reconstructing the electrical conductivity and the...

46
&

Upload: others

Post on 25-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Reconstructing the electrical conductivity and the

magnetic permeability of the soil by a FDEM data

inversion

Patricia Díaz de Alba and Giuseppe Rodriguez

Department of Mathematics and Computer Science

University of Cagliari

International Workshop on Applied Mathematics & QuantumInformation

3�4 November, 2016, Cagliari (Italy)

Patricia Díaz de Alba FDEM data inversion

Page 2: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Outline

1 Motivation

2 The forward problem

3 The nonlinear inverse problem

4 Numerical results

Patricia Díaz de Alba FDEM data inversion

Page 3: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Outline

1 Motivation

2 The forward problem

3 The nonlinear inverse problem

4 Numerical results

Patricia Díaz de Alba FDEM data inversion

Page 4: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Goal: Detect or infer inhomogeneities in the ground or the presenceof particular conductive substances such as metals, minerals andother geological structures by Electromagnetic Induction.

Applications

Hydrological and hydrogeological characterizations.

Hazardous waste characterization studies.

Archaeological surveys.

Precision-agriculture applications.

Unexploded ordnance detection (UXO).

Patricia Díaz de Alba FDEM data inversion

Page 5: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

The main device used in applied Geophysics is GCM.

How does it work? ⇒

Patricia Díaz de Alba FDEM data inversion

Page 6: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

The main device used in applied Geophysics is GCM.

How does it work?

Patricia Díaz de Alba FDEM data inversion

Page 7: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

The main device used in applied Geophysics is GCM.

How does it work? ⇒

Patricia Díaz de Alba FDEM data inversion

Page 8: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

The two coils axes may be aligned either vertically or horizontallygiving a di�erent response.

Patricia Díaz de Alba FDEM data inversion

Page 9: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

The nonlinear problem

Gauss�Newton methodLinear squares problem

(ill-conditioned)

Regularization

TSVD

TGSVD

Patricia Díaz de Alba FDEM data inversion

Page 10: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

The nonlinear problem

Gauss�Newton methodLinear squares problem

(ill-conditioned)

Regularization

TSVD

TGSVD

Patricia Díaz de Alba FDEM data inversion

Page 11: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

The nonlinear problem

Gauss�Newton methodLinear squares problem

(ill-conditioned)

Regularization

TSVD

TGSVD

Patricia Díaz de Alba FDEM data inversion

Page 12: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

The nonlinear problem

Gauss�Newton methodLinear squares problem

(ill-conditioned)

Regularization

TSVD

TGSVD

Patricia Díaz de Alba FDEM data inversion

Page 13: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

The nonlinear problem

Gauss�Newton methodLinear squares problem

(ill-conditioned)

Regularization

TSVD

TGSVD

Patricia Díaz de Alba FDEM data inversion

Page 14: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Outline

1 Motivation

2 The forward problem

3 The nonlinear inverse problem

4 Numerical results

Patricia Díaz de Alba FDEM data inversion

Page 15: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

The nonlinear model is derived from Maxwell's equations keepinginto account the cylindrical symmetry of the problem. [J. R. Wait,Geo-Electromagnetism]

hi

h2

h3

hmT R

z2

z3

zn-1

zn

r

z1d1

d2

dn-1

dn

μ1

μ2

μn-1

μn

σ1

σ2

σn-1

σn

h1

dk are the thickness of each layer.

σk and µk are the electricalconductivity and the magneticpermeability of the k-th layer,respectively.

hj are the heights above theground.

ω is the angular frequency.

r is the distance between the coils.

Patricia Díaz de Alba FDEM data inversion

Page 16: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

• Characteristic admittance: Nk(λ) =uk(λ)

iµkω

• Surface admittance: Yk(λ) = Nk(λ)Yk+1(λ) +Nk(λ) tanh(dkuk(λ))

Nk(λ) + Yk+1(λ) tanh(dkuk(λ))

• Re�ection factor: R0(λ) =N0(λ)− Y1(λ)

N0(λ) + Y1(λ)

Ratio of the secondary to the primary �eld,HS

HP

Vertical orientation:

M1(σ,µ;h, ω) = −r3∫ ∞0

λ2e−2hλR0(λ)J0(rλ) dλ

Horizontal orientation:

M2(σ,µ;h, ω) = −r2∫ ∞0

λe−2hλR0(λ)J1(rλ) dλ

Patricia Díaz de Alba FDEM data inversion

Page 17: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

We let

HS

HP= Mν(σ,µ;hi, ωj), ν = 1, 2, i = 1, . . . ,mh, j = 1, . . . ,mω,

where ν indicates the orientation, mh is the number of heights andmω is the number of frequencies.

In our numerical experiements we will reconstruct the electricalconductivity assuming that the magnetic permeability is known, andvice versa, and we will let the inter�coil distance, r, to be constant.

Patricia Díaz de Alba FDEM data inversion

Page 18: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Outline

1 Motivation

2 The forward problem

3 The nonlinear inverse problem

4 Numerical results

Patricia Díaz de Alba FDEM data inversion

Page 19: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

The problem of data inversion consists of �tting the model to thedata, that is determine the electrical conductivity σ, and thepermeability vector µ which produce the best approximations

Mν(σ,µ;hi, ωj) ≈ bij ν = 1, 2, i = 1, . . . ,mh, j = 1, . . . ,mω.

Let us consider the error in the model prediction

rij(σ,µ;hi, ωj) = bνij −Mν(σ,µ;hi, ωj).

From now on, we will consider hi and ωj �xed and we vectorize thedata values bνij in lexicographical order into b ∈ Cm, m = 2mhmω.

Patricia Díaz de Alba FDEM data inversion

Page 20: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

We proceed similarly for the model predictions, obtaining the vectorMν ∈ Cm , and minimize the Euclidean norm of the (complex)residual between the data and the model, that is

(σ∗,µ∗) = arg minσ,µ∈Rn

1

2‖r(σ,µ)‖2.

Patricia Díaz de Alba FDEM data inversion

Page 21: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Iterative methods

Newton methodNewton's method requires the computation of both the gradientvector and the Hessian matrix of the residual, which have a largecomputational complexity.

Gauss�Newton methodWhen the residuals are small or mildly nonlinear in a neighborhoodof the solution, the Gauss�Newton method is expected to behavesimilarly to Newton's method. We remark that, while the physicalproblem is obviously consistent, this is not necessarily true in ourcase, where in the presence of noise in the data the problem willcertainly be inconsistent.

Patricia Díaz de Alba FDEM data inversion

Page 22: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Iterative methods

Damped Gauss�Newton method:

(σk+1,µk+1) = (σk + αksk,µk + αksk),

where αk is parameter to be determined and sk is the solution ofthe linear least squares problem

mins∈Rn

‖r(σk,µk) + Jks‖,

with Jk = J(σkµk) is the Jacobian of r(σ,µ) or someapproximation.

Patricia Díaz de Alba FDEM data inversion

Page 23: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Iterative methods

How to choose αk?

Armijo Goldstein principle

αk is selected as the largest number in the sequence 2−i,i = 0, 1..., for which the following inequality holds

‖r(σk,µk)‖2 − ‖r(σk + αksk,µk + αksk)‖2 ≥1

2αk‖Jksk‖2

This choice of αk ensures convergence of the method, providedthat (σk,µk) is not a critical point.

Patricia Díaz de Alba FDEM data inversion

Page 24: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Iterative methods

How to choose αk?

Armijo Goldstein principle

αk is selected as the largest number in the sequence 2−i,i = 0, 1..., for which the following inequality holds

‖r(σk,µk)‖2 − ‖r(σk + αksk,µk + αksk)‖2 ≥1

2αk‖Jksk‖2

This choice of αk ensures convergence of the method, providedthat (σk,µk) is not a critical point.

Patricia Díaz de Alba FDEM data inversion

Page 25: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Regularization TSVD

The regularization technique we use is the one based on a low-rankapproximation of the Jacobian matrix.

The best rank ` approximation according to the 2-norm can beobtained by the SVD decomposition, J = UΓV T .

This procedure allows us to replace the ill-conditioned Jacobianmatrix with a well-conditioned rank-de�cient matrix A`. Thesolution is known as the truncated SVD (TSVD) and it can beexpressed as

s(`) = −A†`r = −∑̀i=1

uTi r

γivi,

Patricia Díaz de Alba FDEM data inversion

Page 26: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Regularization TGSVD

Let us introduce a regularization matrix L ∈ Rt×n (t ≤ n) replacedby

mins∈S‖Ls‖, S = {s ∈ Rn : JTJs = −JT r},

and solve the problem under the assumption N (J) ∩N (L) = {0}and t > max(0, n− 2m).The generalized singular value decomposition (GSVD) of the matrixpair (J, L) is the factorization

J = UΣJZ−1, L = V ΣLZ

−1,

By the generalized singular value decomposition (GSVD) of (J, L)it is possible to de�ne the truncated GSVD (TGSVD) solution s`.

Patricia Díaz de Alba FDEM data inversion

Page 27: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Choosing `, regularization parameter

The optimal choice would be the discrepancy principle

‖b−Mν(σ(`discrepancy),µ(`discrepancy))‖ ≤ κ‖e‖, κ > 1,

but it can seldom be applied to EMI techniques because inapplications

The noise on the data is not necessarily equally distributed.

An accurate estimate of ‖e‖ is often unknown.

Patricia Díaz de Alba FDEM data inversion

Page 28: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Choosing `, L-curve

L-curve principle can be adapted quite naturally to the nonlinearcase.

It chooses the value of ` which identi�es the corner of the curveconnecting the points{

log ‖r(σ(`),µ(`))‖, log ‖L(σ(`)µ(`))‖}.

The curve is L-shaped in many discrete ill-posed problems.

To detect the corner of the L-curve we used the L-corner method[P. C. Hansen, T. K. Jensen and G. Rodriguez, An adaptive pruning

algorithm for the discrete L-curve criterion].

Patricia Díaz de Alba FDEM data inversion

Page 29: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Outline

1 Motivation

2 The forward problem

3 The nonlinear inverse problem

4 Numerical results

Patricia Díaz de Alba FDEM data inversion

Page 30: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

For �xed n and m, we apply the model previously described togenerate the instrument readings

b = Mν(σ,µ;hi, ωj),

with i = 1, . . . ,mh and j = 1, . . . ,mω, corresponding to frequencyωj = 2πfj and height hi.

Finally, we add Gaussian noise to the synthetic data by the formula

b = b̂ +τ‖b̂‖√m

w,

where w is a vector with normally distributed entries with zeromean and unitary variance, m = 2mhmω, and τ is the noise level.

Patricia Díaz de Alba FDEM data inversion

Page 31: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Electrical conductivity

For the numerical experiments we consider

The coils to be in both orientations at a �xed distancer = 1.66m.h is either 1m (mh = 1) or 0.5m and 1m (mh = 2).

Each data set is recorded simultaneously with the operatingfrequencies fj = 775, 1175, 3925, 9825, 21725, 47025, all expressedin Hertz.

0 0.5 1 1.5 2 2.5 3 3.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Patricia Díaz de Alba FDEM data inversion

Page 32: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

L mh n = 20 n = 30 n = 40

I 1 3.6e-01 3.7e-01 3.7e-01

2 4.5e-01 4.5e-01 4.4e-01

R D1 1 3.0e-01 3.3e-01 2.9e-01

2 2.4e-01 2.4e-01 2.3e-01

D2 1 2.4e-01 2.1e-01 2.8e-01

2 2.5e-01 2.5e-01 2.3e-01

I 1 3.2e-01 3.9e-01 4.0e-01

2 3.0e-01 3.4e-01 3.4e-01

I D1 1 1.9e-01 2.3e-01 1.9e-01

2 2.1e-01 1.9e-01 1.9e-01

D2 1 2.3e-01 2.0e-01 2.4e-01

2 2.1e-01 2.2e-01 2.1e-01

Patricia Díaz de Alba FDEM data inversion

Page 33: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

µ0 µr = 10 µr = 102 µr = 103

optimal - R 2.3e-01 4.3e-01 5.3e-01 5.5e-01

0 13 9 19

optimal - I 2.4e-01 5.3e-01 4.5e-01 7.1e-01

0 6 4 12

L�curve - R 2.6e-01 6.3e-01 4.7e-01 5.4e-01

0 20 18 27

L�curve - I 2.6e-01 4.2e-01 5.5e-01 7.4e-01

0 23 10 16

Patricia Díaz de Alba FDEM data inversion

Page 34: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

0 2

0

0.5

1

l=1

0 2

0

0.5

1

l=2

0 2

0

0.5

1

l=3

0 2

0

0.5

1

l=4

Figure: Plot of the �rst 4 regularized solutions, computed by minimizingthe real part of the signal, compared to the exact solution. The magneticpermeability µ = µ0 is constant, the noise level is τ = 10−3.

Patricia Díaz de Alba FDEM data inversion

Page 35: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

0 1 2 3

0

0.2

0.4

0.6

0.8

1

In−phase component

solution

optimal

corner

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Quadrature component

solutionoptimalcorner

0 1 2 3

0

0.2

0.4

0.6

0.8

1

In−phase component

solution

optimal

corner

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Quadrature component

solutionoptimalcorner

Figure: Solution obtained by minimizing the real part of the data (left) orthe imaginary part (right); τ = 10−3, µr = 10 in the top row, µr = 102

in the bottom row. The value of ` is chosen either optimally or by theL�curve.

Patricia Díaz de Alba FDEM data inversion

Page 36: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Magnetic permeability

0 10 20 30 4010

-20

10-10

100

n=10

n=20

n=30

n=40

0 5 10 15 2010

-20

10-10

100

Figure: Average of the singular values of the Jacobian J(µ) computed on100 random points in Rn, for m = n = 10, 20, 30, 40 (left-hand side);each component of µ is in [µ0, 100µ0]. The right-hand side graph showsthe average singular values for n = 20 together with their maximum andminimum value across the random tests.

Patricia Díaz de Alba FDEM data inversion

Page 37: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Magnetic permeability

0 5 10 15 20

10-40

10-20

100

max µr=10

max µr=10

2

max µr=10

3

max µr=10

4

Figure: Average of the singular values of the Jacobian J(µ) computed on100 random points in Rn, for m = n = 20; each component of µ is in[µ0, µrµ0], with µr = 10, 102, 103, 104.

Patricia Díaz de Alba FDEM data inversion

Page 38: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

For the numerical experiments we consider

The coils to be in both orientations.

m = 20, n = 40, and f = 1460 Hertz.

σ(z) = e−(z−1.2)2.

We considere the following model for the magnetic permeability asa function of depth

µθ(z) = µ0(θe−(z−1.2)2 + 1),

where θ is a parameter to be chosen, which takes values in[µ0, (θ + 1)µ0] and has a maximum at z = 1.2m.

Patricia Díaz de Alba FDEM data inversion

Page 39: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Magnetic permeability

0 1 2 3

0

2

4

6

8

10

12

14

16

10-6

solution

k=4

0 1 2 3

0

2

4

6

8

10

12

14

16

10-6

solution

k=6

Figure: θ = 10, in-phase component (left), quadrature component (right)

Patricia Díaz de Alba FDEM data inversion

Page 40: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Magnetic permeability

0 1 2

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

k=

4

vertical

0 1 2

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0horizontal

0 1 2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

k=

6

vertical

0 1 2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04horizontal

Figure: θ = 10, in-phase component (left), quadrature component (right)

Patricia Díaz de Alba FDEM data inversion

Page 41: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Patricia Díaz de Alba FDEM data inversion

Page 42: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Patricia Díaz de Alba FDEM data inversion

Page 43: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Quadrature component of the signal

1 2 3 4 5 6 710

−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

residuals

norms

noise level

Patricia Díaz de Alba FDEM data inversion

Page 44: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

In-phase component of the signal

1 2 3 4 5 6 7 8 910

−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

residuals

norms

noise level

Patricia Díaz de Alba FDEM data inversion

Page 45: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

Quadrature component of the signal

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 610

−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

residuals

norms

noise level

Patricia Díaz de Alba FDEM data inversion

Page 46: Reconstructing the electrical conductivity and the ...bugs.unica.it/cana/AMQI16/slides/DiazdeAlba.pdf · hm!, and ˝is the noise level. Patricia Díaz de Alba FDEM data inversion

MotivationThe forward problem

The nonlinear inverse problemNumerical results

In-phase component of the signal

1 2 3 4 5 6 710

−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

residuals

norms

noise level

Patricia Díaz de Alba FDEM data inversion