raft copolymerization of styrene and maleic 7klv anhydride … · 2017-06-22 · documented for...

14
1 Functional Multisite Copolymer by One-Pot Sequential RAFT Copolymerization of Styrene and Maleic Anhydride Guillaume Moriceau, a Guillaume Gody, a Matthias Hartlieb, a Joby Winn, b HyungSoo Kim, c Antonio Mastrangelo, b Timothy Smith, b and Sébastien Perrier *a,d,e a Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK b Lubrizol Limited. The Knowle, Nether Lane, Hazelwood, Derbyshire DE56 4AN, UK c The Lubrizol Corporation. 29400 Lakeland Blvd. Wickliffe, OH 44092, USA d. Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, VIC 3052, Australia. e. Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK Supporting Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Upload: others

Post on 07-Jul-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

1

Functional Multisite Copolymer by One-Pot Sequential

RAFT Copolymerization of Styrene and Maleic

Anhydride

Guillaume Moriceau,a Guillaume Gody,a Matthias Hartlieb,a Joby Winn,b HyungSoo Kim,c Antonio

Mastrangelo,b Timothy Smith,b and Sébastien Perrier*a,d,e

a Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK

b Lubrizol Limited. The Knowle, Nether Lane, Hazelwood, Derbyshire DE56 4AN, UK

c The Lubrizol Corporation. 29400 Lakeland Blvd. Wickliffe, OH 44092, USA

d.Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, VIC 3052, Australia.

e.Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK

Supporting Information

Electronic Supplementary Material (ESI) for Polymer Chemistry.This journal is © The Royal Society of Chemistry 2017

Page 2: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

2

1. Chain transfer constant and polymerization kinetic

Chain transfer constant

The chain transfer constant represent the affinity of a propagating radical towards thiocarbonyl-thio

moieties and is describe by the ratio of rate coefficient of chain transfer and rate coefficient of chain

propagation (Equation S1).1-4

(S1)𝐶𝑡𝑟=

𝑘𝑡𝑟𝑘𝑝

Equation S1.Chain transfer constant to CTA.

The apparent chain transfer constant of Industrial grade CTA-Ester was measured for styrene

polymerization at 90°C by Walling & Moad method using Equation S2.2, 5

(S2)𝐶𝑎𝑝𝑝𝑡𝑟 ≈

𝑑𝑙𝑛[𝐶𝑇𝐴]𝑑𝑙𝑛[𝑀]

Equation S2. Approximate rate of consumption of initial chain transfer agent

Briefly, the apparent chain transfer constant (Ctrapp) is determined by plotting ln[M] versus ln[CTA],

whereas the slope of the linear regression corresponds to Ctrapp (Figure S1).

Ctrapp

y = 27.6x - 45.1

Figure S1. Plot for determination of the Ctrapp of CTA-Ester for styrene polymerization by Walling&Moad method

The concentration of residual RAFT agent and monomer was determined by in situ NMR following

the disappearance of the vinyl peak of styrene (5.25ppm in toluene-d8) and the methylene protons

Page 3: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

3

from R group in CTA-Ester (4.10 ppm in toluene-d8). The value of the apparent chain transfer constant

(Ctrapp = 28) is comparably high, which result in a rapid radical exchange among chains, as highlighted

by Destarac and coworkers.6, 7

This results in a high probability to add one or less than one monomer unit per activating-deactivating

cycle causing all chains to grow at a similar rate. For Ctr > 10, assuming negligible termination by

keeping the radical concentration low, a linear increase in the experimental Mn, with conversion and a

low dispersity (Ð under 1.2) is expected.

Polymerization kinetic

A pseudo-first order kinetic (Figure S2, A) and a linear evolution of Mn with conversion at low

dispersities (Figure S2, B) were observed under typical experimental conditions. Near full conversion

is obtained within 12 h as shown Figure S2, A.

A B

Figure S2. Kinetic investigation and evolution of conversion versus time (A). Evolution of experimental molar mass (Mn,SEC) compared to theoretical molar mass (Mn,theo) and dispersity (Ð) for styrene polymerization (B). Study

performed using CTA-Ester at 100°C with [M]0 = 5M and [I]0 = 0.045M ([CTA]0/[I]0 = 11)

Page 4: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

4

Theory behind Chain Transfer Constant by Walling & Moad Method

Scheme S1. General mechanism of RAFT polymerization.8, 9

The efficiency of a RAFT agent for a certain monomer can be accessed via chain transfer constants

and the partition coefficient (ϕ) defined as followed in equations 1−4.1-4

(1)𝐶𝑡𝑟=

𝑘𝑡𝑟𝑘𝑝

Equation S3. Chain transfer constant to CTA.

(2)𝐶 ‒ 𝑡𝑟=

𝑘 ‒ 𝑡𝑟𝑘𝑝

Equation S4. Reverse Chain transfer constant to CTA.

(3)𝑘𝑡𝑟= 𝑘𝑎𝑑𝑑𝜙= 𝑘𝑎𝑑𝑑

𝑘𝑓𝑟𝑎𝑔𝑘 ‒ 𝑎𝑑𝑑+ 𝑘𝑓𝑟𝑎𝑔

Equation S5. Rate coefficient for chain transfer (addition to RAFT agent)

(4)𝑘 ‒ 𝑡𝑟= 𝑘 ‒ 𝑓𝑟𝑎𝑔(1 ‒ 𝜙)= 𝑘 ‒ 𝑓𝑟𝑎𝑔

𝑘 ‒ 𝑓𝑟𝑎𝑔𝑘 ‒ 𝑎𝑑𝑑+ 𝑘𝑓𝑟𝑎𝑔

Equation S6 Rate coefficient for chain transfer (reverse-addition to RAFT agent)

(5)𝜙=

𝑘𝑓𝑟𝑎𝑔𝑘 ‒ 𝑎𝑑𝑑+ 𝑘𝑓𝑟𝑎𝑔

Equation S7. Partition coefficient

Page 5: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

5

The two chain transfer constant, Ctr and C-tr describe the reactivity of the propagating radical Pn• and

the expelled radical R• towards the thiocarbonyl-thio moieties, respectively and the partition

coefficient ϕ indicates the preference for the intermediate radicals to fragment either on one side and

give the expected products or on the other side and give back the starting materials. As highlighted by

Destarac and coworkers6, 7 if chain transfer constant to the RAFT agent is high compared to

propagation, the radical is exchanged rapidly among the chains. Then, all chains have a higher

probability to add one or less than one monomer unit per activating-deactivating cycle and all chains

are growing at similar rate. Therefore, for Ctr > 10, and as long as termination is negligible by keeping

the radical concentration low, a linear increase in the experimental Mn, with conversion and a low

dispersity (under 1.2) will be obtained. A number of methods have been reported for determining chain

transfer constants to RAFT agents. The conventional approach known as Mayo method is well

documented for conventional free radical polymerization and has been mainly used for chain transfer

constant tables reported in the polymer handbook.7, 10-12. However, this method is only suited for low

Ctr and for most of the RAFT agents the Walling&Moad method is more appropriate (equa.6).2, 3, 5, 6,

8, 9, 13

(6)𝐶𝑎𝑝𝑝𝑡𝑟 ≈

𝑑𝑙𝑛[𝐶𝑇𝐴]𝑑𝑙𝑛[𝑀]

Equation S 8. Approximate rate of consumption of initial chain transfer agent

[CTA] and [M] are the actual concentration of RAFT agent and monomer respectively. The transfer

coefficient shown in Equation 5 is called apparent transfer coefficient (Ctrapp) as it derivate from the

rate of consumption of CTA making the assumption that chain transfer is irreversible. The

determination of the Ctrapp was achieved by plotting ln[M] versus ln[CTA] which gives a straight line

with a slope corresponding to Ctrapp.

Page 6: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

6

2. Experimental conditions

Table S1 Experimental conditions for each steps of multisite synthesis

Entry copolymers structures Monomer [M](mol.L-1)

[M]wt%

Vtot(mL)

[V-40](mol.L-1)

[CTA]0/[V-40]0

Solvent T (°C) Time (h)

MG225 P[Sty10] Styrene 5.0 56 10 0.045 11 Toluene 100 15MG226 P[Sty10-s -MAnh1.5]1 MAnh 0.6 7 13 0.020 20 Toluene 100 5MG227 P[Sty10-s -MAnh1.5]1-b -PSty10 Styrene 2.7 34 19 0.021 13 Toluene 100 15MG230 P[Sty10-s -MAnh1.5]2 MAnh 0.3 4 25 0.010 20 Toluene 100 3MG231 P[Sty10-s -MAnh1.5]2-b -PSty10 Styrene 1.5 19 34 0.013 11 Toluene 100 15MG232 P[Sty10-s -MAnh1.5]3 MAnh 0.2 2 39 0.006 20 Toluene 100 3MG233 P[Sty10-s -MAnh1.5]3-b -PSty10 Styrene 1.1 13 48 0.013 8 Toluene 100 17MG234 P[Sty10-s -MAnh1.5]4 MAnh 0.2 2 49 0.005 20 Toluene 100 3MG235 P[Sty10-s -MAnh1.5]4-b -PSty10 Styrene 0.8 11 61 0.011 7 Toluene 100 15

3. SEC spectrum for MacroCTA before and after SMUI

[PSty10-s-MAnh1.5]1

[PSty10]

Impurities CTA-Ester

Figure S3. SEC spectrum showing RI traces for impurities from CTA-Ester (dash orange), macroCTA before (blue) and after SMUI (dash green).

Page 7: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

7

4. MALDI-TOF mass spectroscopy: List of structures for macroCTA before and after SMUI

A

A

C D C

AA

E E

FFG

DC C

9

Ag+

O

OC4H9

R Styn db-Ag+

A

10

O

OC4H9

OOO

Ag+

R Styn db-Ag+MAnh1

F

A

F

B

B

AC

B

D

Figure S4. A and B MALDI-TOF spectrum for polystyrene macroCTA (blue) and for copolymer after SMUI (green) respectively. C and D are zooms for regions in dashed square for A and B spectra respectively. Experimental and calculated (black) isotopic distribution for expected structures are shown in the middle of C and D. The other structures are shown in Table S2 and are mostly different fragmentation adducts. The spectrums were recorded using DTCB as a matrix and AgTFA as cationization agent.

Entry Proposed structures Experimental mass Calculated mass structures

A R-P[Sty10]-db 1291.67 1291.63

B R-P[Sty8]-SAg 1327.49 1327.45

C NA 1309.68 NA NA

D Ini-P[Sty10]-db 1359.72 1359.67

E R-P[Sty9-s -MAnhopen-OAg]-db 1409.53 1409.48

F R-P[Sty10-s -MAnh1]1-db 1387.69 1387.63

G R-P[Sty6-stat-2MAnhopen-OAg]-db 1319.44 1319.20

8

Ag+

O

OC4H9

SAg

m/zexp = 1223.43 g.mol-1

m/zcalc = 1223.39 g.mol-1

9

Ag+

O

OC4H9

m/zexp = 1291.67 g.mol-1

m/zcalc = 1291.63 g.mol-1

10

O

OC4H9

OOO

Ag+

m/zexp = 1387.69 g.mol-1

m/zcalc = 1387.63 g.mol-1

9

O

OC4H9

OOH

O

Ag+

OAg

m/zexp = 1409.53 g.mol-1

m/zcalc = 1409.48 g.mol-1

5

O

OC4H9

OOH

O

Ag+

OAg

OOH

OOAgm/zexp = 1319.44 g.mol-1

m/zcalc = 1319.20 g.mol-1

CN

10

Ag+m/zexp = 1359.72 g.mol-1

m/zcalc = 1359.67 g.mol-1

Table S2. Proposed structures for MALDI TOF spectra of polystyrene macroCTA before and after SMUI.

Page 8: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

8

5. MALDI-TOF mass spectroscopy: Spectrum after first chain extension with styrene

6. 1H NMR spectrum of final materials

MG235-purif1-more conc-CDCl3-hd400.1r.esp

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nor

mal

ized

Inte

nsity

0.88

0.96

1.25

1.50

1.88

2.35

3.23

3.403.58

3.69

4.00

4.094.68

4.95

5.22

5.36

5.77

6.61

7.11

7.24

THF/Dioxane

j

ceh4

h i

i4

kn

i’n

20 g MG235

O

9O2

S

S S

OOO

109

4

j

h4h

e

d

g

f in'

i cknln a

b

j

i4

hn'h

i

j j

In h’n

a,d,g

b,f

Figure S5. 1H NMR spectrum of final multisite material after purification in hexane.

A A

CD

CB

A B

B

10

O

OC4H9

OOO

71

Ag+ m/zexp = 2221.15 g.mol-1

m/zcalc = 2221.13 g.mol-1

A

1 unit

B

10

O

OC4H9

OOO

62

Ag+m/zexp = 2215.08 g.mol-1

m/zcalc = 2215.07 g.mol-1

2 units

DC

10

O

OC4H9

OOH

O

71

Ag+

HO

m/zexp = 2239.16 g.mol-1

m/zcalc = 2239.15 g.mol-1

10

O

OC4H9

OOO

71

Ag+

SAg

m/zexp = 2259.97 g.mol-1

m/zcalc = 2259.96 g.mol-1

1 unit

ZR

18

Ag+

O

OC4H9

m/zexp = 2227.18 g.mol-1

m/zcalc = 2227.20 g.mol-1

E

0 unit

E E

Page 9: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

9

7. FT-IR results

C=O estersCTA

1730 cm-1

C=OCyclic Anhydride

MAnh1850 and 1770cm-1

Figure S6. IR spectrum for final multisite copolymer (MG235)

8. MALDI-TOF mass spectroscopy: Spectrum after sequential SMUI and ChainExt

A A

C

D

C

B

A B

10

O

OC4H9

OOO

71

Ag+ m/zexp = 2223.20 g.mol-1

m/zcalc = 2223.15 g.mol-1

A B DC

B

E

E E

O

OO

10

OOO

O

C4H9O 1

7

Ag+

1m/zexp = 2215.14 g.mol-1

m/zcalc = 2215.07 g.mol-1

O

OHO

10

OOO

O

C4H9O 1

6

Ag+

1

OAg

m/zexp = 2237.98 g.mol-1

m/zcalc = 2237.92 g.mol-1

O

OO

10

OOO

O

C4H9O 1

6

Ag+

1

SAg

m/zexp = 2253.97 g.mol-1

m/zcalc = 2253.90 g.mol-1

OOO

10

OOO

O

C4H9O 2

6

Ag+

1m/zexp = 2210.08 g.mol-1

m/zcalc = 2209.01 g.mol-1

1 unit 2 units 3 units

ZR

Figure S7. A) MALDI-TOF mass spectrum for poly[(Sty10-s-MAnh1.5)]2. B) zoom corresponding to the region in the dashed square in A). Proposed structures below spectrum.

Page 10: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

10

A A

C C

B

A B

B

ZR

E ED D

2 units

A

10

O

OC4H9

OOO

51

Ag+

2

m/zexp = 3152.38 g.mol-1

m/zcalc = 3152.64 g.mol-1

B

3 units

10

O

OC4H9

OOO

41.5

Ag+

2m/zexp = 3146.33 g.mol-1

m/zcalc = 3146.58 g.mol-1

C

2 units

10

O

OC4H9

OOO

51

Ag+

10

OOH

O

1

HO

m/zexp = 3170.40 g.mol-1

m/zcalc = 3170.65 g.mol-1

10

O

OC4H9

OOO

161

Ag+

1m/zexp = 3160.46 g.mol-1

m/zcalc = 3160.72 g.mol-1

H

E

4 units

10

O

OC4H9

OOO

32

Ag+

2

m/zexp = 3140.27 g.mol-1

m/zcalc = 3140.51 g.mol-1

D

1 unit

Figure S8. A) MALDI-TOF mass spectrum for poly[(Sty10-s-MAnh1.5)2-b-PSty10] B) zoom corresponding to the region in the dashed square in A).Proposed structures below spectrum.

A

CDE

B

A B

B

E

O

OHO

10

OOO

O

C4H9O 1

4

Ag+

2

OAg

m/zexp = 3168.27 g.mol-1

m/zcalc = 3168.42 g.mol-1

3 units

B

2 units

10

O

OC4H9

OOO

51

Ag+

2

m/zexp = 3154.51 g.mol-1

m/zcalc = 3154.65 g.mol-1

A

C

C

OOO

10

OOO

O

C4H9O 1.5

4

Ag+

2m/zexp = 3140.34 g.mol-1

m/zcalc = 3140.51 g.mol-1

4 units

DO

OO

10

OOO

O

C4H9O 1

4

Ag+

2

SAg

m/zexp = 3183.23 g.mol-1

m/zcalc = 3183.40 g.mol-1

3 units

DE

ZR

A

3 units

OOO

10

OOO

O

C4H9O 1

5

Ag+

2m/zexp = 3146.42 g.mol-1

m/zcalc = 3146.58 g.mol-1

F F

F

OOO

10

OOO

O

C4H9O 2

3

Ag+

2m/zexp = 3134.28 g.mol-1

m/zcalc = 3134.45 g.mol-1

5 units

Figure S9. A) MALDI-TOF mass spectrum for poly[(Sty10-s-MAnh1.5)]3 B) zoom corresponding to the region in the dashed square in A).Proposed structures below spectrum.

Page 11: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

11

A A

CC

B

A B

3 units

A

10

O

OC4H9

OOO

31

Ag+

3

m/zexp = 4084.23 g.mol-1

m/zcalc = 4084.14 g.mol-1

B

ZR

B

4 units

10

O

OC4H9

OOO

24/3

Ag+

3

m/zexp = 3078.17 g.mol-1

m/zcalc = 3078.08 g.mol-1

D

10

O

OC4H9

OOO

15/3

Ag+

3

m/zexp = 3072.16 g.mol-1

m/zcalc = 3072.02 g.mol-1

5 units

DC

2 units

10

O

OC4H9

OOO

141

Ag+

2

m/zexp = 3090.26 g.mol-1

m/zcalc = 3090.21 g.mol-1

Figure S10. A) MALDI-TOF mass spectrum for poly[(Sty10-s-MAnh1.5)]3-b-PSty10 B) zoom corresponding to the region in the dashed square in A).Proposed structures below spectrum.

A

CDE

B

A B

F

ZR

G

A

4 units

OOO

10

OOO

O

C4H9O 1

8

Ag+

3m/zexp = 4598.44 g.mol-1

m/zcalc = 4598.39 g.mol-1

5 units

OOO

10

OOO

O

C4H9O 4/3

7

Ag+

3 m/zexp = 4594.40 g.mol-1

m/zcalc = 4594.35 g.mol-1

B

3 units

C

10

O

OC4H9

OOO

81

Ag+

3

m/zexp = 4604.52 g.mol-1

m/zcalc = 4604.46 g.mol-1

D

6 units

OOO

10

OOO

O

C4H9O 5/4

7

Ag+

4 m/zexp = 4588.36 g.mol-1

m/zcalc = 4588.29 g.mol-1

E

4 units

OOO

10

OOO

O

C4H9O 1

7

Ag+

3m/zexp = 4636.37 g.mol-1

m/zcalc = 4636.22 g.mol-1

SAg

OOO

30

OOO

O

C4H9O 4

6

Ag+

1m/zexp = 4630.30 g.mol-1

m/zcalc = 4630.15 g.mol-1

SAg

5 units

F

OOO

30

OOO

O

C4H9O 5

5

Ag+

1m/zexp = 4624.25 g.mol-1

m/zcalc = 4624.09 g.mol-1

SAg

G

6 units

O

OO

10

OOO

O

C4H9O 1

18

Ag+

2

SAg

m/zexp = 4640.37 g.mol-1

m/zcalc = 4640.26 g.mol-1

3 units

G

H

Figure S11. A) MALDI-TOF mass spectrum for poly[(Sty10-s-MAnh1.5)]4 B) zoom corresponding to the region in the dashed square in A).Proposed structures below spectrum.

Page 12: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

12

A

C

B

A B

D

B

4 units

10

O

OC4H9

OOO

81

Ag+

4

m/zexp = 5745.95 g.mol-1

m/zcalc = 5746.10 g.mol-1

10

O

OC4H9

OOO

85/4

Ag+

4m/zexp = 5739.85 g.mol-1

m/zcalc = 5740.04 g.mol-1

5 units

A C

6 units

10

O

OC4H9

OOO

66/4

Ag+

4

m/zexp = 5733.83 g.mol-1

m/zcalc = 5733.98 g.mol-1

ZR

3 units

D

10

O

OC4H9

OOO

191

Ag+

3

m/zexp = 5749.95 g.mol-1

m/zcalc = 5750.15 g.mol-1

E

7 units

10

O

OC4H9

OOO

57/4

Ag+

4

m/zexp = 5725.72 g.mol-1

m/zcalc = 5725.90 g.mol-1

E

Figure S12. A) MALDI-TOF mass spectrum for poly[(Sty10-s-MAnh1.5)]4-b-PSty10 B) zoom corresponding to the region in

the dashed square in A).Proposed structures below spectrum.

Page 13: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

13

9. SEC spectrum for multisite copolymer before and after esterification

P[(Sty10-s-MAnh1.5)4-b-PSty10]

MnSEC = 4,700 g.mol-1

Ð = 1.35

P[(Sty10-s-MaEster1.5)4-b-PSty10]

MnSEC = 7,800 g.mol-1

Ð = 1.35

Figure S13. SEC spectrum showing RI traces for multisite copolymer before (blue) and after (black) esterification with stearyl alcohol

10. Inverse Gated 13C NMR for pure multisite copolymer14, 15

MG235-purif-check-27-04-17-CDCl3-hd500-13C-IG.1r.esp

220 200 180 160 140 120 100 80 60 40 20 0Chemical Shift (ppm)

0

0.005

0.010

0.015

0.020

0.025

0.030

Norm

alize

d In

tens

ity

2.9019.704.9793.923.89250.006.448.7233.2911.440.512.490.57

14.1

119

.11

22.6

730.1

430

.90

31.8

834

.64

40.3

443

.73

51.9

663.8

367

.06

77.0

0

125.

6712

8.05

137.

31

145.

24

171.

7217

7.47

207.

25

222.

25

Conditions: 13C-NMR-av500MHz-zgig30-Ac.t=1.8s-Nb.t.=2048-CDCl3

k

qg

m

on

Inverse Gated 13C-NMR

Acetone

O

9O2

S

S S

OOO

109

4

jlt

he

gf k'i

con a

b

m

kt

l'l

k

m m

1.5 dl

k

m

p p

q q'

dl

a + j

k’

q’ qalt c

b + i

el’

p CDCl3

MG235-purif-check-27-04-17-CDCl3-hd500-13C-IG.1r.esp

148 147 146 145 144 143 142 141 140 139 138 137 136 135 134Chemical Shift (ppm)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Nor

mal

ized

Inte

nsity

137.

31

145.

24

q q’ qalt

SSS MSS/SSM MSM

33.3 8.7 6.4

Figure S14. Quantitative 13C NMR spectrum of pure multisite with zoomed area showing the location quaternary carbon from styrene depending on monomer triad.

Page 14: RAFT Copolymerization of Styrene and Maleic 7KLV Anhydride … · 2017-06-22 · documented for conventional free radical polymerization and has been mainly used for chain transfer

14

I. References:

(1) Moad, G.; Chiefari, J.; Mayadunne, R. T.; Moad, C. L.; Postma, A.; Rizzardo, E.; Thang, S. H. In Initiating free radical polymerization, Macromol. Symp., 2002; Wiley-Blackwell, USA: 2002; pp 65-80.(2) Chong, Y. K.; Krstina, J.; Le, T. P. T.; Moad, G.; Postma, A.; Rizzardo, E.; Thang, S. H. Thiocarbonylthio Compounds [SC(Ph)S−R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules 2003, 36 (7), 2256-2272.(3) Chiefari, J.; Mayadunne, R. T. A.; Moad, C. L.; Moad, G.; Rizzardo, E.; Postma, A.; Thang, S. H. Thiocarbonylthio Compounds (SC(Z)S−R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z. Macromolecules 2003, 36 (7), 2273-2283.(4) Moad, G.; Chiefari, J.; Chong, Y. K.; Krstina, J.; Mayadunne, R. T. A.; Postma, A.; Rizzardo, E.; Thang, S. H. Living free radical polymerization with reversible addition – fragmentation chain transfer (the life of RAFT). Polym. Int. 2000, 49 (9), 993-1001.(5) Walling, C. The Use of S35 in the Measurement of Transfer Constants. J. Am. Chem. Soc. 1948, 70 (7), 2561-2564.(6) Destarac, M. On the Critical Role of RAFT Agent Design in Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Polymer Reviews 2011, 51 (2), 163-187.(7) Adamy, M.; van Herk, A. M.; Destarac, M.; Monteiro, M. J. Influence of the Chemical Structure of MADIX Agents on the RAFT Polymerization of Styrene. Macromolecules 2003, 36 (7), 2293-2301.(8) Moad, G.; Rizzardo, E.; Thang, S. H. Living Radical Polymerization by the RAFT Process – A Second Update. Aust. J. Chem. 2009, 62 (11), 1402-1472.(9) Derboven, P.; Van Steenberge, P. H. M.; Reyniers, M.-F.; Barner-Kowollik, C.; D'Hooge, D. R.; Marin, G. B. Chain Transfer in Degenerative RAFT Polymerization Revisited: A Comparative Study of Literature Methods. Macromol. Theory Simul. 2016.(10) Mayo, F. R. Chain Transfer in the Polymerization of Styrene: The Reaction of Solvents with Free Radicals1. J. Am. Chem. Soc. 1943, 65 (12), 2324-2329.(11) Heuts, J. P. A.; Davis, T. P.; Russell, G. T. Comparison of the Mayo and Chain Length Distribution Procedures for the Measurement of Chain Transfer Constants. Macromolecules 1999, 32 (19), 6019-6030.(12) Kukulj, D.; Davis, T. P. Mechanism of catalytic chain transfer in the free-radical polymerisation of methyl methacrylate and styrene. Macromol. Chem. Phys. 1998, 199 (8), 1697-1708.(13) Keddie, D. J.; Guerrero-Sanchez, C.; Moad, G.; Mulder, R. J.; Rizzardo, E.; Thang, S. H. Chain Transfer Kinetics of Acid/Base Switchable N-Aryl-N-Pyridyl Dithiocarbamate RAFT Agents in Methyl Acrylate, N-Vinylcarbazole and Vinyl Acetate Polymerization. Macromolecules 2012, 45 (10), 4205-4215.(14) Barron, P. F.; Hill, D. J. T.; O'Donnell, J. H.; O'Sullivan, P. W. Applications of DEPT experiments to the carbon-13 NMR of copolymers: poly(styrene-co-maleic anhydride) and poly(styrene-co-acrylonitrile). Macromolecules 1984, 17 (10), 1967-1972.(15) Ha, N. T. H. Determination of triad sequence distribution of copolymers of maleic anhydride and its derivates with donor monomers by 13C n.m.r. spectroscopy. Polymer 1999, 40 (4), 1081-1086.