radio network planning vms6-2012

381
NOKIA SIEMENS NETWORK RADIO NETWORK DESIGN VMS 2G/3G SINGLE RAN PROJECT NSN EQUIPMENT AREA Mobifone Central VI

Upload: walusimbi-herbert

Post on 12-Aug-2015

337 views

Category:

Documents


37 download

TRANSCRIPT

NOKIA SIEMENS NETWORK RADIO NETWORK DESIGN VMS 2G/3G SINGLE RAN PROJECT NSN EQUIPMENT AREA Mobifone Central VI Donng Nai and Baria- Vung tau 2 | P a g e DOCUMENT DESCRIPTION Title and version Radio Network design for 2G/3G single RAN project-Mobifone Central VI, NSN equipment part AuthorHiep, Ta Hoang Date30 Aug 2011 ApproverNPO PM CHANGE RECORD This section provides a history of changes made to this document VERSIONDATEEDITED BYCHANGE NOTE V130 Aug 2011Hiep, Ta HoangInitial version V210 Apr 2012Hiep, Ta HoangAdded radio planning part Update transmission part Copyright Nokia Siemens Networks. This material, including documentation and any related computer programs, is protected by copyright controlled by Nokia Siemens Networks. All rights are reserved. Copying, including reproducing, storing, adapting or translating, any or all of this material requires the prior written consent of Nokia Siemens Networks. This material also contains confidential information which may not be disclosed to others without the prior written consent of Nokia Siemens Networks. 3 | P a g e Tables of Content 1.INTRODUCTION .................................................................................................... 6 1.1Purpose ........................................................................................................................................................ 6 1.2Projectoverview ......................................................................................................................................... 7 1.2.1Project plan and resource ...................................................................................................................... 7 1.2.2Overview of Nokia Siemens Network elementson project ................................................................ 8 2.2G TECHNOLOGY ............................................................................................... 10 2.12G NETWORK NOMINAL PLAN ...................................................................... 10 2.1.1Coverage plot for Bien Hoa ................................................................................................................. 12 2.1.2Coverage plot for Long Thanh BSC ................................................................................................... 12 2.1.3Coverage plot for Nhon Trach BSC .................................................................................................... 13 2.1.4Coverage plot for Trang Bom BSC ..................................................................................................... 13 2.1.5Coverage plot for Ba-ria ...................................................................................................................... 14 2.1.6Coverage plot for Vung TauBSC ...................................................................................................... 14 2.22G NETWORK DIMENSIONING ....................................................................... 15 2.2.1Traffic model ......................................................................................................................................... 15 2.2.22G dimensioning ................................................................................................................................... 15 2.2.3RF Connection diagram ....................................................................................................................... 18 2.3RADIO FREQUENCY PLAN ............................................................................. 22 2.3.1Radio frequency plan deployment strategy ........................................................................................ 22 2.3.2Worst interference plotfor Bien Hoa BSC ........................................................................................ 24 2.3.3Worst interference for Long Thanh .................................................................................................... 25 2.3.4Worst interference for Nhon Trach .................................................................................................... 25 2.3.5Worst interference for Trang Bom ..................................................................................................... 26 2.3.6Worst interference for Ba-Ria Vung Tau ........................................................................................... 26 2.3.7Worst interference for Vung Tau ........................................................................................................ 27 2.42G PARAMETERS PLANNING ........................................................................ 27 2.4.1Parameters planning ............................................................................................................................ 27 2.4.2Parameters planning for IBS site ........................................................................................................ 29 3.3G TECHNOLOGY ............................................................................................... 31 3.13G NETWORK NOMINAL PLAN ...................................................................... 31 3.23G NETWORK DIMENSIONING ....................................................................... 35 3.2.1Traffic mix used for network dimensioning ....................................................................................... 35 3.2.23G Network dimensioning results ....................................................................................................... 37 3.33G NETWORK RADIO FREQUENCY PLANNING ........................................... 40 3.3.1Radio frequency plan strategy ............................................................................................................. 40 3.3.2Simulation results for Bien Hoa .......................................................................................................... 41 4 | P a g e 3.3.3Simulation results for Binh Duong ...................................................................................................... 42 3.3.4Simulation results for Trang Bom and Long Thanh ......................................................................... 43 3.3.5Simulation results for Nhon Trach ..................................................................................................... 44 3.3.6Simulation results for Ba-Ria & Vung Tau ........................................................................................ 45 3.43G PARAMETERS PLANNING ........................................................................ 46 3.4.1Parameters planning for3G ............................................................................................................... 46 3.4.2Strategy for 2nd carrier site................................................................................................................. 46 3.4.3Strategy for 3G in-building site ........................................................................................................... 48 4.ASSESS RADIO NETWORK PLANNING-VMS6 ................................................. 50 4.1EQUIPMENT LOCATIONS ............................................................................... 50 4.2RADIO NETWORK TOPOLOGY VMS6 ............................................................ 51 4.2.1Network connectivity for BSC towards CS/PS Core ......................................................................... 51 4.2.2Network connectivity for O&M BSC towards network management ............................................. 55 4.2.3Network connectivity for BSC synchronization ................................................................................. 58 4.2.4Network connectivity for RNC towards CS/PS Core and other RNCs ............................................ 59 4.2.5Network connectivity for O&M RNC towards network management ............................................ 69 4.2.6Network connectivity for RNC synchronization ................................................................................ 70 4.2.7Network connectivity for transport node ........................................................................................... 71 4.2.8Network Synchronization Solution ..................................................................................................... 82 4.3IP PLANNING FOR VMS6 ................................................................................ 84 4.3.1IP Addressing for 2G BSCs ................................................................................................................. 84 4.3.2IP Addressing for 2G BTSs (Packet Abis) .......................................................................................... 88 4.3.3IP Addressing for 3G RNCs................................................................................................................. 89 4.3.43G NodeB IP addressing .................................................................................................................... 104 4.3.5NetAct IP Plan and Topology ............................................................................................................ 105 4.3.6OMS IP Addressing ............................................................................................................................ 108 4.3.7Tellabs IP Addressing ........................................................................................................................ 108 4.3.8ToP Management IP Addressing ...................................................................................................... 114 5.RECOMMENDATION FOR ANTENNA LOCATION .......................................... 116 5.1ANTENNA LOCATION FOR SINGLE 2G OR 3G SITE .................................. 116 5.2ANTENNA LOCATION FOR COMBINED 2G/3G SITE .................................. 117 6.ANNEX ............................................................................................................... 119 6.1ANNEX 6.1 : MAIN EQUIPMENTS ................................................................. 119 6.1.1FlexiBTS/FlexiNodeB .......................................................................................................................... 119 6.1.2Base Station Controller-BSC/TCSM/PCU ........................................................................................... 121 6.1.3Radio Network Controller ................................................................................................................. 125 6.2ANNEX 6.2: OSS system ........................................................................................................................ 128 6.2.1Role of OMS in RNC configuration .................................................................................................. 128 6.2.2OMS interface ..................................................................................................................................... 129 6.2.3OMS hardware ................................................................................................................................... 130 5 | P a g e 6.3ANNEX 6.3 :Transmission node ............................................................................................................ 132 6.3.1Tellabs transmission node .................................................................................................................... 132 6.3.2HiT7035 transmission node .................................................................................................................. 136 6.4ANNEX 6.4 : Clock source- TP5000 ...................................................................................................... 137 6.5ANNEX 6.5: OSS system- Netact ........................................................................................................... 139 6.6ANNEX 6.6 Antenna system .................................................................................................................. 145 6.6.1Annex 6.6.1- WCDMA antenna ......................................................................................................... 146 6.6.2Annex 6.6.2-Single Band GSM900 antenna ...................................................................................... 147 6.6.3Annex 6.6.3- Dualband antenna(GSM900+GSM1800) ................................................................... 148 6.6.4Annex 6.6.4- Triple band antenna( GSM900, GSM1800, WCDMA) ............................................. 151 6.6.5ANNEX 6.6.5- Diplexers .................................................................................................................... 153 6.7ANNEX 6-7:POWER SYSTEM UNIT .............................................................. 155 6.7.1PSU for BTS/NodeB sites ................................................................................................................... 155 6.7.2PSU forRNC sites ............................................................................................................................... 157 6.7.3PSU for BSC sites .............................................................................................................................. 157 6.7.4PSU for TSCM sites ........................................................................................................................... 158 6.7.5PSU forTransport Node Hub site ........................................................................................................ 159 6.7.6PSU forTransport Node RNC site ................................................................................................... 160 6.7.7Annex 6.7.7- Specification of 800 AH Battery .................................................................................. 161 6.7.8Annex 6.7.8 - Specification of 12V-150 AH Battery ......................................................................... 164 6.7.9Annex 6.7.9 - Specification of 12V-180 AH Battery ......................................................................... 166 6.8ANNEX6.8: 2G NOMINAL AND RF DATA FOR VMS6 ................................ 168 6.9ANNEX 6.9: 3G NOMINAL AND RF DATA FORVMS6 ................................ 213 6.10ANNEX 6.10: RECOMMENDED PARAMETERS SETTING FOR2G ........ 303 6.11ANNEX 6.11: PARAMETERS SETTING FOR 3G IBS ................................ 311 6.12ANNEX 6.12: PARAMETERS SETTING FOR 2ND CARRIER SITE-3G .... 313 6 | P a g e Introduction 1.1Purpose Nokia Siemens Network company has to deploy the 2G/3G radio network expansion in Mobifone Central II from Oct 2011 to Feb 2012 based on contract TECH/TCT-391-11-VMS/NSN signed on 21 July 2011.The project is turnkey property project, soinclude all activities: supplying equipments, radio network planning, radio network deployment, parameters returning etc required for radio network expansion. Nokia Siemens Network execute all scope of works defined in RFP.The project contains two separate parts, one for swapped existing other vendor radio network elements by Nokia Siemens Equipments and the other for redeployment of reused network elements in new place in Mobifone Central VI. This document covers the radio network design for Nokia Siemens Network equipments part only. 7 | P a g e 1.2Projectoverview 1.2.1Project plan and resource Figure 1-1 illustrates the project master plan. The schedule calculate time for both swapped and reused network elements. Figure 0-1 Project master plan Figure 1-2 shows the Nokia Siemens Network organization for this project. Since the project includes both two centrals: central II and Central VI(newly reorganized from Mobifone Central II), so our plan applied for both two centrals of Mobiphone in this project.This documentation covers materials forCentral VI of Mobifone network. 8 | P a g e Figure 0-2 VMS Single RAN project NSN Organization 1.2.2Overview of Nokia Siemens Network elementson project Table 1-1 shows the overview of all NSN network elements proposed in this project in term of quality Table 0-1 List of Network elements and PSU in VMS6 9 | P a g e -Flexi Multiradio BTS is Software Defined Radio which provides GSM/EDGE, UTRAN and LTE capabilities in common hardware in both dedicated and concurrent mode of operation. Flexi Multiradio BTS is the most compact, high capacity and all-purpose modular GSM, WCDMA and LTE base station. Flexi Multiradio BTS is unique by design, comprising self-standing weatherproof modules that can be used to build macro or micro coverage, small or extremely large configurations, indoors or outdoors. -Flexi BSC has market leading capacity for voice and data with increased energy efficiency and highest Erlang per Sq.m. Flexi BSC supports full evolution to IP/Ethernet. -TCSM3i gives extremely high capacity in only one cabinet therefore it gives great opportunity to cut transcoding O&M costs. Additionally enhanced pool management minimizes configuration work over time. -RNC2600ismodularandflexibleandallowsthematchingofdifferentrequirements from services, capacity and coverage point of view -OMS is acting O&M mediator. It is responsible for supporting NE configuration plan file operations, such as plan file download to the NEs, plan file upload to NetAct and plan file activation.-SURPASShiT7035isacompactcarrierclassfullblownSTM-4/-1add-drop multiplexerwhichcanbeupgraded toacompactSTM-16ADM.SURPASShiT7035 offersapowerfulandcost-effectiveproductdesignforPDH,SDHanddata applicationsindependentiftheseapplicationscapabilitiesarerequestedforusein central offices, fixed part of mobile networks or in combination with high-end enterprise services The more technical detail please refer to ANNEX 6-1 to ANNEX 6-4 10 | P a g e 2G technology1.32G Network nominal plan Nominal plan done by Mobifone Central VI itself based on number of offered radio network elements in contract taken current coverage and traffic growth into calculation. So we need combine and split also some offered site configuration in original proposal in order to create new site configuration what fit into VMS6 requirement. The detail adjustment shown in Table 2-1. Table 0-1 Summary number and configuration of BTS/NodeB after adjustmentTable 2-2 summaries the BSC detail configurations GSM1800 2/0/0GSM900 2/2/2GSM900 4/4/4GSM1800 4/4/4GSM 1800 6/6/6GSM 6/6/6GSM 8/8/81 BDNBH1N KCN Long Binh Bien Hoa 4 15 75 18 8 6 34 2282 1602 BDNLT1N KCN Long Binh Long Thanh 0 22 57 2 4 1 14 1266 1003 BDNNT1N Buu Dien Nhon Trach Nhon Trach 0 10 21 1 2 1 15 738 504 BDNTB1N TrangBom Trang Bom 0 16 34 3 1 5 10 888 695 BVTBR1N Buu Dien-BariaB Ra,Tan Thanh,Chau duc, Xuyen Moc 0 81 64 0 3 3 14 1698 1656 BVTVT1N DaiCap Bien Vung tau Vung Tau,Long Dien,t ,Con Dao 9 31 67 4 11 4 33 2118 15913 175 318 28 29 20 120 8990 703NoSummarySite configTRX Total site BSC ID BSC Location Control area Table 0-2 Number of site and detail configuration required by VMS6 .The site distribution on map shown onFigure 2-1. 11 | P a g e Figure 0-1 Site distribution into BSC in VMS6 All site in VMS6 follow up 30/150/270 antenna pattern for reducing interference due to 1x1 RF reuse pattern deployment, the exception due to terrain and MS distribution in each case. The site detail radio configuration shown on ANNEX 6.8 Based on nominal plan the best server plots for VMS6 are below 12 | P a g e 1.3.1Coverage plot for Bien Hoa Based on nominal plan input coverage simulation done for Bien Hoa, the best coverage map see on Figure 2-2. The coverage is acceptable level, almost area has DL RxLev better than -75 dBm, it is real good GSM service presented. Figure 0-2 Best server coverage for Bien Hoa area 1.3.2Coverage plot for Long Thanh BSC Figure 0-3 Best server coverage for Long Thanh BSC 13 | P a g e 1.3.3Coverage plot for Nhon Trach BSC Figure 0-4 Best server coverage plot for Nhon Trach BSC 1.3.4Coverage plot for Trang Bom BSC Figure 0-5 Best server coverage plot for TrangBom BSC 14 | P a g e 1.3.5Coverage plot for Ba-ria Figure 0-6 Best server coverage plot for Ba-ria BSC 1.3.6Coverage plot for Vung TauBSC Figure 0-7 Best server coverage plot for Vung Tau BSC 15 | P a g e 1.42G Network dimensioning 1.4.1Traffic modelNetwork dimensioning used traffic call model defined in RFP, shown below: + Grade of Service (BSC MSC)1% + GoS Radio Part 3% + Grade of Service (GOS), Signaling Channel >+ > Threshold RSCP FDD RSCPf f set FDD_Qmin_o FddQmin Io EcFddQof f set GSM RSSI RSCPAND criteria n reselectio Cell WCDMA GSM_ _/_:Figure 0-24 Idle mode reselection from 2G to 3G In order to avoid ping-pong reselection between 2G and 3G network,we need sufficient at least 4 db hysteresis between WCDMA->GSM and GSM-> WCDMA reselection should be configured by setting the FDDQmin parameter sufficiently high when compared with the Ssearch_RAT+Qqual_Min. 29 | P a g e Figure 0-25 idle mode parameters setting 1.6.2Parameters planning for IBS site Idle mode In idle mode both C1 and C2 parameters are used. Cell reselection from macro layer towards indoor is done purely based on C1/C2 setting. Recommended indoor C1/C2 settings are based on VMS old parameter settings. Those are summarized below. -rxlev access min (RXP) = -102 dBm -MS txpwr max CCH (TXP1) = 33 dBm -MS txpwr max CCH1x00 (TXP2) = 30 dBm -cell reselection parameter index (PI) = Yes -cell reselect offset (REO) = according to VMS plan -penalty time (PET) = according to VMS plan -temporary offset (TEO) = according to VMS plan Dedicated mode CS Main idea in dedicated mode is to define indoor sites as lower layer and macro sites as upper layer. Defining them as separate layers will prevent any better cell (power budget) handovers between different layers. In dedicated mode MS will be guided from macro to indoor by using Umbrella Handover. Transition back from indoor to macro layer will be done based on imperative handovers (level and quality). Neigbouring indoor cells will be at the same layer so normal power budget handovers will work between them. ADCE from macro cells towards indoor neighbors -adjacent cell layer (ACL) = 3 (Lower), (other neighbors than indoor should have value 0) -HO level umbrella (AUCL) = -75 dBm (other neighbors than indoor should have 63) HOC from macro cells having indoor neighbors -enable umbrella handover (EUM) = 1 30 | P a g e ADCE from indoor towards-macro neighbors : adjacent cell layer (ACL) = 2 (Upper)-other indoor neighbors: adjacent cell layer (ACL) = 1 (Same) HOC setting for Indoor sites-threshold level downlink Rx level (LDR) = -92 dBm -threshold level uplink Rx level (LUR) = - 97 dBm Dedicated mode PS In order not to move ongoing GPRS/EDGE traffic easily for indoor Cell Reselection Hysteresis (HYS) parameter is recommended to be increased from x to 10 dB. Assumption is that no-one of indoor sites is located next to LAC border. -GPRS rxlev Access min (GRXP) = -102 dBm -cell reselect hysteresis (HYS) = 10 dB Further considerations After set above is successfully implemented and monitored it is possible to add in some ADCE cases from Indoor to macro layer Rapid Field Drop Handover in case handovers from indoor to macro layer are not successful or are done too late. Initial parameter set for Rapid Field Drop Handover HOC parameters -threshold level uplink for rapid field drop (RPD) = -92 dBm -count of successive rapid field drop thresholds (CNT) = 2 ADCE parameters -chained adj cell (CHAIN) = y (for selected macro layer cells only) 31 | P a g e 3G technology1.73G Network nominal plan Nominal plan done by Mobifone Central VI by taken the number, configuration of offered NodeB in contract, the required traffic and coverage for deployed area. The detail site distribution for each project districts shown in table below.

NoProvinceRNCNo Node B 1 ng NaiRDNBH1N380 2 Vng TuRVTVT1N200 3 Bnh Dng RBDTM1N 230 4 Long An130 5 Bnh Phc40 6 Ty Ninh81 Table 0-1 3G sites distribution into VMS central VI Figure 0-1 3G site distribution in VMS6 area 100% 3G sites collocated with NSN 2G site and located in grid with 30/150/270 antenna pattern. Only few site does not follow up this pattern due to terrain and UE distribution. 32 | P a g e Antenna height designed based on average height morphology and available tower of BTS site infrastructure provided by VMS2. Please refer to ANNEX 6.9 for 3G nominal RF data. Below are best RSCP plots for each project districts using nominal RF data. Figure 0-2 Best RSCP Voice 12.2 for Bien Hoa 33 | P a g e Figure 0-3 Best RSCP Voice 12.2 for Binh Duong Figure 0-4 Best RSCP Voice 12.2 for Trang Bom-Long Thanh 34 | P a g e Figure 0-5 Best RSCP Voice 12.2 for Nhon Trach 35 | P a g e Figure 0-6 Best RSCP Voice 12.2 for BaRia-Vung Tau 1.83G Network Dimensioning 1.8.1Traffic mix used for network dimensioning The network dimensioning is done base on the given traffic profile specificed by VMS6 as detail: NoProvinceRNCVLR SubAttachSubAttach PDP 1ng NaiRDNBH1N32,331124,034447,851 2Vng TuRVTVT1N27,317104,798378,397 3Bnh Dng RBDTM1N 24,249 95,521388,109 4Long An3050 5Bnh Phc652 6Ty Ninh6,677 Table 0-2 Traffic requested for dimensioning NoProvinceRNCNo Node B 1 ng NaiRDNBH1N380 2 Vng TuRVTVT1N200 3 Bnh Dng RBDTM1N 230 4 Long An130 5 Bnh Phc40 6 Ty Ninh81 Table 0-3 Number of 3G site in each province Node B configuration (1+1+1 or 2+2+2): 20% node B use 2/2/2 Configuration NoProvinceRNC BH AMR Traffic (Erl) BH PS R99 UL Traffic Volume (MB) BH PS R99 DL Traffic Volume (MB) BH HSUPA Traffic Volume (MB) BH HSDPA Traffic Volume (MB) 1 ng NaiRDNBH1N671 19097085011,380 2 Vng TuRVTVT1N503 2404104706,680 3 Bnh Dng RBDTM1N 480 1705906109,250 4 Long An91 20201801,420 5 Bnh Phc12 01020370 6 Ty Ninh143 40902701,510 Table 0-4 Traffic offer The traffic model forecast will be: -The 3G voice Trafficoccupy 15% 2G voice Traffic. -The 3G Subs increase 20%. 36 | P a g e -The 3G data Trafficincrease 300% Other input requirement as following: HSDPA Peak rate per Node B or Per Radio Cell:1+1+1 : 7.2Mbps 2+2+2 : 14.4Mbps All Interface Utilization : 75% RNC fill rate :75% Interface Card Protection at RNC Side:Yes IuR neighborhoods: RNCNeighbor RDNBH1N RVTVT1N, RBDTM1N, RBTPT1E,RSG091E, RSGHM1N, RSGBT1E, RSG071E RVTVT1N RDNBH1N, RBTPT1E, RSG071E RBDTM1N RDNBH1N, RBTPT1E, RSGHM1N, RSGCC1N, RSG091E, RSGBI1E, RSGBC1E,RSG071E,RSGBI1E, RSG081E SHO factor : 1.3 GoS for IuB: 0.05% GoS for Iu/ IuR : 0.05% Delay percentage for packet services: 10% Peak rate aggregation factor (how many BTSs, HSDPA peak rate needs to be supported at the same time) : Default NSN value 20% 37 | P a g e 1.8.23G Network dimensioning results The network dimensioning done based on traffic mix model given by VMS6in above chapter and using latest software release RU30 and hardware platform from NSN. 290 232 58Network summary Per single Iub Per single Iub41554 144 1443 6UL kbps 43502.11598 150.0072965 150.0072965DL kbps 43502.11598 150.0072965 150.0072965UL kbps 702.3702098 2.421966241 2.421966241DL kbps 2169.118913 7.479720391 7.479720391UL kbps 3473.162969 11.97642403 11.97642403DL kbps 40359.44008 139.170483 139.170483UL kbps 4175.533179 14.39839027 14.39839027DL kbps 42528.55899 146.6502034 146.6502034UL kbps 47677.64916 164.4056868 164.4056868DL kbps 86030.67497 296.6574999 296.6574999UL kbps 0 0 0DL kbps 4640 16 16UL kbps 18560 64 64DL kbps 18560 64 64UL kbps 1092316.017 3750.745527 3830.052663DL kbps 1336468.281 4574.209764 4745.717514UL kbps 0 0 0DL kbps 0 0 0UL kbps 18503.8945 59.42653275 81.32653275DL kbps 18503.8945 59.42653275 81.32653275UL kbps 1129379.911 3874.172059 3975.379196DL kbps 2816769.508 8185.191155 15824.22689Iub bandwidth Ethernet max Mbps 1378.172176 1378.172176Iub connectivity - Gb Ethernet # 4 4RBDTM1NCAC-guaranteed U-Plane BW kbps 105435.5CAC-guaranteed C-Plane BW kbps 1331.165929Total CAC-guaranteed(U-Plane+C-Plane) kbps 106766.6659Total BW including transport OH kbps 165757.0757Total capacity incl. I/F utilization and Transport OH kbps 221009.4343CAC-guaranteed U-Plane BW kbps 1865.910088CAC-guaranteed C-Plane BW kbps 1369.267625Total CAC-guaranteed BW (U-Plane+C-Plane) kbps 3235.177713Non CAC-guaranteed BW kbps 58060.8Total BW including transport OH kbps 68415.40412Total capacity incl. I/F utilization and Transport OH kbps 91220.53883Ethernet U-Plane BW kbps 2107.552318Ethernet C-Plane BW kbps 20.45Total Ethernet BW kbps 2128.002318Total capacity incl. I/F utilization kbps 2837.336425Ethernet U-Plane BW kbps 21075.52318Ethernet C-Plane BW kbps 204.5Total Ethernet BW kbps 21280.02318Total capacity incl. I/F utilization kbps 28373.36425Total U-Plane BW incl. transport OH kbps 231032.4408Total C-Plane BW incl. Transport OH kbps 3140.039017Total capacity kbps 262545.8441IuCS # 2IuPS # 2Iu & Iur # 4Total connectivity placed - Gb Ethernet # 8Iur TotalTotal Iu/IurNumber of GbEthernet lines (1+1 protection)Total capacity demandEthernet Connectivity (1+1 protection)IP/Ethernet Iu / Iur dimensioningIu CSIu PSIur SingleNetUser Traffic total mean rateEthernet Capacity DemandCapacity demandTiming over Packet trafficOM trafficU-Plane trafficSyncEC-Plane trafficSubscriber requirementsNumber of radio cells per NodeBNet User TrafficNet User TrafficCS Voice & DataPS R'99 total Traffic ThroughputHSPA I/Bw/o CACPStotal Traffic Throughput (PS R'99 and HSDPA)Result values forTotal network / Iub type indexRBDTM1N 1+1+1 2+2+2Number of NodeB/BTS Table 0-5 RBDTM1N dimensioning result 38 | P a g e 200 160 40Network summary Per single Iub Per single Iub32780 164 1643 6UL kbps 18717.3674 93.58683698 93.58683698DL kbps 18717.3674 93.58683698 93.58683698UL kbps 525.144637 2.625723185 2.625723185DL kbps 897.5079594 4.487539797 4.487539797UL kbps 1083.00059 5.415002951 5.415002951DL kbps 15392.43396 76.96216981 76.96216981UL kbps 1608.145227 8.040726136 8.040726136DL kbps 16289.94192 81.44970961 81.44970961UL kbps 20325.51262 101.6275631 101.6275631DL kbps 35007.30932 175.0365466 175.0365466UL kbps 0 0 0DL kbps 3200 16 16UL kbps 12800 64 64DL kbps 12800 64 64UL kbps 511608.6678 2542.491444 2620.250918DL kbps 650682.427 3222.598304 3376.667458UL kbps 0 0 0DL kbps 0 0 0UL kbps 10903.82035 50.13910176 72.03910176DL kbps 10903.82035 50.13910176 72.03910176UL kbps 535312.4882 2656.630546 2756.290019DL kbps 1940740.898 8175.897339 15814.93309Iub bandwidth Ethernet max Mbps 677.5862473Iub connectivity - Gb Ethernet # 2RVTVT1NCAC-guaranteed U-Plane BW kbps 61398.9CAC-guaranteed C-Plane BW kbps 1050.104384Total CAC-guaranteed(U-Plane+C-Plane) kbps 62449.00438Total BW including transport OH kbps 96715.88536Total capacity incl. I/F utilization and Transport OH kbps 128954.5138CAC-guaranteed U-Plane BW kbps 2695.199982CAC-guaranteed C-Plane BW kbps 1080.161311Total CAC-guaranteed BW (U-Plane+C-Plane) kbps 3775.361293Non CAC-guaranteed BW kbps 48893.30538Total BW including transport OH kbps 58786.75551Total capacity incl. I/F utilization and Transport OH kbps 78382.34068Ethernet U-Plane BW kbps 3628.394954Ethernet C-Plane BW kbps 22.3Total Ethernet BW kbps 3650.694954Total capacity incl. I/F utilization kbps 4867.593271Ethernet U-Plane BW kbps 10885.18486Ethernet C-Plane BW kbps 66.9Total Ethernet BW kbps 10952.08486Total capacity incl. I/F utilization kbps 14602.77981Total U-Plane BW incl. transport OH kbps 153025.5877Total C-Plane BW incl. Transport OH kbps 2477.053134Total capacity kbps 166387.8257IuCS # 2IuPS # 2Iu & Iur # 4Total connectivity placed - Gb Ethernet # 6Iur TotalTotal Iu/IurNumber of GbEthernet linesTotal capacity demandEthernet ConnectivityIP/Ethernet Iu / Iur dimensioningIu CSIu PSIur SingleNetUser Traffic total mean rateEthernet Capacity DemandCapacity demandTiming over Packet trafficOM trafficU-Plane trafficSyncEC-Plane trafficSubscriber requirementsNumber of radio cells per NodeBNet User TrafficNet User TrafficCS Voice & DataPS R'99 total Traffic ThroughputHSPA I/Bw/o CACPStotal Traffic Throughput (PS R'99 and HSDPA)Result values forTotal network / Iub type indexRVTVT1N 1+1+1 2+2+2Number of NodeB/BTS Table 0-6 RVTVT1N dimensioning result 39 | P a g e 380 304 76RSGHM1N Per single Iub Per single Iub38798 103 1033 6UL kbps 32723.88333 89.03996115 74.41756762DL kbps 32723.88333 89.03996115 74.41756762UL kbps 365.8682548 0.962811197 0.962811197DL kbps 673.6002725 1.772632296 1.772632296UL kbps 1967.560857 5.177791728 5.177791728DL kbps 26342.16783 69.32149429 69.32149429UL kbps 2333.429111 6.140602925 6.140602925DL kbps 27015.7681 71.09412658 71.09412658UL kbps 35057.31244 95.18056407 80.55817055DL kbps 59739.65143 160.1340877 145.5116942UL kbps 0 0 0DL kbps 6080 16 16UL kbps 24320 64 64DL kbps 24320 64 64UL kbps 903042.8009 2359.360849 2444.698722DL kbps 1270595.407 3304.366549 3500.894421UL kbps 18947.45112 45.48171347 67.38171347DL kbps 18947.45112 45.48171347 67.38171347UL kbps 946310.252 2468.842562 2576.080435DL kbps 3685636.777 8171.237001 15810.27275Iub bandwidth Ethernet max Mbps 1319.942858 1319.942858Iub connectivity - Gb Ethernet # 4 4RDNBH1NCAC-guaranteed U-Plane BW kbps 69049.9CAC-guaranteed C-Plane BW kbps 1242.852062Total CAC-guaranteed(U-Plane+C-Plane) kbps 70292.75206Total BW including transport OH kbps 108943.1781Total capacity incl. I/F utilization and Transport OH kbps 145257.5708CAC-guaranteed U-Plane BW kbps 1257.55002CAC-guaranteed C-Plane BW kbps 1231.352745Total CAC-guaranteed BW (U-Plane+C-Plane) kbps 2488.902765Non CAC-guaranteed BW kbps 43545.6Total BW including transport OH kbps 51310.69067Total capacity incl. I/F utilization and Transport OH kbps 68414.25423Ethernet U-Plane BW kbps 2060.406885Ethernet C-Plane BW kbps 29.28Total Ethernet BW kbps 2089.686885Total capacity incl. I/F utilization kbps 2786.24918Ethernet U-Plane BW kbps 14422.84819Ethernet C-Plane BW kbps 204.96Total Ethernet BW kbps 14627.80819Total capacity incl. I/F utilization kbps 19503.74426Total U-Plane BW incl. transport OH kbps 157376.8865Total C-Plane BW incl. Transport OH kbps 2876.982334Total capacity kbps 174676.717IuCS # 2IuPS # 2Iu & Iur # 4Total connectivity placed - Gb Ethernet # 8Iur TotalTotal Iu/IurNumber of GbEthernet lines (1+1 protection)Total capacity demandEthernet Connectivity (1+1 protection)IP/Ethernet Iu / Iur dimensioningIu CSIu PSIur SingleNetUser Traffic total mean rateEthernet Capacity DemandCapacity demandTiming over Packet trafficOM trafficU-Plane trafficC-Plane trafficTotal network / Iub type indexRDNBH1N 1+1+1 2+2+2Net User TrafficCS Voice & DataPS R'99 total Traffic ThroughputHSPA I/Bw/o CACPStotal Traffic Throughput (PS R'99 and HSDPA)Number of NodeB/BTSResult values forSubscriber requirementsNumber of radio cells per NodeBNet User Traffic Table 0-7 RDNBH1N dimensioning result 40 | P a g e 1.93G Network Radio Frequency planning 1.9.1Radio frequency plan strategy -There are three RF channels in VMS WCDMA network o First RF: 10562 / DL ~ 2112. MHz UL 1922.0 Mhz o 2nd RF:10587/DL ~2117.0 MHz UL 1927.0 Mhz o3rd RF: 10612/ DL~ 2122.0 MHz UL 1932 MHz -The 1st RF used for 111 macro wbts site, 2ndfor2nd carrier of 222 wcdma site and 3rd used for IBS site. - In term of screaming code- we would like to reserve 12 PSC for IBS sites, so all Macro nodeb use PSC between 1-500 - The 1st and 2nd carrier of 222 sites used the same PSC for each sector. - There are three way to assign screaming code. In VMS network we try assign screaming code using GROUPS mode. It means that the cells of the same sites used the same groups with different ID.

Macro 3G site PSC IBS 3G site1-500 501-512 Table 0-8 Screaming code assignment strategy 41 | P a g e 1.9.2Simulation results for Bien Hoa Figure 0-7 Simulation Pilot EcNofor bien Hoa Figure 0-8 Simulation active setfor Bien Hoa 42 | P a g e 1.9.3Simulation results for Binh Duong Figure 0-9 Simulation Pilot EcNo Binh Duong Figure 0-10 Simulation active set for Binh Duong 43 | P a g e 1.9.4Simulation results for Trang Bom and Long Thanh Figure 0-11 Simulation EcNo Trang Bom & Long Thanh Figure 0-12 Simulation Active Set for Trang Bom & Long Thanh 44 | P a g e 1.9.5Simulation results for Nhon Trach Figure 0-13 Simulation EcNo for Nhon Trach Figure 0-14 Simulation active set size for Nhon Trach 45 | P a g e 1.9.6Simulation results for Ba-Ria & Vung Tau Figure 0-15 Simulation EcNo for Ba Ria-Vung Tau Figure 0-16 Simulation Active set size for Ba Ria-Vung Tau 46 | P a g e 1.103G parameters planning1.10.1Parameters planning for3GAll parameters for 3G sites are available in datafill in attached file. 3G_Datafill_VMS6_SingleRan_Project_v3.1(15Dec2011).xls Related to HSPA setting all cells enable 64QAM, 21 Mbps and 2M HSUPA. 1.10.2Strategy for 2nd carrier site-General strategy Both F1 and F2 are capable R99 and HSDPA F1 layer is shared between R99 and HSDPA traffic, but F1 has higher priority for R99 traffic than F2. It means most of R99 traffic is onF1 F2 layer is primarily used for high usage HSDPA traffic. Most of HSDPA traffic is on F2 with few R99 is expected in this F2 due to congestion in F1. -Benefites F1 provides continuous coverage for HSDPA and R99 service, especially for AMR call F2 is preferred layer for HSDPA for maximal capacity -Parameter setting oIn Idle mode: UE prefer always camp to F1.F2->F1: F1 is more attractive[ Set AdjiQoffset2=-50 dB for ADJI in F2 cell GSM->F1: 3G of F1 is always more preferred than GSM by default setting in GSM parameters 47 | P a g e 48 | P a g e Please refer to ANNEX 6.13 for detail parameters setting for 2nd carrier site 1.10.3Strategy for 3G in-building site Mobility in Connected Mode ADJS:Define for Softer Handover (Intra-Site SHO), if there are more than one sector per site. ADJI:-Define for One-way from F2 to F3 -Define forTwo-way between F1 to F3 ADJG:Define as normal 49 | P a g e Please refer to ANNEX 6.13 for 3G IBS setting detail. 50 | P a g e Assess Radio Network Planning-VMS6 1.11Equipment Locations EquipmentLocation RNC RDNBH1NLong Bnh RVTVT1NVng Tu. RBDTM2NBnh Dng BSC BVTVT1Ni cp bin VTu BVTBR1NBu in B Ra BDNBH1NBu in KCN Long Bnh BDNLT1NBu in KCN Long Bnh BDNNT1NBu in Nhn Trch BDNTB1NBu in Trng Bom Number of TCSM 2i Cp bin Vng Tu. 4Bu in KCN Long Bnh OMS OMSDN1NLong Bnh NACDN1NLong Bnh TNMDN1NLong Bnh NMSDN1NLong Bnh Tellabs 8660 TVTBR1NBSC Ba Ria TBDTA1N (126E1)BSC Thuan An TBPDX1N (126E1)BSC Dong Xoai TDNNT1N (126E1)BSC Nhon Trach TDNTB1N (126E1)BSC Trang Bom TLABL1N (126E1)BSC Ben Luc TVTVT1N (252E1)MGW Vung Tau TBDTM1N (252E1)MSC TDM TDNBH1N (252E1)MSC Long Binh Number of ToP5000 1Thuan An 1Dong Xoai 1Ben Luc 1Ba Ria 1Nhon Trach 1Trang Bom 1Binh Duong 51 | P a g e 1Vung Tau 1Long Binh Table 0-1 list of equipment for VMS6 1.12Radio network topology VMS6 Generally, 2G/3G BTS will be connected to hub sites which are located at Ba Ria, Trang Bom, Nhon Trach, Thuan An, Dong Xoai, and Ben Luc using microwave transmission or leased line (E1orIP)andthengoingtocoresitesthroughHCMTMANEorSDHnetworks.Thereare there core sites in VMS6 in Binh Duong, Long Binh and Vung Tau where all core equipments are located except SGSN which is put in C30, VMS2. Regarding to NMS system, all network managements will be installed in Long Binh core sites and manage NSN RAN equipments through VMSs DCN network. (C) Nokia Siemens Networks GmbH & Co. KGConveyed confidentially as trade secret.All rights reserved. 1Remark Date Name IssueVMS MOBIFONE SINGLE RAN PROJECTVMS CENTER 6General TopologyDate:Name:51PageGS MS NPOBSCTellabs RNC SiteNetAct/TNMS/Tellabs NMSCore Site (Binh Duong, Vung Tau, Long Binh)RNCSGSNMGWMSS3GMAN E/ SDHLong BinhMAN EIu CS-GEGboIPTCSMFEE1 E1Hub Site (Thuan An)hiT7035STM-1GEFEE1 MW/ Leased line2G/3G2G2G/3G CoTransport3GRemote sitesMW/MANE/Leased lineLocal sitesGEGESTM-1STM-1STM-1 STM-1IPBBIu PS-GEC30MAN EFE FEE1 MW/ Leased lineTellabs Hub nodesBSCHub Site (Ba Ria)MAN EFE FEE1 MW/ Leased lineTellabs Hub nodesBSCHub Site (Trang Bom)MAN EFE FEE1 MW/ Leased lineTellabs Hub nodesBSCHub Site (Nhon Trach)Trang Bom2G/3G2G2G/3G CoTransportNhon Trach2G/3G2G2G/3G CoTransportTrang Bom2G/3G2G2G/3G CoTransportVung TauHub Site (Dong Xoai)Hub Site (Ben Luc)3GMAN EFE FEE1 MW/ Leased line3GMAN EFE FEE1 MW/ Leased lineTo Binh Duong core siteGE/STM1To Long Binh core siteGE/STM1GE/STM1To Vung Tau core siteTrang Bom Figure 0-1: General Topology 1.12.1Network connectivity for BSC towards CS/PS Core WithVMS6,3BSCSwillbeco-locatedwiththeRNCsatBinhDuong,VungTauandLong Binh provinces same location as MGW (MGBDG2H, MGVTA1H and MGDNI2H) respectively. 3 other BSCs will be located at the remote hub sites. Connection for Gb interface will be over IP, Ater and A interfaces are over TDMA. 52 | P a g e For the IuCS user plane, traffic will be terminated at MGW of each site location. Remote BSCs willhaveTDMAconnectiontotheMGWsites.BSCisconnectedtoMGWviahiT7035and TCSM (Transcoder Submultiplexer). IuCS control plane traffic of all BSCs will be terminated at MSDNI1HlocatedatLongBinhprovince.IuPStrafficwillbeterminatedatSGHCM_6Nat Long Binh site also. From BSC perspective, there are two part -From BSC towards sites: Tellabs and HiT are used to terminate E1 for TDM sites and IP for Packet Abis sites-From BSC to core:oAter links are use STM1 which are connect between BSCs SET to MGW.oL3 links connect to Cisco router for O&M (from SWU0 and 1) as well as Gb over IP link for packet abis signalling (from SWU 2 and 3) Detail end to end connectivity for each BSC is provided as following pictures 1.12.1.1BSC Long Thanh Figure 0-2 BDNL1N End to End diagram 53 | P a g e 1.12.1.2BSC Vung Tau Figure 0-3 BVTVT1N End to End diagram 1.12.1.3BSC Bien Hoa Figure 0-4 BDNBH1N End to End Diagram 54 | P a g e 1.12.1.4BSC Nhon Trach Figure 0-5 BDNNT1N End to End Diagram 1.12.1.5BSC Trang Bom Figure 0-6 BDNTB1N End to End Diagram 1.12.1.6BSC Ba Ria 55 | P a g e Figure 0-7 BVTBR1N End to End Diagram 1.12.2Network connectivity for O&M BSC towards network management NetActandstandaloneOMSislocatedatLongBinhprovince.Theconnectionfromeach BSC towards DCN network is over FE passing through IP backbone.FromswitchingunitSWU0andSWU1,thereare02L3linksconnecttositerouterstowardstoIPbackbonenetwork;whereas,VRRPmoderunsinternallyinBSCbetween OMU, SWUs to provide more redundancy. 1.12.2.1O&M BSC Bien Hoa 56 | P a g e Figure 0-8 O&M Link-BSC Bien Hoa 1.12.2.2O&M BSC Long Thanh Figure 0-9 O&M Link-BSC Long Thanh 57 | P a g e 1.12.2.3O&M BSC Nhon Trach Figure 0-10 O&M Link-BSC Nhon Trach 1.12.2.4O&M BSC Trang Bom OMUEL0EL1Internal ExternalOAM LANTrunkOAM LANTrunk10.22.22.22610.22.22.198OAM UplinkTrunkOAM UplinkTrunk(Active Path)(Backup Path)SWU 0SWU 1VRRP 10.22.22.22510.22.22.228logical IP adressNetActS15 FlexiBSCT9 TopologyCisco Router 65091/1/221/1/41/1/51/1/41/1/51/1/11/1/11/1/22Cisco Router 650910.22.22.19710.22.22.194 10.22.22.19310.22.22.227L3 Corelink-I10.22.22.192/30VLAN ID-65L3 Corelink-II10.22.22.196/30VLAN ID-66BSC BDNTB1N O&M VLAN ID-56SUBNET:10.22.22.224/28 Figure 0-11 O&M Link-BSC Trang Bom 58 | P a g e 1.12.2.5O&M BSC Ba Ria OMUEL0EL1Internal ExternalOAM LANTrunkOAM LANTrunk10.22.34.22610.22.34.198OAM UplinkTrunkOAM UplinkTrunk(Active Path)(Backup Path)SWU 0SWU 1VRRP 10.22.34.22510.22.34.228logical IP adressNetActS15 FlexiBSCT9 TopologyCisco Router 65091/1/221/1/41/1/51/1/41/1/51/1/11/1/11/1/22Cisco Router 650910.22.34.19710.22.34.194 10.22.34.19310.22.34.227L3 Corelink-I10.22.34.192/30VLAN ID-95L3 Corelink-II10.22.34.196/30VLAN ID-96BSC BVTBR1N O&M VLAN ID-86SUBNET:10.22.34.224/28 Figure 0-12 O&M Link-BSC Ba Ria 1.12.2.6O&M BSC Vung Tau OMUEL0EL1Internal ExternalOAM LANTrunkOAM LANTrunk10.22.32.22610.22.32.198OAM UplinkTrunkOAM UplinkTrunk(Active Path)(Backup Path)SWU 0SWU 1VRRP 10.22.32.22510.22.32.228logical IP adressNetActS15 FlexiBSCT9 TopologyCisco Router 65091/1/221/1/41/1/51/1/41/1/51/1/11/1/11/1/22Cisco Router 650910.22.32.19710.22.32.194 10.22.32.19310.22.32.227L3 Corelink-I10.22.32.192/30VLAN ID-80L3 Corelink-II10.22.32.196/30VLAN ID-81BSC BVTVT1N O&M VLAN ID-71SUBNET:10.22.32.224/28 Figure 0-13 O&M Link-BSC Vung Tau 1.12.3Network connectivity for BSC synchronization Primary clock source for each BSC will come from MGW. Secondary clock source will come from TP5000. Connection will be E1 TDM.The MGW will supply the clock source to TP5000. Refer to the Synchronisation section. 59 | P a g e 1.12.4Network connectivity for RNC towards CS/PS Core and other RNCs WithVMS6,eachRNC2600willbelocatedatBinhDuong,VungTauandLongBinh provincessamelocationasMGW(MGBDG2H,MGVTA1HandMGDNI2H)respectively. Connection for IuCS,IuPSandIurinterfaceswillbeIP.For theIuCSuserplane,trafficwill beterminatedatMGW ofeachsitelocation.RNCisconnectedtoMGWviatwoCiscosite routersandalsoanothertwoHuaweirouters.HoweverforIuCScontrolplanetrafficofall RNCs,itwillbeterminatedatMSDNI1HlocatedatLongBinhprovince.Toreachthissite location,trafficwillpassthroughIPbackboneafterHuaweirouter.Thisconceptwillalso apply for IuPS traffic. IuPS traffic will be terminated at SGHCM_6N at Long Binh site also. Figure 0-14: Network connectivity for RNC towards CS/PS Core and other RNCs Intheactualsystem,eachRNChave09NPGEcardsandthereare02GEportsineach NPGE cards. NPGE cards are combined in protection mode (1+1) to provide redundancy for IPlinks(exceptthelastNPGEcardswhichrunsinnon-protectionmodebecauseofnow more available NPGE).For control plane and user plane, different VLANs are set up in each GE port and in Ciscos router ports for Iur/Iu interface. Detail IPs and VLAN can be checked in following sections. 1.12.4.1Core Conectivity - Binh Duong RNC 1.12.4.1.1RBDTM1N Control Plane 60 | P a g e Figure 0-15 Control Plane Conectivity- RBDTM1N In each interface, a subnet /29 is used to provide IPs for both RNC (NPGE side) and site routers. Detail IP addressing can be found as following tables Usage Group Prio Group ID VLAN10 23 1 32 10 23 1 39 29 10 23 1 33 Reserved29 10 23 1 34 Router1 306529 10 23 1 35 Router2 306529 10 23 1 36 NPGE0/IFGE1 306529 10 23 1 37 Reserved29 10 23 1 38 ReservedNoteStart EndNPGEUnitIP address rangeNetmaskIP address Table 0-2 Iu PS CP Primary IP addresses Usage Group Prio Group ID VLAN10 23 1 40 10 23 1 47 29 10 23 1 41 Reserved29 10 23 1 42 Router1 306629 10 23 1 43 Router2 306629 10 23 1 44 NPGE2/IFGE1 306629 10 23 1 45 Reserved29 10 23 1 46 ReservedNoteStart EndNPGEUnitIP address rangeNetmaskIP address Table 0-3 Iu PS CP Secondary IP addresses 61 | P a g e Usage Group Prio Group ID VLAN10 23 1 16 10 23 1 23 29 10 23 1 17 Reserved29 10 23 1 18 Router1 306729 10 23 1 19 Router2 306729 10 23 1 20 NPGE2/IFGE1 306729 10 23 1 21 Reserved29 10 23 1 22 ReservedNoteNPGEUnitIP address rangeNetmaskIP addressStart End Table 0-4 Iu CS CP Primary IP addresses Usage Group Prio Group ID VLAN10 23 1 24 10 23 1 31 29 10 23 1 25 Reserved29 10 23 1 26 Router1 306829 10 23 1 27 Router2 306829 10 23 1 28 NPGE0/IFGE1 306829 10 23 1 29 Reserved29 10 23 1 30 ReservedNoteStart EndNPGEUnitIP address rangeNetmaskIP address Table 0-5 Iu CS CP Secondary IP addresses Usage Group Prio Group ID VLAN10 23 1 0 10 23 1 7 29 10 23 0 1 Reserved29 10 23 0 2 Router1 306929 10 23 0 3 Router2 306929 10 23 0 4 NPGE0/IFGE1 306929 10 23 0 5 Reserved29 10 23 0 6 ReservedNoteStart EndNPGEUnitIP address rangeNetmaskIP address Table 0-6 Iur CP Primary IP addresses Usage Group Prio Group ID VLAN10 23 1 8 10 23 1 15 29 10 23 1 9 Reserved29 10 23 1 10 Router1 307029 10 23 1 11 Router2 307029 10 23 1 12 NPGE2/IFGE1 307029 10 23 1 13 Reserved29 10 23 1 14 ReservedNoteNPGEUnitIP address rangeNetmaskIP addressStart End Table 0-7 Iur CP Secondary IP addresses 62 | P a g e 1.12.4.1.2RBDTM1N User Plane Figure 0-16 User Plane Connectivity RBDTM1N A subnet /29 is reserved for each interface to provide IP addresses for both NPGE side and site router which running in VRRP mode Usage Group Prio Group ID VLAN10 23 1 64 10 23 1 71 29 10 23 1 65 HSRP29 10 23 1 66 Router1 90 3 312929 10 23 1 67 Router2 120 3 312929 10 23 1 68 NPGE0/IFGE0 312929 10 23 1 69 Reserved29 10 23 1 70 ReservedNoteStart EndNPGEUnitIP address rangeNetmaskIP address Table 0-8 Iu PS UP IP addresses Usage Group Prio Group ID VLAN10 23 1 56 10 23 1 63 29 10 23 1 57 HSRP29 10 23 1 58 Router1 120 2 316129 10 23 1 59 Router2 90 2 316129 10 23 1 60 NPGE2/IFGE0 316129 10 23 1 61 Reserved29 10 23 1 62 ReservedNoteStart EndNPGEUnitIP address rangeNetmaskIP address Table 0-9 Iu CS UP IP addresses 63 | P a g e Usage Group Prio Group ID VLAN10 23 1 48 10 23 1 55 29 10 23 1 49 HSRP29 10 23 1 50 Router1 120 1 303329 10 23 1 51 Router2 90 1 303329 10 23 1 52 NPGE2/IFGE1 303329 10 23 1 53 Reserved29 10 23 1 54 ReservedNoteStart EndNPGEUnitIP address rangeNetmaskIP address Table 0-10 Iur UP IP addresses 1.12.4.2Core Conectivity Dong Nai RNC 1.12.4.2.1RDNBH1N Control Plane Figure 0-17 Control Plane Connectivity-RDNBH1N Ineachinterface,asubnet/29isusedtoprovideIPsforbothRNC(NPGEside)andsite routers. Detail IP addressing can be found as following tables 64 | P a g e Usage Group Prio Group ID VLAN10 23 1 32 10 23 1 39 29 10 23 1 3329 10 23 1 34 Router1 306529 10 23 1 35 Router2 306529 10 23 1 36 NPGE0/IFGE1 306529 10 23 1 3729 10 23 1 38Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-11 IuPS CP Primary IP addreses Usage Group Prio Group ID VLAN10 23 1 40 10 23 1 47 29 10 23 1 4129 10 23 1 42 Router1 306629 10 23 1 43 Router2 306629 10 23 1 44 NPGE2/IFGE1 306629 10 23 1 4529 10 23 1 46Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-12 IuPS CP Secondary IP addreses Usage Group Prio Group ID VLAN10 23 1 16 10 23 1 23 29 10 23 1 1729 10 23 1 18 Router1 306729 10 23 1 19 Router2 306729 10 23 1 20 NPGE2/IFGE1 306729 10 23 1 2129 10 23 1 22NPGEUnitIP address rangeNetmaskIP addressStart End Table 0-13 IuCS CP Primary IP addreses Usage Group Prio Group ID VLAN10 23 1 24 10 23 1 31 29 10 23 1 2529 10 23 1 26 Router1 306829 10 23 1 27 Router2 306829 10 23 1 28 NPGE0/IFGE1 306829 10 23 1 2929 10 23 1 30Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-14 IuCS CP Secondary IP addreses Usage Group Prio Group ID VLAN10 23 1 0 10 23 1 7 29 10 23 0 129 10 23 0 2 Router1 306929 10 23 0 3 Router2 306929 10 23 0 4 NPGE0/IFGE1 306929 10 23 0 529 10 23 0 6Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-15 IuR CP Primary IP addreses Usage Group Prio Group ID VLAN10 23 1 8 10 23 1 15 29 10 23 1 929 10 23 1 10 Router1 307029 10 23 1 11 Router2 307029 10 23 1 12 NPGE2/IFGE1 307029 10 23 1 1329 10 23 1 14NPGEUnitIP address rangeNetmaskIP addressStart End Table 0-16 IuR CP Secondary IP addreses 65 | P a g e 1.12.4.2.2RDNBH1NUser Plane Figure 0-18 User Plane Connectivity-RDNBH1N A subnet /29 is reserved for each interface to provide IP addresses for both NPGE side and site router which running in VRRP mode Usage Group Prio Group ID VLAN10 23 1 64 10 23 1 71 29 10 23 1 65 HSRP29 10 23 1 66 Router1 90 3 312929 10 23 1 67 Router2 120 3 312929 10 23 1 68 NPGE0/IFGE0 312929 10 23 1 6929 10 23 1 70Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-17 Iu PS UP IP addresses Usage Group Prio Group ID VLAN10 23 1 56 10 23 1 63 29 10 23 1 57 HSRP29 10 23 1 58 Router1 120 2 316129 10 23 1 59 Router2 90 2 316129 10 23 1 60 NPGE2/IFGE0 316129 10 23 1 6129 10 23 1 62Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-18 Iu CS UP IP addresses 66 | P a g e Usage Group Prio Group ID VLAN10 23 1 48 10 23 1 55 29 10 23 1 49 HSRP29 10 23 1 50 Router1 120 1 303329 10 23 1 51 Router2 90 1 303329 10 23 1 52 NPGE2/IFGE1 303329 10 23 1 5329 10 23 1 54Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-19 Iur UP IP addresses 1.12.4.3Core Conectivity Vung Tau RNC 1.12.4.3.1RVTVT1N Control Plane Figure 0-19 Controp Plane Connectivity- RVTVT1N Ineachinterface,asubnet/29isusedtoprovideIPsforbothRNC(NPGEside)andsite routers. Detail IP addressing can be found as following tables 67 | P a g e Usage Group Prio Group ID VLAN10 23 33 32 10 23 33 39 29 10 23 33 3329 10 23 33 34 Router1 307129 10 23 33 35 Router2 307129 10 23 33 36 NPGE0/IFGE1 307129 10 23 33 3729 10 23 33 38Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-20 IuPS CP Primary IP addresses Usage Group Prio Group ID VLAN10 23 33 40 10 23 33 47 29 10 23 33 4129 10 23 33 42 Router1 307229 10 23 33 43 Router2 307229 10 23 33 44 NPGE2/IFGE1 307229 10 23 33 4529 10 23 33 46Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-21 IuPS CP Secondary IP addresses Usage Group Prio Group ID VLAN10 23 33 16 10 23 33 23 29 10 23 33 1729 10 23 33 18 Router1 307329 10 23 33 19 Router2 307329 10 23 33 20 NPGE2/IFGE1 307329 10 23 33 2129 10 23 33 22NPGEUnitIP address rangeNetmaskIP addressStart End Table 0-22 IuCS CP Primary IP addreses Usage Group Prio Group ID VLAN10 23 33 24 10 23 33 31 29 10 23 33 2529 10 23 33 26 Router1 307429 10 23 33 27 Router2 307429 10 23 33 28 NPGE0/IFGE1 307429 10 23 33 2929 10 23 33 30Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-23 IuCS CP Secondary IP addreses Usage Group Prio Group ID VLAN10 23 33 0 10 23 33 7 29 10 23 33 129 10 23 33 2 Router1 307529 10 23 33 3 Router2 307529 10 23 33 4 NPGE0/IFGE1 307529 10 23 33 529 10 23 33 6Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-24 IuR CP Primary IP addreses Usage Group Prio Group ID VLAN10 23 33 8 10 23 33 15 29 10 23 33 929 10 23 33 10 Router1 307629 10 23 33 11 Router2 307629 10 23 33 12 NPGE2/IFGE1 307629 10 23 33 1329 10 23 33 14NPGEUnitIP address rangeNetmaskIP addressStart End Table 0-25 IuR CP Secondary IP addreses 68 | P a g e 1.12.4.3.2RVTVT1NUser Plane Figure 0-20 User Plane Connectivity-RVTVT1N A subnet /29 is reserved for each interface to provide IP addresses for both NPGE side and site router which running in VRRP mode Usage Group Prio Group ID VLAN10 23 33 64 10 23 33 71 29 10 23 33 65 HSRP29 10 23 33 66 Router1 90 3 313229 10 23 33 67 Router2 120 3 313229 10 23 33 68 NPGE0/IFGE0 313229 10 23 33 6929 10 23 33 70Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-26 IuPS UP IP addesses Usage Group Prio Group ID VLAN10 23 33 56 10 23 33 63 29 10 23 33 57 HSRP29 10 23 33 58 Router1 120 2 316429 10 23 33 59 Router2 90 2 316429 10 23 33 60 NPGE2/IFGE0 316429 10 23 33 6129 10 23 33 62Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-27 IuCS UP IP addesses 69 | P a g e Usage Group Prio Group ID VLAN10 23 33 48 10 23 33 55 29 10 23 33 49 HSRP29 10 23 33 50 Router1 120 1 303629 10 23 33 51 Router2 90 1 303629 10 23 33 52 NPGE2/IFGE1 303629 10 23 33 5329 10 23 33 54Start EndNPGEUnitIP address rangeNetmaskIP address Table 0-28 IuR UP IP addesses 1.12.5Network connectivity for O&M RNC towards network management NetActandstandaloneOMSislocatedatLongBinhprovince.Theconnectionfromeach RNC towards DCN network is over FE passing through IP backbone. Figure 0-21: Network connectivity for O&M RNC towards network management In RNC, ESA-24 card is used to connect to router and then to OMC center via OMS server, please refer to 1.12.4 for more detail about IP addressing of ESA24 Stand alone OMS connects to RAN network via 02 Cisco routers 6509 runs in VRRP mode as per below diagram 70 | P a g e Figure 0-22 OMS Connectivity 1.12.6Network connectivity for RNC synchronization PrimaryclocksourceforeachRNCwillcomefromMGWwhichislocatedatthesame location. Secondary clock source will come from TP5000 which also located at the same site. Connection will be E1 TDM.The MGW will supply the clock source to TP5000 RBDTM2NRVTVT1NRDNBH1NTellabsTellabsTellabsBinh DuongVung TauLong Binhn x GEn x GEn x GEMGDNI2HMGBDG2HMGVTA1HTP50001stvia 2 MHz E12nd via 2 MHz E1TP50001stvia 2 MHz E12nd via 2 MHz E1TP50001stvia 2 MHz E12nd via 2 MHz E12 MHz -E1 (P)2 MHz E1 (P)2 MHz -E1 (P)GPS (S)GPS (S)GPS (S) Figure 0-23: Network connection for RNC synchronization 71 | P a g e 1.12.7Network connectivity for transport node 1.12.7.1Network topology How NodeB and BTS is connected to Tellabs Hub site and Tellabs RNC/BSC site are displayed in below picture.ForeBTS2G,thereare2typesofconnection:oneisTDM-nxE1,theotherisGE/FEinterfacefor Packet Abis.For Node B, there are 2 types of connectivity: one is ATM nxE1, the other is purely IP packets.Inthetransmissionnetwork,wehavetransportnodesMUX,hiT7065,Tellabs8660Edge Switch. MUX is to aggregate TDM nxE1 traffic to STM1 Multiservice channelized. hiT7065 is placed in central sites, collocate with a BSC and RNC. hiT7065 will aggregate nxSTM1 Multiservice traffic from MUXs in hub sitesto mxSTM1 Multiservices to connect to BSC . hi T7065 also map 3G ATM traffic from MUXs to nxSTM1 IMA to RNC. Tellabs 8660 has versatile functions. It maps 2G TDM traffic from STM1 Multiservice, STM1 POS, E1 interface to nxSTM1 multiservice to connect to BSC. It also serve for2GPacketAbiswhichhasGE/FEinterfacefrom BTSs.For3Gtraffic,Tellabscansupportboth ATM and IP traffic. The downlink interface can be GE to connect to MAN-E for IP leased line traffic or connect to other Tellabs at the hub site for ATM pseudo wire and IP traffic. Figure 0-24 : Transport node network diagram In this projectwithVMS6,3 Tellabs RNC/BSC siteswillbe connected todifferentnumber of Tellabs Hubsite.DetailcanbefoundinFigure3,4and5whichshowswhichTellabsHubsiteconnectto which Tellabs RNC/BSC site. 72 | P a g e Figure 0-25 : Transport node network diagram for Binh Duong RNC 73 | P a g e Figure 0-26 : Transport node network diagram for Vung Tau RNC/BSC 74 | P a g e Figure 0-27 : Transport node network diagram for Long Binh RNC/BSC Based on all Transport node network diagram above, we can summary as Trunk Interface Trunk interface between Tellabs hub site and Tellabs RNC/BSC site will be -GE interfaces connecting via MAN-E for traffic from NodeB -STM-1 interface connecting via SDH network for traffic from BTS Access InterfaceAccess interface facing Node B will be either pure E1 or FE while access interface facing BTS will be only E1. For the co-transport site, access interface will be FE. Traffic from NodeB and BTS will be carried by Microwave or Leased line depends on where NodeB or BTS are located. Leased line will be also used for co-transport site. Access interface facing RNC and BSC will be GE for IP traffic and STM-1 for ATM traffic. 75 | P a g e 1.12.7.2DCN and NMS Tellabs NMS 8000 will be located at Long Binh site. Tellabs 8660 at RNC site will be managed by either outband anagement from the NMS while Tellabs at hub sites are managed through inband management. The O&M traffic of Tellabs goes together with traffic of 2G, 3G BTSs. Note that Tellabs at hub sites collocate with BSCs so management traffic of BSCs also transmitted through Tellabs network to NetAct. For hiT, TNMS also locates at Long Binh site. All hiT management is outband, which is transmitted through a dedicated DCN network.1.12.7.3TransportHardware Layout 1.12.7.3.1Tellabs Hardware Layout Tellabs hardware layout can be classified into 2 types: one for Tellabs at hub sites and the other for Tellabs at RNC site. The standard configuration as follow: Figure 0-28: Tellabs layout in RNC site Figure 0-29: Tellabs layout in hub site Depending on the number of BTSs at each site, the real hardware Tellabs layout can be different. VMS6 decided to move Tellabs line cards from a site to another site to meet the actual traffic requirement. For detail, please refer to Statistic v1.4 excel file.1.12.7.3.2HiT Hardware Layout HiT 7605 hardware includes one card 16xSTM1 Multiservice in slot 9; 3 cards 4xSTM1 ATM IMA in slot 4, 5, 6 as follow: 76 | P a g e Figure 0-30: HiT hardware layout 1.12.7.4TransportDataFill 1.12.7.4.1Tellabs DataFill -Concepts ATM QoS Principles AnATMnetworkprovidesvaryingQoSrequirementsdependingontheselectedATM servicecategory.Anoperatorisresponsibleformatchingtheend-userneedstotheselectedATM servicecategoryofthecircuitwhenthecircuitisprovisioned.Onahighlevel,theservicecategory itself defines the priorities between the circuits sharing the same egress ATM interface. CBR has the highest and UBR the lowest priority in the case of congestion. CBR constant bit rate The CBR service category is dedicated to the end-user services which require constant guaranteed bandwidth and small cell delay variation (jitter). The service rather drops the cells than processes them as delayed. The CBR service reserves bandwidth constantly up to the Peak Cell Rate (PCR) value. rt-VBR variable constant bit rate The rt-VBR service category is dedicated to the end-user services which have a nature of bursty traffic andrequireguaranteedbandwidthandsmallcelldelayvariation.Theserviceratherdropsthecells thanprocessesthemasdelayedinthecaseofcongestion.Thert-VBRservicereservesbandwidth constantly up to the Sustainable Cell Rate (SCR) value and can send additional bursts with the PCR speed until the Maximum Burst Size (MBS) is achieved. nrt-VBR variable constant bit rate The nrt-VBR service category is dedicated to the end-user services which have a nature of very bursty trafficandrequireguaranteedbandwidthbutwhichcantolerateveryhighcelldelayvariation.The serviceratherdelaysthecellsthandropstheminthecaseofcongestion.Thenrt-VBRservice 77 | P a g e reservesbandwidthconstantlyuptotheSCRvalueandcansendadditionalburstswiththePCR speed until the MBS is achieved. UBR+ unspecified minimum bit rate The UBR+ service category is dedicated to the end-user services which have a nature of very bursty traffic and require a minimum guaranteed bandwidth but which can tolerate large cell delay variation. The service rather delays the cells than drops them in the case of congestion. The UBR+ service has always Minimum Cell Rate (MCR) bandwidth available and can send bursts without any upper limit. UBR unspecified bit rate TheUBRservicecategoryisdedicatedtotheend-userserviceswhichhaveanatureofverybursty trafficanddonotrequireanyguaranteedbandwidthandcantoleratelargecelldelayvariation. Typically the UBR service requires a low cell loss rate. The service rather delays the cells than drops them in the case of congestion. The UBR service has no reserved bandwidth available and can send bursts without any upper limit. Cell Delay Variation in the Tellabs 8600 System The CDVT parameter of the ATM connection indicates the maximum allowed variation in the ATM cell stream. If the ATM switch detects a cell with higher variation, it can either declare the cell as non-confirming and drop (or tag) the cell orit can take corrective action and shape the cell stream with a buffering to confirm the CDVT gain. This of course produces additional delay. The dropping (or tagging) ofthenon-confirmedcellsisreferredtoaspolicinganditisbasedonanassumptionthatthenon-confirmingcellshavelosttheirimportancefortheclientusingtheATMserviceand,thus,canbe dropped. IntheTellabs8600systemtheCDVTcanbesetfortheATMVPandVCconnection. IngressCDVTissetfortheATMconnectionatingressATMinterfaceandEgressCDVTissetat egressATMinterface.ThesystemdoesnotsupportnativeATMpolicingandthereforethe ingressCDVTparameterisjustadministrative.IntheTellabs8600systemtheeffectofegressCDVT parameterdependsontheshapingactivationoftheVPandVCconnection.Whentheshaperis disabled, the egressCDVT parameter is just administrative. When the shaper is activated, it forces the cellstreamoftheATMconnectionstobehaveaccordingtoitstrafficparameters (PCR/SCR/MCR/MBSandCDVT).TheoperationoftheshaperintheTellabs8600systemcanbe modelled using a calendar wheel which calculates the opportunity slot to send a cell for the particular ATMconnectionifsuchacellisavailableinthebuffer.Thecalendarwheelisprogrammedusinga PCR value of the connection so that the wheel provides a tick every 1/PCR. In practice, the ATM cells alwayshavesomejitterduetothestatisticalnatureofATMswitchingandthesimplifiedscheduler implementations.Asaresult,thecalendarwheelusingonlythePCRvalueisverystrictanddelays withoutexceptionthecelltothenextopportunityslotifthereisanydelayvariation.Byaddingthe CDVTparametertothecalculationoftheopportunityslot,thesystemallowsthereadingofthecell from the buffer immediately after it has arrived even if it had arrived in advance or delayed compared tothenominalmoment.Ifanattemptismadefortheconnectiontobeshapedaccordingtothe averagePCRbutthedetaileddelayvariationperformanceisnotimportant,theeffectoftheCDVT parameterscanbedisabledbychoosingabigenoughCDVTvalue.Asaruleofthumb,CDVT>1/ PCR provides reasonably liberal shaping from a CDVT point of view. IMA Functionality The Tellabs 8600 system supports the generic IMA version 1.0 and 1.1 functionality specified by ATM Forum [af-phy-0086.000] [af-phy-0086.001]. The activity of the group is controlled by the minimum number of link parameters. It defines how many links must be active to have the whole group operable. If the number of active links is lower than the parameter, the group is neither operable nor capable of forwarding traffic. If the number of active links is higher than the parameter, some links may go down and the group is still operable. In this case the group may become overbooked and the traffic is handled like in any other congestion situation in 78 | P a g e theATMegressinterface.Thus,theIMAfunctioncanbeusedtoprovideredundancyiflinksare routed over diverse routes over the SDH/SONET/PDH transmission network. The capacity of an IMA group is defined by the number of the configured links and IMA frame length: BW= N* TRLCR * (M-1)/M * (2048/2049) Where N= number of configured IMA links TRLCR= bandwidth of one IMA link (4528/3623 cells/s) M= IMA frame length (32/64/128/256). The IMA group capacity for different IMA link configurations with different IMA frame length options are shown in the tables below. Dedicated tables forE1/P12s and DS1 type of IMAgroupsare shownas follow.TheeffectivepayloadbandwidthvariesbasedonATMoverhead,packetsizebecausethe packetsmustbedividedintoanintegernumberofATMcellsleavingthelastcellpaddedwithfiller bytes. : Table 0-29: IMA size -Datafill Tellabs datafill can be classified into 2 types: datafill forTellabs at hub siteanddatafill forTellabs at RNC site. Each datafill includes two parts: one for 2G, the other for 3G. An example of Tellabs datafill at hub site for 2G traffic as follow: 79 | P a g e Table 0-30: Tellabs datafill at hub site for 2G traffic MostofTellabsathubsitesisconnecteddirectlytoBSCthroughST1Multiservice.Theaccess/ downlink can be E1 or STM1 interface. Tellabs maps TDM traffic in timeslot to pseudo wires. Each E1 is mapped to unquie pseudo wire name and ID. At each pseudo wire, QoS is set to ensure sensitive trafficisprioritizedinthenetwork,ie2GvoicetrafficismappedtoExpendireForwarding(EF). Underlyingpseudowiresettingisphysicalchannelmappingfromdownlink/accesstouplink/trunk interface.For 3G ATM traffic, Tellabs in hub sites will aggregate traffic from E1 or STM1 of downside hubs and then route them to uplink GE interface to Tellabs in RNC site. Hereunder is example of 3G ATM traffic in Tellabs Trang Bom. The upstream GE is to Tellabs Bien Hoa at Long Binh site. Table 0-31: Tellabs datafill at hub site for 3G ATM traffic 80 | P a g e Table 0-32: Tellabs datafill at RNC site for 3G ATM traffic ATM traffic from E1 downstream is group to IMA groups. If we have 4xE1 in one group, the size of IMA willbe17960cellpersecond(cps).IMAgroupisassignedtoapseudo-wireandsignaltoTellabs upstream by using LDP protocol.For 3G IP purely traffic, each node B is assigned IP addresses for transportation and O&M. Node B is connected to Tellabs in RNC site through layer 2 VPN of MAN-E network. RNC is connected directly to Tellabs through GE interface. Hereunder is example of Tellabs datafills at RNC site for 3G IP traffic. Table 0-33: Tellabs datafill for 3G IP traffic 81 | P a g e HiT DataFill HiT datafill divides to 2 parts: one is for 2G traffic, the other is for 3G. For2Gtraffic,hiTservesforTDMtrafficonly.Sothedatafillisthemappingfortimeslots(KLMs)in STM1fromhubstoKLMsofSTM1toBSC.Thedatafillincludes3part:theleftisinformationof2G BTS such as site ID, hubs, BSC it connects, number of E1. The middle part is timeslots location of the site in the access STM1, ie line card slot, port, KLM number. The right part is channel information of the site in the uplink STM1 to BSC, including BSC SET number for BSC reference. Table 0-34: hiT datafill for 2G traffic For 3G traffic, hiT serves for ATM traffic. So the datafill is the mapping channels in STM1 Multiservice fromhubstoSTM1IMAtoRNC.ThemappingincludesKLMmappingandATMrouting.Inthe network, we use VPI routing where each nodes B is assigned to 2 VPIs to differentiate traffic: VPI = 1 forvoice/datatrafficandVPI=0forO&Mtraffic.TodistinguishnodesBinthesamephysicalSTM1 IMA,differentVPIs are used. Forexample inthe table below, fortheSTM1 IMAat slot4/1,VPIs for voice/data is numbered from 51 to 60; VPIs for O&M ranges from 151 to 160. To differentiate STM1s IMA, ATM id is used. Because we bundle some E1s into a virtual interface in STM1 IMA, IMA group id is used. Table 0-35: hiT datafill for 3G traffic 82 | P a g e 1.12.8Network Synchronization Solution Allnodesinthenetworkneedtobesynchronizedtogether.TheyincludeBSC,RNC,hiT, Tellabs, node B, 2G BTS. At the RNC sites, nodes get clock from 2 sources. The primary source is MGW at the same site.ThesecondarysourceisTP5000through2MHzinterface(E175ohm).ForTP5000, the sync input is from MGW as the primary source and GPS as the secondary.At hub sites, Tellab and BSC nodes get clock from TP5000 at the same site. TP500 has the sync input of GPS through SMA connector. FornodeBsand2GBTSwithfullIPtransportation,synchronizationisdonethroughIEEE 1588protocol.TP5000atRNCandBSCsiteswithprovideclockthroughGEinterfaceto Tellab nodes. There are 9 TP5000 nodes in the VMS6 for the phase 1.For node Bs and 2G BTS with only TDM connection, clock is got from SDH network. Figure 0-31: Binh Duong Core Site Synchronization 83 | P a g e Figure 0-32: Vung Tau Core Site Synchronization Figure 0-33: Long Binh Core Site Synchronization 84 | P a g e 1.13IP planning for VMS6 1.13.1IP Addressing for 2G BSCs Detail IP for 2G part is mentioned as below table Subnet (/21)Subnet(/24)Subnet (/26)Subnet (/27)Subnet (/28) Subnet (/29) Subnet(/30)InterfaceVLANBSC 10.22.16.0/21 BSC 10.22.16.0/24 10.22.16.0 /26 PEP 15 BDNBH1N 10.22.16.64 /26 GB over IP14 10.22.16.128 /26 ETP SIG-I19 10.22.16.192/26 10.22.16.192 /27 10.22.16.192/28 10.22.16.192/29 10.22.16.192/30 L3 O&M20 10.22.16.196/30 L3 O&M21 10.22.16.200/29 10.22.16.200/30 L3 gb over ip22 10.22.16.204/30 L3 gb over ip23 10.22.16.208/28 Trx Sig13 10.22.16.224/27 10.22.16.224 /28 O & m11 10.22.16.240 /28 Omu Sig12 10.22.17.0/24 10.22.17.0/26 10.22.17.0/27 10.22.17.0/28ETPE LAN16

10.22.17.16/28 Reserved for BSC

10.22.17.32/27

Reserved for BSC

10.22.17.64/26 Reserved for BSC

10.22.17.128/26 Reserved for BSC

10.22.17.192/26 10.22.17.192/27

BTS - M plane 24 10.22.17.224/27

BTS - CUS Plane 25

BSCBDNLT1N 10.22.18.0/24 10.22.18.0 /26 PEP 30

10.22.18.64 /26 GB over IP29

10.22.18.128 /26 ETP SIG-I34 85 | P a g e

10.22.18.192/26 10.22.18.192 /27 10.22.18.192/28 10.22.18.192/29 10.22.18.192/30 L3 O&M35

10.22.18.196/30 L3 O&M36

10.22.18.200/29 10.22.18.200/30 L3 gb over ip37

10.22.18.204/30 L3 gb over ip38

10.22.18.208/28 Trx Sig28

10.22.18.224/27 10.22.18.224 /28 O & m26

10.22.18.240 /28 Omu Sig27 10.22.19.0/24 10.22.19.0/26 10.22.19.0/27 10.22.19.0/28ETPE LAN31

10.22.19.16/28 Reserved for BSC

10.22.19.32/27

Reserved for BSC

10.22.19.64/26 Reserved for BSC

10.22.19.128/26 Reserved for BSC

10.22.19.192/26 10.22.19.192/27

BTS - M plane 39 10.22.19.224/27

BTS - CUS Plane 40

BSCBDNNT1N 10.22.20.0/24 10.22.20.0 /26 PEP 45

10.22.20.64 /26 GB over IP44

10.22.20.128 /26 ETP SIG-I49

10.22.20.192/26 10.22.20.192 /27 10.22.20.192/28 10.22.20.192/29 10.22.20.192/30 L3 O&M50

10.22.20.196/30 L3 O&M51

10.22.20.200/29 10.22.20.200/30 L3 gb over ip52

10.22.20.204/30 L3 gb over ip53

10.22.20.208/28 Trx Sig43

10.22.20.224/27 10.22.20.224 /28 O & m41

10.22.20.240 /28 Omu Sig42 86 | P a g e 10.22.21.0/24 10.22.21.0/26 10.22.21.0/27 10.22.21.0/28ETPE LAN46

10.22.21.16/28 Reserved for BSC

10.22.21.32/27

Reserved for BSC

10.22.21.64/26 Reserved for BSC

10.22.21.128/26 Reserved for BSC

10.22.21.192/26 10.22.21.192/27

BTS - M plane 54 10.22.21.224/27

BTS - CUS Plane 55

BSCBDNTB1N 10.22.22.0/2410.22.22.0/26PEP 60

10.22.22.64/26 GB over IP59

10.22.22.128/26 ETP SIG-I64

10.22.22.192/26 10.22.22.192/27 10.22.22.192/28 10.22.22.192/29 10.22.22.192/30 L3 O&M65

10.22.22.196/30 L3 O&M66

10.22.22.200/29 10.22.22.200/30 L3 gb over ip67

10.22.22.204/30 L3 gb over ip68

10.22.22.208/28 Trx Sig58

10.22.22.224/27 10.22.22.224/28 O & m56

10.22.22.240/28 Omu Sig57 10.22.23.0/24 10.22.23.0/26 10.22.23.0/27 10.22.23.0/28ETPE LAN61

10.22.23.16/28 Reserved for BSC

10.22.23.32/27

Reserved for BSC

10.22.23.64/26 Reserved for BSC

10.22.23.128/26 Reserved for BSC

10.22.23.192/26 10.22.23.192/27

BTS - M plane 69 10.22.23.224/27

BTS - CUS Plane 70

87 | P a g e 10.22.32.0/21 BSCBVTVT1N 10.22.32.0/24 10.22.32.0 /26 PEP 75

10.22.32.64 /26 GB over IP74

10.22.32.128 /26 ETP SIG-I79

10.22.32.192/26 10.22.32.192 /27 10.22.32.192/28 10.22.32.192/29 10.22.32.192/30 L3 O&M80

10.22.32.196/30 L3 O&M81

10.22.32.200/29 10.22.32.200/30 L3 gb over ip82

10.22.32.204/30 L3 gb over ip83

10.22.32.208/28 Trx Sig73

10.22.32.224/27 10.22.32.224 /28 O & m71

10.22.32.240 /28 Omu Sig72 10.22.33.0/24 10.22.33.0/26 10.22.33.0/27 10.22.33.0/28 10.22.33.0/29 ETPE LAN76 10.22.33.8/29

Tellabs-Router

10.22.33.16/28 Test PA over SAT

10.22.33.32/27

Reserved for BSC

10.22.33.64/26 Reserved for BSC

10.22.33.128/26 Reserved for BSC

10.22.33.192/26 10.22.33.192/27

BTS - M plane 2000 10.22.33.224/27

BTS - CUS Plane 3000

BSCBVTBR1N 10.22.34.0/24 10.22.34.0 /26 PEP 90

10.22.34.64 /26 GB over IP89

10.22.34.128 /26 ETP SIG-I94

10.22.34.192/26 10.22.34.192 /27 10.22.34.192/28 10.22.34.192/29 10.22.34.192/30 L3 O&M95

10.22.34.196/L3 O&M96 88 | P a g e 30

10.22.34.200/29 10.22.34.200/30 L3 gb over ip97

10.22.34.204/30 L3 gb over ip98

10.22.34.208/28 Trx Sig88

10.22.34.224/27 10.22.34.224 /28 O & m86

10.22.34.240 /28 Omu Sig87 10.22.35.0/24 10.22.35.0/26 10.22.35.0/27 10.22.35.0/28ETPE LAN91

10.22.35.16/28 Reserved for BSC

10.22.35.32/27

Reserved for BSC

10.22.35.64/26 Reserved for BSC

10.22.35.128/26 Reserved for BSC

10.22.35.192/26 10.22.35.192/27

BTS - M plane 99 10.22.35.224/27

BTS - CUS Plane 100 Table 0-36 2G IP addressing 1.13.2IP Addressing for 2G BTSs (Packet Abis) In Packet Abis sites, 2VLAN are provided, one for BTS CP/UP/Synch and another for NodeB O&M Transport. In each VLAN, /27 subnet is used and first 3 IP are used in router and then BTS can use rest IPsBTS IDSite VLAN IDSubnetMask (/27)VIP (Gateway)Router1Router2 Transport Ethernet IP145 DNNT03199810.22.21.224255.255.255.22410.22.21.22510.22.21.22610.22.21.22710.22.21.228 377 VUXM11199910.22.35.224255.255.255.22410.22.35.22510.22.35.22610.22.35.22710.22.35.228 420 10VU093199910.22.35.224255.255.255.22410.22.35.22510.22.35.22610.22.35.22710.22.35.229 435 10VU038199710.22.33.224255.255.255.22410.22.33.22510.22.33.22610.22.33.22710.22.33.228 455 10VU070199910.22.35.224255.255.255.22410.22.35.22510.22.35.22610.22.35.22710.22.35.230 456 10VU075199710.22.33.224255.255.255.22410.22.33.22510.22.33.22610.22.33.22710.22.33.230 499 10DN047199810.22.21.224255.255.255.22410.22.21.22510.22.21.22610.22.21.22710.22.21.229 500 10DN199199810.22.21.224255.255.255.22410.22.21.22510.22.21.22610.22.21.22710.22.21.230 524 KCN066199710.22.33.224255.255.255.22410.22.33.22510.22.33.22610.22.33.22710.22.33.231 526 KCN071199910.22.35.224255.255.255.22410.22.35.22510.22.35.22610.22.35.22710.22.35.231 537 KCN125199910.22.35.224255.255.255.22410.22.35.22510.22.35.22610.22.35.22710.22.35.232 538 KCN129199910.22.35.224255.255.255.22410.22.35.22510.22.35.22610.22.35.22710.22.35.233 539 KCN130199910.22.35.224255.255.255.22410.22.35.22510.22.35.22610.22.35.22710.22.35.234 566 10DN045199810.22.21.224255.255.255.22410.22.21.22510.22.21.22610.22.21.22710.22.21.231 Table 0-37 2G BTS CP/UP/Synch addressing 89 | P a g e BTS IDSite VLAN IDSubnet (/27)MaskVIP (Gateway)Router1Router2 Transport Ethernet IP145 DNNT03299810.22.21.192255.255.255.22410.22.21.19310.22.21.19410.22.21.19510.22.21.196 377 VUXM11299910.22.35.19210.22.35.22510.22.35.19310.22.35.19410.22.35.19510.22.35.196 420 10VU093299910.22.35.19210.22.35.22510.22.35.19310.22.35.19410.22.35.19510.22.35.197 435 10VU038299710.22.33.192255.255.255.22410.22.33.19310.22.33.19410.22.33.19510.22.33.196 455 10VU070299910.22.35.19210.22.35.22510.22.35.19310.22.35.19410.22.35.19510.22.35.198 456 10VU075299710.22.33.192255.255.255.22410.22.33.19310.22.33.19410.22.33.19510.22.33.198 499 10DN047299810.22.21.192255.255.255.22410.22.21.19310.22.21.19410.22.21.19510.22.21.197 500 10DN199299810.22.21.192255.255.255.22410.22.21.19310.22.21.19410.22.21.19510.22.21.198 524 KCN066299710.22.33.192255.255.255.22410.22.33.19310.22.33.19410.22.33.19510.22.33.199 526 KCN071299910.22.35.19210.22.35.22510.22.35.19310.22.35.19410.22.35.19510.22.35.199 537 KCN125299910.22.35.19210.22.35.22510.22.35.19310.22.35.19410.22.35.19510.22.35.200 538 KCN129299910.22.35.19210.22.35.22510.22.35.19310.22.35.19410.22.35.19510.22.35.201 539 KCN130299910.22.35.19210.22.35.22510.22.35.19310.22.35.19410.22.35.19510.22.35.202 566 10DN045299810.22.21.192255.255.255.22410.22.21.19310.22.21.19410.22.21.19510.22.21.199 Table 0-38 2G BTS O&M addressing 1.13.3IP Addressing for 3G RNCs Detail IP for 3G part is provided as following Subnet (/21) Subnet(/24) Subnet (/26)Subnet (/27)Subnet (/28)Subnet (/29)InterfaceVLANRNC 10.23.0.0/21 10.23.0.0/24 RNCNA RDNBH1N 10.23.0.0/26 IuR CP internal Primary (ICSU)NA 10.23.0.64/26IuR CP internal Secondary (ICSU) NA 10.23.0.128/26 10.23.0.128/28 IuCS CP internal Primary (ICSU) NA 10.23.0.144/28IuCS CP internal Secondary (ICSU)NA 10.23.0.160/28 IuPS CP internal Primary (ICSU)NA 10.23.0.176/28IuPS CP internal Secondary (ICSU) NA 10.23.0.192/26 IuB CP Internal Subnet (ICSU) NA 10.23.1.0/24 10.23.1.0/2810.23.1.0/29 IuR CP Primary external (NPGE)

10.23.1.8/29 IuR CP Secondary external (NPGE)

10.23.1.16/28 10.23.1.16/29 IuCS CP Primary external (NPGE)

10.23.1.24/29 IuCS CP Secondary external (NPGE)

10.23.1.32/28 10.23.1.32/29 IuPS CP Primary external (NPGE)

10.23.1.40/29 IuPS CP Secondary external (NPGE)

10.23.1.48/28 10.23.1.48/2IuR UP 90 | P a g e 9

10.23.1.56/29IuCS UP

10.23.1.64/28 10.23.1.64/29IuPS UP 1

10.23.1.72/29IuPS UP 2

10.23.1.80/28Reservation for IuCS UP, IuR UP, IuPS UP

10.23.1.96/28 10.23.1.96/29IuB1 UP

10.23.1.104/29IuB2 UP

10.23.1.112/28 10.23.1.112/29IuB3 UP

10.23.1.120/29IuB reservation

10.23.1.128/26 RNC O&M subnet

10.23.1.192/26 Reservation

10.23.2.0/24 10.23.2.0/27Node B CP/UP1001 10.23.2.32/27 Node B CP/UP1002 10.23.2.64/27 Node B CP/UP1003 10.23.2.96/27 Node B CP/UP1004 10.23.2.128/27 Node B CP/UP1005 10.23.2.160/27 Node B CP/UP1006 10.23.2.192/27 Node B CP/UP1007 10.23.2.224/27 Node B CP/UP1008

10.23.3.0/24

10.23.3.0/27Node B O&M2001 10.23.3.32/27 Node B O&M2002 10.23.3.64/27 Node B O&M2003 10.23.3.96/27 Node B O&M2004 10.23.3.128/27 Node B O&M2005 10.23.3.160/27 Node B O&M2006 10.23.3.192/27 Node B O&M2007 10.23.3.224/27 Node B O&M2008

10.23.4.0/Node B Local O&M 91 | P a g e 24 10.23.5.0/24 Node B Local O&M10.23.6.0/24 Node B Local O&M10.23.7.0/24 Node B Local O&M

10.23.8.0/24 10.23.8.0/27Node B CP/UP1009 10.23.8.32/27 Node B CP/UP1010 10.23.8.64/27 Node B CP/UP1011 10.23.8.96/27 Node B CP/UP1012 10.23.8.128/27 Node B CP/UP1013 10.23.8.160/27 Node B CP/UP1014 10.23.8.192/27 Node B CP/UP1015 10.23.8.224/27 Node B CP/UP1016

10.23.9.0/24 10.23.9.0/27Node B CP/UP1017 10.23.9.32/27 Node B CP/UP1018 10.23.9.64/27 Node B CP/UP1019 10.23.9.96/27 Node B CP/UP1020 10.23.9.128/27 Node B CP/UP1021 10.23.9.160/27 Node B CP/UP1022 10.23.9.192/27 Node B CP/UP1023 10.23.9.224/27 Node B CP/UP1024

10.23.10.0/24

10.23.10.0/27 Node B CP/UP1025 10.23.10.32/27 Node B CP/UP1026 10.23.10.64/27 Node B CP/UP1027 10.23.10.96/27 Node B CP/UP1028 10.23.10.128/27 Node B CP/UP1029 10.23.10.160/27 Node B CP/UP1030 10.23.10.192/27 Node B CP/UP1031 92 | P a g e 10.23.10.224/27 Node B CP/UP1032

10.23.11.0/24

10.23.11.0/27 Node B O&M2009 10.23.11.32/27 Node B O&M2010 10.23.11.64/27 Node B O&M2011 10.23.11.96/27 Node B O&M2012 10.23.11.128/27 Node B O&M2013 10.23.11.160/27 Node B O&M2014 10.23.11.192/27 Node B O&M2015 10.23.11.224/27 Node B O&M2016

10.23.12.0/24

10.23.12.0/27 Node B O&M2017 10.23.12.32/27 Node B O&M2018 10.23.12.64/27 Node B O&M2019 10.23.12.96/27 Node B O&M2020 10.23.12.128/27 Node B O&M2021 10.23.12.160/27 Node B O&M2022 10.23.12.192/27 Node B O&M2023 10.23.12.224/27 Node B O&M2024

10.23.13.0/24

10.23.13.0/27 Node B O&M2025 10.23.13.32/27 Node B O&M2026 10.23.13.64/27 Node B O&M2027 10.23.13.96/27 Node B O&M2028 10.23.13.128/27 Node B O&M2029 10.23.13.160/27 Node B O&M2030 10.23.13.192/27 Node B O&M2031 10.23.13.224/27 Node B O&M2032

10.23.14.0/24 Node B Local O&M 93 | P a g e

10.23.15.0/24 Node B Local O&M

10.23.16.0/24 Node B Local O&M

10.23.17.0/24 Node B Local O&M

10.23.18.0/24 Node B Local O&M

10.23.19.0/24 Node B Local O&M

10.23.20.0/24 Node B Local O&M

10.23.21.0/24 Node B Local O&M

10.23.22.0/24 Node B Local O&M

10.23.23.0/24 Node B Local O&M

10.23.24.0/24 Node B Local O&M

10.23.32.0/21 10.23.32.0/24 RNCNA RVTVT1N 10.23.32.0/26 IuR CP internal Primary (ICSU) NA 10.23.32.64/26IuR CP internal Secondary (ICSU) NA 10.23.32.128/26 10.23.32.128/28 IuCS CP internal Primary (ICSU) NA 10.23.32.144/28IuCS CP internal Secondary (ICSU)NA 10.23.32.160/28 IuPS CP internal Primary (ICSU)NA 10.23.32.176/28IuPS CP internal Secondary (ICSU) NA 10.23.32.192/26 IuB CP Internal Subnet (ICSU) NA 10.23.33.0/24 10.23.33.0/28 10.23.33.0/29 IuR CP Primary external (NPGE)

10.23.33.8/29 IuR CP Secondary external (NPGE)

10.23.33.16/28 10.23.33.16/29 IuCS CP Primary external (NPGE)

10.23.33.24/29 IuCS CP Secondary external (NPGE)

10.23.33.32/28 10.23.33.32/29 IuPS CP Primary external (NPGE)

10.23.33.40/29 IuPS CP Secondary external (NPGE)

10.23.33.48/28 10.23.33.48/29IuR UP

10.23.33.56/29IuCS UP

10.23.33.64/28 10.23.33.64/29IuPS UP 1

10.23.33.72/29IuPS UP 2

94 | P a g e 10.23.33.80/28Reservation for IuCS UP, IuR UP, IuPS UP

10.23.33.96/28 10.23.33.96/29IuB1 UP

10.23.33.104/29IuB2 UP

10.23.33.112/28 10.23.33.112/29IuB3 UP

10.23.33.120/29IuB reservation

10.23.33.128/26 RNC O&M subnet

10.23.33.192/26 Reservation

10.23.34.0/24

10.23.34.0/27 Node B CP/UP1110 10.23.34.32/27 Node B CP/UP1111 10.23.34.64/27 Node B CP/UP1112 10.23.34.96/27 Node B CP/UP1113 10.23.34.128/27 Node B CP/UP1114 10.23.34.160/27 Node B CP/UP1115 10.23.34.192/27 Node B CP/UP1116 10.23.34.224/27 Node B CP/UP1117

10.23.35.0/24

10.23.35.0/27 Node B O&M2110 10.23.35.32/27 Node B O&M2111 10.23.35.64/27 Node B O&M2112 10.23.35.96/27 Node B O&M2113 10.23.35.128/27 Node B O&M2114 10.23.35.160/27 Node B O&M2115 10.23.35.192/27 Node B O&M2116 10.23.35.224/27 Node B O&M2117

10.23.36.0/24 Node B Local O&M10.23.37.0/24 Node B Local O&M10.23.38.0/24 Node B Local O&M10.23.39.0/24 Node B Local O&M 95 | P a g e

10.23.40.0/24

10.23.40.0/27 Node B CP/UP1118

10.23.40.32/27 Node B CP/UP1119

10.23.40.64/27 Node B CP/UP1120

10.23.40.96/27 Node B CP/UP1121

10.23.40.128/27 Node B CP/UP1122

10.23.40.160/27 Node B CP/UP1123

10.23.40.192/27 Node B CP/UP1124

10.23.40.224/27 Node B CP/UP1125

10.23.41.0/24

10.23.41.0/27 Node B O&M2118

10.23.41.32/27 Node B O&M2119

10.23.41.64/27 Node B O&M2120

10.23.41.96/27 Node B O&M2121

10.23.41.128/27 Node B O&M2122

10.23.41.160/27 Node B O&M2123

10.23.41.192/27 Node B O&M2124

10.23.41.224/27 Node B O&M2125

10.23.42.0/24

10.23.42.0/27 Node B CP/UP1126

10.23.42.32/27 Node B CP/UP1127

10.23.42.64/27 Node B CP/UP1128

10.23.42.96/27 Node B CP/UP1129

10.23.42.128/27 Node B CP/UP1130

10.23.42.160/27 Node B CP/UP1131

10.23.42.192/27 Node B CP/UP1132

10.23.42.224/27 Node B CP/UP1133

10.23.43.0/24

10.23.43.0/27 Node B O&M2126

10.23.43.32/Node B O&M2127 96 | P a g e 27

10.23.43.64/27 Node B O&M2128

10.23.43.96/27 Node B O&M2129

10.23.43.128/27 Node B O&M2130

10.23.43.160/27 Node B O&M2131

10.23.43.192/27 Node B O&M2132

10.23.43.224/27 Node B O&M2133

10.23.44.0/24 Node B Local O&M

10.23.45.0/24 Node B Local O&M

10.23.46.0/24 Node B Local O&M

10.23.47.0/24 Node B Local O&M

10.23.48.0/24 Node B Local O&M

10.23.49.0/24 Node B Local O&M

10.23.56.0/21 10.23.56.0/24 RNCNA RBDTM1N 10.23.56.0/26 IuR CP internal Primary (ICSU) NA 10.23.56.64/26IuR CP internal Secondary (ICSU) NA 10.23.56.128/26 10.23.56.128/28 IuCS CP internal Primary (ICSU) NA 10.23.56.144/28IuCS CP internal Secondary (ICSU)NA 10.23.56.160/28 IuPS CP internal Primary (ICSU)NA 10.23.56.176/28IuPS CP internal Secondary (ICSU) NA 10.23.56.192/26 IuB CP Internal Subnet (ICSU) NA 10.23.57.0/24 10.23.57.0/28 10.23.57.0/29 IuR CP Primary external (NPGE)

10.23.57.8/29 IuR CP Secondary external (NPGE)

10.23.57.16/28 10.23.57.16/29 IuCS CP Primary external (NPGE)

10.23.57.24/29 IuCS CP Secondary external (NPGE)

10.23.57.32/28 10.23.57.32/29 IuPS CP Primary external (NPGE)

10.23.57.40/29 IuPS CP Secondary external (NPGE)

97 | P a g e 10.23.57.48/28 10.23.57.48/29IuR UP

10.23.57.56/29IuCS UP

10.23.57.64/28 10.23.57.64/29IuPS UP 1

10.23.57.72/29IuPS UP 2

10.23.57.80/28Reservation for IuCS UP, IuR UP, IuPS UP

10.23.57.96/28 10.23.57.96/29IuB1 UP

10.23.57.104/29IuB2 UP

10.23.57.112/28 10.23.57.112/29IuB3 UP

10.23.57.120/29IuB reservation

10.23.57.128/26 RNC O&M subnet

10.23.57.192/26 Reservation

10.23.58.0/24

10.23.58.0/27 Node B CP/UP1035 10.23.58.32/27 Node B CP/UP1036 10.23.58.64/27 Node B CP/UP1037 10.23.58.96/27 Node B CP/UP1038 10.23.58.128/27 Node B CP/UP1039 10.23.58.160/27 Node B CP/UP1040 10.23.58.192/27 Node B CP/UP1041 10.23.58.224/27 Node B CP/UP1042

10.23.59.0/24

10.23.59.0/27 Node B O&M2035 10.23.59.32/27 Node B O&M2036 10.23.59.64/27 Node B O&M2037 10.23.59.96/27 Node B O&M2038 10.23.59.128/27 Node B O&M2039 10.23.59.160/27 Node B O&M2040 10.23.59.192/27 Node B O&M2041 10.23.59.224/27 Node B O&M2042

98 | P a g e 10.23.60.0/24 Node B Local O&M10.23.61.0/24 Node B Local O&M10.23.62.0/24 Node B Local O&M10.23.63.0/24 Node B Local O&M

10.23.64.0/24

10.23.64.0/27 Node B CP/UP1043

10.23.64.32/27 Node B CP/UP1044

10.23.64.64/27 Node B CP/UP1045

10.23.64.96/27 Node B CP/UP1046

10.23.64.128/27 Node B CP/UP1047

10.23.64.160/27 Node B CP/UP1048

10.23.64.192/27 Node B CP/UP1049

10.23.64.224/27 Node B CP/UP1050

10.23.65.0/24

10.23.65.0/27 Node B CP/UP1051

10.23.65.32/27 Node B CP/UP1052

10.23.65.64/27 Node B CP/UP1053

10.23.65.96/27 Node B CP/UP1054

10.23.65.128/27 Node B CP/UP1055

10.23.65.160/27 Node B CP/UP1056

10.23.65.192/27 Node B CP/UP1057

10.23.65.224/27 Node B CP/UP1058

10.23.66.0/24

10.23.66.0/27 Node B O&M2043

10.23.66.32/27 Node B O&M2044

10.23.66.64/27 Node B O&M2045

10.23.66.96/27 Node B O&M2046

10.23.66.128/27 Node B O&M2047

10.23.66.160/27 Node B O&M2048 99 | P a g e

10.23.66.192/27 Node B O&M2049

10.23.66.224/27 Node B O&M2050

10.23.67.0/24 Node B Local O&M

10.23.68.0/24 Node B Local O&M

10.23.67.0/24

10.23.67.0/27 Node B O&M2051

10.23.67.32/27 Node B O&M2052

10.23.67.64/27 Node B O&M2053

10.23.67.96/27 Node B O&M2054

10.23.67.128/27 Node B O&M2055

10.23.67.160/27 Node B O&M2056

10.23.67.192/27 Node B O&M2057

10.23.67.224/27 Node B O&M2058 10.23.80.0/21 10.23.80.0/24 Reserved for RNC10.23.81.0/24 Reserved for RNC10.23.82.0/24

10.23.82.0/27 Node B CP/UP1059 10.23.82.32/27 Node B CP/UP1060 10.23.82.64/27 Node B CP/UP1061 10.23.82.96/27 Node B CP/UP1062 10.23.82.128/27 Node B CP/UP1063 10.23.82.160/27 Node B CP/UP1064 10.23.82.192/27 No