remote field testing

8
 Remote Field Testing (RFT) Remote Field Testi ng or "RFT" is one of several electromagnetic testing methods co mmonly employed in the field of nondestructive testing. Other electromagnetic inspection methods include magnetic flux leakage, conventional eddy current and alternating current field measurement testing. Remote field testing is associated with eddy current testing and the term "Remote Field Eddy urrent Te sting" is often used when descri!ing remote field testing. owever, there are several ma#or differences !etween eddy current testing and remote field testing which will !e noted in this section. RFT is primarily used to inspect ferromagnetic tu!ing since conventional eddy current techni$ues have difficulty inspecting the full thickness of the tu!e wall due to the strong skin effect in ferromagnetic materials. For example, using conventional eddy current !o!!in pro!es to inspect a steel p ipe %& mm thick 'such as what might !e found in heat exchangers( would re$uire fre$uencies around )& * to achieve the ade$uate +.. to O.. penetration through the tu!e wall. The use of such a low fre$uency results in a very low sensitivity of flaw detection. The deg ree of penetration can, in  principle, !e increased !y the use of partial saturation eddy current pro!es, magnetically !iased  pro!es, and pulsed saturation pro!es. owever, !ecause of the larg e volume of metal present as well as potential permea!ility variations within the product, these speciali*ed edd y current  pro!es are still limited in their i nspection capa!ilities. The difficulties encountered in the testing of ferromagnetic tu!es can !e greatly alleviated with the use of the remote field testing method. The RFT method has the advantage of allowing nearly e$ual sensitivities of detection at !oth the inner and outer surfaces of a ferromagnetic tu!e. The method is highly sensitive to variations in wall thickness and tends to !e less sensitive to fill-factor changes !etween the coil and tu!e. RFT can !e used to inspect any conducting tu!ular product, !ut it is gene rally considered to f" RFT Theory of Operation / pro!e consisting of an exciter coil and one or more detectors is pulled through the tu!e. The exciter coil and the detector coil's( are rigidly fixed at an axial distance of two tu!e diameters or

Upload: arfan-ali-dhamraho

Post on 04-Nov-2015

9 views

Category:

Documents


0 download

DESCRIPTION

Remote Field Testing

TRANSCRIPT

Remote Field Testing (RFT)Remote Field Testing or "RFT" is one of several electromagnetic testing methods commonly employed in the field of nondestructive testing. Other electromagnetic inspection methods include magnetic flux leakage, conventional eddy current and alternating current field measurement testing. Remote field testing is associated with eddy current testing and the term "Remote Field Eddy Current Testing" is often used when describing remote field testing. However, there are several major differences between eddy current testing and remote field testing which will be noted in this section.RFT is primarily used to inspect ferromagnetic tubing since conventional eddy current techniques have difficulty inspecting the full thickness of the tube wall due to the strong skin effect in ferromagnetic materials. For example, using conventional eddy current bobbin probes to inspect a steel pipe 10 mm thick (such as what might be found in heat exchangers) would require frequencies around 30 Hz to achieve the adequate I.D. to O.D. penetration through the tube wall. The use of such a low frequency results in a very low sensitivity of flaw detection. The degree of penetration can, in principle, be increased by the use of partial saturation eddy current probes, magnetically biased probes, and pulsed saturation probes. However, because of the large volume of metal present as well as potential permeability variations within the product, these specialized eddy current probes are still limited in their inspection capabilities. The difficulties encountered in the testing of ferromagnetic tubes can be greatly alleviated with the use of the remote field testing method. The RFT method has the advantage of allowing nearly equal sensitivities of detection at both the inner and outer surfaces of a ferromagnetic tube. The method is highly sensitive to variations in wall thickness and tends to be less sensitive to fill-factor changes between the coil and tube. RFT can be used to inspect any conducting tubular product, but it is generally considered to f"> RFT Theory of OperationA probe consisting of an exciter coil and one or more detectors is pulled through the tube. The exciter coil and the detector coil(s) are rigidly fixed at an axial distance of two tube diameters or more between them. The exciter coil is driven with a relatively low frequency sinusoidal current to produce a magnetic field.

This changing magnetic field induces strong circumferential eddy currents which extend axially, as well as radially in the tube wall.

These eddy currents, in turn, produce their own magnetic field, which opposes the magnetic field from the exciter coil. Due to resistance in the tube wall and imperfect inductive coupling, the magnetic field from the eddy currents does not fully counterbalance the magnetic exciting field. However, since the eddy current field is more spread out than the exciter field, the magnetic field from the eddy currents extends farther along the tube axis. The interaction between the two fields is fairly complex but the simple fact is that the exciter field is dominant near the exciter coil and the eddy current field becomes dominant at some distance away from the exciter coil.

The receiving coils are positioned at a distance where the magnetic field from the eddy currents is dominant. In other words, they are placed at a distance where they are unaffected by the magnetic field from the exciter coil but can still adequately measure the field strength from the secondary magnetic field. Electromagnetic induction occurs as the changing magnetic field cuts across the pick-up coil array. By monitoring the consistency of the voltage induced in the pick-up coils one can monitor changes in the test specimen. The strength of the magnetic field at this distance from the excitation coil is fairly weak but it is sensitive to changes in the pipe wall from the I.D. to the O.D.

RFT Theory of Operation (cont.)The Zones

Direct Couple ZoneThe region where the magnetic field from the exciter coil is interacting with the tube wall to produce a concentrated field of eddy currents is called the direct field or direct coupled zone. This zone does not contribute a great deal of useful data to the RFT inspection due to problems with rather high noise levels due to the intense varying magnetic field from the excitation coil.Transition ZoneThe region just outside the direct couple zone is known as the transition zone. In this zone there is a great deal of interaction between the magnet flux from the exciter coil and the flux induced by the eddy currents. As can be seen in the graph, the interaction of the two opposing fields is strongest near the ID of the tube and fairly subtle at the OD of the tube. The "resultant" field strength (the magnetic field at the sum of the two fields) in this region tends to change abruptly on the ID due to the interaction of the fields with differing directional characteristics of the two fields.

The receiver coil's signal phase, with respect to the exciter coil, as a function of distance between the two coils is also shown in the graph. When the two coils are directly coupled and there is no interference from a secondary field, their currents are in phase as seen at location zero. In the transition zone, it can be seen that the phase swiftly shifts, indicating the location where the magnetic field from the eddy currents becomes dominate and the start of the remote field.Remote Field ZoneThe remote field zone is the region in which direct coupling between the exciter coil and the receiver coil(s) is negligible. Coupling takes place indirectly through the generation of eddy currents and their resulting magnetic field. The remote field zone starts to occur at approximately two tube diameters away from the exciter coil. The amplitude of the field strength on the OD actually exceeds that of the ID after an axial distance of approximately 1.65 tube diameters. Therefore, RFT is sensitive to changes in material that occur at the outside diameter as well as the inside diameter of the tube.RFT InstrumentationInstruments used for RFT inspection are often dual use eddy current / RFT instruments employing multi-frequency technology. The excitation current from these instruments is passed on to the probe that contains an exciter coil, sometimes referred to as the driver coil. The receiving coil voltage is typically in the microvolt range, so an amplifier is required to boost the signal strength.Certain systems will incorporate a probe excitation method known as multiplexing. This utilizes an extreme high speed switching method that excites the probe at more than one frequency in sequence. Another method of coil excitation that may be used is simultaneous injection. In this coil stimulation technique, the exciter coil is excited with multiple frequencies at the same time while incorporating filter schemes that subtract aspects of the acquired data. The instrument monitors the pickup coils and passes the data to the display section of the instrument. Some systems are capable of recording the data to some type of storage device for later review.

RFT Signal InterpretationThe signals obtained with RFT are very similar to those obtained with conventional eddy current testing. When all the proper conditions are met, changes in the phase of the receiver signal with respect to the phase of the exciter voltage are directly proportional to the sum of the wall thickness within the inspection area. Localized changes in wall thickness result in phase and amplitude changes. These changes can be indicative of defects such as cracks, corrosion pitting or corrosion/erosion thinning.

RFT Reference StandardsReference standards for the RFT inspection of tubular products come in many variations. In order to produce reliable and consistent test results, the material used for manufacturing calibration standards must closely match the physical and chemical properties of the inspection specimen. Some of the important properties that must be considered include conductivity, permeability and alloy content. In addition, tube dimensions including I.D., O.D. and wall thickness must also be controlled.The type of damage mechanisms that are expected to be encountered must also be carfully considered when developing or selecting a reference standard. In order to get accurate quantitative data, artificial discontinuity conditions are typically machined into the standards that will closely match those conditions that may be found in the tubing bundle.