in situ catalytic bulk copolymerization of maleate surfmer ......also, maleic anhydride (ma) was...

9
2018 Vol.4 No.1:3 Research Article DOI: 10.4172/2471-9935.100031 iMedPub Journals www.imedpub.com 1 © Under License of Creative Commons Attribution 3.0 License | This article is available in: http://polymerscience.imedpub.com/archive.php Polymer Sciences ISSN 2471-9935 Sanaa M Solyman 1,2 , Elsharaky EA 1 and Amira E El-Tabey 1 * 1 Egypan Petroleum Research Instute, Ahsmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt 2 AL-Ghad Internaonal College for Applied Medical Sciences, Dammam, Kingdom of Saudi Arabia *Corresponding author: Amira E El-Tabey [email protected] Egypan Petroleum Research Instute, Ahsmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt. Tel: +20 2 22745902 Citaon: Solyman SM, Elsharaky EA, El-Tabey AE (2018) In situ Catalyc Bulk Copolymerizaon of Maleate Surfmer- Methyl Methacrylate Using TiO 2 and V2O 5 at Different Condions. Polym Sci Vofl.4No.1:3 Introducon A significant number of studies have been undertaken on the polymerizaon of surfmers. Surfmers molecules present the advantage of combining the physical behavior of surfactants with the reacvity of monomers [1-3]. A wide variety of surfmer structures that differ with respect to polar funconal groups (that is, hydrophilic and lipophilic balance) and the locaon of the polymerizable moiety have been reported. Examples include anionic, caonic, zwierionic and nonionic surfactants [4-7]. The convenonal polymerizable compounds that have been used include styrene, acrylic, methacrylic, and acrylamides [8-10]. The polymerizable surfactants are interesng in various fields. Several invesgaons have been carried out on maleic anhydride copolymers to be used as polymeric surfactants [11-13]. It was asserted for many years that 1,2-disubstuted ethylene does not polymerized, while maleic anhydride shows only a small tendency for radical polymerizaon [14]. Braun et al. [15] used various radical iniators to polymerize maleic anhydride; they observed paral decarboxylaon and obtained a polymer which consists mainly of cyclopentanone derivaves. Heseding and Schneider [16] prepared maleic anhydride homopolymer by γ-irradiaon. The polymer obtained by iniaon via irradiaon showed the anhydride structure without decarboxylaon and discoloraon. These results were in good accord with the findings from the work of Lang et al. [17]. Synthesized catalysts for industrial purposes consume a billion-dollar and account for the manufacture of 60% of chemicals that are ulized for most chemical transformaons. Catalyc processes enable the producon of many substances such as polymers, plascs, pharmaceucals, detergents and many others [18-23]. For example, fabricated electrospun TiO 2 has been designed, synthesized and used as green catalyst for save chemical process by Shrikant et al. [24]. Polymer-inorganic nanocomposites have a great aenon recently due to their importance in different fields. It is known that TiO 2 and V 2 O 5 have good thermal and photo-catalyc acvies in different chemical processes such as polymerizaon In situ Catalyc Bulk Copolymerizaon of Maleate Surfmer-Methyl Methacrylate Using TiO 2 and V2O 5 at Different Condions Received: June 03, 2017; Accepted: December 15, 2017; Published: January 01, 2018 Abstract Non-ionic Maleate surfmer (M1) prepared via ring opening reacon of maleic anhydride followed by esterfacon with polyethylene glycol. Surfmer was homo- polymerized and copolymerized with methyl methacrylate (M2) at different condions using TiO 2 and V 2 O 5 as catalysts in presence of O 2 or N 2 . The chemical structure of the prepared surfmer was confirmed by FTIR, 13 C and 1 HNMR. The produced copolymers was also confirmed and characterized by Gel Permeaon Chromatography (GPC) aſter cleaning polymers. Also, thermal gravimetric analysis (TGA) indicated higher thermal stability for M1M2TN and M1M2VO composites relave to pure PMMA. Scanning and transmission electron microscope (SEM and TEM) for PMMA and M1M2TN may confirm homogeneous and controlled enchainment of M1-M2 copolymer using TiO 2 at the opmum condions. The polymer conversion% was calculated and discussed. The opmum condions resulted in 64.2% and 63.8% conversion using 20% TiO 2 in N 2 and 10% V 2 O 5 in O 2 respecvely at 80°C aſter 4h with M1/M2 molar rao of 1:1.The interfacial tension properes for the prepared surfmer and its copolymer was evaluated. Keywords: Catalyc copolymerizaon; Maleate surfmer; Methyl methacrylate; Interfacial Tension; HNMR

Upload: others

Post on 20-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 2018Vol.4 No.1:3

    Research Article

    DOI: 10.4172/2471-9935.100031

    iMedPub Journalswww.imedpub.com

    1© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://polymerscience.imedpub.com/archive.php

    Polymer SciencesISSN 2471-9935

    Sanaa M Solyman1,2, Elsharaky EA1 and Amira E El-Tabey1*

    1 EgyptianPetroleumResearchInstitute,AhsmedEl-ZomorStreet,ElZohourRegion,NasrCity,Cairo11727,Egypt

    2 AL-GhadInternationalCollegeforAppliedMedicalSciences,Dammam,KingdomofSaudiArabia

    *Corresponding author: AmiraEEl-Tabey

    [email protected]

    EgyptianPetroleumResearchInstitute,AhsmedEl-ZomorStreet,ElZohourRegion,NasrCity,Cairo11727,Egypt.

    Tel: +20222745902

    Citation:SolymanSM,ElsharakyEA, El-TabeyAE(2018)In situ CatalyticBulkCopolymerizationofMaleateSurfmer-MethylMethacrylateUsingTiO2andV2O5atDifferentConditions.PolymSciVofl.4No.1:3

    IntroductionA significant number of studies have been undertaken on thepolymerization of surfmers. Surfmers molecules present theadvantage of combining the physical behavior of surfactantswiththereactivityofmonomers[1-3].Awidevarietyofsurfmerstructures that differ with respect to polar functional groups(that is, hydrophilic and lipophilic balance) and the locationofthepolymerizablemoietyhavebeenreported.Examplesincludeanionic,cationic,zwitterionicandnonionicsurfactants[4-7].Theconventional polymerizable compounds that have been usedinclude styrene, acrylic, methacrylic, and acrylamides [8-10].The polymerizable surfactants are interesting in various fields.Severalinvestigationshavebeencarriedoutonmaleicanhydridecopolymerstobeusedaspolymericsurfactants [11-13]. Itwasassertedformanyyearsthat1,2-disubstitutedethylenedoesnotpolymerized,whilemaleicanhydrideshowsonlyasmalltendencyfor radical polymerization [14]. Braun et al. [15] used variousradicalinitiatorstopolymerizemaleicanhydride;theyobserved

    partialdecarboxylationandobtainedapolymerwhich consistsmainly of cyclopentanone derivatives.Heseding and Schneider[16] preparedmaleic anhydridehomopolymerby γ-irradiation.The polymer obtained by initiation via irradiation showed theanhydridestructurewithoutdecarboxylationanddiscoloration.TheseresultswereingoodaccordwiththefindingsfromtheworkofLangetal.[17]. Synthesizedcatalystsforindustrialpurposesconsumeabillion-dollarandaccountforthemanufactureof60%ofchemicalsthatareutilizedformostchemicaltransformations.Catalytic processes enable the production ofmany substancessuch as polymers, plastics, pharmaceuticals, detergents andmanyothers [18-23]. Forexample, fabricatedelectrospunTiO2 hasbeendesigned, synthesizedandusedas green catalyst forsavechemicalprocessby Shrikantetal.[24].

    Polymer-inorganic nanocomposites have a great attentionrecentlyduetotheir importance indifferentfields. It isknownthat TiO2 and V2O5 have good thermal and photo-catalyticactivitiesindifferentchemicalprocessessuchaspolymerization

    In situ Catalytic Bulk Copolymerization of Maleate Surfmer-Methyl Methacrylate

    Using TiO2 and V2O5 at Different Conditions

    Received: June03,2017; Accepted: December15,2017;Published: January01,2018

    AbstractNon-ionicMaleate surfmer (M1) prepared via ring opening reaction ofmaleicanhydridefollowedbyesterfactionwithpolyethyleneglycol.Surfmerwashomo-polymerized and copolymerized with methyl methacrylate (M2) at differentconditionsusingTiO2andV2O5as catalystsinpresenceofO2orN2.Thechemicalstructureof thepreparedsurfmerwasconfirmedbyFTIR, 13Cand 1HNMR.TheproducedcopolymerswasalsoconfirmedandcharacterizedbyGelPermeationChromatography(GPC)aftercleaningpolymers.Also,thermalgravimetricanalysis(TGA)indicatedhigherthermalstabilityforM1M2TNandM1M2VOcompositesrelative to pure PMMA. Scanning and transmission electronmicroscope (SEMand TEM) for PMMAandM1M2TNmay confirmhomogeneous and controlledenchainment ofM1-M2 copolymer using TiO2 at the optimum conditions. Thepolymer conversion% was calculated and discussed. The optimum conditionsresultedin64.2%and63.8%conversionusing20%TiO2inN2and10%V2O5inO2 respectivelyat80°Cafter4hwithM1/M2molarratioof1:1.Theinterfacialtensionpropertiesforthepreparedsurfmeranditscopolymerwasevaluated.

    Keywords: Catalytic copolymerization;Maleate surfmer;Methyl methacrylate;InterfacialTension;HNMR

    file:///C:\transmission

  • 2018Vol.4 No.1:3

    2 This article is available in: http://polymerscience.imedpub.com/archive.php

    ARCHIVOS DE MEDICINAISSN 1698-9465

    Polymer SciencesISSN 2471-9935

    andenvironmentaltreatmentreactions[25,26].Alsonano-TiO2 hasbioactivitybehaviorsandthuspolymer-TiO2nanocompositescan be used in industrial and medical areas [27-29]. ThefunctionalityofPMMA/CaSO4nanocompositeshasbeenstudiedtobeusedassupportforgentamicinantibioticinbonesubstitutematerial and antibiotic vehicle [30]. Maleic anhydride (MA)-copolymershavebeenusedaspolymer-drugconjugates[31,32]. Thesecopolymersareusuallypreparedinorganicsolventswhichhave cytotoxicity effect. The simple maleate surfmer (i.e. theneutralizedhemiesterof a fattyalcohol)wasused toprepareseedsofpolystyrenelatexwhichweregrownwithashelloffilm-formingpolymers[33].

    This investigation describes a novel method for catalyticcopolymerization of nonionic maleate surfmer with methylmethacrylateusingin situbulkpolymerizationtechniquetokeepawayfromterribleeffectsoforganicsolvent.Copolymerizationprocesswas carried out using TiO2and V2O5 in presence ofO2or N2 atmosphere at different reaction temperature, reactiontimeandmolarratiosofmonomers.Also,themechanismofthisreactionwithandwithoutcatalystwasestimated.

    Experimental SectionMaterialsAllchemicalswerepurchasedfromAldrichCo.Firstofall,linearhexanol was dried using magnesium sulphate (MgSO4) thendistilled under atmospheric pressure. Also, maleic anhydride(MA)wasrefluxedwithchloroformandfilteredtoremoveanytracesofmaleicacid.Finally, theproductwasthencrystallizedthree times from chloroform to yield white needles with amelting point of 53°C. Polyethylene glycol 200 (PEG200) andp-toluene sulphonic acid were used as received from Merck-Schuchardt.MethylMethacrylate(MMA)waspurifiedtoremovethe hydroquinone inhibitor by following the previous method[33,34]. TiO2andV2O5arepurchasedfromSigmaComp.

    Synthesis of the non-ionic maleate surfumer (M1)The maleate surfmer as shown in Scheme 1 was prepared intwosteps.Firstly is thepreparationof thehemiesterofmaleicanhydrideviaringopeningreaction.Maleicanhydride(0.1mole)wasplaced in oneneckedflask and0.12moleof hexanolwasadded and then the reactionmixtures stirred at 80°C for onehour.Heptanewasadded to the reactionmixturesand stirredto dissolve the unreactedmaleic anhydrides. This processwasrepeated three times. The unreacted hexanol was removedby dissolving reactionmixture in appropriate amount of ethylacetateandwashthreetimeswithsupersaturatedNaClsolution.Ethylacetatewasevaporatedandthepreparedhemiesterswerecollected.

    Thesecondstepisthepreparationofmaleatesurfmer(maleatediester) by esterfication of 0.1 mole of hemiester with 0.1moleofPEG200.Thereactionwasperformed inpresenceof1%p-toluene sulphonic acid as a catalyst and xyleneas a solvent.Whenthereactioncompleted,thesolventwasdistilledoffunderreducedpressureandthepuresurfmerwasobtained.Unreacted

    polyethylene glycol was removed by mixing the product withisopropanol and then extractionwith a solution of 5% sodiumcarbonate. Isopropanolwasthenremovedbydistillationunderreducedpressure ina rotaryevaporator.Theproduceddiestersurfmer(MANS200)waslefttodryovernightonanhydroussodiumsulphateandwillbedenotedasM1indiscussion.

    Catalytic bulk polymerization of M1 and copolymerization of M1 and M2Surfmer monomer (M1) 3.6 g and previously purified MMA(M2)1.0gwithmolarratioof1:1wasmixedintesttubeof20mlcapacity,thenthecatalystsamplesTiO2orV2O5wereaddedwith different weight% (2, 10 and 20%) with respect to thetotal monomers weight. Dry nitrogen or oxygen were passedthrough the reactionmixture then the reaction test tubewastightly closed and put in adjusted water bath at the requiredtemperatures (60, 80 and 100°C) for different times (2, 4, 8and 12 h) and different molar ratios (1:2 and 2:1).When thereaction completed, the product container cooled to 25°C,openedandtheproducedcopolymerwasdissolvedinacetonetoseparatecopolymersolutionfromthecatalystbyfiltration.Thiscopolymerprecipitatedbyrunninginmethanolthenfilteredanddriedundervacuumat40°Ctillstableweight.Maleatesurfmermonomer (M1) also polymerized using the two catalysts inN2 andO2atmosphereforcomparison.Theconversion%ofproductwascalculatedbythefollowingequation:

    Conversion%=(weightofcopolymer/totalweightofmonomers)*100

    Characterization of non-ionic maleate surfmer M1, its polymer (PM1) and its copolymer (M1M2)The prepared copolymers were characterized by using GelPermeation Chromatography (GPC) to determine the number-average molecular weights (Mn), weight-average molecularweights (Mw), and polydispersity index (Mw/Mn) for differentproducedcopolymersamplesandasdescribedpreviously [25].Nuclearmagneticresonance1H,13CNMRspectraofthepreparednon-ionic maleate sufmer, its homopolymer and co-polymerswererecorded inchloroformusingaVarianNMR-400-Mercury400 MHz spectrometer with TMS as an internal standard.Fourier transform infrared (FTIR) spectraweremeasuredusingpolymer/KBrdiskswith a Perkin Elmer1500 Fourier transformspectrometer.

    Interfacial tension measurementsThe interfacial tension measurements were carried out usingtensiometer K10ST, from KRUSS, at temperature of 298 K, byusing the Du Nouy method. Different molar concentrationsof the prepared non-ionic maleate surfmer and co-polymersweredissolvedintoluene.Theaqueousphasewasasolutionofdistillatedwater.Theinterfacialtensionswerequantifiedfor15minafterputtingtheoilandwaterphasesincontact.TheCMCsof the prepared surfactants were determined by the methodadopted[35].

  • 3© Under License of Creative Commons Attribution 3.0 License

    2018Vol.4 No.1:3

    ARCHIVOS DE MEDICINAISSN 1698-9465

    Polymer SciencesISSN 2471-9935

    Results and DiscussionPolymerization of maleate surfmer and its copolymerization with MMAMaleate surfmer homo-poymerized and copolymerized withmethylmethacrylate throughbulk techniquewithandwithoutcatalysts(TiO2orV2O5)atdifferentmolarratios,catalystweight,reactiontime,reactiontemperatureunderO2orN2atmosphere.

    Noncatalytic M1 polymerization and M1-M2 copolymerization: Table 1representstheconversion%ofbulkhomo-polymerizationofsurfmer(PM1)anditscopolymerizationwithM2(M1M2withmolarratio1:1)inO2andN2atmospherewith/withoutTiO2orV2O5 at80°Cfor4h. Theresults indicatethatthenon-ionicmaleatesurfmerM1 gave nil polymer in both O2 and N2 atmosphereswithout catalyst [36]. While mixing of MMA monomer (M2)withmaleatesurfmerM1 increasedtheconv.%fromnil to1.0and 19.4% in O2 and N2 atmospheres respectively producingcopolymers M1M2O and M1M2N. Previous publicationsindicated that MMA can be polymerized in both O2 and N2 withhigherconversion%inoxygenbyoxidativepolymerizationmechanism[25,37].TheseobservationsindicatethatM1andM2aremostlyactivatedthermallyatthereactiontemperatureandproduce free radicalsaccording toSudhaetal. [38].Scheme 2 suggests the free radicalmechanism forbulk copolymerizationofM1-M2byproducingM2freeradical (MMA*)which initiate

    M1moleculesandproducethefirstfreeradicalunit(*M2-M1*)whichcapableofstartinginitiationandpropagationstepsinN2 atmosphere [39]. On theother hand,M1homopolymerizationanditscopolymerizationinO2gaveniland1%respectivelymostlyduetoformationofepoxidesondoublebond(C=C)ofM1.Thisepoxide is stabledue to its conjugationwith the two carbonyl(C=O)oftwoesterarmswhichcanactaselectronwithdrawinggroups.Thesestableepoxidescannotbreaktofreeradicalsandthus block the createdMMA free radicals and inhibitmaleatesurfmer homo-polymerization and its copolymerization withMMA.ItcanbeconcludedthatMMAactivatedthedoublebondofmaleatemonomerinN2whileO2formstableepoxidesandblockcreatedfreeradicals.AlsoM1andM2havedifferentactivitywithoxygen,thefirstinhibitedwhilethesecondisactivatedintheirpolymerizationprocess.

    Catalytic M1 polymerization and M1-M2 copolymerization: Homo-polymerization of M1 using TiO2 and V2O5 in O2 or N2 atmospheres and its copolymerization with M2 at the sameabovementioned conditions exhibited acceptable conversion%ofpolymers(Table 1).So,thisworkwastobeintentoncatalyticin situ bulk copolymerizationofM1-M2atdifferent conditionsanditscomparisonwithM1homo-polymerizationresultsattheoptimumconditions. The results onhanding inTable 1 informthat,catalyticcopolymerizationofM1-M2usingTiO2inN2andO2 produceM1M2TNandM1M2TOcopolymerswithconv.%values64.2and31.6%respectivelyattheabovementionedconditions.Theconv.%increasedduetoTiO2activityinN2andO2withvaluesof~44and30%relativetocopolymerswithoutcatalyst(M1M2NandM1M2Orespectively).ItisclearthatTiO2havebetterconcertin N2 relative to O2 environments inM1-M2 copolymerizationprocess. Previous publication for bulk polymerization ofMMAusing CuO/TiO2 at 80°C for 5 h indicated that the conv% ofPMMAwere20and24%usingTiO2 inN2 andO2 environmentrespectively[25]. Thesepreviousresultsindicatedtheprobabilityof an oxidative polymerization mechanism for MMA in suchconditions[25].ComparisonbetweenthesepreviousresultsandpresentworkconfirmthatTiO2whichisasemiconductor,canbeactivatedthermallyandcreates itse-CB thatcapableofopeningtheolefindoublebondofM1andM2tostarttheinitiationstepthroughfreeradicalmechanisminN2atmosphere.Theconceptthat M1 also initiated by TiO2 is confirmed from its homo-polymerization results inN2andO2withconv.%valuesof21.5and18.4%respectivelyandnilwithoutTiO2fromTable 1.TheseobservationsconfirmthatO2maybeformsstableepoxideswiththeolefindoublebondofmaleatemonomer specially and the

    O OO

    +

    1-Hexanol

    HO

    Maleic Anhydride

    Open Ring Reaction

    80 0C

    O

    O

    O

    OH

    Poly

    ethy

    lene

    Gyl

    col 2

    00

    Xyle

    ne, P

    TSA

    O

    O

    O

    O (PEG200)Methylmethacrylate

    TiO2/80 0C

    O

    OO

    (PEG200)

    OOO

    MANS200

    MMA-co-MANS200

    PreparationofMANS200surfmer(M1).Scheme 1

    M1-M2copolymerizationinN2atmosphere.Scheme 2

    Nanocomposite Code

    Catalyst Type and weight% Atmosphere Conv.%

    M1 No O2andN2 0.0M1M2N No N2 19.4M1M2O No O2 1.00

    M1TN(20%) 20%TiO2 N2 21.5M1TO(20%) 20%TiO2 O2 18.4

    M1M2TN(20%) 20%TiO2 N2 64.2M1M2TO(20%) 20%TiO2 O2 31.6M1M2VN(20%) 20%V2O5 N2 43.3M1M2VO(20%) 20%V2O5 O2 63.8

    Table 1: Effectofmetaloxideandreactionatmosphere(O2andN2)ontheconversion%ofM1homo-polymerizationandM1M2copolymerizationat80°Cfor4h.

  • 2018Vol.4 No.1:3

    4 This article is available in: http://polymerscience.imedpub.com/archive.php

    ARCHIVOS DE MEDICINAISSN 1698-9465

    Polymer SciencesISSN 2471-9935

    rateofinitiationstepbyTiO2ishigherthantherateofepoxidationofC=C. So,propagation step retarded slightly andgave conv%valueof18.5%inoxygenenvironment.

    Ontheotherhand,resultsinTable 1informthatV2O5promotescopolymerization reaction inO2better than inN2atmospheresandthecorrespondingconv.%are63.8and43.3,sotheactualconv.%duetoV2O5activityare24and62.8%relativetoM1M2Nand M1M2O respectively. It is concluded that TiO2 and V2O5 havedifferentroutesinthisreaction.Theelectronicdistributionof V2O5 surface mostly modified due to adsorption of oxygenand creates more active sites which accelerate initiation andpropagationrates,soconv.%increasedfrom1%inO2to63.8%due to the catalytic effect of oxygen andV2O5. It is concludedthatTiO2ismoredependablethanV2O5inthisreactionbecauseTiO2 without oxygen give the same conv% (~64%) using V2O5 in oxygen. Also, maleate homo-polymerization have differentroute and give lower conv% in O2 atmosphere versus MMAusingcatalysts.So, theeffectofcatalystweightwillbestudiedinN2environment.Scheme 3givesasuggestionforinitiationandpropagation mechanism of M1 and M1-M2 polymerization inN2usingTiO2asa catalyst.Mostly,M1-M2copolymerhaveanalternatingunits(-M1-M2-M1-M2-)intheseconditions.

    Effect of catalyst weight%: Table 2representstheconv.%ofM1-M2copolymerizationusingdifferentweight%of TiO2 andV2O5 in N2 atmosphere. The conv.% increased from 19.4% withoutcatalyst to 41.8, 56.3 and 64.2% using 2, 10 and 20 wt% ofTiO2 and to 34.5, 47.2 and43.3%using the samewt%ofV2O5 respectively.Theoptimumweight%ofTiO2andV2O5 is20and10%respectively.

    Molecular weight distribution of produced polymers indicatesthat as TiO2wt% increased; αw and αn are increased but thepolydespersity index (∆w/∆n) isnearly thesame.These resultsindicatethatnumberofactivesites,numberofpolymerchains(∆n)andthusinitiationandpropagationrateareincreased.Also,∆wand∆n increasedby increasingV2O5wt%but10%give themaximumconv.%andbetterpolydispersityindex(∆w/∆n=1.99).TheseobservationsindicatebettercontrollingusingV2O5mostlydue to catalytic chain transfer [38]. So, conv% decreased byincreasingwt%ofV2O5.

    Effect of M1/M2 molar ratio, reaction temperature and reaction time: Table 3 showtheeffectofM1/M2molarratios(1/2,1/1and2/1),effectofreactiontemperature(60,80and100°C)andeffectof reactiontime (2,4,8and12h)onconv.%ofM1-M2copolymerization in N2atmosphere using TiO2 as catalyst. TheoptimummolarratioofM1/M2is1:1.Also,conv.%duetomolarratioof1:2 isbetter than2:1 (45.8and30.5% respectively) asshown inTable 3. TheseobservationsconfirmthatM2 (MMA)initiate M1 and they may be repeated alternately (-M2-M1-M2-M1-)assuggestedinScheme 3.

    Table 3showstheconv.%atreactiontemperatures60,80and100°Care27.2,64.2and30.5%.Also,conv.%afterreactiontime2, 4, 8, 12 h are 37.4, 64.2, 62.2 and 32.5% respectively. Theoptimumreactiontemperatureandtimeare80°Cand4h.Theconv.%decreaseswithlongerreactiontimeandhigherreactiontemperaturemaybeduetohigherrateofchaintransferreaction[37] and/or epoxidation rate. Two ester groups of maleatesurfmerunit canactasπ-acceptor for theneighboringπ-bond(C=C)electrons,whichmostlyresultedinstabilizationofepoxidesandthusinhibitionofpropagationstep.

    CharacterizationVerification the chemical structure of the prepared non-ionic maleate surfmer (M1): The chemical structure of the prepared non-ionic surfmer (M1) was defined by FTIR, 1H and 13C NMR as shown in Figure 1a-1c respectively. Figure 1a shows the FTIR of M1 surfmer which indicates the presence of a band at 1733

    Catalytic homo-polymerizationofmaleate surfmer(M1)anditscopolymerizationwithMMA(M2)usingTiO2inN2andO2atmospheres.

    Scheme 3

    Nano-composite Code

    Wt.% of Catalyst

    Conv.% of Copolymers

    Molecular weight distribution

    αw αn αw/αnM1M2TN(2) 2%TiO2 41.8 251280 116618 2.16M1M2TN(10) 10%TiO2 56.3 267303 129649 2.06M1M2TN(20) 20%TiO2 64.2 307294 143293 2.1M1M2TO(20) 20%TiO2 31.6 323218 148064 2.18M1M2VN(2) 2%V2O5 34.5 167133 76294 2.2M1M2VN(10) 10%V2O5 47.2 173377 87149 1.99M1M2VN(20) 20%V2O5 43.3 196320 95542 2.06M1M2VO(20) 20%V2O5 63.8 168458 88888 1.89

    Table 2: Effectofweight%ofTiO2andV2O5catalystsinN2atmosphereat80°Cfor4honconversion%ofM1M2copolymers.

    Table 3: EffectsofM1/M2molarratio,reactiontemperatureandreactiontimeonconversion%ofM1M2copolymerusingoptimumwt%TiO2inN2atmosphere.

    Nanocomposite Code

    M1/M2 MolarRatio

    Temperature (°C) Conv.%

    M1/M2TN(20) 1/2 80 45.8M1M2TN(20) 1/1 80 64.2M1M2TN(20) 2/1 80 30.5M1M2TN(20) 1 60 27.2M1M2TN(20) 1 80 64.2M1M2TN(20) 1 100 30.5M1M2TN(20) 1 80 37.4M1M2TN(20) 1 80 64.2M1M2TN(20) 1 80 62.2M1M2TN(20) 1 80 32.5

  • 5© Under License of Creative Commons Attribution 3.0 License

    2018Vol.4 No.1:3

    ARCHIVOS DE MEDICINAISSN 1698-9465

    Polymer SciencesISSN 2471-9935

    cm-1 due to carbonyl group of the prepared diesters and two bands at 2870 and 2999 cm-1 due to symmetric and asymmetric methylene group. Disappearance of two characteristic bands at 1810 and 1780 cm-1 of the two arms of anhydride group of maleic anhydride confirms the formation of diester. Whilst the presence of OH stretching at 3372 cm-1 indicates that PEG is one of the constituents of the prepared monomer in addition to the band at 1100 cm-1 due to the ethereal bond C-O-C [31]. Also, the olefinic bond=CH2 still present and appeared at 1637 cm

    -1.1HNMRofM1 inFigure 1b confirmsM1 structure as follow: achemical shift appears at б=0.851 and 1.261 ppm due to theterminal(CH3-)and(-CH2-)nof1-hexanolrespectively,thechemicalshiftresultedfromthedoublebondoftwoprotonsofmaleateappearedat6.233ppm.Three characteristic chemical shiftsat3.621,4.13,and4.701ppmduetoPEGmoietyareappeared.

    Thechemicalstructureofthepreparedsurfmerisalsojustifiedthrough13CNMRspectraasshowninFigure 1c.Thefigureshowschemical shifts at 13.8, 22.0, 30.9, 25.0, and 27.9 ppmdue to

    the alkyl chain of hexanol (CH3CH2CH2CH2CH2-) respectively, achemicalshiftsduetodoublebondofmaleatesurfmerat130.0 ppm,a chemicalshiftofcarbonylgroupduetoesterformationat165ppm,andfinallychemicalshiftsofPEGat64,72,and60ppm.ItcanbeconcludedthatallconfirmationmethodsforthepreparedM1monomerstructurearecoincidedtogether.

    Confirmation of M1 homopolymer and M1-M2 copolymers using 13C and 1HNMR spectra: Maleatsurfmer washomo-polymerizedusing20%w/wTiO2andV2O5ascatalysts innitrogenatmosphereat 80°C for 4 h and produce M1TN and M1VN respectively.The 1HNMRspectraofM1TNandM1VNsamplesand 13CNMRofM1TNsampleareshown inFigure 2a-2c respectively. Itcanbe seen from 1HNMR that the spectrum of M1TN andM1VNdiffersfromthatofthemonomerM1(Figure 1b)intermsoftheappearanceof a triplet bandat 2.5ppmwhich represents the(–CH-CH-)protonsinthepolymerbackboneanddisappearancefor the band of double bondmaleat surfmer (-CH=CH-)whichconfirmhomopolymerizationofM1.The 13CNMR inFigure 2b forM1TNsampleshowsachemicalshiftatб=30.896ppmduetopolymerized(-CH-CH-)ofmaleatsurfmerandconfirm1HNMRresults.

    (a)

    (b)

    Confirmation of maleate surfmer structure by (a)FTIR,(b)1HNMRand(c)13CNMRspectra.

    Figure 1

    (a)

    (b)

    (c)

    (a)1HNMRspectraofthepreparedM1TN,(b)13CNMRspectraofthepreparedM1TNand(c)1HNMRspectraofthepreparedM1VN.

    Figure 2

  • 2018Vol.4 No.1:3

    6 This article is available in: http://polymerscience.imedpub.com/archive.php

    ARCHIVOS DE MEDICINAISSN 1698-9465

    Polymer SciencesISSN 2471-9935

    The maleat surfmer (M1) also copolymerized with methylmethacrylate (M2)withmolar ratioof1:1 inpresencesofTiO2 and V2O5 under oxygen or nitrogen atmosphere at 80°C for 4hrs. 1HNMR spectra of copolymers (M1M2TN and M1M2VN)and 13C NMR of M1M2TN are presented in Figure 3a-3c respectively.FromthecomparisonofM1M2TNcopolymerwithM1TNhomo-polymer,itisofinteresttomentionthat-CH-banddue tobackboneof surfmer shifted from2.5ppm inM1TN to2.719 ppm inM1M2TN and be stronger and broader band. Inaddition,disappearanceof the twoolefnicprotons (CH=CH) atб=6.2ppmconfirmcopolymerizationofsurfmerwithMMA.Thechemicalshiftofthe(-OCH3)ofacrylateappearedatб=3.3ppmand also, the characteristic bands of PMMA which appearedbetween 0.0 and 2.0 ppm confirm copolymerization ofMMA.Theabovementionedresultsconfirmedby13CNMRofcopolymer(M1M2TN) in Figure 3c. From this figure it can be observeda new chemical shifts at б=33 ppm due to copolymerization,chemicalshiftatб=19.0and52.3ppmduetothemethylgroup(CH3)ofhexylchainandmethoxy(OCH3)ofmethylmethacrylaterespectively.

    Itisconcludedthat1HNMRofM1contain-CH=CH-characteristicband at chemical shift of 6.233 ppm. This band disappears in1HNMR spectra ofM1 homo-polymer andM1M2 copolymers.1HNMRofM1contain (-CH2-)nand terminal–CH3characteristicbandsduetohexylchainat1.261and0.851ppmrespectively.

    These bands still present in all spectra of M1 homo-polymerand M1M2 copolymers. These observations confirmhomopolymerizationofM1anditscopolymerizationwithMMA.PMMAhavesingletbandsat0.85,1.03,1.22ppmdueto(rr),(mr)and (mm) respectively.Multiple bands appeared between 1.8-2.3ppmdueto(rrr),(mrr),(mrr)and(mrm)respectively.ThesebandsappearinsamplesM1M2VNandM1M2TNanddisappearinsamplesM1M2VOandM1M2TOspectra.Thebandof–OCH3 duetoPMMAappearat7.278ppminspectraofM1M2VOandM1M2TO but sharply decreased in M1M2VN and M1M2TN.These observationsmay indicate thatO2 andN2 environmentshavedifferenteffectonM1-M2repeating.The twomonomersM1andM2maybe repeatedasM1M2M2M2M1 inN2whichresulted in appearing of the multiple bands. On the otherhand, these multiple bands disappear in spectra of M1M2TOandM1M2VO. Also –OCH3 band appeared in spectra of thesesamples.TheseobservationsmayindicatethatM1andM2arerepeatedintheircopolymerasM1M2M1M2.ItisconcludedthatO2environmentaffectasco-initiatorwhichgivemorecontrolledenchainmentprocess.

    Thermogravimetric analysis (TGA): Figure 4 shows thethermogravimetric analysis of pure PMMA,M1-M2 copolymerat optimum conditions using 20% titanium oxide in nitrogenatmosphere (M1M2TN) and using 10% vanadiumpentoxide inoxygen atmosphere (M1M2VO). The figure shows the higherthermal stability of the two copolymer composite samplesrelativetoPMMA.

    Scanning and transmission electron microscope: Figure 5a-5d show TEM of pure PMMA and SEM of M1M2TN samplewith different magnification factors (X50, X200 and X2000)respectively. TEM of PMMA show pure film of PMMAmatrix.SEMofM1M2TNinFigure 5bshowinteractedTiO2particleswithM1-M2 copolymer matrix. This interaction be clear by highermagnification in Figure 5c and 5d. This figure is clearly showhomogeneouscopolymermatrixcenteredaroundpointswhicharemostlythecatalystparticles.

    (a)

    (b)

    (c)

    1HNMR spectra of (a) M1M2TN, (b) M1M2VN and13CNMRofM1M2TN(c).

    Figure 3

    PMMA

    M1M2T N

    Wei

    ght %

    lose

    Temperature (oC)

    ThermogravimetricanalysisofpurePMMA,M1M2TNandM1M2VO.

    Figure 4

  • 7© Under License of Creative Commons Attribution 3.0 License

    2018Vol.4 No.1:3

    ARCHIVOS DE MEDICINAISSN 1698-9465

    Polymer SciencesISSN 2471-9935

    Interfacial properties for prepared surfmer and its corresponding copolymer: The effect of the surfmer and its copolymerconcentrations(Ln C)onthereductionoftheinterfacialtension(γ)ofthetoluene-waterinterfaceat298KisshowedinFigure 6.Twocurvespresentedsimilarexpectedbehaviorforsurfactants.First, a linear decreasing in the interfacial tension is observedwith increasing the surfactants concentration, which meansthat the adsorption of the prepared surfactants molecule atthe toluene-water interface is in accordance with the Gibbsadsorptionisotherm.Theinterfacialactivitywasavailablebytherateoftheinterfacialtensiondecreasingtotheincreasinginthenaturallnofthesurfactantsconcentration,anditwasgotfromtheangularcoefficientofthelinearcurvesinγ–Ln C plot.

    a=-dγ d LnC

    where:a istheinterfacialactivity,N/m;γ istheinterfacialtension,N/m;andC is theconcentrationsofpreparedsurfactantsmol/kg. From a certain concentration, the interfacial tension valuebecame constant. It was assumed that the saturation of thepreparedsurfactantsmoleculeattheinterfacewasreachedandmicellization took place, by the self-aggregation of surfactantsmolecules. The CMC value was got by the intersection oftwo segments prolongation in γ–Ln C plot. According to dataobtainedfrominterfacialtensioncurvesandlistedinTable 4, itcanobserved that, for theprepared copolymer, the interfacialtensionforthemlessthanthecorrespondingpreparedsurfmer,this may be due to increasing the hydrophobic portion which

    leadstoeasilyorientedtotheinterfaceandadsorbedonitwhichleadstoacontinuousshiftoftheCMCtolowervalues[40].

    The maximum surface excess (Γmax) was calculated from therelationship:

    max1

    lnT

    RT Cδγ

    δ− Γ =

    ,

    Where(-δγ/δlnC)TistheslopeofγversuslnCplotsataconstantabsolutetemperatureTandR=8.314J.mo1-1.K-1.ThedataofΓmax areshowninTable 5. ForthesurfmertheΓmaxvaluesarehigherthanthecorrespondingvaluesforthecopolymersderivedfromthem.Thismaybeattributedtoahigherdegreeofpackingforthemoleculesofthesurfmerthanthatofthemoleculesofthecorrespondingpolymericsurfactant.

    TheΓmaxvalueswereusedforcalculatingtheminimumareaAmin innm2permoleculeattheinterfaceusingthefollowingequation:

    16

    min10AN

    Where, N is Avogadro's number, the values of the Amin forthe pared surfactants calculated and listed inTable 4. Amin forpreparedcopolymericsurfactantishigherthanthecorrespondingsurfmers; thismay be due to increasing itsmolarmasswhichleadstoincreaseintheradiusofgyrationofthemolecule[41,42].

    Thestandardfreeenergyofmicellization(ΔGmic)determinationhasplayedanimportantroleindevelopingaclearunderstandingof the process of micellization, which is important fordiscerningclarification, the impactsofeffectsof structuralandenvironmentalfactorsonthevalueoftheCMCandforpredictingtheeffectsonitofnewstructuralandenvironmentalvariations[43].Itcanbedeterminedbythefollowingequation:

    lnmicG RT CMC∆ =

    Byanalyzingthevaluesofstandardfreeenergyofmicellization(ΔGmic)inTable 5,itmayconcludethat,thevaluesofstandardfreeenergyofhavenegativechargethismeanthatthemicellizationprocessisspontaneous(-ΔGmic).ThevaluesofΔGmicforMMA-co-MANS200morenegativethanthecorrespondingsurfumerandthismaybeduetoincreasingthehydrophobicmoiety,theincreaseinhydrophobicchainlengthincreasesitsdistortionmotioninthesolution,sothefreeenergy increases.The increaseofthefreeenergyexpressedby-ΔGmicevidencethisconcept.

    (c)

    (d)

    (a) (b)

    (a) TEM of pure PMMA and SEM of M1M2TNcomposite with different magnification (b) X50, (c)X200and(d)X2000.

    Figure 5

    Variation of the interfacial tensionwithlnconcentrationsofsynthesizednonionic surfumer (M1) and itscopolymer with methylmethacrylatebetweenwaterandtolueneat25°C.

    Figure 6

    Table 4: Interfacial properties for the synthesized surfmer and itscopolymerfrominterfacialtensionmeasurementsat25°C.

    Surfactants CMC ×104

    (mol L-1)γCMC

    (mNm-1)ПCMC

    (mNm-1)Гmax ×10

    10

    (mol cm-2)Amin(A2 )

    M1 32.70 7 29.1 -1.22 135.25M1M2TN(20) 6.48 5 31.1 -1.19 139.14

    Surfactants ΔGmic (kJ mol-1)ΔGAds.

    (kJ mol-1) ΔGmic-ΔGAds. HLB

    M1 -14.16 -16.53 2.37 10.47M1M2TN(20) -18.16 -20.77 2.61 8.29

    Table 5: Thefreeenergyofmicellization,thefreeenergyofadsorptionand the hydrophobic-lipophilic balance (HLB) for the synthesizedsurfactants.

  • 2018Vol.4 No.1:3

    8 This article is available in: http://polymerscience.imedpub.com/archive.php

    ARCHIVOS DE MEDICINAISSN 1698-9465

    Polymer SciencesISSN 2471-9935

    TheStandardfreeenergyofadsorption(ΔGads)wascalculatedbytheuseofΔGmicvaluesfromtherelationship[44]:

    minCMC CMC CMC mic adA A G GΠ Π = ∆ − ∆

    i.e. the πCMC Amin product expresses the work involved intransferring the surfactantmolecule fromamonolayerat zerosurfacepressuretothemicelle.TheΔGadvaluesareallnegativeaslistedinTable 5andaremorenegativethanΔGmic,indicatingthatadsorptionattheinterfaceisassociatedwithadecreaseinthefreeenergyofthesystem.

    ThedifferencesbetweenΔGmicandΔGadfrompreviousequationcanbewrittenas

    0.6023AminπCMC=ΔGmic-ΔGadwhere the product Amin πCMC expresses the work involved intransferringasurfactantmoleculefromamonolayerzerosurfacepressuretoamicelle;ΔGmicandΔGadvaluesarelistedinTable 5.Itisapparentthattheworkoftransfer,whichmeasurestheeaseofadsorptiontoformamonolayeratzerosurfacepressurerelativetoeaseofmicellization,showsobservedchangewithincreasingthehydrophobicmoiety forcopolymerthanthecorrespondingsurfmer. The positive values of ΔGmic - ΔGad reflect that, theprepared surfactants are more readily adsorbed at interface.This inturncouldaccountforinvestigatingthesesurfactantsinpetroleumapplication.

    The HLB valueswere calculated using the general formula fornon-ionicsurfactants,

    HLB=[MH/(MH+ML)]*20

    where MH is the formula weight of the hydrophilic portionof the surfactant molecule and ML is the formula weight ofthehydrophobic portion. The calculatedHLB listed inTable 5. When the hydrophobic moiety increases by copolymerization,theHLBdecreaseandthisgiveconceptionongoodsolubilityofcopolymersinoil.

    ConclusionNonionicmaleatesurfmerwassynthesizedintwostepsandusedasamonomer(M1).Thefirstistheringopeningbyhexylalcoholand the second is the esterfaction reaction with PEG200. Thechemical structure of the prepared sufmerM1was confirmedbyFTIR,1Hand13CNMRspectroscopy.M1homo-polymerizationgivenilconv.%butcopolymerizedwithMMAwithconv.%of19.4and1% inN2andO2atmosphere respectivelywithout catalyst.Also,M1 homo-polymerized in presence of TiO2 as catalyst inN2andO2withconv.%of21.5and18.4%respectively.Itisalsocopolymerized with methyl methacrylate in presences of TiO2 andV2O5ascatalystinN2andO2at80̊Cfor4hours.Thechemicalstructure of the prepared clean polymers was confirmed byFTIR,carbonandhydrogennuclearmagneticresonance(13Cand1HNMR) and characterized by gel permeation chromatography(GPC).ThethermalstabilityofpurePMMAandthecompositesM1M2TN and M1M2VO show higher thermal stability ofcomposites relative to PMMA. Also, TEM of PMMA and SEMof M1M2TN confirm a homogeneous enchainment of M1-M2copolymercenteredaroundTiO2catalystparticles.Theoptimumconditions resulted in 64.2% and 63.8% conversion using 20%TiO2inN2and10%V2O5inO2respectivelyat80°Cafter4hwithM1/M2molarratioof1:1.

    References1 Soula O, Guyot A, Williams N, Grade J, Blease T (1999) Styrenic

    surfmer in emulsion copolymerization of acrylic monomers. II.Copolymerization and film properties. Journal of Polymer SciencePartA:PolymerChemistry37:4205-4217.

    2 Mingyue Z,WeihongQ, Hongzhu L, Yingli S (2008) Synthesis of anovelpolymerizablesurfactantand itsapplication in theemulsionpolymerization of vinyl acetate, butyl acrylate, Veova 10, andhexafluorobutylmethacrylate. Journal ofAppliedPolymer Science107:624-628.

    3 Summers M, Eastoe J (2003) Applications of polymerizablesurfactants.AdvancesinColloidandInterfaceScience100:137-152.

    4 WuH,KawaguchiS,ItoK(2004)Synthesisandpolymerizationoftail-type cationic polymerizable surfactants and hydrophobic counter-anion inducedassociationofpolyelectrolytes.ColloidandPolymerScience282:1365-1373.

    5 Guyot A, Graillat C, Favero C (2003) Anionic surfmers in mini-emulsionpolymerisation.ComptesRendusChimie6:1319-1327.

    6 AbeleS,GauthierC,GraillatC,GuyotA(2000)Filmsfromstyrene-butylacrylatelatticesusingmaleicorsuccinicsurfactants:mechanicalproperties,waterreboundandgraftingofthesurfactants.Polymer41:1147-1155.

    7 UzulinaI,ZicmanisA,GraillatC,ClaverieJ,GuyotA(2002)Nonionicmaleicsurfmers.JournalofDispersionScienceandTechnology23:799-808.

    8 MorizurJF,IrvineDJ,RawlinsJJ,MathiasLJ(2007)Synthesisofnewacrylate-based nonionic surfmers and their use in heterophasepolymerization.Macromolecules40:8938-8946.

    9 CaoN,Wang X, Song L, Zhang ZC (2007)Nanoporemicrospherespreparedbyacationicsurfmerintheminiemulsionpolymerizationofstyrene.JournalofPolymerSciencePartA:PolymerChemistry45:5800-5810.

    10 Mekki S, Saïdi-Besbes S, Elaïssari A, Valour JP, Derdour A (2010)Novel polymerizable surfactants: synthesis and application in theemulsionpolymerizationofstyrene.PolymerJournal42:401-405.

    11 McCormick CL, Chang Y (1994) Water-soluble copolymers. 58.Associativeinteractionsandphotophysicalbehaviorofamphiphilicterpolymers prepared by modification of maleic anhydride/ethylvinylethercopolymers.Macromolecules27:2151-2158.

    12 Dérand H, Wesslén B, Wittgren B, Wahlund KG (1996) Poly(ethylene glycol) graft copolymers containing carboxylic acidgroups:aggregationandviscometricpropertiesinaqueoussolution.Macromolecules29:8770-8775.

    13 Dérand H, Wesslén B (1995) Synthesis and characterization ofanionic graft copolymers containing poly (ethylene oxide) grafts.JournalofPolymerSciencePartA:PolymerChemistry33:571-579.

    14 GaylordNG(1975)Poly(maleicanhydride).JournalofMacromolecularScience-ReviewsinMacromolecularChemistry13:235-261.

    15 Braun VD, Sayed IA, Pomakis J (1969) Über die radikalischehomopolymerisation von maleinsäureanhydrid. MacromolecularChemistryandPhysics124:249-262.

  • 9© Under License of Creative Commons Attribution 3.0 License

    2018Vol.4 No.1:3

    ARCHIVOS DE MEDICINAISSN 1698-9465

    Polymer SciencesISSN 2471-9935

    16 HesedingC,SchneiderC(1977)Radiation-inducedcopolymerizationofmaleicanhydrideandphenanthrene.EuropeanPolymerJournal13:387-390.

    17 Lang JL, Pavelich WA, Clarey HD (1963) Homopolymerization ofmaleicanhydride.I.Preparationofthepolymer.JournalofPolymerSciencePartA:PolymerChemistry1:1123-1136.

    18 AdamF,AppaturiJN,IqbalA(2012)Theutilizationofricehusksilicaasacatalyst:reviewandrecentprogress.CatalysisToday190:2-14.

    19 Pellecchia C, Mazzeo M, Pappalardo D (1998) Isotactic-specificpolymerizationofpropenewithaniron-basedcatalyst:polymerendgroups and regiochemistry of propagation.Macromolecular rapidcommunications19:651-655.

    20 LeeKH,NohNS,ShinDH,SeoY(2002)Comparisonofplastictypesforcatalyticdegradationofwasteplastics into liquidproductwithspentFCCcatalyst.PolymerDegradationandStability78:539-544.

    21 Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceuticalintermediates:thefutureisnow.TRENDSinBiotechnology25:66-73.

    22 Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994)Myeloperoxidase,acatalyst for lipoproteinoxidation, isexpressedinhumanatheroscleroticlesions.JournalofClinicalInvestigation94:437.

    23 Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolvingcatalyst inneutralwatercontainingphosphateandCo2+.Science321:1072-1075.

    24 Nimkar SH, Agrawal SP, Kondawar SB (2015) Fabrication ofelectrospunnanofibersoftitaniumdioxideintercalatedpolyanilinenanocompositesforCO2gassensor.ProcediaMaterSci10:572-579

    25 SolymanSM,HassanSA,SadekSA,Abdel-SamadHS(2010)Redox-InitiatedBulkPolymerizationofMethylMethacrylateUsingaCuO/TiO2CatalystSystem. International JournalofPolymericMaterials59:475-487.

    26 FanX,LinL,MessersmithPB(2006)Surface-initiatedpolymerizationfromTiO2nanoparticlesurfacesthroughabiomimetic initiator:anew route toward polymer–matrix nanocomposites. CompositesScienceandTechnology66:1198-1204.

    27 SatoM,WebsterTJ(2004)Nanobiotechnology:implicationsforthefutureofnanotechnologyinorthopedicapplications.ExpertReviewofMedicalDevices1:105-114.

    28 BoccacciniAR,GerhardtLC,RebelingS,BlakerJJ(2005)Fabrication,characterisation and assessment of bioactivity of poly (D, L lactidacid)(PDLLA)/TiO2nanocompositefilms.CompositesPartA:AppliedScienceandManufacturing36:721-727.

    29 NakayamaN,HayashiT(2007)Preparationandcharacterizationofpoly(l-lacticacid)/TiO2nanoparticlenanocompositefilmswithhightransparencyandefficientphotodegradability.Polymerdegradationandstability92:1255-1264.

    30 ThitiyanapornC,ThengchaisriN,UdomkusonsriP(2013)Comparisonofpolymethylmethacrylate(PMMA),nativecalciumsulfate,andhighporouscalciumsulfatebeadsasgentamicincarriersandosteoblastattachment.SongklanakarinJournalofScienceandTechnology35.

    31 Karakus G, Zengin HB, Polat ZA, Yenidunya AF, Aydin S (2013)

    Cytotoxicity of three maleic anhydride copolymers and commonsolventsusedforpolymersolvation.PolymerBulletin70:1591-1612.

    32 SindtO,GauthierC,HamaideT,GuyotA(2000)Reactivesurfactantsin heterophase polymerization. XVI. Emulsion copolymerizationof styrene–butyl acrylate–acrylic acid in the presence of simplemaleatereactivesurfactants.JournalofAppliedPolymerScience77:2768-2776.

    33 Sadek EM,MekewiMA, Yehia FZ, Solyman SM,Hassan SA (2001)Catalyticpolymerizationofmethylmethacrylateindifferentmediausing supported metal phthalocyanines, 1. Bulk polymerizationin relation to the microcrystalline structure of supported metalphthalocyanines.MacromolecularChemistryandPhysics202:1505-1512.

    34 HassanSA,SelimSA,MekewiMA,HanafiS(1989)Astudyofvariouscharacteristics of supported NiO/bentonite catalyst used in thepolymerizationofmethylmethacrylate.JournalofMaterialsScience24:1095-1102.

    35 Al Sabagh AM (1998) Surface and thermodynamic propertiesof p-alkylbenzene polyethoxylated and glycerated sulfonatederivativesurfactants.ColloidsandSurfacesA:PhysicochemicalandEngineeringAspects134:313-320.

    36 Nieuwhof RP, Marcelis AT, Sudhölter EJ, Picken SJ, de Jeu WH(1999) Side-chain liquid-crystalline polymers from the alternatingcopolymerization of maleic anhydride and 1-olefins carryingbiphenylmesogens.Macromolecules32:1398-1406.

    37 Solyman SM, Azzam EM, Sayyah SM (2014) The performance ofmodifiednanoclayusingpolymeric thiol surfactantsassembledongoldnanoparticlesinheterogeneousbulkpolymerizationofmethylmethacrylate.AppliedCatalysisA:General475:218-225.

    38 Lakshmi P, Vijayalakshmi K, Sudha P (2011) Synthesis andcharacterization of graft copolymers of nylon 6 with maleicanhydride and methylmethacrylate. Archives of Applied ScienceResearch3:351-363.

    39 WitkoM,HermannK,TokarzR(1999)Adsorptionandreactionsatthe(010)V2O5surface:clustermodelstudies.CatalysisToday50:553-565.

    40 Youssef AM, Gendy TS,Mohamad AI, Barakat Y (1990) Polymericsurfactants for enhanced oil recovery. IV—Thermodynamicproperties of ethoxylated alkylphenol formaldehyde polymericsurfactants.PolymerInternational22:339-346.

    41 Abdel-Azim AA (1993) Excluded volume and hydrodynamicpropertiesofpolystyreneinnon-idealsolvents.PolymerBulletin30:579-586.

    42 Abdel-Azim AA, Tenhy H, Merta J, Sundholm F (1993) Solutionpropertiesofpoly(vinylpyrrolidone)incosolventsystems.PolymerJournal25:671-677.

    43 Rosen MJ (1976) The relationship of structure to properties insurfactants. IV. Effectiveness in surface or interfacial tensionreduction.JournalofColloidandInterfaceScience56:320-327.

    44 RosenMJ,AronsonS (1981) Standard freeenergiesof adsorptionof surfactants at the aqueous solution/air interface from surfacetension data in the vicinity of the critical micelle concentration.ColloidsandSurfaces3:201-208.