recent progress in integrate code taskfukuyama/pr/2007/... · 2007-07-23 · us-japan jift workshop...

31
US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent Progress in Integrate Code TASK — Integrated Modeling of — – RF Heating and Current Drive in Tokamaks — A. Fukuyama Department of Nuclear Engineering, Kyoto University in collaboration with S. Murakami, M. Honda, A. Sonoda, T. Yamamoto

Upload: others

Post on 24-Feb-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

US-Japan JIFT Workshop onIntegrated Modeling on Fusion Plasmas

ORNL, Oak Ridge, USA2007/01/29

Recent Progress in Integrate Code TASK

— Integrated Modeling of —

– RF Heating and Current Drive in Tokamaks —

A. FukuyamaDepartment of Nuclear Engineering, Kyoto University

in collaboration withS. Murakami, M. Honda, A. Sonoda, T. Yamamoto

Page 2: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Outline

• Integrated Simulation of Fusion Plasmas

• Progress of TASK Code Development

• Self-Consistent Analysis of RF Heating and Current Drive

• Full Wave Analysis Including FLR Effects

• Future Plan of Integrated Modeling

• Summary

Page 3: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Burning Plasma Simulation

Broad time scale:100GHz ∼ 1000s

Broad Spatial scale:10 μm ∼ 10m

1mm

1m

1Hz1kHz1MHz1GHz

LH

EC

IC

MHD

One simulation code nevercovers all range.

Energetic Ion Confinement

Transport Barrier

MHD Stability

Turbulent Transport

Impurity Transport

SOL Transport

Divertor Plasma

Core Transport

Non-Inductive CD

RF Heating

NBI Heating

Neutral Transport

Plasma-Wall Int.

Blanket, Neutronics, Tritium, Material, Heat and Fluid Flow

Integrated simulation combining modelingcodes interacting each other

Page 4: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Integrated Tokamak Simulation

Fixed boundary

Free boundary

Time evolution

Diffusive transport

Dynamic transport

Kinetic transport

MHD stability

Kinetic stability

Ray/Beam tracing

Full wave

Kinetic transport

Fluid transport

Orbit following

Equilibrium:

Core Plasma Transport:

Macroscopic Stability:

Wave Heating Current Drive:

Peripheral Plasma Transport:

Turbulent Tranport

Plasma Deformation

Neutral Transport

Impurity Transport

Velocity Distribut. Fn

Neoclassical Tranport

Wave Despersion

Magnetic Island

Turbulent Transport

Plasma-Wall Interaction

Integrated Simulation

Anisotropic Pressure

Energetic Particles

Control model

Diagnostic model

Neutral Transport

Impurity Transport

Radiation Transport

Page 5: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Multi-Hierarchy and Integrated Approaches

Equilibrium:

Core Plasma Transport:

Macroscopic Stability:

Wave Heating Current Drive:

Peripheral Plasma Transport:

Turbulent Tranport

Plasma Deformation

Neutral Transport

Impurity Transport

Velocity Distribut. Fn

Neoclassical Tranport

Wave Despersion

Magnetic Island

Turbulent Transport

Plasma-Wall Interaction

Integrated Simulation

Anisotropic Pressure

Energetic Particles

Control model

Diagnostic modelMulti-Hierarchu Simulation

Device size

Magnetic island size

Ion gyroradius

Collsionless skin depth

Electron gyroradius

Particle distance

NonlinearMHD Simulation

ExtendedMHD Simulation

TurbulenceSimulation

MolecularDynamics

Neutral Transport

Impurity Transport

Radiation Transport

Debye length

Page 6: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

BPSI: Burning Plasma Simulation Initiative

Integrated code: TASK and TOPICS

Page 7: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

TASK Code

• Transport Analysing System for TokamaK

• Features◦ Core of Integrated Modeling Code in BPSI— Modular structure— Reference data interface and standard data set— Uniform user interface

◦ Various Heating and Current Drive Scheme◦ High Portability◦ Development using CVS (Concurrent Version System)

◦ Open Source: http://bpsi.nucleng.kyoto-u.ac.jp/task/)

◦ Parallel Processing using MPI Library◦ Extension to Toroidal Helical Plasmas

Page 8: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Recent Progress of TASK

• Fortran95◦ TASK V1.0: Fortran95 compiler required (g95, pgf95, xlf95, ifort,...)◦ TASK/EQ, TASK/TR: Fortran95 (Module, Dynamic allocation)

• Module structure◦ Standard dataset: partially implemented◦ Data exchange interface: prototype◦ Execution control interface: prototype

• New module: from TOPICS by M. Azumi

◦ TOPICS/EQU: Free boundary 2D equilibrium◦ TOPICS/NBI: Beam deposition + 1D Fokker-Planck◦MHD stability component: coming

• Self-consistent wave analysis• Dynamic transport analysis: by M. Honda

Page 9: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Modules of TASK

EQ 2D Equilibrium Fixed/Free boundary, Toroidal rotationTR 1D Transport Diffusive transport, Transport modelsWR 3D Geometr. Optics EC, LH: Ray tracing, Beam tracingWM 3D Full Wave IC, AW: Antenna excitation, EigenmodeFP 3D Fokker-Planck Relativistic, Bounce-averagedDP Wave Dispersion Local dielectric tensor, Arbitrary f (u)PL Data Interface Data conversion, Profile databaseLIB Libraries LIB, MTX, MPI

Under Development

TX Transport analysis including plasma rotation and Er

Collaboration with TOPICSEQU Free boundary equilibriumNBI NBI heating

Page 10: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Structure of TASK

Page 11: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Inter-Module Collaboration Interface: TASK/PL

• Role of Module Interface◦ Data exchange between modules:

— Standard dataset: Specify set of data (cf. ITPA profile DB)— Specification of data exchange interface: initialize, set, get◦ Execution control:— Specification of execution control interface:

initialize, setup, exec, visualize, terminate— Uniform user interface: parameter input, graphic output

• Role of data exchange interface: TASK/PL◦ Keep present status of plasma and device◦ Store history of plasma◦ Save into file and load from file◦ Interface to experimental data base

Page 12: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Standard Dataset (interim)

Shot dataMachine ID, Shot ID, Model ID

Device data: (Level 1)RR R m Geometrical major radiusRA a m Geometrical minor radiusRB b m Wall radiusBB B T Vacuum toroidal mag. fieldRKAP κ Elongation at boundaryRDLT δ Triangularity at boundaryRIP Ip A Typical plasma current

Equilibrium data: (Level 1)PSI2D ψp(R, Z) Tm2 2D poloidal magnetic fluxPSIT ψt(ρ) Tm2 Toroidal magnetic fluxPSIP ψp(ρ) Tm2 Poloidal magnetic fluxITPSI It(ρ) Tm Poloidal current: 2πBφRIPPSI Ip(ρ) Tm Toroidal currentPPSI p(ρ) MPa Plasma pressureQINV 1/q(ρ) Inverse of safety factor

Metric data1D: V ′(ρ), 〈∇V〉(ρ), · · ·2D: gi j, · · ·3D: gi j, · · ·

Fluid plasma dataNSMAX s Number of particle speciesPA As Atomic massPZ0 Z0s Charge numberPZ Zs Charge state numberPN ns(ρ) m3 Number densityPT Ts(ρ) eV TemperaturePU usφ(ρ) m/s Toroidal rotation velocityQINV 1/q(ρ) Inverse of safety factor

Kinetic plasma dataFP f (p, θp, ρ) momentum dist. fn at θ = 0

Dielectric tensor dataCEPS ↔ε (ρ, χ, ζ) Local dielectric tensor

Full wave field dataCE E(ρ, χ, ζ) V/m Complex wave electric fieldCB B(ρ, χ, ζ) Wb/m2 Complex wave magnetic field

Ray/Beam tracing field dataRRAY R(�) m R of ray at length �ZRAY Z(�) m Z of ray at length �PRAY φ(�) rad φ of ray at length �CERAY E(�) V/m Wave electric field at length �PWRAY P(�) W Wave power at length �DRAY d(�) m Beam radius at length �VRAY u(�) 1/m Beam curvature at length �

Page 13: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Data Exchange Interface

• Data structure: Derived type (Fortran95): structured type

e.g.

time plasmaf%timenumber of grid plasmaf%nrmaxsquare of grid radius plasmaf%s(nr)plasma density plasmaf%data(nr)%pnplasma temperature plasmaf%data(nr)%pt

• Program interface

e.g.Initialize bpsd init data(ierr)Set data bpsd set data(’plasmaf’,plasmaf,ierr)Get data bpsd get data(’plasmaf’,plasmaf,ierr)

• Other functions:

◦ Save data into a file, Load data from a file, Plot data

Page 14: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Execution Control Interface

• Example for TASK/TRTR INIT Initialization (Default value) BPSX INIT(’TR’)TR PARM(ID,PSTR) Parameter setup (Namelist input) BPSX PARM(’TR’,ID,PSTR)TR SETUP(T) Profile setup (Spatial profile, Time) BPSX SETUP(’TR’,T)TR EXEC(DT) Exec one step (Time step) BPSX EXEC(’TR’,DT)TR GOUT(PSTR) Plot data (Plot command) BPSX GOUT(’TR’,PSTR)TR SAVE Save data in file BPSX SAVE(’TR’)TR LOAD load data from file BPSX LOAD(’TR’)TR TERM Termination BPSX TERM(’TR’)

• Module registrationTR STRUCT%INIT=TR INITTR STRUCT%PARM=TR PARMTR STRUCT%EXEC=TR EXEC· · ·BPSX REGISTER(’TR’,TR STRUCT)

Page 15: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Example of data structure: plasmaf

type bpsd_plasmaf_data

real(8) :: pn ! Number density [mˆ-3]

real(8) :: pt ! Temperature [eV]

real(8) :: ptpr ! Parallel temperature [eV]

real(8) :: ptpp ! Perpendicular temperature [eV]

real(8) :: pu ! Parallel flow velocity [m/s]

end type bpsd_plasmaf_data

type bpsd_plasmaf_type

real(8) :: time

integer :: nrmax ! Number of radial points

integer :: nsmax ! Number of particle species

real(8), dimension(:), allocatable :: s

! (rhoˆ2) : normarized toroidal flux

real(8), dimension(:), allocatable :: qinv

! 1/q : inverse of safety factor

type(bpsd_plasmaf_data), dimension(:,:), allocatable :: data

end type bpsd_plasmaf_type

Page 16: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Examples of sequence in a module

• TR EXEC(dt)call bpsd get data(’plasmaf’,plasmaf,ierr)

call bpsd get data(’metric1D’,metric1D,ierr)

local data <- plasmaf,metric1D

advance time step dt

plasmaf <- local data

call bpsd set data(’plasmaf’,plasmaf,ierr)

• EQ CALCcall bpsd get data(’plasmaf’,plasmaf,ierr)

local data <- plasmaf

calculate equilibrium

update plasmaf

call bpsd set data(’plasmaf’,plasmaf,ierr)

equ1D,metric1D <- local data

call bpsd set data(’equ1D,equ1D,ierr)

call bpsd set data(’metric1D’,metric1D,ierr)

Page 17: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Example: Coupling of TASK/TR and TOPICS/EQU

• TOPICS/EQU: Free boundary 2D equilibrium

• TASK/TR Diffusive 1D transport (CDBM + Neoclassical)

• QUEST parameters:

◦ R = 0.64 m, a = 036 m, B = 0.64 T, Ip = 300 kA, OH+LHCD

ψp(R,Z) jφ Te(ρ, t) j‖(ρ, t)psi(R,Z)

0.2 0.4 0.6 0.8 1.0 1.2-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

rcu(R,Z)

0.2 0.4 0.6 0.8 1.0 1.2-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

TE [keV] vs t

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.9

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.21.4

1.61.8

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

AJ [A/m^2] vs t

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.9

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.21.4

1.61.8

2.0

0 100

1 106

2 106

3 106

4 106

5 106

6 106

7 106

8 106

9 106

Page 18: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Transport simulation

• OH + off-axis LHCD: 200 kW

• Formation of internal transport barrier (equilibrium not solved)PIN,POH,PNB,PRF,PNF,PEX [MW] vs t

0.0 0.4 0.8 1.2 1.6 2.00.00.10.20.30.40.5

POH

PLH

PTOT

WF,WB,WI,WE [MJ] vs t

0.0 0.4 0.8 1.2 1.6 2.00.000

0.002

0.004

0.006

0.008Wtot

We

TE,TD,<TE>,<TD> [keV] vs t

0.0 0.4 0.8 1.2 1.6 2.00.00.20.40.60.81.0 Te(0)

Ti(0)

IPPRL,IOH,INB,IRF,IBS,IP [MA] vs t

0.0 0.4 0.8 1.2 1.6 2.00.000.050.100.150.200.250.30

IOH ILH

IBS

TE,TD [keV] vs r

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

Te

Ti

AKD,AKNCD,AKDWD [m 2/s] vs r

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

χTOT

χi

χCDBM χNC

JTOT,JOH,JNB,JRF,JBS [MA/m 2] vs r

0.0 0.2 0.4 0.6 0.8 1.00.0

0.4

0.8

1.2

1.6 jTOT

jLH jOH

jBS

QP vs r

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

q

Page 19: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Self-Consistent Wave Analysis with Modified f (u)

• Modification of velocity distribution from Maxwellian

◦ Absorption of ICRF waves in the presence of energetic ions◦ Current drive efficiency of LHCD◦ NTM controllability of ECCD (absorption width)

• Self-consistent wave analysis including modification of f (u)

Page 20: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Self-Consistent ICRF Minority Heating Analysis

• Analysis in TASK◦ Dielectric tensor for arbitrary f (v)◦ Full wave analysis with the dielectric tensor◦ Fokker-Plank analysis of full wave results◦ Self-consistent iterative analysis: Preliminary

• Energetic ion tail formation◦ Broadening of power deposition profile

Momentum Distribution Tail Formation Power deposition

-10 -8 -6 -4 -2 0 2 4 6 8 100

2

4

6

8

10

PPARA

PPERP

F2 FMIN = -1.2931E+01 FMAX = -1.1594E+00

0 20 40 60 80 10010-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p**2

Pabs with tail

Pabs w/o tail

Pab

s [a

rb. u

nit]

r/a

Page 21: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

FLR Effects in Full Waves Analyses

• Several approaches to describe the FLR effects.

• Differential operators: k⊥ρ→ iρ∂/∂r⊥◦ This approach cannot be applied to the case k⊥ρ � 1.◦ Extension to the third and higher harmonics is difficult.

• Spectral method: Fourier transform in inhomogeneous direction

◦ This approach can be applied to the case k⊥ρ > 1.◦ All the wave field spectra are coupled with each other.◦ Solving a dense matrix equation requires large computer resources.

• Integral operators:∫ε(x − x′) · E(x′)dx′

◦ This approach can be applied to the case k⊥ρ > 1◦ Correlations are localized within several Larmor radii◦ Necessary to solve a large band matrix

Page 22: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Full Wave AnalysisUsing an Integral Form of Dielectric Tensor

• Maxwell’s equation:

∇ × ∇ × E(r) +ω2

c2

∫↔ε (r, r′) · E(r′)dr = μ0 jext(r)

• Integral form of dielectric tensor: ↔ε (r, r′)◦ Integration along the unperturbed cyclotron orbit

• 1D analysis in tokamaks (in the direction of major radius)

◦ To confirm the applicability of an integral form of dielectric tensor◦ Another formulation in the lowest order of ρ/L— Sauter O, Vaclavik J, Nucl. Fusion 32 (1992) 1455.

• 2D analysis in tokamaks◦ In more realistic configurations

Page 23: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

One-Dimensional Analysis

ICRF minoring heating with α-particles (nD : nHe = 0.96 : 0.02)

Differential form Integral form[V/m]

Ex

Ey

[W/m 2]

PePD

PHe

[V/m]

Ex

Ey

[W/m 2]

PD

PHe

Pe

R0 = 3.0m

a = 1.2m

B0 = 3T

Te0 = 10keV

TD0 = 10keV

Tα0 = 3.5MeV

ns0 = 1020m−3

ω/2π = 45MHz

Absorption by α may be overestimated by differential approach.

Page 24: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

2-D Formulation

• Coordinates◦Magnetic coordinate system: (ψ, χ, ζ)◦ Local Cartesian coordinate system: (s, p, h)◦ Fourier expansion: poloidal and toroidal mode numbers, m, n

• Perturbed currentj(r, t) = − q

m

∫du qu

∫ ∞−∞

dt′[E(r′, t′) + u′ × B(r′, t′)

] · ∂ f0(u′)∂u′

• The time evolution of χ and ζ due to gyro-motion⎧⎪⎪⎪⎨⎪⎪⎪⎩χ(t − τ) = χ(t) +

∂χ

∂sv⊥ωc{cos(ωcτ + θ0) − cos θ0} + ∂χ

∂pv⊥ωc{sin(ωcτ + θ0) − sin θ0} − ∂χ

∂hv‖τ

ζ(t − τ) = ζ(t) +∂ζ

∂sv⊥ωc{cos(ωcτ + θ0) − cos θ0} + ∂ζ

∂pv⊥ωc{sin(ωcτ + θ0) − sin θ0} − ∂ζ

∂hv‖τ

Page 25: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Variable Transformations

• Transformation of Integral Variables◦ Transformation from the velocity space variables (v⊥, θ0) to the

particle position s′ and the guiding center position s0.

◦ Jacobian: J =∂(v⊥, θ0)∂(s′, s0)

= − ω2c

v⊥ sinωcτ.

• Integration over τ◦ Integral in time calculated by the Fourier series expansion with

cyclotron period, 2π/ωc

• Integration over v‖◦ Interaction between wave and particles along the magnetic field

lines described by the plasma dispersion function.

Page 26: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Final Form of Induced Current

• Induced current:↔μ −1 ·

⎛⎝Jmn1 (ψ)Jmn2 (ψ)Jmn3 (ψ)

⎞⎠ = ∫ du′

∫du0↔σ (u, u′, u0) ·

⎛⎝Em

′n1 (ψ)

Em′n

2 (ψ)Em

′n3 (ψ)

⎞⎠

• Electrical conductivity:

↔σ (u, u′, u0) = −i(

12π

)72

n0q2

m

∑m′n′

∑l

∫ 2π

0dχ∫ 2π

0dζ exp i

{(m′ − m)χ + (n′ − n)ζ

}↔H (u, u′, χ)

• Matrix coefficients:

H1i =(Q3μ

−11i − u′Q1μ

−12i

) √πk‖vT‖

Z(ηl) +

[−Q1vT⊥

v2T‖

μ−13i +

(1 − v

2T⊥v2T‖

){Q3κ2i + Q1u

′κ1i}] √π

21k‖Z′(ηl)

H2i =(−Q2uμ

−11i + Q0uu

′μ−12i

) √πk‖vT‖

Z(ηl) +

[Q0uvT⊥v2T‖

μ−13i −

(1 − v

2T⊥v2T‖

)u{Q2κ2i + Q0u

′κ1i}] √π

21k‖Z′(ηl)

H3i =

(−Q2

vT⊥μ−1

1i +Q0u′

vT⊥μ−1

2i

) √π

21k‖Z′(ηl) +

[−Q0

vT‖μ−1

3i +vT‖vT⊥

(1 − v

2T⊥v2T‖

){Q2κ2i + Q0u

′κ1i

}] √πk‖ηlZ′(ηl)

Page 27: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Kernel Functions

• Kernel functions

Q⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0123

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(u, u′, χ0, l) =∫ 2π

0dλ

1| sin λ|

⎧⎪⎪⎨⎪⎪⎩

1V1

V2

V1V2

⎫⎪⎪⎬⎪⎪⎭

× exp i

[k⊥vT⊥ωc

{(V2 − V1) cosα − (u − u′) sinα

}+ lλ − V

20

2

]

V20 =

(u + u′

2

)2 1

cos2 12λ+

(u − u′

2

)2 1

sin2 12λ

V1 =u − u′

21

tan 12λ− u + u

2tan

12λ

V2 =u − u′

21

tan 12λ+u + u′

2tan

12λ

↔h =

1Jω

⎛⎜⎝ 0 −n m′

n 0 i ∂∂ψ

−m′ −i ∂∂ψ

0

⎞⎟⎠

u ≡ s − s0

vT⊥ωc

u′ ≡ s′ − s0

vT⊥ωc

where↔κ =↔μ −1 ·↔g ·↔h ,↔μ is the transformation matrix for (s, p, h)→(ψ, χ, ζ), and↔g is the metric tensor.

Page 28: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Consistent Formulation of Integral Full Wave Analysis

• Analysis of wave propagation◦ Dielectric tensor:∇ × ∇ × E(r) − ω

2

c2

∫dr0

∫dr′

p′

mγ∂ f0(p′, r0)

∂p′· K1(r, r′, r0) · E(r′) = iωμ0 jext

where r0 is the gyrocenter position.

• Analysis of modification of momentum distribution function◦ Quasi-linear operator∂ f0∂t+

(∂ f0∂p

)E+∂

∂p

∫dr∫

dr′E(r) E(r′) ·K2(r, r′, r0) · ∂ f0(p′, r0, t)∂p′

=

(∂ f0∂p

)col

• The kernels K1 and K2 are closely related and localized in the re-gion |r − r0| � ρ and |r′ − r0| � ρ.

Page 29: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Extension to TASK/3D

• 3D Equilibrium:

◦ Interface to equilibrium data from VMEC or HINT◦ Interface to neoclassical transport coefficient codes

• Modules 3D-ready:

◦WR: Ray and beam tracing◦WM: Full wave analysis

• Modules to be updated:

◦ TR: Diffusive transport (with an appropriate model of Er)◦ TX: Dynamic transport (with neoclassical toroidal viscosity)

• Modules to be added: (by Y. Nakamura)

◦ EI: Time evolution of current profile in helical geometry

Page 30: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Road map of TASK code

Fixed/Free Boundary Equilibrium EvolutionEqulibrium

Core Transport 1D Diffusive TR

1D Dynamic TR

Kinetic TR 2D Fluid TR

SOL Transport 2D Fluid TR

Neutral Tranport 1D Diffusive TR Orbit Following

Energetic Ions Kinetic Evolution Orbit Following

Ray/Beam Tracing Beam PropagationWave Beam

Full Wave Kinetic ε Gyro Integral ε Orbit Integral ε

Stabilities Tearing ModeSawtooth Osc.

Resistive Wall Mode

Turbulent Transport

ELM Model

CDBM Model Linear GK + ZF

Diagnostic Module

Control Module

Plasma-Wall Interaction

Present Status In 2 years In 5 years

Systematic Stability Analysis

Start Up Analysis

Nonlinear ZK + ZF

Page 31: Recent Progress in Integrate Code TASKfukuyama/pr/2007/... · 2007-07-23 · US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29 Recent

Summary

•We are developing TASK code as a reference core code for inte-grated burning plasma simulation based on transport analysis.

•We have developed a part of standard dataset, data exchangeinterface and execution control and implemented them in TASKcode. An example of coupling between TOPICS/EQU and TASK/TRwas shown, though not yet completed. Some other modules ofTOPICS will be incorporated soon.

• Preliminary results of self-consistent analysis of wave heatingand current drive describing the time evolution of the momentumdistribution function and Integro-differential full wave analysis in-cluding FLR effects have been obtained.

• Further continuous development of integrated modeling is neededfor comprehensive ITER simulation.