrenewablesinelectricityconsumptionwillbe100%by2050.Forsummariesoftheseprojections,seeFiguresR‐1,R‐2,andR‐3.

Page 45: RENEWABLES GLOBAL FUTURES REPORT - REN21

45

81.4190 250 275

2.9

40

150

460

0

100

200

300

400

500

600

700

800

2010 2020 2030 2050

GW FigureR‐1.CumulaUveWindInstalledCapacity

Offshore

Onshore

171.1 433 591 69910.6

148

562

1813

0

500

1000

1500

2000

2500

3000

2010 2020 2030 2050

TWh FigureR‐2.WindElectricityGeneraUon

Offshore

Onshore

8166

45

516

29

50

14 18 2750

0

20

40

60

80

100

2010 2020 2030 2050

FigureR‐3.ShareofPrimaryEnergySourcesinEUElectricityGeneraUon

Otherrenewables

Wind

Fossilfuelsandnuclear

Page 46: RENEWABLES GLOBAL FUTURES REPORT - REN21

46

23.Rethinking 2050: A 100% Renewable Energy Vision for the European Union(EuropeanRenewableEnergyCouncil(EREC),2010) ScenarioDescriptionThestudyaimstoestablishalong‐termvisionfortheenergysystemintheEU,settingapathwaytoward100%renewableenergy.Itoutlinesaroadmapto2030andpresentsavisionfor2050basedonasetofassumptionsfromtheEuropeanCommission’s“NewEnergyPolicy”scenariofora“moderate”and“high”priceenvironment.KeyProjections/ResultsUndertheModeratePriceprojection,EUfinalenergydemandisexpectedtodecreasefrom1,232Mtoein2010to1,050Mtoein2050.Theshareofrenewableenergyinfinalenergyconsumptionwillincreasesignificantlytoalmost96%in2050.(SeeFigureS‐1.)

 Thisconsiderableincreaseofrenewablesinfinalenergyconsumptionisduetothegreeningofthepowersectorbutalsotochangesinthetransportandheatingandcoolingsectors.Inthepowersector,electricitygenerationin2050willcomefrom100%renewables.(SeeFigureS‐2.)

Amongrenewableenergytechnologies,windwillcontinuetoleadby2030,butduring2030–2050solarPVwillbedeployedsignificantlytoproducenearlythesameamountofpoweraswind.(SeeFigureS‐3.)

90 7658

4

10 2543

96

020406080100

2007 2020 2030 2050

FigureS‐1.ShareofPrimaryEnergySourcesinEUFinalEnergyConsumpUon

Renewables

Fossilfuelsandnuclear

8460

33

1640

67100

0

20

40

60

80

100

2007 2020 2030 2050

FigureS‐2.ShareofPrimaryEnergySourcesinEUElectricityConsumpUon

Renewables

Fossilfuelsandnuclear

Page 47: RENEWABLES GLOBAL FUTURES REPORT - REN21

47

By2050,theheatingandcoolingsectorwillbe100%renewablesdriven,upfromonly11%in2007.Ifbiomasscontinuestocontributesignificantlytotheheatingsector,thenthisaswellasmajordevelopmentsinsolarthermalandgeothermalenergywillhelpmakeheat100%renewableby2050.(SeeFigureS‐4.)

By2020,9%oftransportfuelwillbemetbybiofuelsand11%bydieselandgasoline.By2050,transportfuelwillbemetentirelybybiofuelsandrenewableelectricity.PathwaystoImplementationThetransitionto100%renewableenergyby2050requiresseveralpolicymilestones:

• Bindingrenewableenergytargetsby2030;• Fullliberalizationoftheenergymarket;• Phasingoutofallsubsidiesforfossilfuelsandnuclearenergy;and• IntroductionofanEU‐widecarbontaxtoincreasecompetitivenessofrenewablestechnology.

Theimplementationofsuper‐smart‐gridinfrastructureisalsoacrucialaspectconnectingwithinformationandcommunications(ICT)technologiesintheNorthSeaoffshoregrid,theMediterraneanenergygrid,andBalticinterconnection.

325 384 398 448102 250 292 496104

477833

1552169

601

180

556

1347

141

385

0

1000

2000

3000

4000

5000

2007 2020 2030 2050

TWhFigureS‐3.RenewableEnergySourcesinEUElectricity

ConsumpUon

Ocean

CSP

SolarPV

Geothermal

Wind

Biomass

Hydro

61 120 175 2151

1248

122

17

24

136

0

100

200

300

400

500

2007 2020 2030 2050

MtoeFigureS‐4.RenewableHeaUngandCoolingConsumpUon

Geothermal

SolarThermal

Biomass

Page 48: RENEWABLES GLOBAL FUTURES REPORT - REN21

48

24.Europe’s Share of Climate Change(StockholmEnvironmentInstitute(SEI)andFriendsoftheEarth,2009)ScenarioDescriptionThestudyaimstosetapathwayforreducingEuropeanCO2emissions40%by2020and90%by2050(fromthe1990level).Itpresentstwoscenarios:abaselinescenarioandamitigationscenario.Thebaselinescenario,developedusingtheLEAPmodelingtool,reflectsacontinuationofcurrentEUpolicies,resultinginamodestriseinemissionswitheconomicgrowthbalancedbyimprovementsinenergyefficiency.Themitigationscenariostartswiththegoalofreducingemissions40%by2020andtotheextentpossibleby2050.Itassumesanuclearphaseoutby2050,andthatcarboncaptureandstorageisnon‐commercial.KeyProjections/ResultsInthemitigationscenario,energyefficiencywillhelptoconsiderablydecreasetheEU’sprimaryenergydemandfrom77,000PJin2010to24,000PJin2050.Meanwhile,theshareofrenewableenergyincreasesfrom9%in2010to58%in2050,whiletheshareoffossilfuelsisalmosthalved.(SeeFigureT‐1.)

ThetotalpowercapacityinstalledintheEUwillincreasefrom600GWin2010to1,200GWin2050.By2050,powergenerationfacilitieswilloperateusingonlyrenewablesources,duemainlytothephaseoutofnuclearandfossilfuelplants.(SeeFigureT‐2.)Between2020and2030,windgenerationfacilitieswillbebuiltatarateof25GWperyear,andby2050,40%oftheinstalledcapacitywillbeonshorewind.

By2050100%oftheelectricityinEuropewillbesuppliedbyrenewableenergysources.(SeeFigureT‐3.)

78 67 42

13 119 21

58

020406080100

2010 2020 2030

FigureT‐1.ShareofPrimaryEnergySourcesinEUEnergyDemand

Renewables

Nuclear

Fossilfuels

48 24

2012

32 64100

020406080100

2010 2020 2050

FigureT‐2.ShareofPrimaryEnergySourcesinEUElectricityCapacity

Renewables

Nuclear

Fossilfuels

Page 49: RENEWABLES GLOBAL FUTURES REPORT - REN21

49

OverallelectricitydemandintheEUwillincrease6%by2020and24%by2050.Householdelectricitydemandwillincrease8%by2020and14%by2050,duetorisingincomelevelsandtoincreasedapplianceownership,whichwilloutweighenergyefficiencygains.Intheindustrysector,electricityconsumptionwilldecrease12%by2020and49%by2050asaresultofefficiencygains.Thetransportsector,meanwhile,willseea219%riseinelectricitydemandby2020anda606%increaseby2050duetotheuptakeofelectricvehicles.Electrificationoftherailsystemwilloccurby2030,andthebuild‐outofelectricinfrastructure,suchasvehiclechargingstations,willbereinforcedthrough2050.

3725

27

19

3656

100

0

20

40

60

80

100

2010 2020 2050

FigureT‐3.ShareofPrimaryEnergySourcesinEUElectricityGeneraUon

Renewables

Nuclear

Fossilfuels

Page 50: RENEWABLES GLOBAL FUTURES REPORT - REN21

50

25.Power Choices: Pathways to Carbon‐Neutral Electricity in Europe by 2050(AssociationoftheElectricityIndustryinEurope(Eurelectric),2009)ScenarioDescriptionThestudysetsouttoanalyzethetechnologiesandenergypoliciesneededtoattainthefollowinggoal:“Achievecarbon‐neutralityinacostefficientwaythroughanintegratedEuropeanmarket[whilemaintaininga]reliableenergysupply….”Itpresentstwomainscenarios,onereflectingthecontinuationofcurrentpolicies(asof2008/2009),andtheseconda“PowerChoice”scenariothatusesthePRIMESmodelandisbasedonthegoalofreducingEuropeangreenhousegasemissionsby75%from1990levels.ThePowerChoicescenarioassumesthatelectricityisthemaintransportfuelthrough2050,withthedeploymentofplug‐inandhybridvehiclesandfullelectrificationofrailtransport.Italsoassumesthateffectiveenergyefficiencypoliciesareimplementedtosupportrenewablepowerfacilities.ThepriceofoilreachesUS$100abarrelby2030,andnaturalgas(indexedonoil)reachesUS$15permillionBTUby2050.KeyProjections/ResultsUnderthePowerChoicescenario,EUprimaryenergydemandwilldecreasefrom1,758Mtoein2005to1,408Mtoeby2050,duetolowerdemandinthetransportsectoranddecreasesintheenergyintensityofvariousactivities.Electricityconsumptionbysectorwillshiftsignificantlyastransportreplacesindustryasthemaindriverofdemand.(SeeFigureU‐1.)Andmore‐efficienttechnologiesandbetterinsulatedstructureswillreducehouseholdelectricityconsumptionforheatingandcooling.

Aselectrificationofthetransportsectoracceleratesthroughtheuseofplug‐inandelectricvehicles,morethan90%ofpassengercarswillbepoweredbyelectricityby2050.(SeeFigureU‐2.)

Powergeneration,boostedmainlybythetransportsector,willrisefrom3,100TWhin2005to4,800TWhin2050,withrenewablesrepresenting40%oftotalgenerationin2050.Ofthis,35%willcomefrom

9 10 102 10 3123 171024 26 15

35 33 277 6 6

020406080100

2005 2030 2050

FigureU‐1.ShareofElectricityDemandbySector

Loses

Industry

Houselhold

Terxary

76

8

12

2

11

90

1 0

0

20

40

60

80

100

2030 2050

%FIgureU‐2.FuelMixofPassengerCars

NaturalGas

Electricity

Biofuels

Oil

Page 51: RENEWABLES GLOBAL FUTURES REPORT - REN21

51

onshorewind,27%fromoffshorewind,and13%fromsolar.Nuclear’ssharewillnotchangeconsiderably,droppingfrom32%in2005to28%in2050.Despiteacoalrevivalby2025withthecommercializationofaffordableandefficientcarboncaptureandstoragetechnology,theshareofsolidsintheelectricitymixwilldecreasefrom32%in2005to17%in2050.(SeeFigureU‐3.)

ThetotalpowercapacityinstalledinEuropewillreachmorethan1,300GWby2050,withrenewablesrepresentingmorethanhalfofnewlyinstalledcapacity.(SeeFigureU‐4.)Thiswillrequireatotalinvestmentofaround€2trillion(2005euro)fortheperiodupto2050.

PathwaystoImplementationThegoalofdecreasingEUemissions75%by2050willbeachievedthroughtwointerlinkedroutes:decarbonizationofthepowersectorandelectrification(toacertaindegree)offinalenergyusage.Decarbonizationofthepowersectorwillrequireinvestmentsinrenewablesandtheirlarge‐scaleuptakeintheelectricitysystem.Investmentsinsmartgridsarealsoneeded,withaparticularfocusontransmissionanddistributionlines.Reformofexistingcarbonandelectricitymarketswillbecrucialtoachievingtheemissionsreductiongoal,andthecostinternalizationofgreenhousegasesinallsectorsshouldbeexploredwithwell‐functioningmarkets.Governmentswillneedtoshifttheirnationalbudgetprioritiesandacknowledgetheimportanceofinvestinginanintelligentenergyeconomy.

6 2 1 1

16 20 17 14

3221

1917

32

2526 28

1532 38 40

0

20

40

60

80

100

2005 2020 2030 2050

FigureU‐3.ShareofPrimaryEnergySourcesinElectricityGeneraUon

RES

Nuclear

Solids

Gas

Oil

229 277 258 253

187 158 174 162

134 124 132 175105 114 117 11818 46 53 7040

163 20725753

86125

4165

140

0

200

400

600

800

1000

1200

1400

2005 2020 2030 2050

GW FigureU‐4.NetPowerCapacity

Otherrenewables

Solar

Windoffshore

Windonshore

Biomass

Hydro

Nuclear

Solids

Gas&Oil

Page 52: RENEWABLES GLOBAL FUTURES REPORT - REN21

52

26.Energy Roadmap 2050(EuropeanCommission,2011)ScenarioDescriptionThereportexploresthechallengesposedinachievingtheEuropeanUnion’sobjectiveofreducingregionalgreenhousegasemissions80–95%below1990levelsby2050.Itexploresdifferentroutestodecarbonizationoftheenergysystemandpresentssevenscenarios,includingaReferenceoneandaHighRenewableEnergySources(RES)one.TheReferencescenarioassumesthatregionalGDPwillgrow1.7%annuallythrough2050,anditincludespoliciesadoptedasofMarch2010,includingtheEU’s2020targetsforemissionsreductionsandrenewablesshareandaswellastheemissionstradingscheme(ETS)directive.TheHighRESscenarioassumesthattheEUtakesstrongsupportmeasuresforwidespreaddevelopmentofgreentechnologies.Theanalysisalsoassumesthatdecarbonizationoftheenergysystemwillentailmajorchangesinenergyefficiency(ofbuildings,products,appliances,vehicles,etc),carbonprices,technologies,andenergynetworks(whichareagingandneedbillionsofeurosofinvestment).KeyProjections/ResultsInallscenarios,theshareofrenewableenergyisexpectedtorisesubstantially,accountingforatleast55%ofgrossfinalenergyconsumptionin2050,upfromonly10%today.Thisfigureisreachedduetothedecreasingcostsofrenewablesandtotheeconomiesofscaleresultingfromimprovedresearch,industrializationofthesupplychain,andmore‐efficientpoliciesandsupportschemes.Thistransitionwillrequirethedevelopmentofnewrenewabletechnologies,suchasoceanenergy,solarthermal(CSP),andsecond‐andthird‐generationbiofuels,aswellastheimprovementofexistingones(e.g.,increasingthesizeofoffshorewindturbinesandbladestocapturemorewind).Inallscenarios,electricitywillplayamuchgreaterrolethantoday,anditsshareinEUfinalenergydemandwillnearlydoubleto36–39%in2050.Electricitycouldprovideanestimated65%oftheenergydemandofpassengercarsandlightdutyvehicles.IntheHighRESscenario,theshareofrenewablesingrossfinalenergyconsumptionwillreach75%in2050,andtheirshareinelectricityconsumptionwillbe97%.Gettingtherewillrequiregreaterinvestmentsinbalancingcapacity,demandresponse,energystorage,andgrids(smartgrids).Cumulativeinvestmentsinthegridalonecouldbebetween€1.5trillionand€2.2trillionduringtheoutlookperiod.Widespreaduseofrenewablesforpowerandheatgenerationwillmakethesesystemsmoredecentralized,andtheywillhavetoincreasinglycomplementcentralized,large‐scalesystemssuchasnuclearandnaturalgaspowerplants.By2050,powergenerationcapacityfromrenewableswillbemorethantwicetoday’stotalpowergenerationcapacityfromallsources.IntheHighRESscenario,windpowerwillprovidemoreelectricitythananyothertechnologyby2050,withwindandsolarpowerfromMediterraneancountriesmakingasubstantialcontribution.Inthemediumterm,oceanenergycanalsosignificantlyboostelectricitysupply.Biofuelswillbecomeamainoptionforaviation,long‐distanceroadtransport,andrail(whereitcannotbeelectrified).Asasourceoflow‐carbonelectricity,nuclearwillplayakeyroleforthenextfewdecades.

Page 53: RENEWABLES GLOBAL FUTURES REPORT - REN21

53

27.Pathways Towards a 100% Renewable Electricity System(GermanAdvisoryCouncilontheEnvironment,2011)ScenarioDescriptionThereportdiscussestheneedforGermany’selectricitysystemtobecome“sustainableanddecarbonized”(i.e.,renewables‐basedandnon‐nuclear)by2050,inlightofrelevanttechnical,economic,legal,andpoliticalfactors.ItdiscusseswiderEuropeanaspectsinsofarastheyarerelevantforthetransitionoftheGermany’selectricitysupply.Theauthorsalsorecommendcertainlegalandpoliticalmeasurestohelpthecountrytransitiontoawhollyrenewableelectricitysupply.Thereportpresentsareferencescenarioandalsomodelsseveralscenariosaimedatachievingspecifictargets(suchasa100%renewableelectricitysupply),showinghowandunderwhatconditionsthetargetscanbereached.Thetargetscenariosareelaboratedusingtwocalculationmodels:onefromStuttgartUniversity’sDepartmentofEnergyResourceManagementandRationalEnergy,andtheotherfromtheWuppertalInstitute.Theanalysisassumesthatenergyefficiencyiskeytotransitioningtoanaffordable,whollyrenewableelectricitysupply;thatthecostofcurrentlyavailablerenewables(wind,solar,geothermal,andhydro)willdecreaseinthecomingyearsasaresultoftechnologicalimprovements(betterefficiency,lowermaterialsuse)andeconomiesofscaleresultingfromincreasedproduction;andthatenergystorageandtransmissioncapacitieswillbeexpandedinconcertwithrenewableelectricitygenerationcapacities.KeyProjections/ResultsAccordingtothescenarios,Germany’sannualgrosselectricitydemandwillincreasefrom580TWhin2010to500–700TWhin2050,andthelatterdemandwillbemetwithrenewablesources.Inthe“low”scenario,500TWhresultsfromstringentenergy‐savingandefficiencyoptimizationmeasuresfortraditionalusesofelectricity.The“high”scenario(700TWh)resultswhenthesemeasuresarenotimplementedandelectricityissubstitutedforsomeorallfossilfueluseinsectorssuchastransport,heat,andprocessheat.Excludinghydro,thecostsofallrenewableswilldecrease.(SeeTableV‐1.)By2050,windwillbethelowest‐costrenewable,at€0.04–0.05perkWh(offshorewillbeslightlymorecompetitivethanonshore).SolarPVcostswilldropnearly80%,from€0.44perkWhin2010to€0.09perkWhin2050.TableV‐1.CostofRenewables(€/kWh) 2010 2050SolarPV 0.44 0.09Biomass 0.12 0.10Offshorewind 0.12 0.04Onshorewind 0.09 0.05Hydro 0.04 0.05Geothermal 0.22 0.19InGermany,windpowerbenefitsfromlowcostandgreatelectricitygenerationpotential,at839TWhperyear.Hydroisalsoverycostcompetitive,butitsgenerationpotentialislimitedtoabout28TWhperyear,duetothegeography.SolarPVhasgreaterpotential,about110TWhperyear,butitisprojectedtostillcostalmosttwiceasmuchaswindandhydroin2050.Germany’sgeothermalpowerpotentialishigh,about220TWh,butitisverycostlytodevelop.Biomasspowerisrelativelyinexpensivecomparedtogeothermalbutislimitedtoapproximately71TWhperyear;itmaybefurtherrestrictedbycompetingdemandforbiomassfromthefuelandheatingsectors.However,biomasscouldbeusedoptimallyinpowerplantsthatgeneratebothheatandpower.

Page 54: RENEWABLES GLOBAL FUTURES REPORT - REN21

54

Theelectricitysharegeneratedbyeachenergysourcewilldependondemand.Inalowdemandcase,morethan61%ofelectricitywillbegeneratedbyoffshorewind,about17%byonshorewind,9%bysolarPV,and5%byhydroandbiomass.Inthiscase,renewablescapacitywillreachjustover160GW:75GWforoffshorewind,40GWeachforonshorewindandsolarPV,and4GWeachforhydroandbiomass.Inahighelectricitydemandcase,about45%ofelectricitywillbegeneratedbyoffshorewind,13%byonshorewind,15%bysolarPV,5%eachbyhydroandbiomass,and16%bygeothermal.Inthiscase,renewablescapacitywillreachabout250GW:75GWforoffshorewind,40GWforonshorewind,112GWforsolarPV,4GWeachforhydroandbiomass,and15GWforgeothermal.Aselectricitydemandrises,Germanymustresorttoadditionalenergysources.Becausethemostcompetitiveonesarealreadyfullyexploitedinthelowelectricitydemandcase,thecountrywillhavenochoicebuttorelyonthemostexpensiveones,solarandgeothermal.Electricitytradeviainternationalgridsfavorsthemassiveintegrationofrenewables,asthisdecreasestheneedforback‐upinstalledcapacitiesaswellaslarge‐scaledevelopmentofstoragetechnologies.InthecaseofGermany,DenmarkandNorwaywouldbeidealpartnersfortradingelectricity.However,transmissionlineswouldneedtobeexpandedtofullyexploitthisinter‐regionalnetwork.

Page 55: RENEWABLES GLOBAL FUTURES REPORT - REN21

55

28.Outlook for Alternative Renewable Energy in Brazil(BrazilianMinistryofMinesandEnergy,2010)ScenarioDescriptionThereportexaminesthecurrentstateofrenewablesinBrazilandtheirpotentialcontributiontothecountry’senergymixby2019.Itfocusesmainlyonthefuturedevelopmentofsugarcaneandwindpower.KeyProjections/ResultsRenewablessupplied47%ofBrazil’senergyin2009,upfrom41%in2000.Thisshareisnotexpectedtoincreasethroughatleast2019.(SeeFigureW‐1.)However,themixofrenewableswillchangeslightly.Sugarcanesupplied18%ofthecountry’senergyneedsin2009,andthisshareisexpectedtoreach22%by2019.Theshareofhydrowilldecreasefrommorethan15%in2009tolessthan13%in2019.Brazil’srelianceonoilwilldecreasefromnearly38%in2009to31%In2019,withthereductionoffsetbyuseofnaturalgasandcoal.Nuclearroleisminorandwillremainso.

Brazil’selectricitystructurealreadyrelieslargelyonrenewables,asalmost91%ofthecountry’selectricityis“green.”(SeeFigureW‐2.)Thevastmajorityofthis(85%)comesfromhydroand5%comesfrombiomass,producedmainlyfromcogenerationwithsugarcane.Windcomprisesonly0.24%,andotherrenewablesaremarginal.

51 51

1 2

47 48

0

20

40

60

80

100

2009 2019

FigureW‐1.ShareofPrimaryEnergySourcesinBrazil'sEnergySupply

Renewables

Nuclear

Fossilfuels

73

91

0

20

40

60

80

100

2009

FigureW‐2.ShareofPrimaryEnergySourcesinBrazil'sElectricPowerSupplyStructure

Renewables

Nuclear

Fossilfuels

Page 56: RENEWABLES GLOBAL FUTURES REPORT - REN21

56

Projectionsforfutureinstalledcapacityrevealaslightdecreaseinrenewablescapacityinfavoroffossilfuelsandnuclear.(SeeFigureW‐3.)Anestimated21.4%oftotalnewinstalledcapacityinBrazil(63.48GW)by2019willcomefromfossilfuelsandnuclear,at12.18GWand1.41GWrespectively.Anestimated14.66GW(23.1%)ofnewlyinstalledcapacityby2019willberenewables(excludinghydro).Hydrowillcontinuetogrow,representingmorethan55%ofBrazil’snewlyinstalledcapacity.

Totaldemandforsugarcane,usedwidelyforfoodandbiofuel(ethanol),isexpectedtoincreasenearly66%,from685milliontonsin20101,135milliontonsin2019.Thisgrowthisduelargelytorisingethanoldemand,whichisexpectedtoincrease133%,from27.5billionlitersin2009to64billionlitersin2019.Morethan15%ofBrazilianethanolwillbeexportedin2019(upfrom12%in2009);however,nearly82%ofconsumptionwillbefromthedomesticmarket.Theestimatedcogenerationpotentialfromsugarcanein2019is17.4GW,enoughtogenerate89.1TWh,or18%ofBrazil’sactualelectricitysupply(509TWh).Brazilhadonly606MWofinstalledwindpowercapacityin2009,althoughsignificantgrowthisexpectedasthecountryaimstohaveabout6GWofinstalledcapacityby2019.Windwillthenaccountfor36%ofBrazil’snewlyinstalledrenewableenergycapacity(excludinghydro).Theestimatedgenerationpotentialisabout271TWh,or53%ofthecountry’sactualelectricitysupply.GiventhattheshareofwindpowerinBrazil’selectricitygenerationmixwasnearly0%in2009,thecountryhasalongwaytogobeforeitfullyexploitsitswindpotential.Thegreatestpotentialliesalongthenortheastcoasts.

14 152 3

84 83

0

20

40

60

80

100

2010 2019

FigureW‐3.ShareofPrimaryEnergySourcesinBrazil'sInstalledCapacity

Renewables

Nuclear

Fossilfuels

Page 57: RENEWABLES GLOBAL FUTURES REPORT - REN21

57

29.Meeting the Balance of Electricity Supply and Demand in Latin America and the Caribbean(TheWorldBank,2011)ScenarioDescriptionThereportprovidesanassessmentoftheelectricitysectorinLatinAmericaandtheCaribbeanto2030.Itevaluatescriticalissuessuchastheexpectedriseinelectricitydemand,thesupplyofnewgeneratingcapacitythatisrequired,thetechnologyandfuelmixneededtoprovidethatgeneratingcapacity,andthecarbondioxideemissionsofthepowersector.Thereportalsoexaminestheimportantrolesofhydropowerandnaturalgas,waystoexpandothercleanandlow‐carbonresources,thepotentialandbenefitsofgreaterelectricitytrade,andtheroleofenergyefficiency.Thereportpresentsabaselinescenario,theICEPAC(IllustrativeCountryExpansionPlansAdjustedandConstrained)Scenario,whichisbasedontheOLADE(OrganizaciónLatinoamericanadeEnergía)SUPER(SistemaUnificadodePlanificaciónEléctricaRegional)modelandwhichreflectscurrentcountryexpansionplansintheregion.Thescenariotakesintoaccounttherenewableenergysourceshydro,wind,biomass,andgeothermal.ThemainassumptionsaretheInternationalMonetaryFund’sGDPforecastsforeachcountryto2014,averageGDPgrowthof3%annuallyfor2015–2030,andanoilpriceofUS$100perbarrel.KeyProjections/ResultsBy2030,theregion’sdemandforelectricitywillreachnearly2,500TWh,upfromsome1,150TWhin2008.Thefutureelectricitymixisnotexpectedtochangesignificantlyduringtheoutlookperiod,withhydroremainingthemainenergysource.(SeeFigureX‐1.)However,areductioninhydropowerfrom58.6%in2008to50%in2030,willmeanadeclineintheoverallshareofrenewables,from1.6%to4.1%.Windisestimatedtogrowatthefastestpace,16.2%peryear.

By2030,theshareofnaturalgaswillincreasefrom22%to29.4%,andcoalfrom4.6%to7.9%.Nuclearexpansion(concentratedinArgentina)willbeminimal,from2.8%to4.2%.MeetingrisingelectricitydemandinLatinAmericaandtheCaribbeanwillrequiresignificantexpansionofpower‐generatingcapacity.Anestimated239GWofnewinstalledcapacitywillbenecessary,including97GWinBrazil,45GWintheSouthernCone,44GWinMexico,30GWintheAndeanZone,15GWinCentralAmerica,and7GWintheCaribbean.Hydropowerandnaturalgaswillprovidethemajorityofadditionalpowercapacity,at36%and35%respectively,duetotheirlowcosts.Otherrenewables,mainlybiomassandwind,willprovide8%ofthenewinstalledcapacitywhatislessthancoal(11%).(SeeFigureX‐2.)

37 42

3 4

60 54

0

20

40

60

80

100

2008 2030

FigureX‐1.ShareofPrimaryEnergySourcesinElectricityGeneraUoninLaUnAmericaandthe

Caribbean

Renewables

Nuclear

Fossilfuels

Page 58: RENEWABLES GLOBAL FUTURES REPORT - REN21

58

InvestmentinnewgenerationcapacityisestimatedtobeaboutUS$430billionbetween2008and2030.Thereportnotesthatthecontributionofnon‐hydrorenewablestotheregion’sfutureelectricitymixisincreasing,buttheirfullpotentialremainsunderexploited.Theregionishometolargerenewableresources,includingwindinArgentina,hydroelectricityandbiomass(suchassugarcanebagasse)inBrazil,geothermalinCentralAmerica,andubiquitoussolarresources.Theserenewablescouldprovidebetween15%and30%ofthetotalelectricitysupplyin2030withdevelopmentofthetechnologies,energyefficiencyimprovements,andincreasingregionalelectricitytradelinkingcountriesandregions,whichwouldallowfortheoptimizationofelectricitysuppliestohelpaddressthevariabilityofnewrenewables.Withregardtorenewableenergypotentialsintheregion,thereportnotes:• Windappearstohavethelargestpotentialofthenewrenewablesoverthecomingtwodecades.

Variationsinwindandhydroelectricoutputarelargelyindependentofoneanother,which,togetherwiththestoragecapabilitiesofhydropowerdams,makethemcomplementary.

• Biomass,particularlyresiduesfromthesugarindustry,currentlyprovidesasignificantamountof

electricityinBrazilandcouldmakeafurthercontributionthereandelsewhereinthefuture.• Geothermalpotentialishighlyuncertainbecauseoflimitedexploratorydrilling.Thegreatestpotential

isconcentratedalongthetectonicallyactivePacificRimfromMexicotoChileandinsomeCaribbeanislands.

• Solarpower,mainlysolarthermal(CSP)power,willrequirebreakthroughstoreducecostsifitisto

contributesignificantlytogrid‐suppliedelectricityinthenext20years.

86

1010

0

20

40

60

80

100

120

Renewables

FigureX‐2.NewlyAddedCapacityfromRenewablesinLaUnAmericaandthe

Caribbean,2008–30

Geothermal

Wind

Biomass

Hydro

GW

Page 59: RENEWABLES GLOBAL FUTURES REPORT - REN21

59

30.Renewable Electricity Futures Study,volumes1to4(NationalRenewableEnergyLaboratory(NREL),2012)ScenarioDescriptionThestudyassessesavarietyofscenariosthataimforspecificlevelsofrenewableelectricitygenerationin2050(from30%to90%),althoughtheprimaryfocusison80%renewablepower,withnearly50%ofthiscomingfromwindandsolarPV.ItidentifiesthecharacteristicsofaU.S.electricitysystemthatwouldbeneededtoaccommodatesuchlevels,anddescribessomeofthechallengesandimplicationsofrealizingsuchafuture.Becausethefocusofthereportisongridintegrationandnotonthepotentialadvancesofspecifictechnologies,thescenariosconsideronlycommerciallyavailabletechnologiesasof2010,includingwind,PV,solarthermal(CSP),hydropower,geothermal,andbiomass.Thestudyomitstechnologiessuchasenhancedgeothermalsystems,oceanenergytechnologies,floatingoffshorewindtechnology,andothersthatarecurrentlyunderdevelopmentorpilottesting.Thereportmodelsandanalyzesmorethantwodozenscenarios,basedonlowandhighdemandbaselines.Thelow‐demandbaselineassumestheadoptionofenergyefficiencymeasuresandimprovementsintechnologycostandperformance.Thehigh‐demandbaselinerepresentsabusiness‐as‐usualcasethatassumesnoradicalchangesinavailabletechnologiesorconsumerbehavior,andnoenactmentofnewregulationsorlaws.Theprimaryfocusison80%shareofelectricityfromrenewablesources,withthefollowingscenariosapplyingthelowelectricitydemandassumptions:• TheNoRETechnologyImprovement(80%RE‐NTI)scenarioassumesthattheperformancesofthe

consideredrenewabletechnologieswillbemaintainedattheir2010level.• TheIncrementalRETechnologyImprovement(80%RE‐ITI)scenarioreflectsonlypartialachievementof

thefuturetechnicaladvancementsthatmaybepossible.• TheEvolutionaryRETechnologyImprovement(80%RE‐ETI)scenarioreflectsamorecomplete

achievementofpossiblefuturetechnicaladvancements.However,furthertechnicaladvancementsbeyondtheRE‐ETIarepossible.

• TheConstrainedTransmissionscenarioevaluateshowlimitstobuildingnewtransmissionmightimpact

thelocationandmixofrenewableresourcesusedtomeetan80%‐by‐2050future.• TheConstrainedFlexibilityscenarioseekstounderstandhowinstitutionalconstraintstoandconcerns

aboutmanagingthevariabilityofwindandsolarresources,inparticular,mightimpacttheresourcemixofachievingan80%‐by‐2050future.

• TheConstrainedResourcesscenarioassumesthatenvironmentalorotherconcernsmayreducethe

developablepotentialformanyoftherenewabletechnologiesinquestion,andevaluateshowsuchconstraintscouldimpacttheresourcemixofrenewableenergysupply.

Thestudy’smainassumptionsareannualaverageGDPgrowthof2.4%andpopulationgrowthof0.9%.Mostofthescenariosalsoassumetheadoptionofenergyefficiency(includingelectricity)measuresintheresidential,commercial,andindustrialsectors,whichresultinflatdemandgrowthoverthe40‐yearstudyperiod.Mostscenariosassumeashiftofsometransportationenergyawayfrompetroleumandtowardelectricityintheformofelectricandplug‐inhybridelectricvehicles.Thestudyalsoassumesimprovementsinelectricsystemoperationstoenhanceflexibilityinbothelectricitygenerationandend‐usedemand,as

Page 60: RENEWABLES GLOBAL FUTURES REPORT - REN21

60

wellasexpandedtransmissioninfrastructureandaccesstoexistingtransmissioncapacity.Mostscenariosassumeprojectsitingandpermittingregimesthatallowforrenewableelectricitydevelopmentandtransmissionexpansionsubjecttostandardland‐useexclusions.Toaddressthevariabilityanduncertaintyassociatedwithintegratinghigherlevelsofrenewables,thereportnotestheneedtoincreasetheoverallflexibilityofthepowersystemthroughmeasuressuchasenergystorage,demandresponse,andmore‐flexibleconventionalfossilpowerplants.Thestudydoesnottakeintoaccounttherapiddevelopmentofdomesticunconventionalnaturalgasresourcesthathascontributedtohistoricallylownaturalgasprices.Thestudyemploystwomodels;theNRELRegionalEnergyDeploymentSystem(ReEDS),whichexplorestheadequacyofgeographicallydiverseU.S.renewableresourcestomeetelectricitydemandoverfuturedecades,andtheABBmodelGridView,whichexploresthehourlyoperationoftheU.S.gridwithhighlevelsofvariablesolarPVandwindgeneration.KeyProjections/ResultsAccordingtotheanalysis,U.S.electricitydemandwillincreasefrom3,700TWhin2008to3,920TWhinthelowdemandbaselineand5,100TWhinthehighdemandbaseline,in2050.Themainconclusionisthatrenewablepowerfromtechnologiesthatarecommerciallyavailabletoday,incombinationwithamoreflexibleelectricsystem,ismorethanadequatetosupply80%ofU.S.electricitygenerationin2050whilemeetingelectricitydemandonanhourlybasisineveryregionofthecountry.Agreenelectricitysystemisnotonlypossible,buttheabundanceanddiversityofU.S.renewableresourcescansupportmultiplecombinationsofrenewabletechnologies.(SeeTableY‐1.)Thereisnoinsurmountablelong‐termconstrainttotechnologymanufacturingcapacity,materialssupply,orlaboravailability.TableY‐1.EstimatedInstalledCapacityPotentialofRenewableEnergyintheUnitedStatesRenewableEnergySource PotentialInstalledCapacity(GW)Biomass 100Geothermal 500Hydro 152–228Utility‐scalesolarPV 80,000RooftopsolarPV 37,000Solarthermal(CSP) 700Wind 10,000

However,suchatransitionwouldrequireatransformationoftheelectricitysystemthatinvolveseveryelementofthegrid,fromsystemplanningthroughoperation.Itwouldneedtoensureadequateplanningandoperatingreserves,increasedflexibilityoftheelectricsystem,andexpandedmulti‐statetransmissioninfrastructure,andwouldlikelyrelyonthedevelopmentandadoptionoftechnologyadvances,newoperatingprocedures,evolvedbusinessmodels,andnewmarketrules.Themostimpactfulleverforreducingthecostofthistransitionisimprovementinthecostandperformanceofrenewabletechnologies.FiguresY‐1andY‐2showtheinstalledcapacityandgenerationmixin2050fordifferentlevelsofelectricitygeneratedfromrenewables(thelow‐demandbaselinecase,andundertheRE‐ITItechnologyimprovementscenario,whichisarelativelyconservativescenarioreflectingonlypartialachievementofthefuturetechnicaladvancementsthatmaybepossible).

Page 61: RENEWABLES GLOBAL FUTURES REPORT - REN21

61

FigureY‐1

FigureY‐2

Windpower,particularlyonshore,hasthegreatestpotential:ofthe1,390GWcapacityrequired,underthe90%renewableenergyRE‐ITIscenario,517GWiswind.Thisscenarioalsoincludes102GWofCSPinstalledcapacityin2050.TableY‐2showsthedeploymentofrenewableinstalledcapacity(inGW)in2050under80%renewableenergyscenarios:TableY‐2

Different80%Scenarios

Low‐Demand High‐Demand

RE‐NTI

RE‐ITI RE‐ETI ConstrainedTransmission

ConstrainedFlexibility

ConstrainedResources

High‐DemandRenewables

DedicatedBiopower

80 82 83 84 81 40 84

Co‐firedBiopower

13 13 11 14 14 11 16

Hydrothermal 25 24 24 24 24 12 24SolarPV 90 168 171 294 149 203 421CSP 1 56 126 33 89 120 79

Rene

wab

leEne

rgy

Sources

Onshore 441 349 330 280 322 395 463

Page 62: RENEWABLES GLOBAL FUTURES REPORT - REN21

62

Biomasspowerissignificantinall80%renewableenergyscenariosmodeled,excludingtheConstrainedResourcesscenario.Biomassdeploymentshowslittlevariationamongtheothersix80%‐renewablesscenarios,duetothelimitedfeedstocksupply.Geothermalissimilarinmanyofthescenariosbecauseofthelimitedresourcesupply.UseofsolarpowerislinkedlargelytofuturereductionsinthecostsofPVandCSP.Additionally,PVusewillincreaseandCSPwilldecreaseiftransmissionexpansionislimitedduetothegreaterlocation‐dependenceofCSPresources.CSPusewillincreaseandPVwilldecreaseifinstitutionalflexibilityislimitedduetothevariabilityanduncertaintyinherentinPVsystemswithoutstorage.Windenergytechnologiesplayasignificantroleinallrenewablefuturesscenarios.Amongthelow‐demand80%‐renewablescenarios,winddeploymentisgreatestwhennocostorperformanceimprovementsareassumed(80%RE‐NTIscenario)foranyrenewabletechnology,duetothefactthatwindisarelativelymaturerenewablestechnology.OffshorewindrealizesthegreatestinstalledcapacityintheConstrainedTransmissionscenario,with185GWdeployedby2050,becauseofthefacilities’proximitytoloadcentersontheEastCoast,whichreducesnewtransmissionrequirements.Thestudymakesnumerousprojectionsabouttheflexibilityofthepowersystem.Concerningstorage,itfocusesonthreedifferenttechnologiesthatcanprovideenergymanagementservicesorstoreanddischargecontinuouslyfor8–15hours:high‐energybatteries,pumped‐storagehydropower(PSH),andcompressedairenergystorage(CAES).Thereportestimatesthetotalamountofstoragedeployed,butnottheshareofeachtechnologytype.Batterydeploymentisexpectedtobelimitedduetothehighcostandassumedminimalcostreduction,aswellastoalackofvaluationofthebenefitstothedistributionsystem.MostofthenewstorageisprojectedtobeCAES,notPSH,withthedevelopablepotentialofnewPSHat35GWandofCAESatmorethan120GW.Theroleofvehicle‐to‐grid(V2G)isnotexplicitlyevaluated.Thereportincludesthevalueofcontrolledcharging,butbecauseofuncertaintyintheultimateacceptanceamongoriginalequipmentmanufacturers,utilities,andconsumers,thepotentiallyverylargeroleofV2GhasnotbeentakenintoaccountNotsurprisingly,thestudynotesthatthemorerenewables,inparticularvariablerenewables,thataredeployed,themorestoragecapacitywillbeneeded.(SeeFigureY‐3.)By2050,storagecapacityisestimatedat28GWintheLow‐DemandBaselinescenario,31GWinthe30%‐renewablesscenario,74GWinthe60%scenario,and142GWinthe90%scenario

OnshoreWind

441 349 330 280 322 395 463

OffshoreWind

115 112 56 185 100 103 141

TOTAL 765 804 801 914 779 884 1,228

Page 63: RENEWABLES GLOBAL FUTURES REPORT - REN21

63

FigureY‐3.

Intheframeworkofthe80%scenarios,between80and131GWofnewstoragecapacitywillbeinstalledby2050inadditiontothe20GWofexisting(PSH)storagecapacity.(SeeFigureY‐4.)FigureY‐4

TheConstrainedFlexibilityscenario,whichtakesintoaccountgreaterinstitutionalandtechnicalbarrierstomanagingvariablegeneration,projectsthegreatestlevelofstoragedeployment,at152GWofinstalledstoragecapacityby2050.Thelowestlevelisfoundunderthe80%RE‐ETIscenario,whichincludeshighlevelsofCSPusewiththermalstorageandacorrespondingloweruseofvariablegenerationtechnologies.Conversely,greaterwinduseinthe80%RE‐NTIscenarioandgreaterwindandPVuseinthehigh‐demand80%renewableenergyscenariorequirehighlevelsofstoragedeployment.Withregardtodemandresponse,thereportconsidersafairlylimitedsetofoptions:• Interruptibleload(forprovisionofoperatingreserves)isconsideredusingregionalsupplycurvesbased

inlargemeasureonFERC(2009).Annualinterruptibleloadresourceavailabilityisbasedonapercentageofpeakdemandwithinaregion,andisassumedtogrowfromarangeof1%–8%in2010,to11%–17%in2030and16%–24%in2050.

• Newcontrollableloadscouldabsorbotherwiseunusablevariablegenerationoutput.Thestudynotably

dealswithschedulingchargingofelectricvehicles,sothatelectricityconsumptionattherechargestationwouldincreaseordecreaseaccordingtothenetsupplyofrenewableresources.Thereportsthusassumesthatasubstantialfraction(~40%)ofthepassengertransportationfleettransitionstoelectricandplug‐inelectricvehiclesby2050(inthelow‐demandprojection)andthatofthe356TWhofelectricvehicleloadin2050,165TWhwilloperateunderutility‐controlledcharging.TheremainingEVloadnotunderutilitycontrolisassumedtohaveadailychargingprofilethatpeaksduringeveninghours.

• Demand‐sidethermalenergystorageincommercialbuildingsisalsoconsidered.Inparticular,chilled

waterandicestoragecoolingcapableofshiftingairconditioningloadsarerepresented.

Different80%Scenarios

Low‐Demand High‐Demand

RE‐NTI

RE‐ITI RE‐ETI ConstrainedTransmission

ConstrainedFlexibility

ConstrainedResources

High‐DemandRenewables

DedicatedBiopower

142 122 100 129 152 131 136

Page 64: RENEWABLES GLOBAL FUTURES REPORT - REN21

64

Withregardtotheflexibilityofconventionalfossilpowerplants,thereportassumesthatexistingandfutureplantscouldbeusedtoprovideincreasedsystemflexibility.Newergeneratorshavethecapabilitytohavefasterramprates,largerrampranges,andminimalpart‐loadheat‐ratedegradation,whichenhancestheabilityofsuchunitstofollowload.Insomecases,existingequipmentcanalsobemodifiedtoenhanceflexibility.Naturalgas‐fueledassetsarenormallymore‐flexibleresources,andtakingfulladvantageoftheirflexibilitymayinvolvenewoperationalpractices,includingadditionalgasstorage.Asrenewableelectricitysupplygrows,greaterinvestmentsintransmissionandgridinterconnectionwillbeneeded.(SeeFigureY‐5.)TheLow‐DemandBaselinescenariorequires5.1millionMW‐milesofnewtransmissionlinesandUS$1.8billionofinvestmentsperyear,whereasthe90%REscenariorequires197millionMW‐milesandUS$8.3billionperyear.FigureY‐5.

Asdemandincreases,variablewindandPVwillbedeployedtoagreaterextentinabsoluteandpercentagetermsduetotheirgreateravailability.Asaconsequence,additionalflexiblesupply‐anddemand‐sidetechnologies,suchasstoragefacilities,naturalgascombustionturbinepowerplants,andinterruptibleload,willbedeployedandgreatertransmissionexpansionwillbeneededtoconnectremotelylocatedrenewableresourcesofalltypes.

Page 65: RENEWABLES GLOBAL FUTURES REPORT - REN21

65

31.Annual Energy Outlook 2012(U.S.DepartmentofEnergy,EnergyInformationAdministration(USDOEEIA),2012)ScenarioDescriptionThereportpresentslong‐termprojectionsofenergysupply,demand,andpricesintheUnitedStatesthrough2035.ThesearebasedonresultsfromtheEIA’sNationalEnergyModelingSystem(NEMS),whichincludesmodulesrepresentingtheindividualsupply,demand,andconversionsectorsofdomesticenergymarkets,aswellasinternationalandmacroeconomicmodulessuchasGDP,disposableincome,valueofindustrialshipments,newhousingstarts,salesofnewlight‐dutyvehicles,interestrates,andemployment.TheanalysisassumesGDPgrowthof2.5%annuallyfrom2010to2035,energyintensitygrowthof‐2.1%annuallyduringthisperiod,andanoilpriceofUS$145perbarrelin2035.KeyProjections/ResultsAccordingtothestudy,U.S.energyconsumptionwillgrowatanaverageannualrateof0.3%from2010to2035(anoverallincreaseofabout9%)toreach106.93quadrillionBTU.FossilfuelswillstilllargelydominatetheAmericanenergymix,althoughtheirsharewilldecreaseslightlyfrom84%to81%duringtheoutlookperiod,duemainlytoalesseningrelianceonoil.(SeeFigureZ‐1.)Theshareofnaturalgaswillincreaseduetorisingexploitationofshaleresources.Thedecliningshareoffossilfuelswillbeoffsetbytheincreasingshareofrenewableenergy,from7%to11%.Nuclear’ssharewillremainunder10%.

Electricitygenerationwillincreasebynearly21%.Theshareofcoalwilldecreasesignificantlyfrom45%in2010to38%in2035.Thisdecreasewillbeoffsetfirstbygenerationfromrenewables,whichwillincrease2.3%annuallyonaveragetoreachanapproximately15%shareofU.S.electricityby2035,andthenbynaturalgas,whichwillachievea28%share(up4pointsover2010).(SeeFigureZ‐2.)Renewablesinstalledcapacityinthepowersector(poweronly)willincreasefrom125.2GWin2010to169.3in2035,torepresent16%(up3pointsover2010)ofU.S.installedcapacity.

38 35

25 26

21 20

9 97 11

0

20

40

60

80

100

2010 2035

FigureZ‐1.ShareofPrimaryEnergySourcesinU.S.TotalEnergyConsumpUon

Renewables

Nuclear

Coal

Naturalgas

Liquids

Page 66: RENEWABLES GLOBAL FUTURES REPORT - REN21

66

Totalrenewablesinstalledcapacityinallsectorswillincrease50%,fromabout134GWin2010tonearly201GWin2035.(SeeFigureZ‐3.)Solarwillhavethefastestannualgrowthintermsofbothinstalledcapacity(8.6%)andgeneration(9.6%)duringtheoutlookperiod.

70 67

20 18

10 15

0

20

40

60

80

100

2010 2035

FigureZ‐2.ShareofPrimaryEnergySourcesinU.S.ElectricityGeneraUon

Renewables

Nuclear

Fossilfuels

78 82

11 2039

70

623

0

50

100

150

200

2010 2035

GW

FigureZ‐3.CumulaUveRenewableEnergyCapacityintheUnitedStates

SolarPV

Geothermal

Wind

Biomass

Hydro

Page 67: RENEWABLES GLOBAL FUTURES REPORT - REN21

67

32.Energy [R]evolution: A Sustainable (United States) Energy Outlook(GreenpeaceandEuropeanRenewableEnergyCouncil(EREC),2010)ScenarioDescriptionThescenariousesabottom‐up,technology‐drivenapproachtoillustratethepossibilityof100%renewablepowerintheUnitedStatesby2050.Itpresentsthreedistinctscenarios:aReferencescenario,anEnergy[R]evolutionscenario(EREV),andanAdvancedEnergy[R]evolutionscenario(AEREV).ThetwoEnergy[R]evolutionscenarioslookatthepotentialoffirstreducingelectricitydemandthroughenergyefficiencyandthenprovidingelectricitythroughdecentralizedrenewablesources.Itexplorestheuseofsmartgridsandexpandedsupergridsasawaytoconnectthedecentralizedsystems.Inthetransportsector,themainevolutionsaresignificantdevelopmentofhybrid/electricvehiclesby2050andtheuseofbiofuels.Nuclearenergyistobephasedoutby2050.ThemainassumptionsareaU.S.populationofabout404million,anaveragecrudeoilpriceofaboutUS$150perbarrelin2050,andacoalpriceofaboutUS$172.3pertonnein2050.KeyProjections/ResultsInboth“revolution”scenarios,U.S.energydemandwilldecreasetoapproximately59,000PJperyearin2050,asaresultofenergyefficiencymeasures,thephasingoutofnuclear,andreduceddependenceonfossilfuels.Meanwhile,theshareofrenewableenergywillincreaseconsiderably.By2050,renewableswillaccountfor71%ofU.S.primaryenergydemandundertheEREVscenario,and87%undertheAEREVscenario.(SeeFigureAA‐1.)

By2050,renewableswillaccountfor99%ofU.S.electricityundertheAEREVscenario,andmorethan96%undertheEREVscenario,reflectingthefactthatarenewables‐basedfutureispossible.(SeeFigureAA‐2.)Wind,solarthermal,andsolarPVwillrepresentsome62%oftotalgeneration,andrenewableswillprovide74%oftotalheat,mainlyfrombiomassandsolarcollectors.

85 7965

5374

2913

910

11

11

5 1135

46

14

7187

0

20

40

60

80

100

Ref EREV AEREV Ref EREV AEREV

2007 2030 2050

FigureAA‐1.ShareofPrimaryEnergySourcesinU.S.EnergyDemand

Renewables

Nuclear

Fossilfuels

Page 68: RENEWABLES GLOBAL FUTURES REPORT - REN21

68

Intermsofinstalledcapacity,solarPVwillhavethebiggestgrowth,reachingnearly800GWintheEREVscenarioand900GWintheAEREVscenario.Windwillfollow,andsolarthermalwillalsoshowsignificantgrowth.Inthereferencescenario,windwillpasshydroasthemainrenewableenergysource.(SeeFigureAA‐3.)

72 6441 21

61

4 1

19 18

11

179 18

58 78

22

96 99

020406080100

Ref EREV AEREV Ref EREV AEREV

2007 2030 2050

FigureAA‐2.ShareofPrimaryEnergySourcesinU.S.ElectricityGeneraUon

Renewables

Nuclear

Fossilfuels

100 102 146 146 106 153 158118401 584

178521 67843

69 81102

35

387450

70

787896

167

282

261

335

57

108

225

0

500

1000

1500

2000

2500

Ref EREV AEREV Ref EREV AEREV

2007 2030 2050

FigureAA‐3.CumulaUveRenewableEnergySourcesintheUnitedStates

Ocean

Solarthermal

SolarPV

Geothermal

Wind

Biomass

Hydro

GW

Page 69: RENEWABLES GLOBAL FUTURES REPORT - REN21

69

33.Climate 2030: A National Blueprint for a Clean Energy Economy(UnionofConcernedScientists,2009)ScenarioDescriptionThereportaimstoprovideacomprehensivesetofsmartpolicies(“theBlueprintpolicies”)thatwouldhelptheUnitedStatestransitiontoagreenerandmoresustainableeconomy.Thesepoliciesincludeaneconomy‐widecap‐and‐tradeprogram(withauctioningofallcarbonallowances)combinedwithminimumfederalenergyefficiencystandardsforspecificappliancesandequipment,advancedenergycodesandtechnologiesforbuildings,andarenewableelectricitystandardforretailelectricityproviders.Ifthesepoliciesarepursued,thereportconcludesthatU.S.heat‐trappingemissionswilldecrease56%in2030comparedtotheir2005level.Thereportexplorestwomainscenarios;aReferenceone,whichassumesnonewclimate,energy,ortransportationpoliciesbeyondthoseinplaceasofOctober2008,andaBlueprintone,whichresultsfromthepoliciesdescribedaboveandthatincludesonlytechnologiesthatarecommerciallyavailabletodayorlikelytobeavailablewithinthenexttwodecades.Thus,theanalysisexcludestechnologiessuchasthin‐filmsolar,waveandtidalpower,advancedstorageandsmartgridtechnologies,dramaticexpansionofall‐electriccarsandtrucks,andbreakthroughsinthird‐generationbiofuels.ThestudyreliesonamodifiedversionoftheU.S.DepartmentofEnergy’sNationalEnergyModelingSystem,whichhasbeensupplementedwithananalysisoftheimpactofgreaterenergyefficiencyinindustryandbuildingsbytheAmericanCouncilforanEnergyEfficientEconomy,andresultsfromresearchonthepotentialforcropsandresiduestoprovidebiomassenergy.KeyProjections/ResultsWithimplementationoftheBlueprintpolicies,whichstimulatesignificantconsumer,business,andgovernmentinvestmentsinnewtechnologiesandmeasuresby2030,U.S.energyusewilldecreasebyone‐thirdby2030,withassociatedreductionsincarbonemissions.Consumersandbusinesseswillreapsignificantnetsavings,whiletheUnitedStateswillseestrongGDPgrowthof81%between2005and2030(only3pointslessthanintheReferencescenario).Theresultingsavingsonenergybillsfromreductionsinelectricityandfuelusewillmorethanoffsetthecostsoftheseadditionalinvestments.Thecarbonpricewillberelativelylow,withcarbonallowancesreachingUS$70in2030(in2006dollars).By2030,theuseofrenewableenergyfromwind,solar,geothermal,andbiomasswillincrease25%,tosupply40%ofU.S.electricity.Renewableelectricityuseinadvancedvehiclessuchasplug‐inhybridswillalsobegintogrowsignificantlyby2030.