reducing highway construction fatalities through improved … · 2020. 7. 18. · highway...

75
8484 Georgia Avenue Suite 1000 Silver Spring, MD 20910 phone: 301.578.8500 fax: 301.578.8572 www.cpwr.com www.elcosh.org Reducing Highway Construction Fatalities Through Improved Adoption of Safety Technologies Chinweike Eseonu John Gambatese Chukwuma Nnaji Oregon State University March 2018

Upload: others

Post on 10-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 8484 Georgia Avenue

    Suite 1000

    Silver Spring, MD 20910

    phone: 301.578.8500

    fax: 301.578.8572

    w w w. c p w r. c o m • w w w. e l c o s h . o rg

    Reducing Highway Construction Fatalities Through Improved Adoption of Safety Technologies

    Chinweike EseonuJohn GambateseChukwuma Nnaji

    Oregon State University

    March 2018

  • ©2018, CPWR-The Center for Construction Research and Training. All rights reserved. CPWR is the research and training arm of NABTU. Production of this document was supported by cooperative agreement OH 009762 from the National Institute for Occupational Safety and Health (NIOSH). The contents are solely the responsibility of the authors and do not necessarily represent the official views of NIOSH.

  • REDUCINGHIGHWAYCONSTRUCTIONFATALITIES

    THROUGHIMPROVEDADOPTIONOFSAFETY

    TECHNOLOGIESWorkZoneIntrusionAlertTechnology

    Submitted by: Chinweike Eseonu, Assistant Professor, School of Mechanical, Industrial

    and Manufacturing Engineering John Gambatese, Professor, School of Civil and Construction

    Engineering, Oregon State University Chukwuma Nnaji, PhD Candidate, School of Civil and Construction

    Engineering, Oregon State University

    Submittedto:TheCenterforConstructionResearchandTraining(CPWR)

    (CPWRSmallStudyNo.17‐4‐PS)

  • i | P a g e   

    TableofContents1.  Abstract ............................................................................................................................................... 1 2.  KeyFindings ........................................................................................................................................ 2 3.  Introduction ........................................................................................................................................ 3 4.  StudyGoalandObjectives .................................................................................................................. 5 5.  Methods ............................................................................................................................................... 5 6.  Accomplishmentsandresults,includingtheirrelevanceandpracticalapplication ..................... 6 7.  Changes/problemsthatresultedindeviationfromthemethods ................................................ 37 8.  Listofpresentations/publications .................................................................................................. 38 9.  Disseminationplan ........................................................................................................................... 38 10.  Conclusions ................................................................................................................................... 38 11.  FutureResearchOpportunities ................................................................................................... 39 12.  References ..................................................................................................................................... 40 13.  Appendix ....................................................................................................................................... 45 

  • 1 | P a g e   

    1. AbstractHighwayconstructioniscommonlyassociatedwithhighratesofworkeraccidents.Thesehighratesareoftenlinkedtotherequirementofworkincloseproximitytolivetrafficandheavydutyconstructionequipment.Existingtransportationresearchshowsthattechnologicalsolutions,likeWorkZoneIntrusionAlertTechnology(WZAIT)improveworkzonesafety.However,feworganizationsinthehighwayconstructionindustryhaveadoptedthesesafetytechnologies.Industryactorsreportconcernsabouttechnologyeffectiveness,costimplicationsadoptingnewtechnology,andlackoftechnologyfeature‐synergy.Fewstudieshaveexploredstrategiesforimprovingworkzonesafetytechnologyadoption,implementation,andeventualdiffusionacrossthehighwayconstructionindustry.Tofillthisgapinresearchandpractice,thisstudyattemptstodeveloptoolsandidentifyeffectiveprocessesthatcouldbeusedtoimprovetheadoptionofworkzonesafetytechnologiesusingworkzoneintrusiontechnologyasacasestudy.

  • 2 | P a g e   

    2. KeyFindingsI. Technological,individual,organizational,andexternalfactorsdeterminethe

    extenttowhichWZITadoptionissuccessfulandsustained.

    II. WZIATfinancialbenefitsoutweighassociatedcostsifthetechnologiescanpreventbetween12.6%and34%oftheintrusionaccidentsthatleadtoinjuriesandfatalities.

    III. Twenty‐onefactorsinfluenceWZIATadoption(Table4).Thesefactorsarelargelytechnology‐relatedandwereidentifiedthroughliteraturereviewandinterviewswithsubjectmatterexpertsemployedatcontractorfirmsanddepartmentsoftransportation.

    IV. Lackofsharedlanguage/meaning/criteriabetweenendusers(constructioncompanies)andtechnologymanufacturers/salespeople.Eachgroupprovideddifferentsafetytechnologyfeatureimportanceratings.

    V. LaborcostassociatedwithWZIATcontributesasignificantfractionoftotalimplementationcost.

    VI. Themostimportanttechnology‐basedfactorswere

    o workercomprehensionofwarningsignal,o adequatecoveragedistance,ando fewornofalsenegativeandfalsepositive.

    VII. Easeofuseandsubjectivenormarestrongpredictorsofaworker’sintentionto

    acceptandimplementaworkzoneintrusionalerttechnology

  • 3 | P a g e   

    3. IntroductionWorkZoneInjuriesandFatalities

    TheconstructionindustryhasthehighestworkerfatalitylevelsintheUnitedStates.Withinconstruction,highwayconstructionaccountsfor16%ofthesefatalities(BLS2017).Onaverage,thistranslatesto121annualworkzonefatalitiesbetween2005and2014,withonefatalityevery15hoursandoneworkzoneincident‐relatedinjuryoccurringevery16minutes(FHWA2017).Factorssuchasdriverdistraction,weather,androadwayconditionshavebeenidentifiedasmajorcausesofworkzoneaccidents.Thevolumeofhighwayconstructionandmaintenanceprojectsisexpectedtoincreaseaseconomicgrowthspurspublicandprivateinvestment.Thismeanstherearemoreworkzonesandincreasedprobabilityofharmtoworkersandmotorists.

    Figure1.Basichighwayconstructionworkzonelayout(AdaptedfromITSI,2011)

    Forthisreport,aworkzoneaccidentisanyincidentthatoccurswithinaworkzone.Thisincludesworkzoneapproachandexit.Existingresearchshowsthatmostcrashesoccurwithinthe“activityarea”(GarberandZhao,2002),whichiswheremostconstructionworkersarelocated.Activityareasinclude“work”,“traffic”,and“buffer”zones.Vehicleintrusionpastthechannelizingdevices(pictureinsertsinFigure1)isaprimarycauseofworkerfatalities.

  • 4 | P a g e   

    Figure2showsthatworker“runover”byintrudingvehiclesorconstructionequipmentistheprimarycauseofworkzonefatalities.Othercausesincludecollisionbetweenvehiclesandmobileequipment,andincidentsinwhichworkersarecaughtbetweenorstruckbyconstructionequipment.

    Figure2.Distributionbycauseoffatalitybetween2005and2014(n=1209)

    (AdaptedfromFHWA2017)

    HowdoesTechnologyaffectWorkZoneSafety?

    Recently,theFederalHighwayAdministration(FHWA)andotheragenciesimpactedbyworkzoneinjuriesandfatalitiesintroducedseveralprogramstohelpcurbworkzonefatalityrates.ExamplesofsuchprogramsaretheNationalWorkZoneAwarenessWeekandTurningPoint.Whilepost‐programassessmentsindicateworkzonefatalitieshavedecreased,annualmotorist‐induceddeathshaveremainedrelativelystagnant(Bello2009;Sant2014).Inresponse,regulatory,industry,andotheragenciesacrosstheUnitedStateshaveencouragedhighwayconstructionstakeholderstoadoptworkzonesafety.Thisapproachisbolsteredbyresearchthatshowssynergybetweentechnologyuseandimprovedworkersafety.

  • 5 | P a g e   

    Inpreparingthisreport,theOregonStateUniversityteamundertookadetailedliteraturereviewofover132articles.Therewasamarkedincrease–byabout700%–inworkzonesafetytechnology(WZST)researchbetween2002and2012.TherehasalsobeenanincreaseinWZSTproduction.Asaresult,thereisaneedtoassesswhyadoptionissignificantlylowerthanWZSTresearchanddevelopment.ExistingresearchhaslookedatWZSTperformanceasameansofassessingtheadoptionchallenge.Thisincludesworktoassesseffectivenessofproximitywarningsystems(Parketal.2015),truck‐mountedattenuators(UllmanandIragavarapu2014),andportablechangeablemessagesigns(GambateseandZhang2016).However,otherstudiesshowthatWZSTadoptionispersistentlylowbecause1)itisdifficulttoquantifytheholisticbenefitsofcertaintechnologiesusingadirectmeasureofeffectiveness(DMOE),2)returnoninvestment(ROI)andbenefit‐costanalyses(BCA)areoftennegativeorinconclusive,and3)thereareconflictingopinionsaboutWZSTusefulnessandeaseofuse(Fyhrie2016;Ederaetal.2013;Huebschmanetal.2003).WhileresponsestochallengeslikeROIarefocusedonmanagement,DMOEandopinionsabouteaseofuseandusefulnesscallforemployee/workerfocusedstrategies.ThefollowingsectionisfocusedonaWZST–WorkZoneintrusionalerttechnology(WZIAT)–thathasnotsuccessfullydiffusedacrossthehighwayconstructionindustry.

    WorkZoneIntrusionAlertTechnology

    Workzoneintrusionalerttechnologies(WZIATs)arealert‐producingdevicesusedtowarnworkerswithinanactivityareaofanimpendingaccidentcausedbyavehicleintrudingintotheworkzone.Theobjectiveistosecureadditionaltimeforworkerstoreactwhenanintrusionoccurs.Firstintroducedtoworkzonesin1995,WZIATwastheproductofaStrategicHighwayResearchProgram(SHRP)sponsoredstudy(AgentandHibbs1996).SincetheSHRPprogram,severalWZIATshavebeendeveloped,evaluatedbydepartmentsoftransportation(DOTs),andimplementedinworkzonesonanumberofhighwayprojects.

  • 6 | P a g e   

    TherearecurrentlyfourcommerciallyavailableWZIATs.Table1isasummaryoftheseWZIATs,includingattributesextractedfrompastresearch(Wangetal.2011;ELWC2015;HighwayResourceSolution2015;Gambateseetal.2017;Marksetal.2017).InadditiontotheWZIATslistedinTable1,OldcastleMaterialsrecentlyintroducedanalerttechnologynamedAdvancedWarningandRiskEvasion(AWARE).Thesystemreliesonpositionandorientationsensorsandradarstoconstantlymonitortheworkzone.Whileinitiallyintendedtoalertdriversoftheirintrusionintoaworkzone,thesystemisalsobeneficialforalertingworkersofintrudingvehicles.AWAREisundergoingtestingandisnotcurrentcommerciallyavailable(http://artisllc.com/highway‐safety/;http://theasphaltpro.com/oldcastle‐aware‐system/).DespitetheintroductionofWZIATover20yearsago,therehasbeenlimitedapplicationofWZIATinworkzones(Wangetal.2011;Gambateseetal.2017).Thisphenomenoncouldbeattributedtoseveralfactorssuchasreportedinaccuratealarms,difficultytoinstallandretrievedevices,lackofevaluationprotocol,non‐existingbusinesscaseanalysis,andlowproductawareness(Fyhrie2016;Wangetal.2011).

  • 4 | P a g e   

    Table1:Commercially‐AvailableWorkZoneIntrusionAlertTechnologies

    Intellicone Intellistrobe SonoBlaster WorkerAlertSystem(WAS)

    Manufacturer HighwayResourceSolution IntelliStrobeSafetySystems

    TranspoIndustries AstroOptics,LLC

    Website www.intellicone.co.uk www.intellistrobe.com www.transpo.com www.astrooptics.comAccessories Lamps,motiondetector,and

    portablesitealarm Flagger‐W1‐AGandRemoteControlRadio‐FC401‐1

    Singlealarmunit Pneumatichose,flashingalarmlight,personalvibratingandaudioalert

    Alert

    Mechanisms

    Impact‐tilt,wirelesssensoractivatedalarmsystem

    Pressuredtriggerpneumatictubealarmsystem

    Impact‐tiltactivatedalarmsystem

    Pressuredtriggerpneumatictubealarmsystem

    Suggested

    Application

    Longerthanoneday,tappershorterthan1,500ft.

    Alongtapper Onedayorshorter,tappershorterthan1,500ft.

    Priceestimate $2,000each $25,000 $100each $600eachTypeofAlarm Audioandvisual Audioandvisual Audio Audio,visual,andhapticSoundlevel 75dB@50feet 90dB@50feet* 90dB@50feet 80dB@50feetDeployment Installdeviceonchannelizer

    alongtaperandworkzonePlacetubeatthebeginningoftaper.

    Attachdevicetochannelizeralongtaper

    Placetubeatthebeginningoftaper.

  • 5 | P a g e   

    4. StudyGoalandObjectivesTheprimarygoalofthisstudyistoreduceworkzoneincident(injuryandfatality)occurrenceandseveritybyidentifyingfactorsthatdriveworkzonesafetytechnologyadoptioninthehighwayconstructionindustry.Previousresearchshowsthattechnologyutilizationincreasesworkersafety,soitisexpectedthatproactivesteps,likeeffectiveworker‐centricsafetytechnologyadoption,willreduceworkzoneincidentoccurrenceandseverity.Objectivesestablishedforthestudyinordertomeettheprimarystudygoalinclude:

    I. Investigatehowsafetytechnologyaffectsworkersandhighwayconstructionworkzones;

    II. Developandevaluateamodelforworkzonesafetytechnologyacceptance;andIII. DevelopproposedframeworksfordeterminingfinancialimplicationsofWZIAT

    adoption,andstandardizedprotocolsforevaluatingWZST‐includingWZIAT.

    5. MethodsAmixed‐methodsapproachinvolvingacombinationofqualitativeandquantitativemethodswasadoptedtoinvestigatetheresearchobjectives.Specifically,anextensivereviewofextantliteratureonWZSTwasconductedtoidentifyandassesstheeffectivenessofthetechnologiescurrentlyusedtoprotectworkersinconstructionworkzones.InadditiontoidentifyingtheWZSTs,theliteraturereviewprovidedanopportunitytoidentifypotentialbarriersanddriversofadoptingWZSTaswellaskeytechnologyattributesthatinfluencetechnologyacceptance.Aconcurrenttriangulationprocesswhichreliedonacross‐sectionalsurveyof,andin‐depthinterviewswith,highwayconstructionstakeholderswasutilizedtoprovideadditionalcontextualinformationonfactorsthatinfluencetheacceptanceofWZSTs.Lastly,acasestudyapproachwasadoptedtoprovideobservationaldatarequiredtodevelopbenefit‐costanalysis(BCA)andreturnoninvestment(ROI)forworkzoneintrusionalerttechnologies.

  • 6 | P a g e   

    6. Accomplishmentsandresults,includingtheirrelevanceandpracticalapplication

    Toensurethattheresearchobjectivesweresufficientlymet,thefollowingresearchquestionsweredevelopedtoguidethestudy:

    I. Whatarethemajorcausesofworkerfatalitiesandhowoftendotheyoccur?II. WhatistheusefrequencyandperceivedeffectivenessofexistingWZIT?III. Areend‐usersreceptivetotheadoptionofnewworkzonesafetytechnology

    (WZIATandothertechnologies)?IV. Whatisthecurrentprocess/protocolusedforadoptingworkzonesafety

    technology(WZIATandothertechnologies)?V. Whatfactorsimpacttheacceptance,use,anddiffusionoftechnologyinhighway

    construction?VI. Doessafetyclimateimpactsafetybehavior(decisiontoadoptatechnology)VII. Towhatextentdoesend‐user(consumer)andsafetytechnologymanufacturer

    WZSTexpectationsconverge?VIII. DoesinvestmentinWZIATrepresentvalueformoneyforcontractorsandDOT’s?Answerstotheresearchquestionsweredistributedacrossfiveprimarytaskswhichweresuccessfullyexecutedbytheresearchers.Eachofthetasksandcorrespondingresultsareprovidedbelow.Task1:Investigatetheimpactofsafetytechnologyonworkzoneconstruction

    workers

    AssessinganddocumentingtheimpactofsafetytechnologiesusedinhighwayworkzoneswastheprimaryobjectiveofTask1.Inaddition,identifyingthemajorcausesofworkerfatalitiesinworkzonesandtheenablersandbarrierstoadoptionofworkzonesafetytechnologywasconductedwithinthissection.Toachievetheseobjectives,theresearchersreliedonasystematicreviewprocessusingaprovenreviewframework(Hongetal.2012;YiandChan2014),aretrospectiveanalysisofworkerfatalitieswithinFACEdatabase,andinterviewresultsfromaprecedingstudy(Gambateseetal.2017).Intotal,132articleson

  • 7 | P a g e   

    workzonesafetytechnologyassessmentwereidentifiedthroughthesystematicreviewprocessinvolvingfourdatabases.PublicationtrendsshowthatthenumberofstudiesfocusedonWZSTevaluationshasincreasedsteadilyoverthepast25years.Atthesametime,thenumberoffatalitiesinworkzoneshasreducedprogressively.Althoughdifficulttoassert,thetrend,depictedinFigure3,suggeststhepossiblepresenceofarelationshipbetweenthelevelofinterestandadoptionofsafetytechnologiesandthereductionofworkerfatalities.

    Figure3:NumberofWorkZoneFatalitiesandWZSTEvaluationStudies

    WhilethetrendinevaluationstudiesisabettermetricformeasuringthelevelofinterestinWZST(comparedtotheactualadoptionofsuchtechnologies),anindicationofinterestisexpectedtotranslatetoactualtechnologyadoption(Davisetal.1989).

  • 8 | P a g e   

    ThetechnologiesevaluatedinthearticlesreviewedprimarilyfellwithinthreecategoriesbasedontheobjectiveoftheWZSTasfollows:

    I. Speedreductionsystems(SRS):Thesetechnologiesareusedtoreducethetravelingspeedofmotoristsatadvancedwarningareas,transitionareas,bufferareas,andworkareas.Thetechnologiescouldhavedirectorindirectphysicalimpactonthetravelingvehicle.

    II. Intrusionpreventionandwarningsystems(IPWS):Technologiessetuptopreventerrantdriversfromintrudingintoaworkzoneand/orwarnworkersofimminentdangerduetoanintrusionintotheworkzone.

    III. Workerdetectionsystems(WDS):Thesearetechnologiesimplementedinsideaworkzonetoalertworkersandequipmentoperatorsofanimminentcollisionbetweenaworkerandequipment.

    AsseeninFigure4,theWZSTSmostfrequentlyevaluatedwerechangeablemessagesystems(CMS),speedenforcementsystems(SE),lanemergesystems(LMS),andwarninglights.Thesetechnologiesfallwithinthespeedreductionsystemscategory.

    Figure4:NumberofEvaluationStudiesforeachWZST

  • 9 | P a g e   

    Overall,theliteraturereviewindicatesthatthereisagrowinginterestintheevaluationanduseofWZSTs.Nevertheless,findingsfromthepresentstudyindicatevaryingevaluationapproachesareexecutedforsimilarWZSTs.ThelackofminimumevaluationrequirementsforWZSTscreatesanavalancheofmethodologies,whichmakesitinherentlydifficulttocomparefindingsamongstsimilarstudies.Next,aretrospectiveanalysisofworkzoneincidentswasconductedtoassesstheusefulnessofWZIAT.AcomprehensiveassessmentofNIOSHFatalityAssessmentandControlEvaluation(FACE)ProgramreportswasconductedbytheresearcherstodetermineifWZIATcouldhaveplayedasignificantroleinpreventingthereportedfatalities.Intotal,25highwayworkzonerelatedfatalitycaseswerereportedandevaluatedbyNIOSHbetween1984and2007.Although80%ofthedocumentedfatalitieswereprimarilycausedbyworkersbeingstruckbyequipment,threefatalitieswereinducedbyintrudingvehicles.Table2summarizesfactsabouteachintrusionfatality.AsseeninTable2,usingadditionalworkzonesafetydevicessuchasworkzoneintrusionalerttechnologiescouldhaveimprovedthesurvivalrateoftheworkerskilled.Table2:SummaryofFACEReportsofHighwayWorkZoneFatalities

    CauseofFatality FACERecommendationsPossiblyPreventedby

    WZIAT?

    Sleepingdriverstruckmaintenanceworkerinworkzone

    Periodicallymonitorandevaluateemployeeconformancewithsafeoperatingprocedures;adoptpoliciesthatrequireworkerstoworkonthemediansideoftheguardrail;educatethepublicregardingworkzonesafetyissues

    YES

    InstallWZIATequippedwithaudioandvibratoryalertsapproximately400feetupstreamoftheworker

  • 10 | P a g e   

    DriverlostcontrolofvehicleandveeredintotheworkzonestrikingaDOTworker

    Considertheuseofsupplementaltrafficcontroldevices;considerinstallingrumblestripsalongtheroadwaypavementedgestowarnmotorists

    YES

    Equipworkerswithpersonalalertsystems.InstallWZIATacrosspotentialentrypointsaroundtheworkzone

    Flaggerstruckbysecondarycontactfromtrucktravelingat55milesperhour

    Considertheuseofadditionalwarningsignsandtrafficcontroldevices;provideandrequireuseofhand‐heldorotherportableradiocommunicationsequipmentbyflaggersatalltimes

    YES

    ImplementWZIATwithspeeddetectorandpersonalalertsystemswithatleast600feettransmissiondistance

    Task2:DevelopframeworkforWZSTassessment,adoption,IntrusionTechnology

    AcceptanceModel(ITAM),andWZSTevaluationprotocol

    HighwayWorkZoneTechnologyAssessmentProcess

    Giventheimportantrolesafetytechnologiesplayinkeepingworkerssafeinaworkzone,itisessentialtocaptureinformationthatcouldhelpimprovetheadoption,implementation,andacceptanceofusefultechnologies.DOTsplayacentralroleintheadoptionofWZST.Insomestates,DOTsincludecertaintechnologiesintothetrafficcontrolplantherebymakingtheuseofthosetechnologiesmandatoryforcontractors.Adecisionprocessmap(showninFigure5)detailingaworkzonesafetytechnologyacceptanceprocesswasdevelopedbasedontheresearchers’experienceconductingevaluationstudiesonworkzonesafetytechnology.InterestinadoptingaspecificworkzonesafetytechnologyisgenerallyinstigatedbypeerDOTs,researchers,ormanufacturers.

  • 11 | P a g e   

    ReferringtoFigure5,tobeconsideredforevaluation,thesafetytechnologyhastobecapturedintheDOTqualifiedproductlist(QPL).AQPLisalistofproductsandsupplierswhoseproductsareapprovedtouseonprojectswithoutadditionaldocumentationandtesting.IfthetechnologyisamongtheitemsintheQPL,theDOTevaluatesinternalinterestintheproduct.Ifadequateinterestisachieved,theRequestforProposal(RFP)scopeisexpandedtoincludeacategorythataddressesthetechnology.Subsequently,researcherswillbeencouragedtosubmitproposalsforevaluatingtheworkzonesafetytechnology.ItisimportanttonotethattheprocessdescribedaboveisstrictlyforasituationwhereaDOTischampioningtheevaluationofaspecificworkzonesafetytechnology.Iftheideaemanatesfromaresearcher,theresearchersubmitsaResearchProblemStatement(RPS)(assumingthereleasedRFPaccommodatestheevaluationtopic).IftheRPSissuccessful,theresearcherwillbeencouragedtosubmitafullproposal.IftheproposalisacceptedbytheDOT,thetechnologyisthentestedtodetermineitseffectiveness.Theassessmentusuallyincludesapilottestandlivetesting,andincertaincases,anextensivecosteffectivenessanalysis.Iftheproposalisrejected,theevaluationprocessisterminated.Subsequently,followingtestingofthetechnology,areportisdevelopedtodisseminatethefindingsfromthestudy.Iftheworkzonesafetytechnologyisconsideredeffective,theDOTadoptsthetechnologyandmayrequirecontractorstousethetechnologyinfutureprojects.Iftheeffectivenessofthetechnologyisnotconclusive,recommendationsthatcouldimprovefutureadoptionofthetechnologyaremadeavailable.

  • 12 | P a g e   

    Figure5:DOTDecisionMapforWorkZoneSafetyTechnologyAdoption

    ItisimportanttonotethatalthoughDOTsprescribetheuseofcertainsafetytechnologiesaspartofacontractrequirement,contractorscouldchoosetoutilizeadditionalsafetytechnologiesinconstructionworkzones.Currently,informationontheprocessutilizedbycontractorstoarriveatacongruentdecisionforadoptingsafetytechnologyisnonexistent.Therefore,theresearchersproposedandvalidatedaframeworkthatdescribestheprocessofadoptingasafetytechnology.Also,thisframeworkcouldbeimplementedwithinthe“AssessTechnology”stageoftheDOTtechnologyacceptanceprocess.

  • 13 | P a g e   

    SafetyTechnologyAdoptionFactors

    Anintegrativereviewofliteratureindicatesthattechnologyadoptioncanbepredictedbyassessingseveralfactorsdistributedintofourprimarycategories:individual,organizational,technological,andenvironmental.AtheoreticalframeworkdescribingtheprocessleadingtotechnologyadoptioncanbefoundinFigure6.Projectmanagersfromeighthighwaycontractingorganizationswereinterviewedtovalidatetheaccuracyoftheproposedadoptionprocess.ThesecompanieswereprimarilylocatedinthePacificNorthwestwithannualrevenuerangingbetween$10millionand$2billion.

    Figure6.SafetyTechnologyAdoptionProcess

  • 14 | P a g e   

    Oneprimarydeficiencyinextantliteratureassociatedwithworkzonesafetyisthelackofsomeconsensusontheprimaryphasesforconductinganevaluationstudy.Anevaluationstudyisakeycomponentinthetechnologycategoryofthesafetytechnologyadoptionprocess.Inthenextsection,theresearcherssummarizetheprimarystepsrequiredtoconductaneffectiveWZSTevaluationstudy.TheevaluationprotocolwasdevelopedaspartofastudyconductedbyGambateseetal.(2017).

    WZSTEvaluationProtocol

    Developingatestingprotocol,groundedinscientificrigor,playsapivotalroleinvalidatingthefindingsofanevaluation‐basedstudy.AccordingtoFyrie(2016),itisessentialtodevelopatestingprotocolforWZSTstoimproveperceptionofusefulnesswhichcouldimpactuserintentiontoadopttechnologyalongsideencouragingtheproductionofadditionalWZSTs.Inordertodeveloparigorousprocess,theresearchersreliedonStrategicHighwayResearchProgram(SHRP)reportsandpastworkzonetechnologyevaluationreports(AgentandHibbs1996;Brownetal.2015;Marksetal.2017;MarksandTeizer2013;Novosel2014;Parketal.2017;Teizeretal.2010;ZhangandGambatese2017).TosuccessfullyevaluateaWZST,thestepsdepictedinFigure7arerecommendedanddescribedindetailbelow.

    Figure7:WZSTEvaluationProtocol

  • 15 | P a g e   

    Step1:DocumentationofTechnologiesItisimperativetoaggregateandreviewliteratureoncurrentlyavailabletechnologiesthathavehighpotentialforpreventinginjuriesinhighwayworkzones.ThisstepcanbeachievedthroughacomprehensivesearchofarchivalpublicationsusingInternetsearchengines.TheoutputofthissearchanddocumentationshouldincludetechnicalspecificationsoftheWZST,associatedbenefitsofusingtheWZST,limitationstoitsuse,andsummariesoffindingsfrompriorresearchonthetechnology.Step2:SurveyofCurrentPracticeStep2involvesconductingasurveyofhighwayconstructionandmaintenancekeystakeholdersincludingstatedepartmentsoftransportation(DOTs),constructionandtrafficcontrolcontractors,equipmentvendors,etc.Theobjectiveofthesurveyistodocumentcurrentandrecommendedpractices,barriers,enablers,andimpactsassociatedwiththeWZST.FindingsfromStep2resultintheidentificationofthestatusquooftheconstructionindustryanditscurrentbestpracticeintermsofpreventingaccidentsthatcouldbepreventedbyimplementingtheWZST.Step3:PilotTestingofTechnologiesBasedontheresultsofSteps1and2,asampleoffeasibletechnologiesshouldbeselectedforpilottesting.Selectionshouldconsidertechnologyavailability,cost,easeofuse,potentialforimprovingsafety,andpotentialforincorporatingthetechnologyintypicaltransportationcontrolplans.Pilottestingoftheselectedtechnologiesshouldbeconductedundercontrolled,off‐roadwayconditions.Eachselectedtechnologyshouldbeassessedtocaptureitscapabilities,andrecordhowitisimplemented.Theresultsofthepilottestingprovidevitalinformationonfeasibilityofuse,capabilities,andlimitationsrelatedtoeachtechnologyunderinvestigation.Step4:SelectionofTechnologiesforLiveTestingFollowingcompletionofthepilottestingandanalysisoftheresults,Step4involvesconductingfocusgroupsessionswithkeystakeholderssuchasDOTpersonnelandconstructioncontractorstoidentifyandselectspecifictechnologiestoimplementandtest

  • 16 | P a g e   

    inanactiveworkzone.Feedbackoneachofthetechnologiesshouldbesolicitedfromeachtargetedgroup.Thosetechnologiesthataredeemedpromisingbythefocusgroupparticipantsshouldbeselectedforfurtherevaluation.Inaddition,potentialconstructionand/ormaintenanceprojectsonwhichtoconductlivetestingofthetechnologiesshouldbediscussedwiththeparticipatingDOTpersonnelandcontractorsandselectedforStep5.Step5:ImplementationandEvaluationofSelectedTechnologiesStep5involvesimplementingtheselectedtechnologiesoneachselectedcasestudyproject.Dependingonthecasestudyprojectsselected,eachtechnologyshouldbeappliedunderdifferentworkzoneconditions(e.g.,short‐termandlong‐term,daytimeandnighttime,andstationaryandmobile).Eachselectedtechnologyshouldbeimplementedduringactualworkoperationstypicallyexperiencedonprojects.Thetestingprotocolshouldaddressavarietyofcriteriasuchas:easeofimplementationanduse,abilitytodetectpotentialhazard,abilitytowarnofimpendinghazard,sensitivitytofalsealarms,andimpactonrisktoworkersafety,andimplementationcost.Uponcompletionoftesting,feedbackoneachtechnologyshouldbecollecteddirectlyfromtheconstructionandmaintenanceworkersinvolvedineachcasestudyproject.Next,theresearchersproposeabasictheoreticalframework–ITAM‐forcapturinginformationthatinfluencestheacceptanceandutilizationofaWZST(WZIATascasestudy)byendusers.IntrusionAlertTechnologyAcceptanceModel(ITAM)Structure

    Consumermarketingresearchhasbenefitedgreatlyfromapplyingpredictive(forecasting)andassessmentmodelsthatdrawfromunderstandingkeyfactorsthatinfluenceintentiontoacceptaproduct.Thepresentstudycombinesthepredictivestrengthoftwowell‐foundedtechnologyacceptanceandbehavioraltheoriesasameanstounderstandfactorsthatinfluencetheadoptionofaWZST.Althoughdesignedmainlyusingconstructs(parameters)associatedwithWZIAT,theproposedmodelcanbeappliedtoWZSTandothertechnologyadoptionsituationswithsimilarcharacteristics.ThetwomodelstobecombinedareTechnologyAcceptanceModel(TAM)andTheoryofPlannedBehavior(TPB)(Mathieson1991;VenkatechandDavis1996;Mathiesonetal.2001;Chuttur2009).Figure

  • 17 | P a g e   

    8depictsthesimplifiedintrusionalerttechnologyacceptancemodel(ITAM)usedinthisstudy.

    Figure8:IntrusionAlertTechnologyAcceptanceModel

    Theconstructsabovecanbedefinedas: PerceivedEaseofUse(PEU):beliefthatusingatechnologywillrequirelittleeffort SubjectiveNorm(SN):anindividual’sperceptionregardingagivenactionwhichis

    significantlyinfluencedbythejudgementofsignificantothers PerceivedUsefulness(PU):beliefthatusingatechnologywouldimprovejob

    performance BehavioralIntention(BI):anindicationofaperson’sintentiontoperformagiven

    taskBIwaschoseninsteadofactualbehavior(observableresponsesuchasacceptingtouseatechnology)sincetheuseoftechnologiessuchasWZIATisnotwidespread.Inaddition,pastresearchindicatesthatinmostcases,behavioralintention,isagoodpredictorofactualuse(Venkateshetal.2002).Theresearcherskeptthemodelsimplegiventheexploratorynatureofthepresentstudy.FuturestudiesshouldconsiderincludingotherTPBconstructssuchasattitudeandperceivedbehavioralcontrol.

  • 18 | P a g e   

    Task3:Collectandanalyzedatafromhighwayconstructionstakeholders

    TheresearchersconductedanonlinesurveyinordertoanswerresearchquestionsV,VI,andVII.FollowingreviewofthesurveyinstrumentandprotocolbytheOSUInstitutionalReviewBoard(seecopyofsurveyquestionnaireintheAppendix),theresearcherspre‐testedthereliabilityandconsistencyofthesurveyquestionsusingdatareceivedfromcivilandconstructionengineeringstudentsatOSU.Beforecollectingstudentfeedback,apresentationwhichincludedvideosandpicturesofworkzoneintrusionaccidents,workzonesafetytechnologies,andresultsfromaWZIATevaluationstudywasfacilitatedandconductedbytheresearchersforthestudents.ThepresentationwasconductedtoensureparticipatingstudentshadsufficientinformationtoprovideusefulfeedbackonfactorsthatcouldinfluencetheadoptionofWZIAT.Atotalof145responseswerereceivedfromparticipatingstudentsintwodifferentcoursesofwhich135responseswereanalyzed(10responseswereincomplete).ReliabilitytestsincludingKaiser‐Myer‐Olkin,Cronbachalpha,andBarletttestofsphericitywereconductedtoensurethattheresearchtoolscapturedreliableinformation.Followingevaluationofthesurveyinstrument,thesurveyquestionnairewasdistributedtothetargetedhighwayconstructionstakeholders.Surveyresponseswerecollectedfrom181individuals(316,includingstudents)withinthetargetpopulation.Specifically,owneragencies,includingDOTsandresearchinstitutions,accountedfor38%(69)ofthereceivedresponseswhilegeneralcontractors,workzonesafetyconsultants,andworkzonetechnologymanufacturersandvendorsaccountedfor38%(53),11%(20),and21.5%(39)oftheresponses,respectively.Furthermore,64respondents(35%)self‐identifiedasprojectmanagerswhile37trafficengineers(20%ofrespondents)responded.Responsestothequestion“Areyoufamiliarwithworkzoneintrusionalerttechnology”indicatethatmostoftheparticipantsarefamiliarwithWZIAT(80%ofthe141responsesreceivedtothequestion,approximately62%ofallrespondents).

  • 19 | P a g e   

    WZIATfeature/attributeimportance(combinedandbyworkcategory)

    Forsomequestions,therespondentswereaskedtoprovidetheiropinionaboutWZIATusingaLikert‐typescale(e.g.,1=notimportant,5=veryimportant).Whenasked“HowimportantarethefollowingattributestoyourdecisiontoadoptWZIAT,”participantsindicatedthatworkercomprehensionofwarningsignal(meanresponse=4.44)andadequatecoveragedistance(meanresponse=4.25)areconsideredthemostinfluentialattributesthatimpactthedecisiontouseaWZIAT.TheresultsaresummarizedinTable3.Easeofstorageisconsideredtheleastimportantattribute(mean=2.94).AcomprehensivetableoftheresultscanbefoundintheAppendix.Table3:WZIATFeature/AttributeImportancetoAdoptionDecision

    MeanResponseregardingImportanceof

    Feature/Attribute

    (1=notimportant,5=veryimportant)

    WZIATFeatures/Attributes Contractor

    (n=53)

    DOT

    (n=69)

    Manuf.&

    Vendors

    (n=39)

    Total

    (n=316)

    Workercomprehensionofwarningsignal

    4.6 4.67 4.3 4.44

    Adequatecoveragedistance 4.51 4.36 4.22 4.25Driveradequatelycomprehendsvisualandaudiowarning

    4.25 4.39 3.62 4.21

    Impactofwarningalertondriver 4.17 4.41 3.78 4.18Fewornofalsealarms 4.38 4.33 4.03 4.17Limitsworkerexposure 4.51 4.48 4.08 4.15Multiplewarningalertsources 4.08 4.23 4.16 4.08Reusable 4.19 3.79 4.10 4.04Manuf.=technologymanufacturer

  • 20 | P a g e   

    Differenceinmeanratingbetweengroups

    Itisessentialtoconductastatisticalanalysistoverifythepresenceofanalignmentbetweenthesubgroups’‐especiallycontractorsandmanufacturers–perceptionsofimportantWZIATattributes.Thisverificationcanbeachievedbyeitheraparametricornon‐parametricindependentsamplemeantest(t‐test).First,theresearchersassessedthedatabyworkgrouptoguidetheapplicationofparametricornon‐parametrictesting.Atestfordatanormalitywasnotconductedgiventhatthesamplesizeforeachgroupwasatleast30(GhasemiandZahediasl2012).Levene’sTestofEqualityofvariancewasconductedtodetermineiftheassumptionofhomogeneityofvariancewasviolated.Thetestreturnedamixedresultwithsixoutofthe21factorsviolatingtheequalvarianceassumption.Takingaconservativeapproach,theresearcherelectedtoperformanon‐parametrictwo‐sampletest–theMann‐WhitneyUTest‐toreducetheTypeIerrorrate.Table4summarizestheresultsfromtheMann‐WhitneyUTestbetweenresponsesreceivedfrommanufacturersandotherworkgroups.AsseeninTable4,thelevelofimportanceassignedtoeachWZIATattributedifferedsignificantlyforsevenoutof21attributeswhencomparingthemanufacturers’responsestothosereceivedfromtheDOTemployees.Thisresultindicatesthepossibilityofamisalignmentbetweentheend‐users’andmanufacturers’perceptionsoftheimportanceofeachWZIATattribute.ThisresultsuggestsaneedforheightenedinvolvementofDOTsandcontractorsinthedevelopmentphaseofsimilartechnologies.Thedevelopmentofstandardtoolsthathelpbridgetheknowledgegapbetweenmanufacturersandend‐usersshouldbeencouraged.

  • 18 | P a g e   

    Table4:Non‐Parametrictestfordifferenceinmeanbetweengroups;Mann‐WhitneyUTest

    WZIATAdoptionfactors Contractorvs.

    Manufacturer

    DOTvs.

    Manufacturer

    Contractorvs.DOT

    UStatistic p‐value UStatistic p‐value UStatistic p‐valueEaseofdeployment/retrieval 973.5 0.602 1292.5 0.707 1652.5 0.317Easytomovethetechnologyaround 728 0.032 1271 0.596 1588.5 0.176Userfriendliness 849 0.105 1052.5 0.043 1700.5 0.45Littleornoimpactontrafficflowandcontrolwithinworkzone 822 0.081 1332.5 0.929 1415 0.024Limitsworkerexposure 778 0.026 1039.5 0.031 1797 0.852Easytostore 857 0.139 1104 0.107 1771 0.755Resistancetoenvironmentalandphysicalimpact 871.5 0.467 923.5 0.023 1482.5 0.057Reusable 978 0.629 1019.5 0.029 1328.5 0.008Easytomaintain 900 0.352 1185 0.53 1712.5 0.722Extendedbatterylife 866.5 0.141 997.5 0.022 1586 0.221Costoflaborandequipment 885.5 0.305 1167 0.385 1754 0.794Availabilityofequipmentinthemarket 734.5 0.047 1254 0.792 1527.5 0.123Costofreplacingparts/maintenance 956.5 0.668 1264 0.846 1755 0.796Impactofwarningalertondriver 936 0.697 1102.5 0.207 1605.5 0.206

  • 17 | P a g e   

    Workercomprehensionofwarningsignal 824.5 0.142 1018 0.043 1750.5 0.621Multiplewarningalertsources 860 0.283 1268 0.951 1591.5 0.183Adequatecoveragedistance 874.5 0.327 1260.5 0.907 1627 0.243Limitedphysicalimpactonvehicle 729 0.033 1208.5 0.638 1604 0.222Driveradequatelycomprehendsvisualandaudiowarning 725.5 0.027 869.5 0.004 1737 0.604Fewornofalsenegativeandpositivealarms 804 0.114 1063.5 0.122 1799 0.866Lessdependenceonexistinginfrastructure 923.5 0.621 1218 0.683 1805 0.899

  • 19 | P a g e   

    Potentialimpactofsafetyclimate

    Giventhatpastresearchindicatesapossiblecorrelationbetweensafetyclimateandsafetybehavior(SchwatkaandRosecrance2016),theresearchersexploredthepotentialrelationshipbetweensafetyclimateandconstructionworkerdecisionstoadoptasafetytechnology.Toachievethisobjective,theresearchersutilizedanadaptedversionofasafetyclimatematurityassessmenttooldevelopedbyTheCenterforConstructionResearchandTraining(CPWR)alongsidethe“behavioralintention”constructoftheITAM.Thesafetyclimatemeasuringscalehaseightleadingindicators:DemonstratingManagementCommitment;AligningandIntegratingSafetyasaValue;EnsuringAccountabilityatAllLevels;ImprovingSupervisoryLeadership;EmpoweringandInvolvingWorkers;ImprovingCommunication;TrainingatAllLevels;andEncouragingOwner/ClientInvolvement(CPWR2015).Toutilizethescale,workersareaskedtoanswerquestions(between3to6questions)withineachleadingindicator.Thequestionsaredesignedtoillicitresponsesregardingthecompany’scommitmentandattitudetowardssafetyusingascalethatrangesfrominattentivetoexemplary(seehttps://www.cpwr.com/whats‐new/new‐safety‐climate‐assessment‐s‐cat‐websiteformoreinformationonthesafetyclimatemeasuringscale).Duetothelengthofthesafetyclimatescale(36questionsrequiringadecentamountofreading),theresearchersreducedthenumberofquestionsforeachleadingindicatortotwo(16intotal).Thereductionwasachievedthroughevaluatingthestatisticalanalysisconductedbythedevelopersofthesafetyclimatescale–selectingtheitemsineachcategorywiththehighestmeanscoreandtheleastvariance.Atotalof53contractorscompletedthesurveysubstantially.However,onlyatotalof45oftherespondingcontractors(85%)providedsufficientinformationforexploringtheconnectionbetweensafetyclimateandadoptiondecision.Toexplorethepotentiallinkbetweensafetyclimateandtechnologyadoption,theresearchersseparatedtherespondentsintotwogroups–“exemplary”and“belowexemplary”–usingtheaggregatemeanvalueofeachleadingindicator.Thatis,theresponsesreceivedfromeachsurveyparticipantweresummedandthendividedby16(thetotalnumberofquestionsacrosstheeightleadingindicators).Theresearcherselected

  • 20 | P a g e   

    tosetacumulativemeanthresholdof4.0andaboveas“exemplarysafetyclimate”inlinewiththedesignofthesafetyclimatemeasuringtool.Ameanvaluebelow4.0wasconsiderednotexemplary.Twenty‐fiveofthe45respondingcontractors(56%)self‐reportedacumulativemeanaveragegreaterthan4.0.Next,linearregressionwaschosentoinvestigatethelevelofimpactsafetyclimatecouldhaveonthe“behavioralintention”construct.Toconducttheanalysis,thesafetyclimaterating(SCR)meanvalueforthetwogroups(exemplaryandnotexemplary)werechosenasindependentvariableswhilethemeanvalueof“behavioralintention”(BI)‐whichispartoftheITAMconstruct‐wasselectedasthedependentvariable.Priortoconductingthelinearregression,theresearcherscheckedtoverifyifanyassumptionwasviolated.Althoughthesamplesizerequirementwasmet(atleast20casesperindependentvariable),theresearchersobservedthatthedatawasnotlinearandshowedevidenceofheteroscedasticity.Giventheconcernsidentifiedwithinthedata,theresearcherselectedtoconductanonparametricanalysisfocusingondirectionality.SpearmancorrelationwasexecutedtoinvestigatethedirectionalrelationshipbetweenSRCandBI.Althoughnotstatisticallysignificant,theresults,highlightedinTable5,indicatethatSCRfortheexemplarygrouphasapositivecorrelationwithBI(γ=0.374).Table6showstherelationshipbetweenSCRandBIforthe“belowexemplary”groupwaslessthanthatoftheexemplarygroup(γ=0.021).Table5.CorrelationbetweenBehavioralIntention(BI)andSafetyClimateRating

    (SCR)of“Exemplary”Group

    Spearman'srho SCR BISCR CorrelationCoefficient 1.000 0.374 Sig.(1‐tailed) . 0.052 N 25 25BI CorrelationCoefficient 0.374 1.000 Sig.(1‐tailed) 0.052 . N 25 25

  • 21 | P a g e   

    Table6.CorrelationbetweenBehavioralIntentionandSafetyClimateRating(SCR)of

    “BelowExemplary”Group

    Spearman'srho SCR BISCR CorrelationCoefficient 1.000 0.021 Sig.(1‐tailed) . 0.461 N 20 20BI CorrelationCoefficient 0.021 1.000 Sig.(1‐tailed) 0.461 . N 20 20

    Task4:ConductfinancialanalysisforWZIAT

    Onepossiblereasonfortherelativelylownumberofcommerciallyavailableintrusionalarmtechnologiesisthelackofacost‐benefitanalysis(Fayrie2016).Furthermore,asintrusionalarmtechnologiesrequiresomeinvestment,consumers(DOTsandcontractors)needanempiricalframeworktodeterminethefinancialimplicationoftheintervention.Todeveloparobustframeworkthatprovidesparametersthatcanbeusedtojudgeiftheinvestmentintheintrusionalarmisworthwhile,theresearchersreliedontheframeworksdescribedbyAASHTO(2010),Theissetal.(2014),AricoandRavani(2008),andSunetal.(2011).GiventhattheimplementationofWZIATrequiresatwo‐phaseadoptionprocess(adoptionbystatedepartmentoftransportationandcontractor),itisimportantthatfinancialmetricsspecifictotheend‐usersareconsidered.Hence,aframeworkforROI(Contractor)andBCA(DOT)wasdeveloped.ThreeWZIATs–AWARE,Intellicone,andWAS–wereevaluatedaspartofthefinancialanalysis.

  • 22 | P a g e   

    CostofImplementingWorkZoneIntrusionAlertTechnologies

    AccordingtoBoardmanetal.(2001),nineprimarystepsarerequiredinothertoconductabasicfinancialanalysisforgovernmentinterventions,regulations,policies,programs,etc.Thestepsare:I. SpecifythesetofalternativeprojectsII. DecidewhosebenefitsandcostscountIII. Cataloguetheimpactsandselectmeasurementindicators,orunitsIV. PredicttheimpactsquantitativelyoverthelifeperiodoftheprojectV. Monetize(adddollarvaluesto)allimpactsVI. DiscountbenefitsandcoststoobtainpresentvaluesVII. ComputethenetpresentvalueofeachalternativeVIII. PerformsensitivityanalysisIX. MakerecommendationbasedonfindingsGiventhescopeofthecurrentstudy,theresearchersfocusedonthestepsrequiredtodevelopafinancialimplicationanalysisframeworkforeachWZIAT(StepsIII,IV,V,VI,andVII).StepsIIItoVinvolvetheidentification,collection,andmonetizationofinputsandoutputs(information)requiredtoperformafinancialanalysis.Tables7and8captureessentialinformationrequiredtoestimatethecostofimplementingthetechnologies.TheinformationpresentedinTables7and8wasacquiredthroughinterviewswithcontractors,reviewingliteratureonWZIATsandotherworkzonesafetytechnologies,andassessingmanufacturer’swebsitesandmanuals.

  • 23 | P a g e   

    Table7.CostInputData

    CostItem WorkzoneIntrusionAlertTechnology

    AWARE Intellicone WASCapitalcost($/device) 50,000 2,000 $750Costofrequiredaccessory/ies($) 35 Batterycost($/device) 20 15 Batterylife(weeks) 32 32 DeviceReplacementrate(%/year) 0.125 0.125 0.125StrobeReplacementrate(%/year) 0.10 0.13Maintenanceworkerwagerate($/h) 26 26 26Maintenancetime(hr/week/mile) 2.1 4.2 4.2Wageratemultiplier 1.5 1.5 1.5Disposalcost 0 0 0Costperday:

    Maintenancecost($) 20.48 40.95 40.95Devicecost($) 78.12 $3.13 $1.17Sensorcost($) $0.05 Batterycost($) 0.16 0.12

    Table8.CostofusingWorkZoneIntrusionAlertTechnologiesinWorkZones

    CostItem WorkzoneIntrusionAlertTechnologies

    AWARE Intellicone WASNumberofdevicespermile 1 1 8

    Usedononesideofroadway 2 2 16Usedonbothsidesofroadway 1 1 8

    Numberofaccessoriespermile

  • 24 | P a g e   

    Usedononesideofroadway 12 5Usedonbothsidesofroadway 24 10

    Costperdeviceperday($/day) 78.13 3.13 1.17Costpermileperday($/mile/day) 0.17 ‐Laborcostperdeviceperday($/day) 20.48 40.95 40.95Costpermileperday($/mile/day)

    Usedononesideofroadway 98.60 46.14 50.33Usedonbothsidesofroadway 197.20 92.28 100.65

    Costpermileperyear($/mile/year) Usedononesideofroadway 7,888.00 3,691.00 4,026.00Usedonbothsidesofroadway 15,776.00 7,382.00 8,052.00

    InformationinTable7indicatesthatAWARE,Intellicone,andWAScost(operationandcapitalcost)$98.60,$46.14,and$50.33perday,respectively.WiththeexceptionofAWARE,operationcostistheprimarycostdriver,notthecapitalcost(Intellicone=88.5%andWAS=81.5%oftotalcost).Theseestimatesdoesnotincludeadditionalcostforpersonalsafetydevices;justthecostsofbuyingandoperatingthebasictechnologyareincluded.Aneighty‐dayworkyearwasassumedbasedonfivework‐monthsayearandfourwork‐daysaweek.TheworkdaywasestimatedbasedonthedurationofatypicalpavingseasoninthePacificNorthwest.Thenumberofannualworkdayswillvarydependingonthelocation.Thecostperdaycalculationincludedastraight‐linecapitalcostdeprecationofeachtechnology.Ashelflifeofeightyearswasassumedbasedonpastresearch(Theissetal.2014).Table8summarizesthecostofimplementingWZIATonprojectsusingcostpermileperyear($/mile/year).TheanalysisshowninTable8includescalculationforoneandbothsidesofaroadwaygiventhatconstructioncouldhappensimultaneouslyonbothsidesoftheroadway(bothdirectionsoftraffic).ThetotalcostforapplyingtheAWARE,Intellicone,andWASinaworkzoneis$15,776,$7,382,and$8,052permileperyear,respectively.ThefactorsusedtoarriveatthevaluesinTable8areincludedintheAppendix.

  • 25 | P a g e   

    InjuryCostModel

    Thefollowingstepswereundertakeninordertoestimatethecostassociatedwithworkzoneaccidents:I. EstimatetotalnumberofworkzoneintrusionaccidentsII. Estimateinjuryseverityofworkzoneintrusionaccidents(usingMAIS)III. UsecomprehensivecostmethodtoassigncosttoinjuryseverityIV. UseValueofaStatisticalLife(VSL)toestimatefractionforeachinjurycategoryV. Determineworkzoneintrusion‐inducedaccidentcostVI. Useworkzonerequiredlengthandtypeofactivitytoseparateoutactivitiesthat

    cannotimplementWZIATVII. DeveloptablethatshowstotalcostandavertedcostThenumberofworkzoneintrusionaccidentswasestimatedusinginformationfromtheCaliforniaDepartmentofTransportation(Caltrans)andOregonDepartmentofTransportation(ODOT).TheseveritylevelofworkzoneaccidentswasestimatedusingtheMaximumAbbreviatedInjuryScale(MAIS)(AAAM2015).ThecoefficientforeachseveritylevelwasgeneratedusingtheValueofaStatisticalLife(VSL).TheVSListheadditionalcostthatindividualsarewillingtobearforimprovingsafety(riskreduction)(Moran2016).Table9highlightstheseveritylevelsandcostassociatedwhicheachlevel(Moran2016).Table9.CostAssociatedwithDifferentLevelsofAccidentSeverity

    MAISLevel Severity VSL(2016)Fraction Cost(million$)

    MAIS1 Minor 0.003 0.029MAIS2 Moderate 0.047 0.45MAIS3 Serious 0.105 1.01MAIS4 Severe 0.266 2.55MAIS5 Critical 0.593 5.69MAIS6 Fatal 1.000 9.6

  • 26 | P a g e   

    IntrusioncrashdatafromODOTindicatesthat165intrusion‐inducedaccidentsoccurredbetween2011and2015,anaverageof33workzoneintrusionaccidentsayear.AccordingtoWong(2010),308workzoneintrusionaccidentswerereportedinCaliforniabetween1998and2007,averaging31workzoneaccidentsayear.Inaddition,Wong(2010)reportedthataccidentdistributionwhenclassifiedbyworkzonedurationvaried;mobileoperationsaccountedfor49%oftheaccidents,shortdurationoperationsaccountedfor9%,andshort‐termstationaryoperationscontributed29%ofworkzoneaccidents.Althoughnotcurrentdata,theresearcherselectedtousethedatafromCaltrans(Wongetal.2010)duetothesegmentationofthedataintousefulseveritylevels.Sincetheaveragecrashratesaresimilar,theresearchersassumedthatthetrendisapplicableto2017aswell.Theoutcomesofaworkzoneintrusionledtoaminorinjury91%ofthetime.Amoderateandseriousinjuryoccurred7%and0.0034%ofthetime,respectively.Onaverage,afatalityoccurredapproximately2%ofthetimewhenanaccidentoccurred.Inagreementwithapreviousstudy(Gambateseetal.2017),somecontractorswereoftheopinionthatWZIATshouldnotbeusedonmobileprojectsgiventheinherentneedtomovefrequently.However,someDOTpersonnelindicatedthepossibilityofusingWZIATinmobileoperationstoimproveworkersafety.Therefore,theresearchersdecidedtoincludemobileoperation‐relatedaccidentsinthecostanalysisfortheBCAbutnotfortheROI.BenefitCostAnalysis

    Table10liststheinjuryseverity,injurycost,totalcosts,andtheavertedcost.TheInjurySeverityandInjuryCostareextractedfromTable9whiletotalcostisamultipleofthenumberofworkersinjuredwithineachinjuryseveritycategoryandinjurycost.Forinstance,theTotalCostofInjurySeverity1iscalculatedbymultiplyingtheinjurycost(0.029)withthenumberofworkerswithaminorinjury(91%of308or281).TheavertedcostrepresentspotentialcostassociatedwithavoidinganinjuryorfatalitywithintheworkdurationsusingacountermeasuresuchasWZIAT.

  • 27 | P a g e   

    Table10.ComparisonofWorkZoneInjuryCost(total)toPotentialAvertedCost‐

    BCA

    InjurySeverity(MAIS)

    InjuryCost(million$)

    TotalCost(million$)

    AvertedCosts(million$)

    1 0.029 8.128 8.1282 0.45 9.702 9.7023 1.01 1.041 1.0414 2.55 0 05 5.69 0 06 9.6 59.14 59.14

    Total 78.01 78.01ExpectedYearly

    Average 7.801 7.801

    TheestimatedavertedcostisoptimisticsincetheunderlyingassumptionisthatimplementationofWZIATwouldpreventallinjuriesandfatalities.Duetoinsufficientdata,itwasimpossibletoestimatetheactualfractionofpreventableworkzoneintrusion‐inducedinjuriesandfatalitieswhenWZIATisapplied.Therefore,applyingareductionfactorwouldbeprudentinordertonotover‐estimatethepotentialofthetechnologies.Table11highlightstheavertedcostwhenapplyingreductionfactorsrangingbetween10%and90%.Table11:ApplicationofConservativeFactors(BCA)

    InjurySeverity(MAIS)

    AvertedCosts(million$)

    FractionofPreventableInjuriesandFatalities(million$)10% 20% 30% 40% 50% 60% 70% 80% 90%

    1 8.128 0.81 1.63 2.44 3.25 4.06 4.88 5.69 6.50 7.322 9.702 0.97 1.94 2.91 3.88 4.85 5.82 6.79 7.76 8.733 1.041 0.10 0.21 0.31 0.42 0.52 0.625 0.73 0.83 0.944 0 0 0 0 0 0 0 0 0 0

  • 28 | P a g e   

    5 0 0 0 0 0 0 0 0 0 06 59.14 5.91 11.81 17.74 23.66 29.57 35.48 41.40 47.31 53.22

    Total 78.01 7.80 15.60 23.40 31.20 39.01 46.81 54.60 62.41 70.20ExpectedYearlyAverage

    7.801 0.78 1.560 2.34 3.12 3.90 4.68 5.46 6.24 7.02

    ResultsfromthedataanalysisindicatethatWZIATtechnologyisworthwhiledependentonatechnology’spotentialtopreventbetween12.6%and34%ofintrusion‐inducedworkeraccidents(AWARE=34%,Intellicone=16.1%,andWAS=17.6%).ThesepercentagesaretheinjuryandfatalitycostequivalentofthetotalcostofpurchasingandoperatingWZIATs.ReturnonInvestment

    ThepotentialcostofinjuriesandfatalitiesassociatedwithworkzoneintrusionandthemonetaryvalueoftheinjuriesandfatalitiesthatcouldbesavedbyimplementingWZIATarepresentedinTable11.UnlikeAvertedCostvaluesinTable10,AvertedCostinTable12suggestthatitisnotfeasibletoaccrueallthepotentialbenefits(costsavings)associatedwithimplementingasafetycountermeasure.Althoughthetotalcostassociatedwithworkzoneaccidentsis$7.8millionyearly,WZIAThasthepotentialtoimpactonlyapproximately51%oftheassociatedcost.ThisrestrictedextentofimpactisbecausethecontractorsinterviewedindicatedthattheyarenotwillingtoimplementWZIATinmobileoperations–whichaccountforapproximately49%ofinjuriesandfatalities.Theresearchersmultipliedthetotalnumberofaccident(308)by51%todeterminethepotentialavertedcost.Itisimportanttonotethatbyapplying49%,theresearchersassumedalinearrelationshipbetweenseverityandfrequencyofinjury–thatis,injuriesreducedacrosstheseveritylevelsequally‐whichisnotalwaysthecase.Table12.ComparisonofallWorkZoneInjuryCosts(total)toPotentialAvertedCost‐

    ROI

    InjurySeverity(MAIS)

    InjuryCost(million$)

    TotalCost(million$)

    AvertedCosts(million$)

  • 29 | P a g e   

    1 0.029 8.128 4.1452 0.45 9.702 4.9483 1.01 1.041 0.5314 2.55 0 05 5.69 0 06 9.6 59.14 30.159Total 78.01 39.784ExpectedYearlyAverage

    7.801 3.978

    Inaddition,theresearchersappliedconservativefactorssimilartothoseappliedinTable11toaccountfortheinjuriesandfatalitieswithinthe51%non‐mobileactivities.Table13showsthataminimumavertedcostof$398,000peryearisobtainableifWZIATpreventsatleast10%ofworkzoneintrusioninjuriesandfatalities.Table13:ApplicationofConservativeFactors(ROI)

    InjurySeverity(MAIS)

    AvertedCosts(million$)

    FractionofPreventableInjuriesandFatalities(million$)10% 20% 30% 40% 50% 60% 70% 80% 90%

    1 4.15 0.42 0.83 1.24 1.66 2.07 2.487 2.90 3.32 3.732 4.95 0.5 0.99 1.49 1.98 2.47 2.969 3.46 3.96 4.453 0.53 0.05 0.11 0.16 0.21 0.27 0.319 0.37 0.42 0.484 0 0 0 0 0 0 0 0 0 05 0 0 0 0 0 0 0 0 0 06 30.16 3.02 6.03 9.05 12.06 15.08 18.10 21.1 24.13 27.14

    Total 39.79 3.98 7.96 11.9 15.91 19.89 23.87 27.85 31.83 35.81ExpectedYearlyAverage

    3.978 0.40 0.8 1.19 1.59 1.99 2.39 2.78 3.18 3.58

  • 30 | P a g e   

    Ideally,theinjurycostmodelforcalculatingtheROIshouldbebasedoneachcompany’ssafetyrecord,thatis,informationonworkerfatality,losttimeinjury,andinjurywithoutlosttime.Thisinformationwasnotprovidedbythecontractorsinterviewedaspartofthisstudy.Therefore,theresearchersutilizedthecomprehensiveCaltransaccidentdata.Tomaintainunitconsistency,contractorsinterviewedwereaskedfortheapproximateamountofmilespavedeveryyear.Theaverageresponsefromthreecontractorswasapproximately15milesperyear.Basedonthedataanalysis,WZIATwouldbeusefultocontractorsifthetechnologiesprevent2%‐3%ofinjuriesandfatalitiescausedbyintrudingvehicles.AlthoughtheROIcouldhaveasignificantimpactontheadoptionofaWZIAT,ifatechnologyispartofastate’sstipulatedtrafficcontrolplan,thecontractorisrequiredtousethetechnologyregardlessofROI.

    Task5:Evaluateproposedmodelsandprotocols

    Toassessthefactorsthatinfluenceaworker’sintentiontoadoptWZIAT,arangeof2‐4variableswereusedtomeasureeachconstruct(perceivedeaseofuse,socialnorm,etc.).Thevariableswereselectedfrompastliteratureandadaptedtofittheresearchobjective.Utilizingvariablesfrompreviousstudiesensuredthatfaceandinternalvalidityweremaintained.Apathanalysis–asubsetofstructuralequationmodeling(SEM)‐usingAMOS25Graphics(AMOS25.02017)wasconductedtoanalyzethecorrelationsbetweeneachconstructandaworker’sintentiontoadoptWZIAT.ToconductSEM,asampletoconstructvariableratioofatleast10:1isrequired.Thatis,foreveryvariabletested,atleast10casesorrespondentsarerequired.Intotal,142respondents’(contractor=53,DOT=69,consultants=20)providedfeedbackusedforthisanalysisleadingtoa14:1ratio(10variables).First,areliabilitytestwasconductedtoverifydataconsistency.ResultsfromtheCronbachalphatestshowedthatthesurveywasgenerallyreliable(minimumα=0.65).Next,fourprimaryhypotheseswereproposedbasedonpastresearchandtheresearcher’sexperience:

  • 31 | P a g e   

    H1=Perceivedeaseofuse(PEU)ofWZIATwillpositivelyaffectbehavioralintention(BI)toadoptWZIAT

    H2=Perceivedusefulness(PU)ofWZIATwillpositivelyaffectbehavioralintentiontoadoptWZIATadoptionintention

    H3=Socialnorm(SN)willpositivelyaffectbehavioralintentiontoadoptWZIAT H4=PerceivedeaseofuseofWZIATwillpositivelyaffectperceivedusefulness

    AsseeninFigure9,allfourprimaryhypothesesweresupported.ThepathanalysisresultssuggestthatincreasedPUofWZIATincreaseswithanend‐user’sBItoacceptWZIAT(γ=0.41).Inthiscase,PUcomprisesfactorssuchasthetechnology’sabilitytoprovideadequatesafetycoverage,adequatealerts,etc.PEU‐whichrepresentsthelevelofeaseassociatedwithimplementingthetechnology‐alsoshowedapositiverelationshipwithBItoacceptatechnology(γ=0.23).Thisrelationshipimpliesthatworkers’BItoacceptWZIATisassociatedwithincreasedperceivedeaseofuse.SocialnormalsoshowedapositivecorrelationwithbehavioralintentiontoadoptWZIAT(γ=0.34).ThePEUofWZIATalsocorrelatedpositivelywithPU,suggestingthatPEUplaysasignificantroleonhowworkersperceivetheusefulnessofWZIAT(γ=0.45).Thisresultisconsistentwiththerelativelyhighratingoffactorsassociatedwithease(e.g.,easytomaintain,easeofdeployment/retrieval,andeasytomovearound)seeninAppendix.Together,PEU,PU,andSNexplain54%ofthevarianceinanindividual’sBItoacceptWZIAT.PEUexplains21%ofthevarianceinPU.

  • 32 | P a g e   

    Figure9:ResultsofHypothesisTesting

    Theimplicationsoftheresultsareasfollows: WorkersmustperceivethatusingWZIATisnotcomplicatedandwillnotrequire

    extensivelearning.WZIATsthatareeasytoinstall,retrieve,move,andmaintainwilllikelybeacceptedbeforeWZIATsthataremorecomplex.

    GiventhattheprimarycostdriverofusingWZIATonprojectsisthelaborcostassociatedwithmoving,retrieve,andmaintainingWZIATs,technologiesthatareeasiertousewillsignificantlyimprovethePEUandincreasetheBCAtherebyincreasingtheoddsofadoption.

    SupervisorsandmanagersplayanimportantroleindrivingtheacceptanceofWZIAT(throughSN).

    InordertoachievehighbehavioralintentiontoacceptWZIAT,itisessentialthePEU,PU,andSNarehigh.

    DevelopandtestABMmodel

    Agent‐BasedModeling(ABM)isaheterogeneoussimulationmethodusedtopredictagroupleveloutputbyaggregatingindividualagentreactionsandinteractions(Hamiltonetal.2009;RandandRust2011).Givenitsbottom‐upapproachtopredictingtheoutcome,itisconsideredagoodtheoreticaltoolforforecastingandunderstandingtheimpactofindividualdifferencesongroupleveloutcomesinsocialscienceandmarketingresearch.

  • 33 | P a g e   

    Oneobjectiveofthecurrentstudywastoinvestigatethepossibilityofcombiningadiffusionsimulationmethod‐agent‐basedmodelinthiscase‐andinformationobtainedfromatechnologyacceptancemodel.Responsesreceivedfromtheinterviewsandsurveyswereusedtocreateconstraintsandboundariesforthesimulations.TodeveloptheABM,itisessentialtodefinethephasesinadoption.AccordingtoInnovationDiffusiontheory,apopulationcanbedividedintothreegroupwhenassessingtechnologyadoptionwithinapopulation:non‐adopters,potentialadopters,andadopters(Leeetal.,2011).Individualswhodonotconsideranewtechnologyaretermednon‐adopterswhilepotentialadoptersareindividualswhoconsidertheadoptionofanewtechnology.Thepresentstudyfollowsasimilarpremise.Technologyadoptioncouldoccuratanorganizationalleveland/orindividuallevel.Technologyadoptionintheconstructionindustryisconsideredmosteffectivewhenitoriginatesandexemplifiesatop‐downdynamic(topmanagementinitiatestheadoptionprocedure)(MitropoulosandTatum2000).Incontrast,successfultechnologyacceptance,thatis,theactualuseofthetechnology,isanemergentphenomenon–similartoabottom‐upapproach.Forthepresentagent‐basedmodel,threeprimaryconstructs–SN,PU,andPEU–determinetheintentionofanend‐usertomovefromanon‐adoptertoapotentialadopter.Thisfactorscouldbeextendedtoincludeorganizationaldemographicinformationsuchascompanysize(employeesandrevenue),companytype(sub‐contractorvs.generalcontractor),andindividualdemographicinformationsuchasage,experience,gender,etc.Atransitionfromnon‐adoptertopotentialadopterisachievedwhenthepotentialconstructvalueofanagentisgreaterthanorequaltoauser‐definedconstructthreshold.Thisthreshold–thecoefficient‐indicatesameasureofsensitivity.Consistentwithfindingsinthepresentstudy,AffordabilityTheory,andpreviousstudies(Gambateseetal.2017;Rasoulkhanietal.2017;Lynneetal.1995),costofimplementingthetechnologyiscomputedastheprimaryfactorthatinfluencesanagent(andorganization)toadoptaworkzonesafetytechnology(seeTable14).Affordabilityinthecontextofthepresentstudyisdefinedasthevalueofthetechnologyrelativetoitscost(ROIandBCA).Figure10typifiesthisrelationshipbetweennon‐adopter,potentialadopter,andadopter.The

  • 34 | P a g e   

    adoptedmodelingprocessissimilartothoseappliedinpastresearch(Rasoulkhanietal.2017).

    Figure10:Simulationtheoreticalframework

    Tables14and15listthefactorsrequiredtodevelopandoperationalizetheagent‐basedmodel.ThecoefficientslistedinTable14areextractedfromthestructuralequationmodelingconductedintheprevioussectionwhilethecostinformationinTable15isextractedfromfindingsfromthefinancialanalysis.Table14:Coefficientandvalueofsimulationconstructs

    Construct Value Coefficients

    Perceivedusefulness IfYes=1,ifNo=0 0.41Perceivedeaseofuse IfYes=1,ifNo=0 0.23Subjectivenorm IfYes=1,ifNo=0 0.34Table15:WZIATCostSummary

    Technology Costpermile Benefitcostanalysis* Returnoninvestment*

    AWARE $5,776.00 0.58 136%Intellicone $7,382.00 1.24 106%

    WAS $8,052.00 1.14 98%*assumingeachtechnologycanprevent20%ofinjuriesandfatalitiesItisimportanttonotethatalthoughTable15suggeststhatAWAREhasanegativeBCA,AWAREwouldlikelypreventmorethan20%ofaccidentsandfatalitiescausedbyworkzoneintrusiongivenitsadvancedtechnologyandeaseofimplementation.Twentypercent

  • 35 | P a g e   

    wasselectedintheabsenceofempiricaldataandinordertocreatearangeofvaluesforthecomputationalmodel.AnyLogic8.0wasutilizedtodevelopacomputationalmodelforsimulatingthechangeinworker’sbehavior.Inthismodel,onlyoneclassofagent–DOTlevel‐isincorporated.Thisclassofagentrepresentsthefirststepintheadoptionprocess(DOT‐>constructioncompany‐>constructionworkers).Ideally,themodelshouldreflectmultipleclassesofagentstomimicthecomplexnatureoftechnologyadoptiononhighwayconstruction.However,theapproachsufficesgiventheexploratorynatureofthepresentstudy.Futurestudyshouldmodeltheinteractionsbetweenagentsusingmorecomplexconstraintsandboundaries.Intotal,50agents,representingeachstateDOTwereutilizedintheadoptionmodel.AstateDOTwouldlikelyadoptaWZIATifthestateDOTbelievestheWZIATisuseful,easytouse,orisusedbyotherstates.Todeterminethethresholdthattriggersachangeofstate(fromnon‐adopter‐>potentialadopter‐>adopter),theregressioncoefficientsfromtheSEMwereutilized.Theseconstructswereparameterizedusingstochasticcomputationandusedwithinthesimulationasprobabilisticfactorsfordeterminingbehavior.Theformulabelowshowsthemathematicalexpressionofthemodel:

    Br1=w1(PUr)+w2(PEUr)+w3(SNr)Br2=w4(BCA)

    WhereBr1andBr2referstothepotentialadoptionandadoptionbehaviorrespectively.Wnrepresentstheregressioncoefficientforeachconstruct.Thesumofthevaluesinequation1couldrangefrom0to1withnumbersbelow0.5consideredlowandnumbersabove0.5consideredhigh.Ifthesumoftheconstructexceeds0.5,theagentinquestionmovesintothenextstate(fromnon‐adoptertopotentialadopter).Aprobabilitythresholdof0.5wasselectedsimilartopreviousstudies(Scalcoetal,2017).Thesameprocessappliestotransitioningfrompotentialadoptertoadopter.BCAwasselectedasthepreferredfinancialmetricsincetheclassofagentinquestionistheDOT.GiventhatinvestmentswithBCAresultsabove1areconsideredpositiveinvestments,theresearcherssetatransitionthresholdof1andarangeof0.5to1.5.

  • 36 | P a g e   

    TheredareainFigure11representsnon‐adopterwhileyellowandgreenrepresentspotentialadoptersandadopters.ThesimulationstartdateisMay2018anditterminatesinJanuary2025–approximately7yearsintotal.Thesimulationbeginswithall50stateDOTsinanon‐adopterstate.ThenumberofDOTsinthenon‐adoptersstatereducedbyabout78%bytheendofthesimulationin2025.Withinasimilartimeframe,19stateDOTsadoptedWZIAT.

    Figure11:WZIATdiffusionbetween2018‐2025withinStateDOTs

    Figure12depictstherateofadoptionwhentheregressioncoefficientofPU,PEU,andSNofthetechnologiesisincreasedby15%(cumulativecoefficient).Thisincreaseresultedtoahigherrateofadoptionbyyear2025(approximately75%ofDOTsutilizingWZAIT).TheresultsindicatesthatmorestateDOTswilladoptWZIATiftheybelievethatWZIATismoreusefulintermofitseffectiveness,durability;andiseasiertoimplement,retrieve,andmaintain.Also,resultsfromthemodelindicatesthatsocialinfluencessuchcouldbeakeyfactorfordiffusiontooccur.Forinstance,astateDOTwouldbeinfluencedbythedecisionofanotherstateDOTwithincloseproximitytoadoptWZIAT.

  • 37 | P a g e   

    Figure12:IncreaseddiffusionofWZIAT.

    7. Changes/problemsthatresultedindeviationfromthemethodsWhileexecutingthestudy,theresearchersencountereddifficultiesgeneratingresponsesfromworkzonesafetytechnologymanufacturersandhighwayconstructioncontractorswhichimpactsthegeneralizabilityofthestudyfindings.Althoughtheoreticallysound,thedevelopmentofanacceptancemodelusingABMrequiresadditionalparametersandboundariestoensurethatallpotentialfactorsareaccountedfor.ItisimportanttonotethatalthoughTPBandTAMwerecombinedtodevelopanacceptancemodelforWZIAT,extendingthetheoriestoincludemodelssuchastask‐technologyfit(TTF)andtheoryofreasonedaction(TRA)couldhelpidentifymoreconstructsthathaveanimpactontheacceptanceofworkzonetechnologiessuchasWZIAT.Developingthefinancialanalysisinvolvedmakingsomeassumptionsforinformationthatwereunobtainable.These

  • 38 | P a g e   

    assumptionswereclearlystatedandshouldbeconsideredwhengeneralizingtheresultsofthisstudy.

    8. Listofpresentations/publicationsFindingsfromthisstudywillbepublishedinacademicjournalsandpresentedinconferences,workshops,and/orseminars.1. Nnaji, C., Gambatese, J., and Eseonu, C. (2017). “Theoretical Framework for Improving

    Adoption of Safety Technology in Construction Industry.” 2018 Construction ResearchCongress(CRC2018),NewOrleans,LA.[AcceptedonOctober17,2017]

    2. Nnaji,C.,Lee,H.,andGambatese,J.(2017).“Canworkzoneintrusion‐inducedinjuriesandfatalitiesbereducedefficiently?”ProfessionalSafety,ASSE[Acceptance,Jan.20,2018]

    3. Nnaji,C.,Gambatese, J., Lee,H.W., andZhang,F. (2017). “Assessing the ImpactofWorkZone Safety Technology: A Systematic Review.” Accident and Analysis and PreventionJournal.[SubmittedtothejournalonSeptember19,2017]

    9. DisseminationplanTheresearchershavesubmittedandpublishedsectionsofthisstudyinacademicjournalsandconferenceproceedings.Theresearchersalsoplantosubmitacomprehensivejournalpaperfromthestudytoatopacademicjournal.

    10. ConclusionsWorkerswithinhighwayworkzonesareanat‐riskpopulationgiventheinherentlyriskynatureoftheirjobs.Thecurrentstudyassessedtheroletechnologyplaysinimprovingworkersafetyandprovidesinformationthatshouldeasetheprocessofadoptingandimplementingtechnologyonhighwayprojects.Currenttechnologiesusedinworkzonesafetymanagementplayanessentialroleinimprovingworkersafetythroughreducingmotoristspeed,alertingequipmentdriversofpotentialcollisionwithworkers,andinformingworkersofanintrudingvehicle.Thefindingsfromthepresentstudyprovideessentialinformationsuchasthekeypredictorsofsafetytechnology,financialanalysis,andprimaryfactorsthataffectauser’sintentionto

  • 39 | P a g e   

    acceptaWZIATtoconstructionpractitionersinvolvedintechnologyadoptiondecision‐making.Forinstance,thepresentstudyillustratesthesevereimpactthatlaborcosthasontheoveralldailycostofutilizingWZIAT.ReducingthetimeworkersareinvolvedinmanagingaWZIATvastlyreducesthecostassociatedwithimplementingWZIAT.Utilizingthisinformation,stakeholderscanarriveatacongruentdecisionregardingWZIATadoptionthatissupportedbyempiricaldataandwhichinturnimprovestheoutcome–inthiscase,areductionininjuriesandfatalitiesinhighwayconstructionworkzones.

    11. FutureResearchOpportunitiesProvidedbelowarerecommendationsforfutureresearchbasedonfindingsfromthecurrentstudy:

    Thedevelopmentofadaptablestandardtoolsthathelpbridgetheknowledgegapbetweenmanufacturersandend‐usersshouldbeencouraged

    Thereisaneedforthedevelopmentofarobustmodelforpredictingpotentialadoptionoftechnology

    MonteCarlosimulationshouldbeappliedtothefinancialanalysistohelpnormalizesomeassumptions

    Workforcedevelopmenttrainingisneededforworkerstohelpimproveintegrationofsafetytechnologywithinconstructionoperations

  • 40 | P a g e   

    12. ReferencesAAM(2017).“ISS,NISSandMAISMappingwithAAAM’sICDISSMap.”Associationforthe

    AdvancementofAutomotiveMedicine.(Jan.05,2018)

    AAAM(2015).“Overview.”AssociationfortheAdvancementofAutomotiveMedicine

    AASHTO(2010).“UserandNon‐UserBenefitAnalysisforHighways.”AmericanAssociationofStateHighwayandTransportationOfficials.(Jan.21,2017)

    Arico,M.C.,andRavani,B.(2008).AdvancedHighwayMaintenanceandConstructionTechnologyResearchCenter.

    Agent,K.,andHibbs,J.(1996).“EvaluationofSHRPWorkZoneSafetyDevices”.KentuckyTransportationCenterResearchReport.381.KTC‐96‐30

    Bello,D.(2009).“StateofWorkZoneSafety.”(Aug.21,2017)

    Boardman,A.Greenberg,D.,Vining,A.,andWeimer,D.(2001).“Cost‐BenefitAnalysis:ConceptsandPractice.”seconded.PrenticeHall.

    BLS(2017).“Fataloccupationalinjuriescountsandratesbyselectedindustries,2015‐16.”(Nov.11,2017)

    Brown,H.,Sun,C.,andCope,T.(2015).“Evaluationofmobileworkzonealarmsystems.”TransportationResearchRecord:JournaloftheTransportationResearchBoard,(2485),42‐50.

    Chuttur,M.Y.(2009).“Overviewofthetechnologyacceptancemodel:Origins,developmentsandfuturedirections.”WorkingPapersonInformationSystems,9(37),9‐37.

  • 41 | P a g e   

    CPWR(2015).StrengtheningJobsiteSafetyClimatebyUsingandImprovingLeadingIndicators.TheCenterforConstructionResearchandTraining.https://www.cpwr.com/safety‐culture/strengthening‐jobsite‐safety‐climate>(Jan.12,2017)

    Davis,F.D.(1989).“Perceivedusefulness,perceivedeaseofuse,anduseracceptanceofinformationtechnology.”MISquarterly,319‐340.

    Edara,P.,Sun,C.,andRobertson,A.(2013).“EffectivenessofWorkZoneIntelligentTransportationSystems.”ReportNo.InTransProject,06‐277.

    ELWC(2015).“SonoBlaster–WorkZoneSafety.”(Oct.14,2015).

    FederalHighwayAdministration(2017).“FactsandStatistics–WorkZoneSafety.”.(Dec.17,2017).

    Fyrie,P.(2016).“WorkZoneIntrusionAlarmsforHighwayWorkers.”AHMCTResearchCenter.

  • 42 | P a g e   

    Hamilton,D.J.,Nuttall,W.J.,&Roques,F.A.(2009).Agentbasedsimulationoftechnologyadoption(No.0923).EPRGWorkingPaperSeries.

    HighwayResourceSolution.(2015).“Intellicone.”(Sept.02,2015).

    Huebschman,C.R.,C.Garcia,D.M.Bullock,andD.M.Abraham.(2003).“ConstructionWorkZoneSafety.”PublicationFHWA/IN/JTRP‐2002/34.JointTransportationResearchProgram,IndianaDepartmentofTransportationandPurdueUniversity,WestLafayette,Indiana.https://doi.org/10.5703/1288284313166

    Hong,Y.,Chan,D.W.,Chan,A.P.,andYeung,J.F.(2011).“Criticalanalysisofpartneringresearchtrendinconstructionjournals.”Journalofmanagementinengineering,28(2),82‐95.

    InfrastructureTrainingandSafetyInstitute(ITSI)(2011).“ReferenceGuidetoWorkZoneTrafficControl”(March21,2018)

    Lee,Y.,Hsieh,Y.andHsu,C(2011).“AddingInnovationDiffusionTheorytotheTechnologyAcceptanceModel :SupportingEmployees’IntentionstouseE‐LearningSystems.”JournalofEducationalTechnologyandSociety,14(4)

    Mathieson,K.(1991).“Predictinguserintentions:comparingthetechnologyacceptancemodelwiththetheoryofplannedbehavior.”Informationsystemsresearch,2(3),173‐191.

    Mathieson,K.,Peacock,E.,andChin,W.W.(2001).“Extendingthetechnologyacceptancemodel:theinfluenceofperceiveduserresources.”ACMSIGMISDatabase:theDATABASEforAdvancesinInformationSystems,32(3),86‐112.

    Marks,E.,Vereen,S.,andAwolusi,I.(2017).“ActiveWorkZoneSafetyUsingEmergingTechnologies2017”(No.UTCAReportNumber15412).

  • 43 | P a g e   

    Marks,E.,andTeizer,J.(2013).“Methodfortestingproximitydetectionandalerttechnologyforsafeconstructionequipmentoperation.”ConstructionManagementandEconomics,31(6),636‐646.

    Mitropoulos,P.,andTatum,C.(2000).“Forcesdrivingadoptionofnewinformationtechnologies.”Journalofconstructionengineeringandmanagement,126(5),340‐348.

    Moren(2016).GuidanceonTreatmentofEconomicValueofaStatisticalLife(VSL)inU.S.DepartmentofTransportationAnalysis–2016Adjustment.(Nov15,2017)

    Novosel,C.(2014).“EvaluationofAdvancedSafetyPerimeterSystemsforKansasTemporaryWorkZones.”PhDdiss.,UniversityofKansas.

    Park,J.,Yang,X.,Cho,Y.K.,andSeo,J.(2017).“Improvingdynamicproximitysensingandprocessingforsmartwork‐zonesafety.”AutomationinConstruction,84,111‐120.

    Pegula,S.(2013).“Ananalysisoffataloccupationalinjuriesatroadconstructionsites,2003–2010.”TheBureauofLaborStatistics.Availableat(Sept.16,2017)

    Park,J.,Marks,E.,Cho,Y.K.,andSuryanto,W.(2015).“Performancetestofwirelesstechnologiesforpersonnelandequipmentproximitysensinginworkzones.”JournalofConstructionEngineeringandManagement,142(1),04015049.

    Park,J.,Yang,X.,Cho,Y.K.,andSeo,J.(2017).“Improvingdynamicproximitysensingandprocessingforsmartwork‐zonesafety.”AutomationinConstruction,84,111‐120.

    Rankin,J.H.,andLuther,R.(2006).“Theinnovationprocess:adoptionofinformationandcommunicationtechnologyfortheconstructionindustry.”CanadianJournalofCivilEngineering,33(12),1538‐1546.

  • 44 | P a g e   

    Rand,W.,andRust,R.T.(2011).“Agent‐basedmodelinginmarketing:Guidelinesforrigor”.InternationalJournalofResearchinMarketing,28(3),181‐193.

    Rasoulkhani,K.,Logasa,B.,Reyes,M.P.,andMostafavi,A.(2017).“Agent‐basedmodelingframeworkforsimulationofcomplexadaptivemechanismsunderlyinghouseholdwaterconservationtechnologyadoption.”InSimulationConference(WSC),2017Winter(pp.1109‐1120).IEEE.

    Sant(2014).“Work‐ZoneSafety:IntrusionAlert.”RoadandBridges.(June09,2016)

    Schwatka,N.V.,andRosecrance,J.C.(2016).“Safetyclimateandsafetybehaviorsintheconstructionindustry:Theimportanceofco‐workerscommitmenttosafety.”Work,54(2),401‐413.

    Sun,C.,Edara,P.P.,Hou,Y.,Robertson,A.,andSmith,D.(2011).“Cost‐BenefitAnalysisofSequentialWarningLightsinNighttimeWorkZoneTapers.”UniversityofMissouri,ReporttotheSmartWorkZoneDeploymentInitiative.

    Teizer,J.,Allread,B.,Fullerton,C.,andHinze,J.(2010).“Autonomouspro‐activereal‐timeconstructionworkerandequipmentoperatorproximitysafetyalertsystem.”AutomationinConstruction,19(5),630‐640.

    Theiss,L.,Miles,J.,Ullman,G.,andMaxwell,S.(2014).“PhotometricEvaluationofSteady‐BurnWarningLightsinWorkZones”.TransportationResearchRecord:JournaloftheTransportationResearchBoard,(2458),88‐95.

    Theiss,L.,Pratt,M.,Ullman,G.,andMaxwell,S.(2014).“EvaluationofCost‐EffectivenessofSteady‐BurnWarningLightsinWorkZones.”TransportationResearchRecord:JournaloftheTransportationResearchBoard,(2458),65‐73.

    Ullman,G.,andIragavarapu,V.(2014).“AnalysisofExpectedCrashReductionBenefitsandCostsofTruck‐MountedAttenuatorUseinWorkZones.”TransportationResearchRecord:JournaloftheTransportationResearchBoard,(2458),74‐77.

  • 45 | P a g e   

    Venkatesh,V.,Speier,C.,andMorris,M.G.(2002).“Useracceptanceenablersinindividualdecisionmakingabouttechnology:Towardanintegratedmodel.”Decisionsciences,33(2),297‐316.

    Venkatesh,V.,andDavis,F.D.(1996).“Amodeloftheantecedentsofperceivedeaseofuse:Developmentandtest.”Decisionsciences,27(3),451‐481.

    Wang,M.,Schrock,S.,Bai,Y.,andRescot,R.(2011).“Evaluationofinnovativetrafficsafetydevicesatshort‐termworkzones.”ReportK‐TRAN:KU‐09‐5,TheUniversityofKansas.

    Wong,J.M.,Arico,M.C.,andRavani,B.(2011).“Factorsinfluencinginjuryseveritytohighwayworkersinworkzoneintrusionaccidents.”Trafficinjuryprevention,12(1),31‐38.

    Yi,W.,andChan,A.P.(2013).“Criticalreviewoflaborproductivityresearchinconstructionjournals.”JournalofManagementinEngineering,30(2),214‐225.

    Zhang,F.,andGambatese,J.(2017).“HighwayConstructionWork‐ZoneSafety:EffectivenessofTraffic‐ControlDevices.”PracticePeriodicalonStructuralDesignandConstruction,22(4),04017010.

    13. AppendixAppendixA:Survey

    ReducingHighwayConstructionFatalitiesthroughImprovedAdoptionofSafety

    TechnologiesDearParticipant,Wewouldliketothankyoufortakingthetimetoparticipateinthissurveyentitled“ReducingHighwayConstructionFatalitiesthroughImprovedAdoptionofSafetyTechnologies."

  • 46 | P a g e   

    Thepurposeofthisstudyistodevelopatoolthatimprovestheadoptionanddiffusionofsafetyinnovationsintheconstructionindustry.Ifyouchoosetotakepartinthissurvey,youwillbeaskedtoprovidethefollowinginformation:

    Perceptiononwhatfactorsinfluencestheacceptanceofworkzonesafetytechnologies· Perceptionontheimpactofworkzonesafetytechnologies· Personalattributessuchastitle,typeofcompany/organization,yearsofexperience,etc.

    Thesurveyisexpectedtotakeapproximately15minutestocomplete.Yourresponsestothissurveyandpersonalinformationprovidedwillbekeptconfidential,usedonlyforacademicpurposesrelatedtothestudy,andwillnotbedistributedtothepublic.Allidentifyinginformationconnectingrespondentstotheirresponseswillberemovedaspartofthedatacollectionprocess.Publicationsgeneratedfromtheresearchstudywillnotincludeanyinformationthatcanbeusedtoidentifyrespondents.Ifyouhaveanyquestionsaboutthesurvey,pleasecontacttheresearcherslistedbelow.Ifyouhavequestionsaboutyourrightsorwelfareasasurveyparticipant,pleasecontacttheOregonStateUniversityInstitutionalReviewBoard(IRB)Officeat541‐737‐8008,[email protected]:Dr.ChinweikeEseonu(PrincipalInvestigator),Mechanical,IndustrialandManufacturingEngineering,OregonStateUniversity,204RogersHall,Corvallis,OR97331;Cell‐phone:541‐737‐0024;E‐mail:[email protected],CivilandConstructionEngineering,OregonStateUniversity,101KearneyHall,Corvallis,OR97331;Cell‐phone:(541)737‐8913;E‐mail:[email protected],CivilandConstructionEngineering,OregonStateUniversity,101KearneyHall,Corvallis,OR97331;Cell‐phone:(541)908‐0475;E‐mail:[email protected]:Bycontinuingthesurvey,Ihavereadtheabovedescriptionoftheresearch.IfIhadquestionsorwouldlikeadditionalinformation,Icontactedtheresearchersandhadallofmyquestionsansweredtomysatisfaction.Iagreetovoluntarily

  • 47 | P a g e   

    participateinthisresearch.Byansweringthesurveyquestionsandrespondingtothissurvey,IaffirmthatIhavereadtheaboveinformation,agreetoparticipateintheresearch,andamatleast18yearsofageorolder.

    SurveyQuestionsDemographicInformation

    Q1Pleaseselectyourrole OwnerAgency(e.g.OregonDOT,etc.)(1) GeneralContractor(2) Sub‐Contractor(3) Consultant(6) EquipmentManufacturer(7) EquipmentSupplier(4) Student(8) Other(5)____________________Q2Whatindustrydoyou(orhaveyou)workedin?Selectallthatapply. HeavyCivil(1) MarineConstruction(2) VerticalConstruction(ResidentialandCommercial)(3) IndustrialConstruction(4) Other(5)____________________Q3Selectthejobtitlethatbestdescribeswhatyoudo. ProjectManager(1) ProjectEngineer(2) TrafficControlDesigner(3) SafetyOfficer(4) SafetyEquipmentSupplier(5) RoadMaintenanceCrew(6) TrafficControlConsultant(9) TrafficControlCrew(7) Other(8)____________________

  • 48 | P a g e   

    Q4.Whatistheapproximateannualrevenueofyourcompany?Q5.Whatisthesizeofyourcompany?(Approximatenumberofemployees)Q6.Whichsectorwouldyoubestdescribemostofyourcompany'sprojects?(Selectallthatapply) Residential(1) Commercial(2) HeavyCivil(3) Energy(4) Industrial(5) Marine(6)Q7Howmanyyearsofexperiencedoyouhaveintheconstructionindustry? Lessthan1year(1) 1‐5years(2) 5‐10years(3) 10‐20years(4) Morethan20years(5)Thequestionsinthenextsectionfocusonfactorsthatcouldimpacttheuseofaworkzoneintrusionalerttechnology.Aworkzoneintrusionalerttechnology(WZIAT)isatypeofsafetysystemusedinaroadwayworkzonetoalertfieldworkersandsecuretimeforthemtoescapewhenerrantvehiclesintrudeintotheworkzone.PleaseanswerthefollowingquestionswiththeWZIATinmind.Q8Areyoufamiliarwithworkzoneintrusionalerttechnology? Definitelyyes(1) Probablyyes(2) Probablynot(3) Definitelynot(4)Q9HowimportantarethefollowingattributestoyourdecisiontoadoptWZIAT?

  • 49 | P a g e   

    NotImportant

    (1)

    SlightlyImportant

    (2)

    Neutral(3) Important(4)

    VeryImportant

    (5)

    EaseofDeployment/Retrieval(1)

    Easytomovethetechnologyaround(2)

    UserFriendliness(learningcurve)(3)

    LittleornoImpactonTrafficFlowandControlwithinworkzone(4)

    Limitsworkerexposure(duringdeployment/retrievaloftechnology)(5)

    Easytostore(6)

    Resistancetoenvironmentalandphysicalimpact(7)

    Reusable(8)

    EasytoMaintain(9)

    ExtendedbatteryLife(reliability)(10)

    Costoflaborandequipment(11)

    Availabilityofequipmentinthemarket(12)

    Costofreplacingparts/maintenance(13)

    ImpactofwarningalertondriverorDrivercomprehensionofvisualand

    audiowarning(14)

  • 50 | P a g e   

    Workercomprehensionofwarningsignal(conspicuity,qualityofalarm)

    (15)

    Multiplewarningalertsources(audio,visual,haptic/vibratory)(16)

    Adequatecoveragedistance(Sensor/light/sound/haptic)(17)

    Limitedphysicalimpactonvehicle(collisionwithtechnology)(18)

    Driveradequatelycomprehendsvisualandaudiowarning(19)

    Fewornofalsenegativeandpositivealarm(20)

    Lessdependenceonexistinginfrastructure(21)

  • 51 | P a g e   

    Q10HowdoesWZIATimpactworkers? Strongly

    disagree/unlikely(1)

    Somewhatdisagree/unlikely(2)

    Neitheragree/likenordisagree/unlikely(3)

    Somewhatagree/likely(4)

    Stronglyagree/likely(5)

    ImplementingWZIATenablesworkerstobemoreproductive(1)

    UsingWZIATimprovesworkerssafety(2)

    UsingWZIATimprovesworkquality(3)

    WZIATiseasytouse(4)

    WZIATwouldhaveasteeplearningcurve(5)

    WorkerswillfindWZIATeasytouse(6)

    PeoplewhoareimportanttomewouldthinkIshoulduseWZIAT(7)

    IwilluseWZIATbecausepeoplewhoinfluencemybehavior(manager,etc.)

    wouldwantmetouseit(8)

    IwillencouragetheuseofWZIAT(9)

    IwilllikelyincorporateWZIATintoyourworkoperations(ifitwasmy

    decisiontomake)(10)

    IwillrecommendtheuseofWZIATtomyboss(11)

  • 52 | P a g e   

    Thequestionsinthenextsectionfocusonsafetyclimateandculture.“Safetyclimate”isdefinedas“thevalues,attitudes,motivations,andknowledgethataffecttheextenttowhichsafetyisemphasizedovercompetinggoalsindecisionsandbehaviors.”(Barnes2009)Pleasekindlyindicatehowyouperceiveyourorganization'sattitudetowardsworkersafetymanagement.Q11Inmycompany,management… Doesnotparticipateinsafetyaudits.(1) Onlyparticipateinsafetyauditsinresponsetoaworkerinjuryoradversesafetyevent.(2) Participateinsafetyauditsonlywhenrequired.(3) Initiateandactivelyparticipateininternalsafetyaudits.(4) Activelyparticipateininternalsafetyauditsandusetheinformationformanagement

    performanceevaluation.(5)Q12Inmycompany,… Thereisnoformalsafetymanagementsystem;safetytrendsarenotanalyzed.(1) Thesafetymanagementsystemisreviewedandsafetytrendsareonlyanalyzedinresponseto

    workerinjuryoranadversesafetyevent.(2) Thesafetymanagementsystemisreviewedandsafetytrendsareanalyzedfromtimetotime.

    (3) Thesafetymanagementsystemisreviewedandsafetytrendsareanalyzedannuallytoensure

    effectivenessandrelevance.(4) Thesafetymanagementsystemisreviewedandsafetytrendsareanalyzedbi‐annuallyto

    ensureeffectivenessandrelevance.(5)

  • 53 | P a g e   

    Q13Inmycompany,… Theprimaryfocusisonincreasingproductivityandreducingcosts.Employeesarerewarded

    fortakingshortcutstomeetproductiongoals.(1) Whenaprojectfallsbehindschedule,productionbecomesvaluedmorethansafety.(2) Aslongasminimumsafetyrequirementsarebeingmet,productionandcostreductionarethe

    mainprioritiesofaproject.(3) Forthemostpart,safetyisnotcompromisedforthesakeofproductivity.Projectsare

    completedassafelyaspossible.(4) Safetyisnevercompromisedforproductivity,schedule,orcost.Safetytrulycomesfirst.(5)Q14Inmycompany,management… Doesnotinvestinsafetyprogramdevelopmentorprovideadequateresourcestoconductwork

    safely.(1) Onlyinvestsinsafetyprogramdevelopmentanddevotesminimalresourcestosafetyactivities

    afteranaccidentoranadverseeventhasoccurred.(2) Participatesinsafetyprogramdevelopmentandallocatesresourcestotheextentthatitis

    requiredbyregulatoryauthoritiesortheowner.(3) Providesadequateresourcestoensureasafeworkingenvironment.Developsasafetyprogram

    thatissharedwithallemployees.(4) Provideson‐goingfinancialsupportforongoingdevelopmentofsafetypolicies,programs,and

    processes.Investsinsystemsandprocessestocontinuallyimprovethejobsitesafetyclimate.(5)

  • 54 | P a g e   

    Q15Inmycompany,… Therearenosafetyrelatedmetricsincludedinmanagerorsupervisors’performance

    evaluations.(1) Theonlysafetymetricusedinmanagersandsupervisors’evaluationsisthenumberofworker

    injuries,andoftenthatisignored.(2) Managersandsupervisorsareheldaccountableformeetingtheminimumrequiredsafety

    standards;but,poorprojectsafetyperformancecarriesfewrealconsequences.(3) Managersandsupervisorsareprimarilyheldaccountableforlaggingsafetyindicators(e.g.,

    RecordableInjuryRate),butsomeleadingindicators(e.g.,safetyclimatemetrics)havebeenincluded.(4)

    Managersandsupervisorsareheldaccountableforleading(e.g.,safetyclimatemetrics)andlaggingsafetyindicators.Proactivesafetyleadershipisacriticalcomponentoftheirevaluationandpromotion.(5)

    Q16Inmycompany,safetyexpectations,roles,andresponsibilities…

    Arenotidentifiedorarticulatedtoindividualsworkingintheworkplace.(1) Areonlyclarifiedafteranadversesafetyevent.(2) AreonlysettomeetOSHArequirements.(3) Arefrequently,clearly,andconsistentlycommunicatedtoemployees.(4) Arediscussedwithemployeesacrosstheentirecompany,withsub‐contractors,and

    owners;theyarereinforcedonadailybasis.(5)

  • 55 | P a g e   

    Q17Inmycompany,… Supervisorshavenosupervisorytrainingandhavelittleunderstandingorknowledgeof

    regulatoryrequirements.(1) Afteranincidentoccursorregulatoryactionistaken,thereisadiscussionamonghigherlevel

    managementabouttheimportanceofsupervisoryleadership.(2) SupervisorstakeOSHA30‐hourtrainingandthusarefamiliarwithOSHAregulationsbutthey

    havelittleornoleadershiptraining.(3) Supervisorsaretrainedonregulatoryguidelinesandleadership.(4) Supervisorsareprovidedwithandrequiredtotakeleadershiptrainingthatincludestopics

    suchas:howtocommunicatewith,andmotivateteammembers;howtoconductpre‐planningmeetings;andhowtoinspirecrewmemberstoalsobeproactivesafetyleaders.(5)

    Q18Inmycompany,supervisors… Manageandpunishusingintimidationandfocusonlyonindividualbehaviorwithouttaking

    whatmayhavebeenafaultyprocessintoaccount.(1) Startcaringfortheircrewandactingassafetyleadersonlyafteranincidentoccursor

    regulatoryactionistaken.Thebehaviordisplayedisshort‐lived.(2) “Talkthesafetytalk”,butoftendonotfollowtheirownadviceandexpectations.(3) Initiateandactivelyparticipateinsafetyprogramactivitiesthatarefocusedoncontinuous

    improvement.(4) Instillasenseofsafetyownershipatalllevels,serveaseffectivesafetycommunicators,

    excellentrolemodelsforsafety,andareabletocoachandteach.Safetyisinfusedintoeverymeeting.(5)

    Q19Inmycompany,employees… Feelnosenseofresponsibilityfortheirco‐employees’ortheirownsafety.(1) Aren’tengagedinpromotingsafetyuntilafteranaccidentoccurs.(2) Areengagedinpromotingsafetytotheextentthatisrequired.(3) Participateinallaspectsofensuringsafeworkingconditions,beginningattheplanningand

    designstages.(4) Areempoweredandrewardedforgoingaboveandbeyondtoensuresafeworkingconditions

    wheretheyalwaysfeelresponsiblefortheirandtheirco‐employeessafety.(5)

  • 56 | P a g e   

    Q20Inmycompany,… Workerfeedbackregardingsafetyconditionsandhazardreductionisnotsought.Theyjust

    wantemployeesto“getthejobdone.”(1) Employeesareaskedforsafetyadviceandfeedbackafteraninjuryoradversesafetyeventhas

    occurred.(2) Workerfeedbackregardingsafetyissoughtonlywheninitiatedbyemployeesorduring

    mandatorysafetymeetings.(3) Managementactivelyinvolvesemployeesinidentifyinghazardsandsolvingsafetyproblemsby

    includingthemindailypre‐jobsafetyandcrewtask/hazardanalysis.(4) Managementactivelyseeksworkerinputonsafety.Safetyandevennon‐safetymeetingsand

    walk‐aroundsfocusonsolvingspecificproblemsidentifiedbyemployeesandothers.(5)Q21Inmycompany,Injuryandillnessdata… Arenotcollected,unlessthere’safatalitythatmustbereportedtoOSHAorotherentities.(1) Arecollected,buttheyareonlyreviewedafteranadversesafetyeventhasoccurred.Issuesare

    notformallytrackednorareresolutionscommunicatedacrosstheorganization.(2) ArecollectedforthepurposeofbeingcompliantwithOSHArequirements.Supervisorspass

    safetyinformationontotheircrewonlywhenrequiredbymanagement.(3) Areregularlyandformallycollectedandsharedwithmanagersandsupervisors;supervisors

    areencouragedbutnotrequiredtoshareinformationwiththeiremployees.(4) Aregatheredthroughformalsystemsforregularlysharingandfollow‐upimprovementactions

    withmanagers,supervisor,andemployees.(5)Q22Inmycompany,… Thereisnoadequatesafety‐relatedcommunicationeffort.(1) Safety‐relatedcommunicationeffortsoccuronlyinresponsetoanadversesafetyevent.(2) Safety‐relatedcommunicationeffortmeetsOSHArequirements.(3) Safety‐relatedcommunicationeffortismadewhenthere’sanewstandardorpolicythatneeds

    tobefollowed.(4) Safetyrelatedcommunicationeffortisformalizedbothverticallyandhorizontallythroughout

    thecompanyandintheworkplace.(5)

  • 57 | P a g e   

    Q23Inmycompany… Thereisnotrainingverificationprocess.(1) Trainingcardsorcertificatesareonlyinvestigatedafteranincidenthasoccurred.(2) TrainingisverifiedonlytotheextentrequiredbyOSHAregulations.(3) Trainingforallemployees,includingsub‐contractors,isverifiedregularly.(4) Trainingforallemployees,includingallsub‐contractorsisverifiedbeforeworkisconductedon

    everyproject.Knowledgeandskillcompetenceareregularlyassessed.(5)Q24Inmycompany,… Trainershavenoformalqualifications.(1) Becauseofjob‐siteexperiencealone,seniorlevelemployees(e.g.,foreman)areaskedto

    conductsafetytraining.(2) AformalsafetycurriculumisdevelopedandadministeredbytrainerswhomeetminimalOSHA

    qualifications.(3) Safetycurriculumisdevelopedbyhighlyqualifiedtrainers.(4) Safetycurriculumisdevelopedandadministeredbyhighlyqualifiedandexperiencedcontent

    expertswithknowledg