£r advanced flame arrestor materials ^ … tr-72-12 & £r advanced flame arrestor materials ^...

161
AFAPL TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION § Quentin C. Malmberg Edwin W. Wiggins MCDONNELL AIRCRAFT COMPANY TECHNICAL REPORT AFAPL-TR-72-12 March 1972 Approved for Public Release; Distribution Unlimited R«prodiK»d by NATIONAL TECHNICAL INFORMATION SERVICE SpnnglKld Va 2JI5I Air Force Aero Propulsion Laboratory Air Force Systems Command Wright-Patterson Air Force Base, Ohio [Coo

Upload: trantruc

Post on 29-Apr-2018

223 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

AFAPL TR-72-12

&

£r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION

§ Quentin C. Malmberg

Edwin W. Wiggins

MCDONNELL AIRCRAFT COMPANY

TECHNICAL REPORT AFAPL-TR-72-12

March 1972

Approved for Public Release; Distribution Unlimited

R«prodiK»d by

NATIONAL TECHNICAL INFORMATION SERVICE

SpnnglKld Va 2JI5I

Air Force Aero Propulsion Laboratory Air Force Systems Command

Wright-Patterson Air Force Base, Ohio

[Coo

Page 2: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLYo

Page 3: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government would thereby encour- age no responsibility nor any obligation whatsoever; and the fact that +he Government may havo formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by any implication otherwise as in any manner licensing the holder for any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented Inventlo.-.s that may in any way be related thereto.

Cop lea of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

m f,'»fwn«(... a,

i-

Page 4: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

saifled S«-c»nty Classifit »nnn

DOCUMENT CONTROL DATA R&D iSerunty clmtaificmtion ol titl«, body uf nbstrmct find indetiinf unriuimtion mw-l bf mntmrvd whT» Ihr uvermll report t» clmaallitd)

1 ONiCtNATlNC ACTiviTv (Corpor»t9 muthor)

McDonnell Douglas Corporation P. 0. Box 516 St. Louis, Missouri 63166

tm. REPORT iECuRtTV CLASSIFICATION

Unclassified 2b. CBOOP

J R«:PO"T riTLE

Advanced Flame Arrestor Materials and rochnltiues for Fuel Tank Protection

« DESCHPTivC NOTES (Typ» ol rmport and Imtutiv. dmtrm,

Final Technical Report - 28 December 1970 - 26 November 1971 9 AUTHONiii (Ftrtt nmnt», middt» iniumt. imat n*m»}

Quentln C. Malmberg Edvin W. Wiggins

ft NEPOR T DATE 7«. TOTAL NO OF PAGES

iue Tfc. NO OF RE FS

•«. CONTRACT OR GRANT NO

b. PROJECT NO 30^8

r Task 30U807

d. Work Unit 30U807038

9«. ORIGINATOR'» REPORT NUMhtR(»»

9b OTHER RE PUNT NOiti (Any other number» thmt mmy b» amal^imd thl» npotl)

AFAPL-TO-72-I2 10. DISTRIBUTION ST A TCMCXT

Approved for Public Release, Distribution Unlimited

11 SUPPLEMENT ART NOTES I* SPONSORING MILITARY ACTIVITY

Air Force Aero Propulsion Laboratory Wright Patterson Air Force Base, Ohio ^33

13 ABSTRACT

Tbe purpose of Phase I was to develop and test concepts for minimizing the weight and volume displacement penalties of polyuretbane foam explosion arrestor suppression systems. Both structural and integral isolation concepts for arrestor voiding techniques were investigated. For fuselage tanks the integral concept of large hollow cylinders offered th^ greater percentage void (5öt) for unpressurized tanks while *he voided foam lined wall configuration was the better approach for pressurized fuselage tanks. The small six-celled wing tank egg crate pattern provided for 95 and 87* void at 0 aid 2 psig initial system pressure respectively while for the large wing tank kt$ void at 0, 2 and 5 psig initial system pressure was possible.

Phase II was the materials investigation portion of the program and evaluated flame arrestor effectiveness, fuel flow resistance and thermophyslcal properties of representative candidate materials and configuration. The most efficient of the sixteen material candidates from an arrestor effectiveness standpoint was 3M polyester Scotch Brite felt. The material thermophyslcal properties of thermal conductivity, specific heat, density and surface area have only a small effect on material explosion suppression performance.

Collation of data from Phase I and II was accomplished In Phase ill of the program.Qnpirical relationships for the test data were developed through coii5)uterize( regression analysis and the relative Importence of the applicahl* variables was determined.

DD ,^.,1473 ,PAGE " I NOV

S/N 0101.807-630 1

Unclassified Securit, ClassificMtion

Page 5: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Uncla«sifled Security t'Ussihcation

K F v «OMD«

Flame Arrestor Cor.figurations Void Percent Polyurethane Foam Fuel Tank Protection Explosion Arrestor System

DD;r..1473 '**«'

NO L C I * T

1

Unclassified Scruritv CI«»»ific«lion

^^^^^^^^^^^■^^a^Ma j

Page 6: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

ADVANCED BLA)^ ARBZSTOP MATSRIALr. ATO

TlffT-TW Ri FUEL TAt.TC PHOTSCTIOÜ

iuentln C. I'Almberg Edwin H. Ulgfilns

Details of Illu?frnti11■? ?n " this dorumcnl niay bl : • tter

s, studied on niicrc'.ciie

Approved for public release; distribution unlimited

. --

Page 7: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

I

FOREWORD

Thle report waa prepared by ). &• Mairaberg and E. W. Wiggins, Survivabllity/Vulnerabillty Design Section, McDonnell Aircraft Company, McDonnell Douglas Corporation, St. Louis, Missouri. The work reported herein was carried out under Contract No. F33615-71-C-1191, Project No. 30^8, "Advanced Flame Arrestor Materials and Techniques for Fuel Tank Protection," and was administered by the Fire Protec- tion Branch, Air Force Aero Propulsion Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio with A. J, Ferrenberg as Project Engineer. The period covered by this report is December P8, 1970 to ".'ovember 26, 1971.

This report was submitted by the authors December 27, 1971.

This technical report has been reviewed and is approved.

itf^&jZ- B. P. Botteri, Chief Fire Protection Branch, Fuels Lubrication and Hazards Division, Air Force Aero Propulsion Laboratory, Weight-Patterson Air Force Base, Ohio

11

Page 8: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

ABSTRA:T

Tlie "Flame Arrestor Miterials and Techniques for Fuel Tank Protection" work program was subdivided into three phaces. rhases I and II involved tho testing of reticulated polyurethanc foam configurations and installation tech- niques and other candidate materials for flame arrestor effectivencsn. Phase III consisted of the reduction and analysis of all the recorded iatu.

The purpose of Phase I was to develop and test concepts for minimizing the weight and volurce displacement penalties of polyurethane foam explosion suppression systems. Both structural and integral isolation concepts for arrestor voiding techniques were investigated. These two appro«jhes adjust weight and volume displacement penalties with respect to allowable fuel tank structural limits and system over-pressures. 'The structural isolation con- cept utilized natu—'l aircraft structural compartnentization whereas the integral isolation concept used closed compartments within the foam itself in the form of hollow bodies. For unpressurized fuselage tanks the integral concept of large hollow cylinders offered the greater percentage void (58.5"') while the voided foam lined wall configuration was the better approach for pressurized fuselage tunks. The mont effective foam configurations for small and large simulated wing tank systems were the egg crate and lined wall concepts. The small six-celled wing tank egg crate pattern provided 92 and 87*5 void at 0 and 2 psig initial system pressure respectively, while for the large three cell wing tank U?' void at 0, 2 and 5 psig initial system pressure was possible. Limited tests on the lined wall configuration showed 80 und l»7]t voiding to be possible for the small six cell and largo three cell wing tank systems respectively.

Irstallation and fabrication techni-iues were addressed throughout thlc portion of the program and the hollow body and egg crate designs proved to be the best approach to simple Installation and fabrication.

Phase II w .6 the materials investigation portion of the program and evaluated flame arrestor 'ffectiveness, fuel flow resistance and thermophysical properties of representative candidate materials and configurations. The most efficient of the sixteen material candidates evaluated from an arrestor effec- tiveness standpoint was 3M Scotch Britc. Following this came the Scott Paper Co. fire extinguishing foam and the 2) pore per inch (ppl) low density reti- culated polyurethane foam materials. Fluid flow tests reversed the sequence of these materials from a pressure drop performance standpoint, '.vetting agents and coatings improved arrestor effectiveness to only a smell degree but showt-u hhnt with the ^rorer material configuration they could contribute significantly to reduce flame penetration. The material thermophyr-ical pro- perties of thermal conductivity, specific heat, density and surface area exhibited only a small effect on material explosion suppression performance.

Collation of data from Phases I and II was accomplished in Phase III of the program. Empirical relationships for the test data were developed throu^ computerized regression analysis and the relative Importance of the applicable variables was determined.

Hi

Page 9: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

TABLE OF GONT'HTG

SECTION

I

II

PAGE

INTRODUCTION AMD nUMMAHY 1

PHAJE 1 TEST PROGRAM 5

1.0 TEST GET ITT 5

1.1 Teiit specimen 5

1.2 Instnmontatlon 5

1.3 Explosive Mixture 5

1.1+ Ignition Gyoteir. 10

2.0 TEGT CONFIGURATIOA' 10

2.1 General 10

2.2 Fuselace Tank Ccnfigurations 10

2.2.1 Lined Wall Conficur:ition 10

2.2.2 Voided Lined .-.'all Configuration .... 10

2.2.j Lari:o Dlaiwter 'lollow CyLiad*rt (Flat inda) 15

2.2.1+ Gnall Dlaineter Hollow Cylinderc. .... 15

2.j '''ine Tunk Configuratioris 15

3.0 TEGT PMCBOWS 15

k.O PSGULTG tSD DZSCU88X01I OF RSSÜLTS 25

k.1 Fusela^e Tank Re suite 27

'+.1.1 Lined Vail ;onf I cjuratior. 2?

k.1.2 •.'oiled Lined ..-alls 2?

^.1.3 Large Jianeter Hollow Cylinlcr.. .... 28

I*.I.1- .;mall Diomoter Hollow Cylinlcr^ .... 26

U.1.5 Fuselafie Tank SuOMOy 29

U.2 3ix Cell Ving Tank Refills ?9

Preceding page blank V

Page 10: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

TAbLi: OF coi.TrriTC (co:'r':))

ACTION

III

rv

l'.?.l 31X Cell L: : I

h.2.? six Cell 3g| 'r. ; rieuratlo

U.S.j Six C«ll Larno !(ollow Cyllnden

U.C.-1. L; x Cell SMll Hollow Cylindere

'••2,5 Si A. Cell Configuration SuOBBry

'•.:, Thruu "ell Wing Tanks Resulte ....

U.j.l ntreo Cell Lined .-.'all ....

»...2 Ihroo :oli agg Creta ConfJ '•jrat

''.i.j Throe Call onflguretlon Sunmar,

coMCLurio::;" Atn RSCOK-EW^ATIONS

6.0 RSCOfl'-JTOATlO!© . . ,

PHA5Z XI I2OT r^rTA:: . ,

1.0 K3T CiT-UP

l.i Coabuotlon Cct-Up . .

1.2 Instruacntatlon . . ,

1.3 Sxploalv Mixturu . .

I.- Ifinltion ryotea . . .

1.5 p'tttl Flu« Pr-.-.-.'.r: Drop "Jt-Cr

1. ;.l "UJI Flow Tcut Instrunentntlon

1.6 ntemophysi sal Pr^iorjtlea Test Set-U

1.6.1 Theraal Coniuntlrlty ....

1.6.8 Sp elf la »«at

1.6.3 alffsrontlal Theymü taalyzcr

1.6. • ;;u•f^^l,■■ Area

LL-. 2;

29

29

30

30

30

30

30

a 33

33

33

79

79

79

79

79

79

79

60

80

00

bo

60

80

vi

Page 11: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

SECTion

VI

TABLK OF CONTCMTT. (CODT'',))

PAGi'

2.0 MATERIAL TEST CONFIGURATION; 80

2.1 rioneral 80

2.2 Material Conficurations 80

j.O ÜBST PROCSnüRE 81

3.1 Combustion Touts 81

3.2 Fuel Mow Tsttl 61

3.3 Thermophy., KV'J. Properties Tests 82

ii.o RoCXTr. AM,, niGcussio:; OF RESULTS 83

U.l CatJbustiOtl Tests 83

l>.2 Flow fest Pesidts 8^

'-.} Ihennphyalcftl Proptrti«« Tests 85

COMCLTffiKWS AHD RECOMKENDATIOUS 87

5.0 coacLuaicaB 87

-J.O RECa-BESD/WlOIIS 87

PRASE III 137

1.0 ANALYSIS OF PPOCPAl'. RESULTS 137

1.1 General 137

1.2 Jxploslon Suppression ^ysto-n "'.odel Ij7

1.2.1 Pnase I Dat. and Model Ar.alysic, .... 1J9

1.2.2 Phase I Computer RtgreUlon Analysis . . 1^0

1.2.3 Phase II Data Analysi:-. : M

1.3 Explosion Suppression 3ysterr.s//!rcr,ift Paranetcr Cons idontions 1^2

1.3.1 Fuel Tank ConfiGurntlons 1^2

1.1.1.1 Fuselage Tank lU2

1.5.1.2 'Jiag Tanks 1*3

vil

Page 12: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

T/TL: QV :o:iT.:::zr. (corrr1:')

üj;cTiori

1.3.1.3 Advanced Material!

l.j. . .VM-T. Jyctor. Punaltiea

i.j.r:.! Croai Voided Ponra Fange r-nalti ■;

I.J.P.? Grots Voided FV»ar. Cros- 7aico»Cff . . ght Panaltles

l.>.?.3 AdditlMial Val^Jt rar.ilticü . .

l.j.3 Syoten Sffact«

1.3.3.1 PUsl "low

L.3.3.2 ?Mol Level Sff»CtO

1.3. ■ Installation Ctawiieratlona

l.-.-.l ::■.•*■ Aircraft Cyatcaa

I.;.-,? Ratroflt ."yct^:...

■'rrjr. i;:.; : - |?csulta if the Äroraatoßraphlc Analysis cf Propona TaiBplee . . .

PAGE

1^3

1-j

1*3

Ik}

Ikk

Ikk

1UU

1UU

145

U5

U5

vlll

Page 13: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

FIGURES

Fltjure 1

Figure 2

Fl.-rur-' :

Figure ■

Fl.'urc 5

Plgura o

Fifauro 7

Fieur-; 3

Figur« 9

Figure 10

Figure 11

Figure 1?

Fijure 13

Figure I1'

Figure 15

Figore 16

Fifure 17

Figure 13

Figure 19

Figure 20

Fl.;ure ?1

Figure 22

Figure ^3

Li:'T OF .--i.:'

_j

Fuselago Fuel Jell Tut .ft Up ^

SSanlatad Six C«ll Win« Tank 7

■ . • '• :: . 8

Test Iressure Trace 9

i ir ■ fml T tnk Foari Conflguratlona 11

iiicd „'all Conflffuratlon 12

Voii »all ;:eg:nentü I1*

15 Inch Oianeter Cylinder In^tallnt u r. • SlBulr.t« :'..•■ Lage Twk 16

7.5 Inch Dlonetcr Cylinder l.-utall-ition in Cinulated F'.selr., ; TanX 17

Typical 7.5 Inch "iar.etcr Cylinder k I ::orr.ispher;o:'.l Elude 10

Three Cell 41ng Ta::x Fcan Ccmflguretlona 19

Six Cell Wing TaaK Foon Configuration 20

.".cherr.atic of ■ ,jg Craft rrengement 22

Foxr. Sgg Crate 23

Tnrcc Cell Wing Tank ^gg Crate Configuration .... 2k

Fuselage Tank Test Set Up 26

01 Poem Wall Veld Configuration kk

10" Foam '.-.'all "oil Configuration ^5

l\i' Foar. tfall Voi-i Configuration k6

25.1 Foan ./all .'oid Configuration V7

15 Inch Diameter Cylinder Configuration kB

7.5 Inch niameter Cylinder Flat 2r.i Configuration . ^9

7.5 Inch Plameter Cylinders (Roil End) Configuration 50

ix

Page 14: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

LIST OF FIGURES (COTT'lp

FIGUR5G rAJE

Ficure 2!» Pressure Ratio vr,. Relief to Combuütion V'llame Ratio - Lined Wall 51

Ficurc 25 Prescure Ratio vr,. Relief to Coir.bustion Vclume Ratio - 10 percent Voided Lined Wall .... 52

Figure 2D Pressure Ratio vr,. Relief to Combustion Volume Ratio - 15 percent Voided Lined Hull .... 53

Figure 27 Pressure Ratio vs. Relief to Combustion Volume Ratio - 25 Percent Voided Linel •-.'all .... ^

Figure 28 Pressure Ratio vs. Relief to Combustion Volume Ratio - 15 Inch Diameter Voided Cylinder . . 55

Figure 29 ProsRure Ratio vs. Relief to Combustion Volume Ratio - 7»5 Inch diameter Voided Cylinder Flat ?MM 56

Figure 30 PTMSur« Ratio vs. Relief to Combustion Voianc Ratio - 7.5 incn DlMWter Voided Cyllnd'.-i.' Honi "ndi 57

FlL;ure 31 Frejsur-- Ratio tf. Relief to Combustion Volume Ratio - 10 percent Voided Lined Wall (15 ppl Foam) 50

Figure 32 Fuüelagc Tank Results 59

Figure 33 Six Cell ..'ing Tank ügg Crate Toütc 6k

Figure 3U ZU Cell Wlnr Tank Cyllnd-r Tests 65

Figure 35 Six Cell WlOfl TaiJt Cylinder Teste 66

Figure 36 Pressure Ratio vs. Relief to Combustion VolUM Matio - Egg Crate Gix Cell ■;ing Tank 6?

Figure 37 Pressure Ratio vs. Relief to Combustion Volarie Ratio - 15 Inch Diameter Cylinder Clx Cell Wing Tank 68

Figure 38 Pressure Ratio vs. Relief to Combustion Volume Ratio - 7.5 Inch Diameter Cylinders Six Cell Wing Tank 69

Figure 39 Six Cell Wing Tanks Results 70

Page 15: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

' LIST OF FIGURES (COMT'D)

FIGURZS PAGE

Figure Uo Three Cell Wing Tank Tests (Lined Walls) 73

Figure Ul Three Cell Wing Tank Egg Crate Tests 74

Figure ^2 Pressure Ratio vs. Relief to Combustion Volume Ratio - Lined Wall Three Cell Wing Tank 75

Figure U3 Pressure Ratio vs. Relief to Combustion Volume Ratio - Egg Crate Three Cell Wing Tank 76

Figure 1*U Three Cell Wing Tank Results 77

Figuro U5 DTA Trace - 25 PPI Foam 88

Figure HO DTA Trace - Fire Extinguishing Foam 89

Figure 1*7 DTA Trace - 3M Scotch Brite 90

Figure U8 DTA Trace - 25 PPI Foam Coated with Polysuiride . . 91

F!pure l»9 DTA Trace - 25 PPI Foam Coated with Glas. Hesin . . 92

Figure 50 DTA Trace - 25 PPI Foam Coated with Redar Viton . . 93

Figure 51 3TA Traco - 25 PPI Foam Coated with Kel-F 91*

Figure 52 WA Trace - Polyester Screen 95

Fit'ura 53 DTA Trace - I.'omex Honeycomb 96

Figure 51* Flow vs. Pressure Drop of 25 PPI Polyurethane Foam Uncoated and Coated with Polysulfide Ill

Figure 55 Flow vs. Pressure Drop - 25 PPI Polyurethane Foam Plated with Copper and Aluminum Tube Core 112

Figure 56 Flow vs. Pressure Drop - Fire Extinguishing Foam and Polyester Pelt 113

Figure 57 Flow vs. Pressure Drop - Aluminum Honeycomb .... ll1*

Figure 58 Flow vs. Pressure Drop - Aluminum Honeycomb .... 115

Figure 59 Flow vs. Pressure Drop - flomex Honeycomb 116

Figure 60 Thermal Conductivity of Flame Arrestor Materials . . 118

Figure 6l Specific Heat of Flame Arrestor Materials 119

jci

^JH

Page 16: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

LIST OF ngtgEg (CONT'D)

FIGURES

Figure 62

Figure 63

Figure 64

Figure 65

Figure 66

Plgora 67

Figure 68

Figure 69

PACE

Precs'iro Ratio va. Relief to Conibustion Volume Ratio Ploxlglasr. Tube Tests 133

Pressure Ratio vr.. Relief to Conbuation Volume Ratio Plexiglass Tube Tost.; l^h

Pressure Ratio vs. Relief to '"ombust 1 on Voltune Ratio Plexiglas;-, Tube Test: . , 135

Pressure Ratio vs. Relief to Combustion Volume Plexifdass Tube Tests 136

Single Coll todel ]37

Multi Cell rodol 137

Multi Cell Nod«! 138

Foan V'eight an3 Volume Penalties - ^ of Fuel vs. Fuselage System Voiding l'+7

xll

mi

Page 17: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

LIGT OF TA3LZG

L.::-

r-bic i

raala tl

Tahlo in

T.'.bl,; iv

Tabln V

:-.t ■. VI

:VnU VTI

Tttbla ■.'III

Table K

Tatto ::

■:-.ibi- :<i

?oblf XII

" :ble .'ITT'

?■ bi • ■•:T:

r-.bic ::v

'nbl xvi

roUc CTII

raU.« A'.'ITT

i1ablf :<ix

ri.bi- AX

.abl'- XXI

Vo'dtd '/oiiia Lined Wall Ccmri(;uratio!i

'.CB Crate Conflivirntlon Dlnonsiono

Fuselage Fuel Tank Jystem Tost i'ata ./all Configuration

Puaelogi FU.JI Tank iystem Tt>st 'lata Foan '-yall Conf If.urat lori

ruMXage Fui;l T ink Syatwn T^st "at-i ■;-.' cyltwtera (i; :nch i)ir..) . . .

PuMlaoo Fttal Tank Systm fcit Data 3ai CyllMoru (7.5 fodi :na.) . . .

"\iEclat;,; Fuel Tan/. Syatm T^Jt .iat:i Seottidierlcal Bnd Cylinders (7.5 In

Purclage Pual Tan!; Systan Test )ata Vbldad 'oar. ..' 11 CcT-.flf^iratlnn (15

-1.. . -1

r-x Coll

Six C«ll

Thr

;!. rank Teot üat« .

lr.»5 Tan;: Test Data .

Ing rar.'rv Tjst )ata .

Ins ^-•rr- *e*t 5ata .

^•11 •:.■ - Toni? Lina ! ..all

coll rina Tank T-st ^te

I'jbXeriaX -onf'.gjratlona ....

Müt^rlal Properttaa

MtarlaX Te»X :-i(^t

Mt «rial .'--J. .- ■• : r.ssuru .Yjp

l'.nt-Tl!.! Cüornophyi.l.-al rroporti..'

ttoteriaX Codbustlon Tests . . .

pfc&s« 1 ^ysi.T- Void Nrcontap .

)at!

Line 1

■o 11--'.

•Int.

■'lat

h 3laJ

''AC"

13

21

31*

35

37

uo

42

60

61

62

63

71

72

97

96

101

109

117

120

IM

xlll

Page 18: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

SECTIOM I

ir.TBOSUCTIOH AUl) GlTJ-g^Y

Fuel tank fires and explosions are a major cause of aircraft LOSBM in oombat. Considerable research and dovelopmcnt has been duvotdi to .xplorin;: fuel tank explosion protection concepts. Nltroccn dilution, chenieal iuench- ine and polyurethane foaii void filler material omerce as ttW prlr.ury candidate systems. Of these the passive, logistics free polyurethanc fOM syötons appears Ideal. Light-weight (lov danslt;') fcan and /iross voidln;-; techni.xuec are used to reduce the weight and vol>ino penalties encountered in contemporary foam system installations. Previous work by KCAIR, in cooperation with Tcott Paper Co., successfully demonstrated a low-density reticulated polyurethanc foM explosion suppression system with 80 to 1^0 percent voiding. Xhia degree of voiding had only been demonstrated in tankr. that were Jublivided into a number of intercommunicatint; cells such as aircraft wing tank:; which are inherently segmented by ribs and spars, V/here compa-tmentization is not inhi.ront as in the case of aircraft fuselage tanks, a lesser percent voiding is possible for equal allowable combustion over-pressures as evidenced by the work performed by Bureau of Mines where up to 1*0^ voiding was achieved for .'ingle cell configura- tions.

Basically two types of ^ross voiding concepts pre ;.T.tly exitit. The first is a structural isolation design as in aircraft vint; fuel tanks where the structure offers natural compartmentizatlon with intercommunicating open- ings between cells. Foam is used to isolate firer- to the combustion cell by acting as a flame arrestor, stopping the flume propogntion to the adjacent cells. Pressure generated by the combustion process in the ignited cell is relieved through the foam and intercommunicating hol^s. The second variation of this concept uses hollow foam bodies to provide flame isolated compartments with walls of sufficient thickness to locally isolate fires. Combustion pressure is relieved through the foam and into isolated volumes. 3oth of these concepts have been investigated in Phase T of this progrnm with an arbitrary system success jriteria of 10 psi allowable combustion over-pressure.

The Phase I effor». of this program was designed to improve and optimize installation concepts and techniques for foam fire and explosion suppression in simulated aircraft fuselage and wing fuel tanks. Configurations designed to accomplish these progrp.n objectives were established to provide data that would optimize the system operation from a foam void standpoint. Foam volumes were predetermined for all systems in order that test void volumes could be increased or decreased in increments of 5^ of the total tank volume. Combustiori tests were conducted at each void increment and the pressure an: temperature in each cell of the specimen was recorded. Kach configuration was tested at 0, 2 and p psig initial pressure with successively larger or smaller void volumes until an over-pressure from combustion of 10 psi was reached. In some cases whore it was obvious that data could be successfully extrapolated, the tests were completed when sufficient data were obtained to establish a curve.

Phase II investigated material flame arrestor effectiveness with respect to combustion over-pressure and fuel flow resistance. ThermophysicO.. project' . determinations of candidate arrestor materials were conducted Including thern:-.! conductivity, specific heat, melting temperature, heat of fusion, bulk density.

Page 19: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

specific fuel retention and ourfacj area. Combustion testing was divided into three tusks: (l) arrestor material confifuration and screening tests, (2) basio material evaluation tests and (3) coating tests. The success c-itericn of the arrcstors was based on a combustion over-pressure limit of ?5 PCI.

All material combustion and fuel flow pressure drop tests were con- ducted in an eight-inch diameter plejcifjlass tube lu.ing a material thickness of two inches. Combustion tests wore conducted at 0, 2 and 'j pslg initial system pressures and flow tests were run at 50, 100, and 150 ^prn flow rates using JP-U as the fluid media. Thermophysical properties tests were conducted on those materials that performed satisfactorily through at least one set of combustion parameters.

Data from phases I anil II of the program were reduced and collated dur- ing Phase III. Application of the data from the Phase I effort was directed toward weight and volume displacement panaltles as well M system advantages and disadvantages for design of explosion suppression systems for both retro- fit and new aircraft. Arrestor effectiveness data was analyzed to determine the relationships of chemical interactions and system parameters and the relative significance of those parameters on the performance of the material as a flame arrestor. Jmpirical relationships were uovelopcd by computer regression analysis with all applicable data included. These relationships give direction to the future development of flame arrestor materials by pointing to the parameter's relative effectiveness toward flame suppression.

Jata from the program have load to the following conclusions;

o The naxi.iium void percentage obtained in these tests for the simulated 100 gallon aircraft fuselage fuel tank is 58.5'/o «t 0 psig initial system pressure using a 10 pslg over-pressure success criterlcn and was accomplished using large (15 inch diameter) hollow foam cylinders.

o The ten percent voided foam lined wall fuselage tanks configuration offers the lightest weight and subsequently the largest void percent- age (52 and ^7,9%) system of those tested for 2 and 5 pslg initial pressure.

o Egg crate type patterns offer thi greatest degree of design freedom as well as the most efficient flame barrier system with the greatest amount of void volume (ggft at 0 oslg, 8?' at 2 pslg, and JY, at 5 psir initial test pressures) of the ccr^ipurations tested for the six-cell simulated aircraft wing t:mk.

o The egg crate voiding configuration performed to the 50'' void volume level for the three-cell 300 gallon simulated aircraft wing tan!;.

o Systems with a number of small voids may not be as uffectlve as those with fewer larger voids.

o All void vapor volume In the hollow body configurations tested burned when the system combustion over-pressure reached 5 psig from the initial ignition.

o Successive ignitions using the same foam arc possible for fire and explosion suppression systems.

Page 20: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

13 ppi foam Is not as efficient as 23 ppl foam In voided fire and explosion suppression systems at percentages greater than 20i.

The performance of hollow body configurations Is hindered by the fact that for a projectile simulated line source Ignition, combustion occurs simultaneously Inside and outside the foam wall, thus burning a greater portion of combustibles within the foam.

Combustion volume to foam thickness is the primary design parameter for gross voided foam explosion suppression systems.

Ihe use of other matttrials in a gross voided configuration for explosion suppression is possible.

3M polyester felt, "Scotch Brite," showed the best possibility as a substitute material of those tested.

Where fuel flow pressure drop is an Important system operation parameter the 2? ppl Scott reticulated polyurethane foam appeared to be the best material tested.

Wetting agents are more effective in eliminating burn through than reducing combustion over-pressure when the relief to combustion volume (Vr/Vc) ratios are small.

The thermophysical properties investigatt1 have a negligible effect on the explosion suppression ca, abilities of the material.

Arrestor material geometry appears to be the mo^t Important parameter in eliminating flame propagation with foams and felts being the oest configurations tested.

Page 21: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

:

SECTION II

PHASE I TEST: PRCXSAM

1.0 TEST SET-UP

1.1 Test Specimen

■niree specimens were used throughout Phase I testing. The specimens were (1) a 100 gallon fuselage tank, (2) a 300 gallon 6 cell wing tank, and (3) a 300 gallon 3 cell wing tank. The three specimens were assembled from six 30 x 2U x 15 inch elemental boxes. Each elemental box was basically a steel angle iron frame which had match drilled sides so that the elements could be assembled in any combination. The boxes wert de- signed with both steel and plexiglass side and cover plates capable of withstanding Uo psig over-pressure. Plexiglass covers provided the capability to photographically record the explosion events.

The fuselage tank was constructed by assembling two sets of francs and panels to produce a 30 x 30 x 2U inch tank (Fig. 1). This siae was selected to meet the military standard 100 gallon fuselage test tank so that the data generated could be ccrapared to other similar work.

The three and six celled wing tanks were assembled from the six elemental frames to produce 90 x 1*8 x 15 and 90 x 30 x 2U inch tanks respectively. Figures 2 and 3« The three celled tank had, 55^ cell to cell intercommunication while the six celled tank was provided with only 5^ cell to cell intercommunicating open area.

1.2 Instrumentation

The Instrumentation consisted of strain gage type transducers, and uQ gauge cromel-alumel thermocouples in each cell of the respective specimen. The pressure, temperature and ignition time data was recorded on oscillo- graph traces at 15 Inches per RtOMl as shown in the sample trace of Figure U. The thermocouple outputs were mei only to monitor ignition and flame propa- gation In that combustion tempe. azures exceeded their useful range.

1.3 Explosive Mixture

Premlxed propane/air mixtures near stoichioraetric conditions were used as the combustible media in each test and the foam was wetted with JP-5 fuel. This simulated explosive aircraft tank condition was used for test simplicity in lieu of JP-1* flushing. If JP-U had been used, st:;ichlometric vapor/air conditions could have been achieved only by cooling the entire test article oelow Uo0F. The use of propane/air JP-5 permitted testing at all ambient and specified initial pressure conditions. Previous tests using propane/air proved that it produces results equivalent to JP-V^ir combustion.

Preceding page blank

Page 22: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

FIGURE 1 FUSELAGE FUEL CELL TEST SET UP

GP 71 739 4

Page 23: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Bomb Sampler

Ignition

Oill

FIGURE 2 SIMULATED SIX CELL WING TANK TEST SET UP

GF71 0937 25

Page 24: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

FIGURE 3 SIMULATED THREE CELL WING TANK TEST SET UP

GP71 093/ 26

8

Page 25: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Bomb Sample Test For Propane'Air Mixture Combustion Effectiveness Value

96 psl Simulated Fuselage Fuel Tank Comjustion Pressure Rise With 40% Void Lined Walled Configuration at 0 psig Initial Pressure

psi '—7.7pji *—7 7 psi

Ignition Ignition P1P2P3(10ps' 'nchl P4 (25Psl/inchl

Nott Paper Speed 15 inches per second

FIGURE 4 TEST PRESSURE TRACE

GP71 0;t37 39

Page 26: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

I.1» Ignition Bystga

The ignition aystem useil wa'-. a stanluri B\ureau of MilWI laiilnous tub^ tnnsfonmr ret-up operatoi at (ü to 73 volts primary. The i(;nitor portion of the ^et-up was varied Tlightiy to simulate a straight line projectile path Lgnltion aourc"?. Thiu was aceompuiihed by placing the ignltor In a perforated tube which extended fron wall to wall, simultaneously i^nttlnt all individual voids along its path.

2.0 TT'ST COr.'FTGUPATIOKS

2.1 General

Tha test eonflgimtioni for all three upcclnenr, were desired around the structural and integral voiding concepts. The percent volllng ranc«-' was based upon the "CAIR raodi.'l of Arrestor Suppressed ^xplosionr. Tills ^odel relater. the t anK over-pressure to the ratio of relief ^lumc to com- bustior. volume, and the initial pressure. Using t;.i.- model a;,' the prof;ra.T. leflnod success criteria of 10 psig over-pr'.-ssure the initial test vola was calcul-ited an I the testing proceeded fron; that point in + j''-. incremental void Jhaii^os. Initially all test configurations were teste 1 using 2^ ppi, I.36 Ib/ft-^ reticulated polyurethane foan. After the best configuration for the '"uselage tank specimen was established, 15 ppi, loo lb/ft' r^tlcy'ated polyurethane foan was tested In that configuration.

2.2 Fuselage Tank :onf'r^uratic:

Four fuselage foam configurations were investigated. These configura- tiDns were (a) lined walls, [h] voided lined walls, (a) largt flat end hollow cylinders and (1] small flat and hemispherical ended cylinders shown in Figure $• These configurations wire varied in total void percentages as described in the following paragraphs.

2.2.1 Lined '.■.'all 'Jonfiguration

I-'odel analysis of tlM lined wall configuration for Initial pressures of 0, 2 and p pslg, predicted that the maximur. allowable voii percentages would be 1*6, ^S» and 39t void respectively. This variation in void per- centage was adopted and predetermined thicknesses of foam to obta'n 5^ incremental voids from '„Z to ö percent were stacked on the specimen walls. Tests wore run by removing the inner most layer of foam after each ignition.

2.2.2 Voile 1 Line! .;all "onfiguratlons

This configuration was basically the sane as the lined wall config'iratlon with the exception that sixteen voids within the foam were included as shown in Figure 6. The total void perc:ntTge was the sam of thusc internal voids and the center void. The total void " for the configuration was varied from 30 to 60"' using 10, 15 and PS" internal voids nnd 15 to -5"' center voiding. The void sises and wall thickness used ^re given in Table 1 and a photej-raph of an actual set of voided wall segments is presented In Figure 7.

10

Mn

Page 27: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Foam Foam

Lined Wall Configuration A

Voided Lined Wall Confiquration B

Foam Foam

Large Diameter Hollow Cylinders

Configuration C

Small Diameter Hollow Cylinder?

Configurations D&E

FIGURE 5 FUSELAGE FUEL TANK FOAM CONFIGURATIONS

GP71 0937 27

11

Page 28: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

tmmm ftfWw ■■ *> nt r

16 Total Foam Voids per Systenn

iiv ■mi .1 ■ ^Mllliiti'i li'li

Center Void

lynition Void Volume —

■wT^frpr^ri*r'^^??'T^^TTT^r^pT'^

-^ , ■« ■>■■»<

• •'- -'

«MiiliäUiilMMiilMilMdät

• Ignition Location (Typ 3 Places)

FIGURES VOIDED WALL CONFIGURATION

GP71 093 7 33

12

Page 29: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

V:)

iDID

r"'

fJ!

LlU.

..ICD

W..u

..L C

lm.~

l'GU

H.it

l.'I

OH

FD.ft

11 V

OID

DD

~I.:

>IOl

l3

,.....~--.

.,~~-~~~F~

o!SI~:. ~V:

o:i-d':::!

..---.-~--

~-~[_· C

~ter y

oid

'· l,

To.al.

I Fo

.., ~oJ

.dT-~o

.., ~o

id -~I F

o~~ ~~

~~~· fT

~f!l

I ~~

lll

o..

(i

n)

(~)

L,-

;-rr

;;)T

(%)-

1 lo

luu

e (r

n3

) O

ute1

· Jm

. (:u

>.

Inn

er D

im.

(in

) C

en

ter

Voi

d [

(%) ~

11

1.6

X 7

.JJ

X ll

10

.0

:_30

X 1

).2

X

9.2

2(

).5

20,5

00

.J0 X

28

X

22

J0 :

:t 2

4.8

X

1<1.

8 4

.8 i

n.

)0.5

l 12

l IJ

4 5

16

7

I 8

.....

\,o

J 9 1

0

11

12

13

14

lS

16

17

1.6

X

7.)

3 X

ll

10

.0

J0 X

1

6.4

X

10

.4 l

25

.0

1.6

X 7

.Jj

X 11

1

0.0

30

X 1

7.6

X

11

.6

29.9

1.6

X 7

.JJ

X

]1

10

.0

JO X

J.

S.S

X

12

.8

J5.J

1.6

X

7 .J

J X

11

1

0.0

30

X

19

.8 X

1

).8

14

0.0

1.6

X

7 .J

J X

11

1

0.0

.J0

X

21

.7 X

1

5.7

5(

).0

1.6

T..

7.J

J X

11

1

0.0

.J0

X 1

9.8

X

18

.8

4Q.0

1.6

X

7 .JJ

X

11

10

.0

.J0 X

2

0.8

X l4

.S

45

.0

1.6

X

7 •. J

J X

11

1

0.0

.J0

X 1

3.8

X

12

.8

)5.)

1.6

X 7

.JJ

:A 1

1

10

.0

J0 X

19

.S X

1

).8

4

0.0

2.1.

X 7

.JJ

X 11

15

.. 1

.J0 X

1

8.8

X

12

.8

J5.J

2.4

X 7

.JJ

X

11

15

.1

30 X

1

7.6

X

11

.6

29

.9

2.4

X

7.J

J X

11

1

5.1

J0

:.:

17

.6 X

1

1.6

2

9.9

1.6

X

7 .J

J X

11

1

0.0

.J0

X 2

1.7

X

15

.7

5().

0

4.0

X 7

.JJ

X ll

25

.0

J0 X

1).

6 X

7.6

1

5.0

4.0

X 7

.))

X

11

25

.0

JO :

.:: 1

5.2

X

9.2

2

0.5

4.0

.X 7 .)

) X

11

2

5.0

)0

:;

16.!,

. :<.

10.1~

25

.0

J0 X

2S

X

22

)0

X

24

.8 X

1

8,8

.J0 X

28

X

22 i JO

X

24

.8 X

1

8.8

)0 X

28

X

2.~

J0 X

2

4.8

X

18

.8

.J0 X

28

X

22

.J0

X 2

4.8

X.

18

.8

.J0 X

28

X

22

.J0

X 2

4.8

X

18

.8

JO X

28

X

22

)0

X

24

.8 X

1

8.8

.JO X

28

X

22

.J0

X 2

4.8

X

18

.8

.J0 X

28

X

22

J0

X

24

.8 X

1

8.8

.J0 X

28

X

22

.J0

X

24

.8 X

1

8.8

J0 X

2

8 X

. 22

JO

X 2

).2

X

17

.2

.J0 X

23

X

22

.J0

X

2).

2 X

1

7.2

JO X

. 28

X

22

)0

X

2).

2 X

1

7.2

J0 X

~ X

2

2

.J0 X

2

4.8

X

18

.6

JOx

.28

x2

2

)Ox

20

xl4

J0:;

;2ax

22

J0

x2

0x

l4

4-2

in

.

).6

in

.

].0

in

.

2.5

in

.

1.5

5 i

n.

2.5

0 i

n.

2.0

0 i

n •

J.OO

in

.

2.50

in

.

2.2

0 i

n.

2.8

0 i

n.

2.8

0 i

n.

1.5

5 i

n.

).2

0 i

n.

2.4

0 i

n.

1.0

0 in

.

35.0

'39

-9

45

.J

. 5

().0

60.0

,50.

0

55.0

l

45-3

50.0

50

.4

145.0

45

.0

6o.O

4() ..

0

u.s

so.o

Page 30: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

FIGURE 7 VOID WALL SEGMENTS

GP7i 0937 34

Ik

Page 31: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

2.2.3 Laree Diameter Hollow Cyliniers (Flat Ends)

Void percentages for the 15 inch diameter 1? inch Ion?: -jylinder:. were varied from ^0 to 60,y). Two sets of cylinder;: with varied wall and end thicknesses were used for all testing. The firct Get of cyliniers were configured with 2.75 inch walls and 1.0 inch ends and wori' used for tests 1 through 6 Given in Table 5. The second set was fabricated vith 1.95 inch wall and ends and used for test number 1. Alteration of this sot to 1.85 inch wall and end thickn^sü was made for tests 3 through Ij. Tests 11 and 12 used the first sot of cylinders with 2,J« inch thl^k walls and ends. Figure 8 is a photograph of this configuration installed in ths, fuselage tank.

2.2.'» Small Diameter Hdlow Cylinders

Two configurations of 7.5 inch diameter hollow cylindcrri were t:-3t i, flat end 2h inch long cylinders and heni spherical end 12 inch Ion;; jylir icr... The void percentage range for each configuration was obtained by varyin,: the inside diameter of the cylinders. The flat end configuration was tent- ! fro- 30 to 50^ total void while the hemispherical end cylinders were tested I'rorn 1*0 to 60t total void. Figure -,< is a photograph of thrt installed flat Dfi cylinders and Figure 10 is a photograph of a hemispherical end hollow ojl:..i.-,.

J.3 Wing Tank Configurations

Two tank specimens were used, a three and six cell sinulaxti 300 callon wing tank previously described. Lined wall and egg crate foam eonflRuratloni' us described for the fuselage tanks were evaluated in these specimen". 1. addition to these configurations 7.5 and 15 inch diameter cylinlerr. wen: tested In the six cell specimen. Figures 11 and 12 are schematics of the.-v wing tank configurations.

3xtenslve work vas conducted on the egg crate design since both the void volume and foam wall thickness were investigated. {Table 2) The nunb.r of void volumes wore varied frorr b to 2h per cell d'-pending on the totrj void desired. A schematic oi a typical Installation is shown in Figure 1J. while photographs of the six and three cell wing tank installation ar presented as Figures \,k and 15.

Total voiding for these specimens was considerably higher than th.-.t, of the fuselage tanks in that the relief to combustion volume for subdivide 1 t-vv Is naturally much higher. The total void percemages tested for these con- figurations ranged from **0 to 90y: for the six cell. 1 specimen and 30 to 801 for the three cell wing tank specimen.

3.0 TE3T PROCEDURE

The test procedure for all three tank specimens and all foam confLTuratic was basically the same. After the desired foam configuration was fabricate) and installed in the test specimen the foam was wetted with jr-5 fuel. All excess JP-5 fuel was drained off before ignition. The specimen was then sealed and evacuated to 5 psia with a water educator in preparation for the

15

Page 32: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

''

FIGURE R IB INCH DIAMETER CYLINDER INSTALLATION IN 8IMUI ATED FUSFI AOF TANK

it- < t n«n< t■

i*.

^^

Page 33: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

FIGURE 9 7.5 INCH DIAMETER CYLINDER INSTALLATION IN SIMULATED FUSELAGE TANK

GP71 0937 38

17

Page 34: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

* 1 7 5"DIü.CVI 1*1 ill ft 1 ■ Spherical Ends ■ Vl \Ä\ ■

I I45" Una I ^IMmi

FIGURE 10 TYPICAL 7.5 INCH DIAMETER

CYLINDER WITH HEMISPHERICAL ENDS

GP71 0937 49

18

Page 35: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

xf ^

v.>

^

^y

Configuration A Lined Walls

Foam

Foam

/ ^^l^t^y* /^

1 H LH L^ K-J W-J U'_-i

r—» r—» r—» n r—i r—> r—"i

H!3 MM IM u r—1 »•—T r —T

kkj bbj HbJ r-i r—» r —T M* ** ^p

V v-j K3 bkJ / y' Configuration B

Egg Crate

FIGURE 11 THREE CELL WING TANK FOAM CONFIGURATIONS

C.P71 0937 53

19

Page 36: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

s- y ^—

oy oy

S 1 ^-

Oy

EEiZ]

ZIC21Z] [2100

[ZDIZ1IZ] 1Z3IZ1IZ] IZ]IZ](Z3

EKZId

[Z1IZ1LZ] Z1IZJIZ]

Configuration A Lined Walls

Configuration B Egg Crate

Configurations C & D Cylinders ILoro & Small)

FIGURE 12 SIX CELL WING TANK FOAM CONFIGURATIONS

20

GP7I 0937 50

Page 37: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

g

IJI

113

P. o

« e « r- O C«"* T -H J3 q

■Ir

fl-S 5g

I I:

IA >A

IA H W> tf>

«A «A IA • • • I I

I

<A H

(V t

O

H ■0

A H iA

lA

•o M IA

M IA CM

X5

H o

M

O

H

H

Ä 8

o

M o

K o i

■« c^ 2( 21 "*

1 * % 9 I J^ I I i a »

21

J

Page 38: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Outside Walls

Wing Tank Spec

FIGURE 13 SCHEMATIC OF EGG CRATE ARRANGEMENT GP71 OS3 7 51

22

Page 39: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

mm

•^ t ♦

25 PPI Reticulated Foam

w Ik FIGURE 14 FOAM EGG CRATE INSTALLATION

GP71 0937 15

23

Page 40: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

'

FIGURE 15 THREE CELL WING TANK EGG CRATE CONFIGURATION

QP71 0937 55

2U

Page 41: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

introduction Of the premixed pressurlzc-l propuno/'Ur mixture. The propane/ air mixture was node up In a ceparato mixing tank by Introiucinp n pre- determined partial preojure of propane into th«; t.ink and pressurising the tank with shop air to the ualculutcd tot;il pre^üuro ro-iulrod. The aixlng tank and the specimen tank were manifolded together and bro i^ht to pressure equUlbrlliH >i^ the intorcomo^tln,; plumb In : shown ichonatleally in Figure 1 . After e^uillbrlun wae established the mixing tank w:is Isolate 1 arvl the test specimen was bled down through the bomb sampler to the desired inltltil pressure 0, ? or 5 pain. The bomb sampl r was then Isolated from the specimen by valvin-. The sample mixture was ignited and the peak pressure recorded prior to each ter.t. This proceduri vcrlfle.! the explosive mixture oonditions and established th.- aiiabatic expansion factor used in th'- model and data analysis.

The ißnitlon of the test specimen's UtplMive mixture Immediately followed that of the bomb BOB^I«. After the completion of this tott sequence the complete system war. purged ar.i mai. ready for UlQ next test. Foam void configurations were varied r.s were the initial pressures until the resultant specimen tank over-pressure of 10 pslt: "as exceeded ani Buf^'cltnt iata was obtained to lefine the configuration performar..;.-. Then a na", con- figuration of foam was introduced into the pronram.

>».0 B3SULTS AND DI8CUSSI0H CF RESULTS

All of the data for the three tank Bpeciaona and their respective foam configurations are presented in four ways. The raw data is presented as tables, whereas the reduced data is presented ßTSphicelly (l) as physl.-aiiy installed and tested (?) according to the theoretical model ur.d (j) in summary bar form. The grafha of the "as tested" are In the form of total installed void percent "ersus peak combustion to initial absolute pressure ratio. The total installed void percent is also the percent reduction in wcipht and volume penalties for the foam system and th'is of direct value to the designer. Absolute peak combustion to initial pressure ratios arc used Instead of Ar's in that theoretical coasldentions predict that this approach will normalize the data for iifforcr.t initial pressures thereby consolidating the graphical data. Althout^1. this normallzlnc was not realized it is Still felt that the pressure ratio presentation is useful and convenient.

The second form of the data correlatior. presents the actual relief to combustion volume ratio to the varlius observed pe.-ik combustion to initial absolute pressure ratios. Flottint: the data La the relief/combustion volume theoretical form provided a meai.s of noi.itorinc the lata for nross icviations and interpretation of the results. In many cases particularly when: Internal void eonfIgurations were bein^ tested several pressure peaks were observei on the oscillograph traces. The first observed over-pressure correlated with the initial ignited volume whereas the intermediate peal; over-pressure was shown to correlate well with the total voil volume, indicatlr.f; burn through or ignition of the secondary inner voids. Glncc straight line, simulated pro- jectile Ignition was used in the testing the relief volume to combustion volume varied from one configuration to another even the-.gh the total void percent was the same.

25

Page 42: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Vent

Ignitor

150 PSIG Transducer

40 PSIG Relief Valve

Ignition Bomb

Test Tank Vsnt

^

FIGURE 16 FUSELAGE TANK TEST SETUP QP71 0937 50

26

^^^^^-^ — . ■

Page 43: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

the bar graphs are presented to provide a simple visual comparison of the foam voiding configuration capabilities as compared to each other. From these graphs the superior configuration for any of the program test parameters can be easily determined as indicated by the solid bars.

H.I Fuselage Tank Results

Tables 3 through 8, present the test conditions, configuration and combustion over-pressure data for the simulated 100 gallon fuselage tank. Only the maximum or peak combustion over-pressures are given in these tables. The average peak over-pressures were converted to absolute pressure ratios and plotted against total void volume. These plots are presented in Figures 37 through 32. Tbe theoretical relief/combustion volume curves are presented as Figures 2U through 31.

•..1.1 Lined Wall Configuration

The lined wall foam configuration data are plotted in Figure 17 and can be seen to correlate quite well with the theoretical curve up to ■♦0"'- voiding even though the Initial pressures were varied from 0 to 5 pslg. These same data also correlate quite well with the theoretical model parameters as shown la Figure ^1«. The divergence of data from that pre- dicted theoret'cally is caused by penetration of the flame front into the foam. Flame peneti;.tion Into arrestor materials were observed in the movies and Is known to be a function of both pressure and foam pore diameter. Tt can be clearly seen that both parameters prevail by inspecting the three curves; theoretical, 25 and 15 pores per inch foam in Figure 18. The 25 ppi foam configuration was adopted as the base line to compare with other configurations and therefore appears in all the fuselage tank configuration graphs.

1.1.2 Voided Lined Walls

This configuration was essentially the same as the previous discussed lined wall configuration with the exception that closed "hidden" voids con- stituting 10, 15 and 251) of the total tank volume were Incorporated in the foam liner. In all cases this additional voiding was divided into 16 individual cells of which two were included in the initial Ignition volume. Consequently one-eighth of the additional voiding was negated thereby displacing the curve above the base line as seen in Figures 18 through ÜO. In the case of the 10t voided wall configuration the theoretical shift of 7/8 of the additional voiding was obtained out to the '»5* baseline point. However in the case of the 15 and 2y- voided lined wall configuration lull theoretical improvement was not obtained as several of the wall voids ignited during the test. The data are good however, as can be seen in Figures 26 and 27. In these plots the peak over-pr ^sures are plotted against the theoretical curve parameters and are seen to correlate. In addition the initial or Intermediate pressures are plotted against i.he initial combustion relief volumes where applicable and maximum pressure against the assumed total void combustion volume to relief volume. The latter plot correlates well with the theoretical curve and therefore it can be

27

Page 44: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

concluded that all Inner voids ore burning, but on a layed baslo. "ftie Bize of the center void volume. In addition to wall thicknocr,, affoct.. the performance of this approach. Thiü is to bu expected in that -as pre-'iounly diHcusscl the larger the center void volum-? ^he greater the reüultLnt heat flux, prucsnra and depth of penetration. Graphically this can be observed in Figures 19 and 20 for the 15/) and P5* voided wall configuratiun. The center void volume in the 15* voided lined wall configuration was croater than that of the 25y) voided wall configuraticr. for the r.ame total void /., therefore flame penetration ani burning of the void.; within the foam occurs sooner for the l^i configuration. This did not occur with the 10% voided foam liner since the foam th'cknor'ö to combustion volume was greater. These results would lead to the oonrluclon that an optimum void volume to foam thickness exists and that if all voids w^rc uniform the optimum total voiding could be reached. This optimum configuration would be an egg crato configu. .-luin with more and more voids as the tank volume got larj-cr. This relationship is further supported by results from other configurations and larger cell tests to be diseutMd«

't.l.j Large IMametcr Hollow Jylinderr:

Tills configuration was ^uite succeosi'ul. The small number of voldr and the resulting greater foaa thickness to 'ombustion volume can pro^bly b'- credited with the succesü. There wen: four internal voids of vhicn two In addition to the void external to the cylinders were Initially ignited. The expected improvement In voiding performance was realized at zero psif initial pressure as can be seen from Figure 21, At higher initial pressures however the depth of flame penetration caused all of the internal voids to burn as evidenced in Figures 21 ani 23. './h^n all uu vsld« burned the eanflgurfttlon reverted to the baseline performance.

U. 1.'• .'j.all Uareter Hollow Cylinders

Two configurations of hollow 7.5 inch diameter cylinder;; were tajtei. Flat end twenty four inch long and hemiyi h^rical end twelve inch long cylinders of four wall thicknesses wer.3 run. Figures 23 and 23 show the performance of these t'JO configurations. It Is quite apparent that the shorter hemispherical end cylinders were superior. Of interest here is the divergence from predicted performance. The different I :iti:il pressures ;-ave different curves which plot below the baseline. Gome explanation of the pressure phenomena can be gained by looking at Figures 29 and iO. In these it is -iuite obvious that nearly all the flat end cylinders »ore penetrated as were all but three test conditions for the smaller hemisph_rlcal end cylinders. The flat end cylinders had a smaller Initial combustion volume and yet performed more poorly. The principal difference war the flat end cylinders had small extorral combustion volume channels which tend to slow flame speed. This slow flame freely penetrates the foam. One explanation for the data below the baseline is the fact that in the positive initial pressure tests where this is evident, higher resulting combustion prersure occurs thu: the flame penetrates into the foam from both sides and subsequently burns more vapor. This effect was discussed when the baseline was establish^. (Paragraph '-.l.l)

28

Page 45: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

^.1,3 Fuselape TanK .Sumnar'

Figure 38 summnrlzed th- results of all thu fuselage conflcuratlons tested. UM three bar grapns for 0, 2 and 5 psig show that the large hollow cylinders are best for 0 psig tankage while the 10VJ voided lined wall configuration is better for the 2 and 3 psig initial tank pressure system. These rusults might well be dj fferent for larger or smaller tanks in that the eombustion volume has a direct proportional effect in system resultant pressure rise. Further, the multicell two or three tier egg crate conficurntion not investigated raltjht well out perform either of the two best candidates thus fur evolved as the (-eonctry of this configuration allows for greater void percentages while keeping the combustion volumes small.

4.2 Six Cell V/lng Tank I'.e.sultü

The tank speclrac-n usefl in the following series of tejt:j contained cix cell;- 3r.,:h of ij0 gallon capacity. There veto four fonm configurations tested. The recults and test parometerr, are presented in Tabl^r '-J through 12. Th2 test configurations were lined '..'alls, eg^ crates, and r;r.all and li'.rge hollow cylind:rs. Figures 33 through 3(' percent the data in graphical form.

I».2.1 r.ix Cell Lin?d Wall

UMI lined wall system was fjiven only a cursory investigation since previou:. MC AIR tests reverded that this lesign used in an 80"' void cor.f ipuration in a relatively small scale test fixture produced excellent results. Testin/' for this configuration was limited to an 80^ void arrangement at 0, 2 and 5 psig inltin.]. pressare to determine the applicability to larger size wing tanks. The limit of cell size to voiding for this confirursttion ll still now known and should b3 further investigated.

4.2.2 .:ix Cell Xgg Crate onf'.guration

Sxtensiv»* work wus con iucte 1 on thi' tgg, T.-.te design since both the void volume and foam wall thickness had to be optimized. Table 10 contains the dnta for this configuration while Pigurce 33 and 3^ present the result;; in graphical form. It cr.n be seen that this configuration works best vith one inch foam separation walls. Thi;; thickness is charaot:ristic of the 25 ppi foam. Smaller pores would require Leas thic'r.nesr. ufaila larger pores would require a greater thickness. The percent void allowable for the 10 psig over-pressure crit-jrir; vac found to IM ""', 87, and 7C for 0, 2 and 5 pa.lg initial system pressures.

•»,2.3 3ix Cell Large Hollow "ylinaers

Figures 3'* nn* 37 present the results for this configuration whil. Table 11 contains th_- data. 7he performance here matched that of th.; fuselage tank tests, '..'hile only two points were established for the wing tank they correlated well with the fuselage tank result.-, u shown in F^gur' 3U,

29

-

Page 46: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

'•.2.U Six Cell rsmall HoLlov Cyllr.-lers

Figures 35 ar.d 38 present the results for this configuration while the data are contained In Table 12. From Figure 35 It can be seen that three curves, one for each Initial pressure test condition, were obtained. The smaller 7.5 Inch diameter cyll.-.ders in this size tankage performed better than the 15 Inch diameter cylinders. Equivalent results however were obtained In the fust.'-.age tank at greater void percentages.

^.2.5 Six Cell ConflgurAtlon nummary

In general for the six c«ll 00 gallon wing tank It can be concluded that the egg en te followed by th« lined wall configuration were the better designs (See Figure 39). The hoMow bodies are more sensitive to Initial pressure and when flame penetration Into the Inner voids occurs greater »han the theoretical minimum pressure results. This latter fact Is probably due to a pumping action where the outside ignition pushes some combustibles Into the foam followed by Internal ignition pushing it back out to be further reacted. This action does not occur with the lined will or egg crate design since there Is no external/Internal voiding. The lln'?d wall and egg crate configurations act In one direction resulting In data that falls very near to the theoretical predictions.

U.3 Three Cell Wing Tank Pesults

Tests for this segment of the program were carried out In a three cell 300 gallon specimen. Two foam configurations were tested the results of which are presented In Tables 1-, and lu. The configurations tested were lined wall and egg crate. The data are graphically presented in Figures Uo through -•L'.

-.3.1 Three Cell Lined Mall

Only ambient prorsure system tests were conducted with the lined wall configuration as the performance r^sulttd in only a Wf* void system. The degradation of performance of this configuration in the thr^e celled specimen Is due to the larger combustion voloraes with respect to foajn and relief volumes. It Is Interesting to note that this void percent Is the predicted value for the equivalent size fuselage tank.

^.3.2 Three Cell Sgg Crate ConfIfuratlon

The egg crate configuration performed to a ^2^ void at the 0, 2 and 5 pslg Initial system pressure. Once again the larger voids In the three celled specimen for the egg crate configuration dictated the limit of performance. In only one case did the flame fall to penetrate the walls of the egg crate voids. From Figure U3 it Is obvious that for the remaining tests all avail- able void volume was Ignited as the calculated data for combustion of all voids plot within testing tolerances of the theoretical curve.

iO

Page 47: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

U.3.3 Three Cell Configuration Sumroary

Tests In the three cell rpeclmen reveal that lined wall and egR crate foam configuration perform equally well. (3ee Figure W*). The larger Initial Ignition volumes substantially reduce the void possi- bilities because of the reduction of Vr/Vc when considering vc equal to ignition volume only. Reducing the size of the voids does not in- crease the total possible system void if a one inch minimun foam wall thickness is maintained.

Page 48: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

SECTION III

CONCLUSIONS />• RKCOM^ENDATIONS

5. CONCLUSIONS

The Phase I tests of this proßram have shown that aircraft fuel tani fire and explosion suppression nay be readily accomplished by the use of voldea reticulated polyurethane foam systems. Fuel taik size and shape as well ns foam cor'lguratlon have proven to dictate to a degree the nnount cf voiding possible when using the pro^'ara success criterion of 10 pal combustion over-pressures.

o The largest percentaga void (59.5'') for 100 t'allon fuselage tanks at 0 psig initial pressure, wan obtained using fifteen inch diameter hollow foTW cylinders.

o The greatest amount of voiding in fuselage tanks was obtained with the 10"t voided lined wall configuration with 52 and ''T^ percent total void for the ? and 5 pslß initial pressure.

o The SO"*, void, lined wall foara conficuration was successfully tostci at 0, Z and 5 psij initial pressures in the jOO gallon, six cell simulated wing tank.

o The six coll wing tank egg crate pattern performed within 10 psi maximum combustion over-pressure to ftt void at 0 psig Initial system pressures.

o The lined wall foam configuration performed satisfactorily up to ^5' for the three ce.1l 300 gallon simulated wing tank.

o The egg crate confiRuratlon for the three cell simulated wing tank specimen provided UO'j, 30^ and 501 maximum vcid with 0, S and 5 psig initial system pressure respectively.

o i.'o special installation techniques were required for any of the foajn designs tested. The hollow body configurati'-.iü were assembled with adhesive prior to installation while the lined wall and egg crate patterns were held in place within the respective tank by cutting the pieces oversize and compressing them in place.

6.0 RgCOWggDATiag

It la recommended that further testing of the lined wall and egg crate configurations be conducted using actual aircraft tanks and a gunfire ignition source. Further it is recommended that tests be conducted to determine the maximum and minimum opening between cells to determine their effect on the void concept. Hollow spheres should be tested in future work as this configuration appears to be promising and ^ulte adaptable to system retrofit.

Preceding page blank

33

mm

Page 49: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

r---r

I T

est

, C

cnft

g.

Desc

rip

tio

n

I i

r -1--t-

-A

--" -:

(j;~

-~-i

ll~-

--

1·, 2

Cen

ter

Cm

ty

3 4

A

Lin

ed '

li ills

Cen

ter

Cav

ity

Lin

ed

Wa

lls

Cen

ter

Cav

ity

IJ.n

ed '

llia

lls

Ce

nte

r C

av

ity

FllS

El.A

GE

FU

EL

T:t.N

K SY

ST.i:

M T

ES

T D

X1'A

t:r

nEO

WAL

L CO

NFI

.GU

RJ.T

ION

,-

---.-

---.-

1 rO~:

l Foii~;

-:u ! ~'

orun ~~

To

·::a

l A

mb.

'

Init

ial

1 ~~r

e ~1s

it;r

I Vc'

c!. ! '

.l'~~~

I P~e

ssu~e:

:1

yst

c

'1:, :2l.t·

i5z~ ;

__

__

__

'_) -l-

:_··_1

: __ ?7

.. -.-1·----

-i--~-~·_·

_;-+-: -~ {_

,-~_'~-~~_

)_''-+_Ri_

~_;J_{_;_·

._~g __ )J A

~~~-

2_~~

-p} J

I

1. 3

5 0

-14

.13

14.1

3 95

-2.5

I "

.25

I <

.w ! !, '

!J) I

t 25

1.

35

o 35

.0

14.3

1 14

.31

95-.3

,.

6.c

o

' 6.

;:J I t>

.lO

1 11

I ; 7.

70

';.(

)) f

39

.8

14-3

7 0

14.3

7

l3or

:tb

S ar

:rp 1·

~ "!

"".-.

.....-

·::;.

25

95.0

25

1.35

1.

4.37

14

-37

96.1

16

.10

13.7

0 l!

,.:J

() I

5 L

iDed

W'a

.lls

25

1.3

5

0 35

.0

14-3

3 16

.33

7.5

7

7.62

I

7.7

4

Cen

ter

Cav

ity

w

~

I 6

Lin

ed W

alls

25

1

.35

0

39

.8

14.1

9 16

.19

102.

5

t"! rn

({)

-1

~

It~ > r= !1 r,; n 0 ,

7 A

a A

9 10

A

11

Cen

ter

Cav

it;y

Lin

ed

Wal

ls

25

Cen

ter

Cav

it;y

Lin

ed

Wa

lls

Cen

ter

Cav

it;y

Lin

ed

Wa

lls

Ce

nte

r C

avit

y

Lin

ed

Wa

lls

Cen

ter

Cav

it7

25

25

25

25

1.35

1.35

1.3

5

1-35

1.3

5

0 JO

.O

14-1

3

0 3

5.0

14

-48

0 40

.0

14.4

8

0 JO

.O

14-5

2

0 3

5.0

14

.52

19.1

3 12

5.5

19.4

8 12

J.8

19.4

8 I

136.

9

16.5

2 10

8.2

. 16.

52

U6

.8

I 7

.04

7.

00

7.09

8.7

8

1).

90

6.0

8

s.a6

a.ea

lJ. 7

5 114

.05

6.22

6.

09

< ~--~----~------------L----L--------~--~----~-------~------~----------~----._ ___

_ ._ __ ~

Page 50: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

H

g

§

i

i £ R a 11 a ^

äg H *» HO <

• M IA

1 1 si

• 8 9

ill (V ri X ^ 3 IA n 4 3

lated

Tank

ssur

e

< rA -i •

UN vfi ■ • • 3

d iH « B 4) (.

>1> 4 iA 4 • tf s IA

CM IA rH •

< «^ -* IA sO «X5 9 O 9

O) -^N rH DO A C }> -H

s.S3a >o ir\ (^ en CO o rH (M tO .p «s^ • • • • • •

lljl ^ g i g rH

B o rH l'*i

■ 3||3 S 3 3 3 9 « O

(A iiji i 4 •

4 •

4 4 rl rH vO rH

• 3 «8 o o 3 9 o vO rA Q ja n -H •3 r^ r> rS ||J 4 * 4 4 i 4 4 4

g-o irv o • • en o O O • ;j

o otx i IT» IA R 3 R IA f- >^

o B««t o o o o Q q o O U. >v-5 H r-l r-l H H r-t rH rH

^t _■♦ -* <J -.-f -* -? ^.-* o n^v ■ u, a A .H iH rH i-l H iH rH rH

S rH

D <U O -H B !. N ►>. ITi l/N A IA IA IA IA LA P O -rj PS N CM (V cv iM CV CM fV C-, «- "5 V^

h >> >, s >. ^ S >. g

•H |

•p *> v fl ü V m T3 «J TJ +1 V •! •3 *>

»-4 +3 o J ♦JO

D -rl

►4 *> o

CJ iH

J +1 O

P ri I«! rJ *> O

C -rH

■ m •H a •H B •H •H TH va ® '' •) i;! i5i « ' ' u 'S (1) l5l| 1-i

n 8 o ■* V h\ ■0 i-t ♦> ii] Isj •0 rH *J

131 T) H +> •rl H C o a) o o ci v

•G rH .p

131 £y.c > r- ü > ?ü ^ r^ o > "^ CJ > r- o > 'T ü > :• o

a a ■ ■ (C n a n

■ ■ i-t cv I^V -* IA vO r- (C H

'

35

■M»

Page 51: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

&g rN « 3 fl It c? 9 n a •

IS8- <

<> i 3 >o a i -* t^ s £ M N^ cv 4 9 R r^ K ft }S }( s

Lat

ed

Tan

k is

ure

< • •

rf vO a ri -i t^ 3

l-t —. n 5^ • * 5 8 cT S <

&• H rt vO o B ~j f-^ q H H s (V M

u -->. H M a o 5 oj ■ «IMA to o m in m «N o

i 1

fljl i 1 H O

lA i a rH a B M ä -H a a

4) jiiQ Q (N -* fV (V ^ vO «0 (v (*\ ir\ in >o >o p^ n in

A 4 vO 4 ^ 4 3

. 91« O fV -* f^ OJ 3 vO n fv til r^ »A u> vO «O R r^ m • • • 4 4 ^ 4 4 4 4 ^ 4

tfaa m o ^f q q o o m o

R R -* -* 8 5 in si

82^ o o^a O o in in in o m in in b. > w r^ M rH H r-l rH t\ N fV

■ -H «M -* -* <f <f -* -4 -* -t -* O B*^ i ■

&. a jo H H l-i r-( rH rH rH rH H S M

_ - — ^^

■ • ■ «ri ■ b H a. IA ITl in m in m in in in 0 O -H M. fV tv rj f>J CJ fV <V W tv

s lh >, k S s», s kk S § 1 i I«! M *J CJ ►3 +1 o J +> o

1 i i-I ♦> U

1 ? 1 g rJ +5 o

73 -P 4) -rl

►4 «J O 1. i t3 i-I <J o •H 3 •rt •H a •H •iH •H •H •rH 1 l5i ■ 1 I L.

4) <o " u ^g^fc |* 0) 1S I |2 I s ■ « ■

O «j D O « V

T3 r- t-t t- O «

■P is i o « o

T3 H -P T3 rH

9>

73 rH +J T3 rH ■p •0 rH p 1 1 iil 13 ^sj 1 r?g f iai > - Ü > R o > ' Ü > ^ o > 9 O p fl Ü > r- o > r- u

tf •H

I en a PQ m P3 m CO m o

*> I o rH 9 r> 4 m vO t^ 0) o H r-t rH rH rH rH H

i6

Page 52: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

ii a ■ Ü

B

U C o 5 ^ 1 R 3 i M 0 « •H'-N H ♦> M

-i -* tn d -* 4

CM ft ^ 1 R H

ulated

1 Tank

essure

< -i -* r> d ^ 4

m* H ^ H R R R < -* -* (»"i o -^

u ^, rH BO vfl P«

O vO o IA CM es • • £ c D aj § i p £ 8 •- « .H a ■

- * 46 |Q i vO -^ w is R ^ .r4 *> 0) -rl • • • 4-> n n n 4 4 ^ 4 4 rH

0)

.1? ,3 I -H i * ^ R R H t- 0] CO ■ • t • •

4 4 ^ 4 4 ri

^S ♦J ^'-N m i/\ ■A I« in IA p o ■• -, <t 3 -* 3 -^ -f t-. >N_^

h

CD

■ • • • 8 • 8 • 2

-* -t p-» CN IA -■t

*" ^_^

>c^

Foan

nsit

b/ft

• • • • • ^d rH rH rH rH r-t rH

^_ let'ä IA i/\ }Q ir> ir> L-v O O »H »-« N fV t\ fV N C S "i^

s •rl

: -p 3= 1 O T3

ft V cn -P n -P

E 9i ^ ? „ ^ ■ f0 4) vtl ^

o n

H in c ^ -O NH o a e

Q rH b U ro Ü <M P OV-.H ? 1)

tr •H i O Ü o O o o

*J I 1 rH N r> ^ u-\ vO

37

Page 53: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

IJ-a III III m n d M «

en a.

a.

a.

«V

«

a

a •i

a « IT» rH

8 8

S 4

i

is

3

a 00

s

0) -"-s

ilia w 0) «) f< n ■c3 il 8

to I

8 a 8 Q

O

8

■4J jo en n a a

4 -* i/\ 3

4 3 3

0) -H n m a 4

* a 4

3 4 4

O OV!. s a a

i 1 1

a 5£

Ad

£ -»

%

a

o o -w U

§ •H

•rl E o n 5

IA UN IA IA IA

O -J O V lAH rH R lA H 1

AI I AI I 41 I if I 0 4) oi) oc or

n5 3 ?dll ArH , H <

rfiP4J I

4) IA H 4)

E

IA IA r-l •« CC

&$ P4H MI

•H «lAIA H »lAIA r-l*C3e0 HOttJ-O CJ T* rH / ■

55

Ü-Ör-trH OTJOJCJ O^OMrV

M

0) m 98

■MM

Page 54: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

i. I I

ll

9

C

äN

0.

<]

fall I» s

illl

ill l9a Sä»

I US

a <M

illl

1 I I

s

I

4

n

«

N

I I

8

8

R

^1 i fid« 1

.-I * Ü0 » r^ • «^«^•d

3 .i| Ö.|

-y

39

-■ ■

Page 55: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

1 Q \f\ ^ CA >• s 1 1 1 1 1 i » K O a 4 HI

N 9 p 5 £ IA -4 '3 2 % i 9 s

ill Mt* « r- n

< • • •

r- CO H rH rH A 3

ip ft. • 1 • 5 • 8 • M

IA lA

00

R ^

2 9

• ^ s

^ ^ 4

<u ^> M H a c D -H

s.2!3 a o o D O O o /> O O 0 • • • •

fllll i i K IA fA

3 3 s LA 1 PA ä I**»

9 sO « «3 3 « % K 3 aj 3 ^ J ^ 3 • 4 3 3 «

4 4 4 a > 0 H 3

< g, F- *—s H ^^

1

B d a

• 3 (d

111 • 4

• 4 3

3 • 4

5 4

9 4 4 4 4

3 4

lA

c

5 a« O O^ R s s LA A LA IA R R S

n

C-. > v^

it

i F-"

1

1

H 3 Si

CO P ^ R «0 a 30

f. 5 • -* • • • •

-4 -* -* -t -t •

:o a 2 1 fi

^~s

3 K « « « % rA

sO ^0 rA

0 PA (A

0 fA

0

• • • • rH H rH -, -<! rH H

13 ^^

C 4) 4) -rt « L. N U 0 o -w u R f9 «8 r* ^J rA «3 C £ 01 ^^

^-N ^-N ^^ ^*\ • in (0 (0 tf) rH rH H H r^ ■\J p^

c ^| 1 ir\ o

5« I iv 1 C 4>

IA O 5 O | O 0 0' _o

o

t e-5 . . ^31 1 -H H *>

t .SI . rS ^ 4J

n •P n « « n H-* tn ■

2^^ «.3 ^ 4) 4) F-

4) t-

4) t-

V 3 ■ ■ •§^55 •§^55 \n&i ^5.5

■ H • IA LA

O ^ H H

a | 1 ^ * ä a I •H • ./N IA ■H • IA t/\ 5 . IA VA ■ 4) 41 4) H 4) 4} r-l • (V tV

^^ A A r-l « ^5 O 1 1 I 1 [1 1 I

to

o o o Q Q a a n a a a a

tl I il r-1 rv (^1 -^t IA NO •*«. CO 0 s d H

Page 56: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

1 S

Fuel

Tank

Igni

tion

Pressure (peig)

<i I i i 1 1

f R R » R • « « • «0 n (*\ rj

<3 9 • 5

8 8 t

8 t it a • • • • a^ -^ <n rj

H P.

<

9 • 8 • R 9

9 i

i • 3 R R » « § . •

eo f» «^ H

V

ll lit 8 M J.

•H I (U

> n

"a

o

B o i o

3 o i i

O tV N 1A • # • « «n t- » <v •3 ^ * s

^8? ■H -P «

8 4 <n <•>

i i • 4

^ ^ i i 4 4 4a

• 3'«? III 5 <n

4 K 4 4

i

4 5 ^ ^ ^ 4 4 4 4

4« O OVl 3 ^ K R R ^ ^ Ä Ä

US 1 00 to CO

• <o

-* g; ^ g; ^ • • • •

3^5

Is NO

4 • PS H

• H

g 0) 0) -H B U H M< 0 0 -rl U R n

(V R ^ «5 ?? S?

1 1 1

en

i ■ 8

1 liuta ■H • ITS IA

i I s 1

a d z

1 s

1 inii

S S S S

i ä ä ä i I f i p p p p 9 9 8 a

* * * *

Q Q Q Q o Q Q Q Q

1 a a 4 H

41- & a 5 R

Page 57: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

s

5 i

M

I

»A

i

111 IM III 3 £'c

s a JO ft 9 8

£ 1 1 1 1 • • • 4

• •

o* • 8 9 • « 8 ft 8 • • 9 • R ft • • a. <1

c^ i ^ c- • 3 a n ft

tf & 3 g 1 3 5 a SJ JQ • « • • < 9 t- in

H CM o • SI (A

H Ü ft 0) ^

00 O O IA O >A O CV f^ • « • • • • •

Boc

.b

Ign

i P

res

Ris

e 3 3 a* H rH

£ 0 fc a a

lal

too

sure

la

)

NO ft ft 8 a S 3 S 9 |*|J •

4 ^ R •

4 ^3 Ä •

4 ft Ä

Amb.

P

ress

ure

(p

cia)

ft ft ft 9 1 ft 3 3 3 i • •

4 4 •

4 • •

4 4 i 4 4

iis R ft ft 3 3 9 8 J 8 H >W

1 US IB «0 o ü £ £ <0 ft R •

-* • • -*

• -*

• •

id ^ sO vO vO •« >o VÜ r^v f^l c^ f^ (»\ r-\ n « iH i-I H H H rH

• rH H

y-N

IIJI M m iri ir> IA »A IA IA IA N rvl CM OM CV tM (M CV CM

b. 0- V)-*

• H H . ~t -* , t- IN

1 1

l/N O £ i iA 5 ^N i i IA B

• •

1 1 H Ei

9 S

^3i 11 s a

rH rH H^

1 1 s a

<s 1 1 11 1 . iA tA 3 • N tv 11

1 M w w H w w M M w

I H fM r> ■* ki IA vO t^ «V 0^

Page 58: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

3 s

fl i 0. in H

I B

I

£0 I u

A,

ft.

»If?

I ills |^8 a

tij

i

I M

il§

»i «., N O "H

b ft. CO

i V m

&

I

as

Ö?

3 4

3 4

K

^

N

ff

CD

0>

3>

i

(V

3 4

3 4

9 4

3

IA

o

9

«0 B

&

?r3

Si. ►.

+> ^ü fc

It |l K

+>

in in CQ to m

C\ ^3

Page 59: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

I

< > \ \ g» ■

7 ■1

\ a. Q- a CM 1 in

\ \ \ \ \ \ \ 1 i

\ i \ \ [\ \ \ \ \

\ \ \ \ \ \ \ \ \ \ . \ \ \ V \ \ \ \\\

\ A\\ W \ V x\ \ Y N\\\ VVVA A-W

%\\ « v\\ 1 V \\ Q. VW

"O 4rt ~ x\\.

Vo

i 0,

2.

5 pp

^ = c (v; v^\s. -11 s

i f s 1 Iff J

s L >>\ oo

. L... -

z o < ■ g K z 8

I 9 ; h < w

■ < O K

t

D a

S S n leioj |)IOA K

GP71 09.(7 28

kit

Page 60: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

z o <

o u. z o o Q 5 >

i < o

o

GP71 09?7 30

^5

Page 61: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

,

\ v 1

1 5 \

Wal

l V

oid

. 0

psig

em

Pre

ssur

e (2

5 p

(Vai

l V

oid

Co

nfi

gu

(2

5 p

pi)

\

D

15%

Fo

im

Init

ial

Sys

l

O 0

% F

oam

\ (B

ase

Lin

e 1 \\

\

z o

0 . Q

a- _i

| < O

i tr Z) o

I R leioj. piQA ..„

GP71 0937 31

U6

Page 62: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

J

|B10i piOA %

('.P;i 09,17 ,1?

»♦7

Page 63: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

"

|R»01 piOA %

GP71 0937 .15

40

Page 64: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

.-■

CM Z o

< cc D

? O u 1 LU

< ■ -1 fN u.

oc a LU

a. D 7

J J >■

00 u - cc

|BJOi piOA %

GP71 0937 37

U9

Page 65: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

z o

< oc 3

u.

O u Ü z ai

cc LU Q z > o cc LU

< 5 i o z in

w IT

a

inox I'IOA %

CPn 0P37 30

50

Li

Page 66: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

u

9

8

7

6

5

4

3

2

1

0

i i i O Combustion Data tor Ignition

of all Available Void

1 \ 1

I /- Theoretical Curve Pc

P1

K

I

VTK i

V„/V-, \

VTK-VC(K-1)

Adiabatic Expansion VR/VC

\

Vy Total System Volume Vc Combustion Volume V- - V_ V„ Rehpf Vohimp J

\

1 i; M

\

Cä^ b

, ̂ _

2 3

Pc/P1 PSI

; a

FIGURE 24 PRESSURE RATIO vs RELIEF TO COMBUSTION VOLUME RATIO-LINED WALL

FUSELAGE TANK

GP71 0'):i' JO

51

Page 67: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

VR/VC 5

FIGURE 25 PRESSURE RATIO vs RELIEF TO COMBUSTION VOLUME RATIO 10 PERCENT VOIDED LINED WALL

FUSELAGE TANK

GP 7 1 093 7 4 I

52

Page 68: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

VVC 5

O Combustion Data for Ignition of Center Cavity Plus Two Wall Voids

A Intermediate Pressure

□ Data Circulated for Combustion of all Voids

VTK

>, VT K-VC(K-1)

< ■ Adiabatic Expansion J-r - Total System Volume //> ■ Combustion Volume /T - Vc = VR = Relief Volume

Pc/P1 PSI

FIGURE 26 PRESSURE RATIO v$ RELIEF TO COMBUSTION VOLUME RATIO 15 PERCENT VOIDED LINED WALL

FUSELAGE TANK GP71 0937 43

53

Page 69: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

10

VRVC 5

r ' ' t ■■■'

0 Comhustion Ddta t Centei Cavity Plus

i —r i ii Ignition of i wo Wall Cavities

A Intermediate Pressure

D Data Calculated foi ComlKistinn of

\0

all Voids

\ — Theotelical Curv > 1

_ 1 V : p c

I VTK

HI

\ K

VT K Vc IK tl

ArlMh.itic Expdnsn

\ < ? VC

V/

Total System Volume Combustion Volume

\

vT -c • R MC"r' ^

Vi ! (

PP, PS.

FIGURE 27 PRESSURE RATIO vs RELIEF TO COMBUSTION VOLUME RATIO 25 PERCENT VOIDED LINED WALL

FUSELAGE TANK

r,P7i o-t i; J i

5^*

.. -.

Page 70: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Vvc 5

pi;pi PS'

FIGURE 28 PRESSURE RATIO vs RELIEF TO COMBUSTION VOLUME RATIO 15 INCH DIAr "TER VOIDED CYLINDER

FUSELAGE TANK

'i

55

Page 71: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

V'VC &

4

3

2

O Max Pressure

A Intermediate Pressu re

D Data Calculated lor Combustion of all Voids

1 1

V - Theoretical Curve

\ Pc , D

VTK '

\/ 1/ V/ /I/ 11

«■ Arti^hatir Fxpammn

VT Total System Volume V- - Combustion Volume VT VC VR Relief Voljme 0

' 1 ; 1 9? 7

. ^Ä; A ii k

8 9 10

PcP1 pti

FIGURE 29 PRESSURE RATIO vs RELIEF TO COMBUSTION VOLUME RATIO 7.5 INCH DIAMETER CYLINDER FLAT ENDS

FUSfcLAGE TANK

50

Page 72: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

VVC &

0 Maximum Pressure Only

D '^'aii Calculated for Combustion

1 \ of all Voids

\ r- Theoretical Curve

1 y Pc VTK

l \ P, VTK-VC(K-1)

K ■ Adiabatic Expansion

i \ V-j- • Total System Volume Vo ■ Combustion Volume

! \ NT-VC V ^ neue'

t yJb0

1 il i u ^HEr^-£-J

1 1

Pc/Pl ^

FIGURE 30 PRESSURE RATIO ws RELIEF TO COMBUSTION VOLUME RATIO 7.5 INCH CYLINDER HEMI ENDS

FUSELAGE TANK

57

Page 73: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

VVC 5

4

3

2

O Com hi Center

A Intern

Q DataC of all \

i ~r i

islion Data tot Ignition of Cavity Plus Two Wall Cavities

ediate Pressure alculatert for Combustion

/oids

i i j

1 /— Tiieuieiii-dt Cu ve 1 1 1

p(: VTK

P

V V

, VT K VCIK 11

A 9 'j Total System Volume P Comhuation Volume

\ k 9

o V T VC VR Relief Volume

1 1 5 •

8

" r ^

PcPl l,s'

FIGURE 31 PRESSURE RAT'O vs RELIEF TO COMBUSTION VOLUME RATIO 10 PERCENT VOIDED LINED WALL

FUSELAGE TANK 15PPI FOAM

l,PM IVI MM

58

XHM

Page 74: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

1 >

E

100

90

80

70

60

50

OPSIG

I 40 ■ ■ 5 30

20

10

2PSIÜ

>

E 3 E

>

Walls Voideil Walls

FIGURE 32 FUSELAGE TANK RESULTS

5V

7 5 In Did Cyhmtei HemiEnd

ÜP7) 093)4H

Page 75: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

a

I-8

*

ll

•as 05

■ > n -H

« o l|J

S5S

MS o 2

O O -r-l U

§

f &

60

_fc!_

to I

CM cn CO I

I CM

o o tM -*

CO -* ~* ^ 5 » CO

Ann

444

8 8 8

co co es -i -* -*

NO sO >o ('S (*% fA

A IA tfl IN CM CV

< < •<

N r> 60

smmt

Page 76: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

s 9 s s 9 8 8 R Ä £ a Si a a t «^ (»> & 4 H N CM CM 3

s 9 R » 9 Ä R Ä Ä a 5 a a 8 8 a

Ill 11

f <^ tn & Ä H <M cv C^ i 9 9 R R 9 8 Ä Ä Ä a 3 a a s 8 8

tf m «^ a a H N CM CM OJ c^ j 9 9 1 3 9 3 ^ Ä Ä UN

«0 3 a vO S 8 a f »-> «^ 4 a H <v CM CM to c^ i

9 9 S fl 9 3 a 1) Ä & 5 UN CM J $ q ft

f r\ CN 4 H <M CM o, S t^ !l ^H

9 9 a a 9 8 8 IJ ^ a 3 k •lo ^ 8 8 r\ «^ X a H C* CM «v ^ C>- 8

ill - 1 Oijj & n •rT i

H • H H

<M

1 CM

I; ■

a o

1 o •

9

«0 • «0

fl 1 B «0

a CN O

B B r»

^

o r-j r 1

Initial

System

Pressure

(pei

a)

UN

4 i i • 4

a • 4

a a

a a

a • 4

a a a

5 a

>o •

4 i a • 4

a si

Amb.

Pressure

(peU)

• 4

• 4

UN en • 4

a • 4

a • 4

a • 4

a • 4

a 4

a • 4

a 4

5 • 4

>o

4 4 4 4 5 4

Total

Void

S 8 8 a a a a a a a a 8 S S a a

>H

1? «0 «0 «0 «0 «3 «0 «0 «0 «0 «0 «5 «0 «o oo M M

-* -* ■^ -* -* -* -* -» -» -» -* -* -* -* -* -*

.- '

Iff « « « A a a a a a a a a H H iH f-i ri iH H H H iH H H r) rH H H

^-S

io£^ CM i (V UN a UN UN

CM UN UN CV CM

UN N

UN N

:ription

0

1 | «

o

• 1 o

»

1 O

i «

6

6

1 i • 4)

o Ü f

4) i 3 1 1 9 1 1 1 1 1 1 s S ä § 1 1

i 1 CD (0 00 n m CD OS OQ o CO ca m CD CQ OQ CQ

i H <M «*> -* u\ <o t«- ^61^ JL & ?l » 4 UN

rH S

Page 77: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

I

Is

H S

tf • 9 t a • • •

a it q 3 •

1 • ^ a » ^ t d

tf • 8 R S • • • s ^ ^

• 5

^ 4 £ 8 Ä ä a »

• 5

^

H o • 3 S 8 3 3 I

8 • 5

BU • ? 8 Ä ä 4 4 i

l 4) O h —

ll||ü LA • 1 i i a

Init

ial

Pressure

(peU)

4 1 3 1 1 *

3

- 4

Amb.

Pressure

(peia)

4 i t 1 ||S % 3 3 3 s

1 \h * 4 5 5 ! -* ^ -* 5

iff • H

iS^ ^ Ä H -; H

3 o -H 5. h. ft, !0^

■I N ^J « « N

1 0} *^N ^-^ ^^S

•1|I1 i«|fi c^fss iijiii läjii^ |5.g^ ^d-ÜNN ^SNN »3a4i4

,^1 q -S so co

f o o o o Ü

1 H ^ 62 ■*

/>

1 ■J

Page 78: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

jl f 3 4

S g 8 S ^ ^ 2J KF

1A

1 • • Ä Ä ^ 8 • • • •

?? " 5 »

tf

C

g » » 8 S « ^ S s » ^ & i? - d a

£ 2

i oi 3 9 9^ 5 6(; 3 «

t 1 1

3 g 8 R 3 ^ 3 J<

ililü O «A

3 i ^ CM O

3 3 5 1 ili« 3 3 ^ ^ ^ ^

2J 4 ^ 5

l|J 1 1 Ä A 5 i 4 4 4 4

i 55w 3 S 3 2 3 2

* It * » ft * ^ ^ ^ <r

H H

rS c^ CN ^\ H -i r^ H

^Q ^Q ?} -Q ^ ^3

1 | |5.55 l-S .55

Ml i|il iril i|il li'ijl fi'ii li"5i h^ii 5'A5/\/\ 5vr\5iAA 5U^5AIA 5A5IAA

►»t«-<vi • • St«-N • • SC^fM • • St^CVJ . . O^HtMN 0«^HHH O^^HHH O—'HrH-t

4 Q Q Q O Q Q

H N <»> -* .A .o 63 '

Page 79: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

50

40

30

-0&2PSIG Initial Pressure I" Wall Egg Crate

O 0 PSIG Initial System Pressure

D2 P3IG Initial System Pressuie

A5 PSIG Initial System Pressure

20 10 12 14 20 22 24 1.6 1.8

Pc/P) psi

FIGURE 33 SIX CELL WING TANK EGG CRATE TESTS am 0397 te

6U

Page 80: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

80

70

60

% Total Void 50

40

30

20

OPSIG Initial P •essure —.

/

y^ 2 psic ' Initial 'ressure —.

1

/ \

5PSI( Initial Pressure—'

\

1.0 1.2 14 1 6

Pc/P, psi

1.8 20 22

FIGURE 34 SIX CELL WING TANK CYLINDER TESTS 15 INCH DIAMETER

65

GP71 0937 17

Page 81: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

% Total Void 50

FIGURE 35 SIX CELL WING TANK CYLINDER TESTS 75 INCH DIAMETER HEMI ENDS

Gi'7 1 rro» iH

OO

Page 82: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

100 on

g&-o-£ ̂ «P nn I 1 I

> 1

701 ■ 1 '

.J 1 [

50 t I

40

30

CD 0

O Maximum Pressure A Inleimudidte Prdssuie Tt D Oata Calculated from

Combustion of all Voids 1 20 1 1 ^

Pc .- VTK

P, VTKVCIK-1I

I K Adiabatlc Expansion ;

10 I 'j Total System Volume.

VQ Combustion Volume 9 8

\

-V- 7 V— VT - Vr Relief Volume "fj I \ , - . ;;

4

3

V -

Ii£Dj v ^The jretical Curve

V 2

1 0

\ m

\

v

\ Q

^ V x^

7 ^ "v^^

6

5 •s^ 4

3

B 2

1 0 1.2 14 16 18 20 22 24

Pc/PI

FIGURE 36 PRESSURE RATIO vs RELIEF TO COMBUSTION VOLUME RATIO EGG CRATE SIX CELL WING TANK

GP71 0937 19

67

mm mm^m J

Page 83: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

V0 V

90 80

70

60

50

40

30

20

O Maximum Pressure U Uatrt

Com LalculateiJ Irom instion of all Voids

1

P,. V TK

10

P1

K

VTK VC(K i;

AJiabatic Expansion

9 8

\ \ VT Total System Volume

\ V Combustion Volume —

6

C 5

4

\ VC

\ VT Vc VR Relief Volume

\ .A1 Fheoreticai Curve i

3

2

y '

< 5 O

r\

1 0

i \ i

V>

»V Q

7 i fc. 6 qD\^

"^v^

4

? 1 0 12 1 4 1 6 1 8 20 22 24

P P. c 1

FIGURE 37 PRESSURE HATIO vs RELIEF TO COMBUSTION VOLUME RATIO 15 INCH DIAMETER CYLINDER SIX CELL WING TANK GP71 0'> 1 ' . 1

68

Page 84: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

100 90 80

70

60

50

40

30

20

VR/VC 5

10 9 8 .7

6

O Maximum Pressure D Data Calculated from

Combustion of all

\ P c

VTK

p. VTK VC(K 1) —I \ r1

\ K Adiabalic Expansion

\ VT Totai System Volume

\ Vr-

\ C

V^ V„ Reiiel Volume J

V ^Thec retical Cu rve

N ' 0 N 1 c

Si )

1 9

s_ "V. ^«J

"Jt. °\ ̂j

1 1 i 0 1.2 14 1 (> 18

P„/Pi

20 2.4

r2 rc'r1

FIGURE 38 PRESSURE RATIO vs RELIEF TO COMBUSTION VOLUME RATIO 7.5 INCH DIA. CYLINDERS GPJI o» 7 -o

SIX CELL WING TANK

Page 85: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

A

g p >

E I E

90

80

70

60

50

40

JO

20

1C

0

'00

90

80

/O

60

40

30

20

10

0

"^

.i.i«d W.iiis

OPSIG

5PSIG

Fc|ii Cr»ti 15 in ill.i Cylinriei 12 in Long

^i

i

1 [_ 7 5 in ill., r, Imili'i

12 in Long

FIGURE 39 SIX CELL WING TANK RESULTS OP/I O'l.l.' •,.■

,•-

Page 86: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

H 5

8 I

Ü a

II CM i

4) ^-^

"8

• a m

Ml bow.

I ll 2 —

55

^ d xi

r> o «> o

«* 5 4 ^ CM <0 O O

8 J^ 3 ^

>0 [- N "N

s a ^ ^

o o H H ON ^ t

WS tr\ Q CM

4 4 4 4

4 4 4 4

vO IA

CO 00 «0 CO

-t -* -i -*

M IM >A B f^ r^ O «»N

g | ■H E o n

I

IT» l/N l/S U> «N <V <\ CM

II H

•<-<"<•<

H CM f

•71

Page 87: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

i > ?5 I

i

g l»> 8 (V » s R 8 •H--^ a. • • • •

< R H a o^ » i

II I1

.^ B H

• 9 «5

8 »

it 8 • • • R R • • < rH o^ t^ d o

Bomb

Sample

Ignition

Preaaure

Riae

(pel«)

to (N o Q O • R

« i H «0

lifi 3 s eo «0 «0

4> -P •> K ill« 4 4 •

5 4 si

Ut^^ * B * 3 3 K «Q <0

S » 5? i * •

4 •

4 4 4 £

a« iis 8 3 & Et 3 R

^^ 14 &>S «0 «0 so «0 • «0 CO

o uZ-> •* -* -t -t -i -* t*

^^

■A vt< o >o >o NO VO <»> C^i n (^ (^ f^

Fo

Dena

(lb/

r-J rH r-i H rH i-l

•-*

O O -H B l/\ U\ »Tv irt l/\ « «x f\l OJ (M o* tv

b, ft, W^' 1

g V ■ V V 0) 1) 1 * I i 1 ti ti I B E E E t. kl u o ü o u u

1 1 I 1 1 1 1 1 tc v

1 n CD ■ ca (0 »

1 r-H OJ CN -* in vO H

72

Page 88: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

M

HO

10

60

% Total 50 Void

40

30

70

10

^ OPSIG nitial Pressu e

So

y <r

\y ^

15 16 1.7 18 2 1 19 2.0

Pc/P1 PSI

FIGURE 40 THREE CELL WING TANKS TES" LINED WALLS

2.2 23 24

GP71 0)37 23

73

Page 89: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

■J

C

\

\

\

\

\

\ N 1 \ 1 I

tial

Pre

ssur

e tia

l Pr

essu

re -

ti

al P

ress

ure

\ L

c c c o* at 01

a a 0. 0 "N m

0D< 1

c ) N

a. u a

to

I- < u Ü o

z

u LU UJ oc X

cr

o

0 0 O O 0 9 0 O 01 00 r^ (0 in «» (N

I GP71 0937 f.4

7U

Page 90: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

100 90 80

70

60

5C

40

30

20

VR/VC

I I 1 1 1 _ 1 II 0 Mii»ir"um Pressure —

•A Inlerniediate Pressure —

. D Data Calculated from - Combustion of all Voids

Pc VTK

L P, VTK - V^(K-I) ^ 0 3 T V K Adiabatic Expansion

I > L VT Total System Volume

\ \ "c Combustion Volume

\ \ vT- vc V R "* iet voi jme

\ ^

k > k N 1

c ] H D

Theore fical CL rve—^

\ N w i ^ ^N

tX L i \

\^ s s N

I 5

10 nq 0.8 0 7

06

0.5

04

03

02 10 12 14 16 1.8 2.0 2 2 2.4 26 2 8 3 0

Pc'P1

FIGURE 42 PRESSURE RATIOS vs RELIEF TO COMBUSTION VOLUME RATIO ■ LINED WALL WTIOM»«

THREtCELL WING TANK

.

75

Page 91: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Vvc

100 90 80 70

60

50

40

30

20

1.0 09 OH 0.7

0.6

0.5

04

0.3

02

r I I (J MaximuiT) fiessure D Cala Calculpted from

Uomoustion ol all voias I l I 1

Pc VTK

- Theo retical C L

.urve P1 VTK - VC(K-1)

C K !w<v-

K Acli./h.itK Expansion

Total System Volume

r iS s^ ̂

VC VT

Com

-vc justion VR R

Volume elief V( Jlume

V

^ H ■^c ?

' I \ \ \ V

\.

\ ! l I

\

\ 3 ; N " v \ sv S

V N. K ^X

S 5

10 12 14 16 18 2 0 ?.a ?4 2.6 2 8 3 0

Pc/Pl

FIGURE 43 PRESSURE RATIOS vs RELIEF TO COMBUSTION VOLUME RATIO EGG CRATE THREE CELL WING TANK üP7i Ü937 b?

76

Page 92: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

■o ö >

E

I

■ o >

a9

I

I

5 >

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

7n

60

50

40

30

20

10

0

OPSIG

2PSIG

5PSIG

Lined Walls Eqq Crate

FIGURE 44 THREE CELL WING TANK RESULTS

cp/l en; 58

77

.

Page 93: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

SECTION IV

PHASE II TEST PROGRAM

1.0 TEST SET-UP

1.1 Combustion ."Set-Up

The Phase II test cct-up for evaluating arrester effectiveness characteris- tics consisted of two jO-lnch lone 8-inch diameter 3/°" wall thickness plexiglass tubes, Joined with a divider plute containiiig 50^ open area. The tube set-up was designed to withstand the full combustion over-precFures generated by either a stolchioraetric JP-U/air or propane/air mixture. Combustion volume to relief volume ratios of 1 to 1, 1 to 5 and 1 to 10 were provided by using predetermined lengths of plexiglass tubing for the combustion side of the system.

l.P Instrument.-'.t i on

Instrumentation consisted of strain gauge type pressure transducers located in each end of the plexiglass tube arrangement and a l»0-gauge cromel-alumel thermocouple placed In the combustion side of the system. Pressure, temperature and ignition time data were recorded at 1000 cycles/second system response on oscillograph traces at lb inches per second. The temperature date was used as a fire verification only. The combustion side of the tube was cnilbratod with spaced tape strips along its length and high speed movies (1000 frames/second) were taken to obtain flame speeds.

1.3 Explosive fixture

The explosive r.ixturo used for the combustion tests was the same as described for the Phase I effort, basically stoichiometric propane/air mixture. A chemical analysis of the commercial propane used In the program Is included in Appendix I.

1. •• Ignit-'on 'ystem

The power supply for the ignition system for the Phase II combustion ter.tc is described in the Phase I test program. Ignition was accomplished by a point source ignitor with a l/U-lnch spark gap. fjpark ignition was initiated at the mid-point of the combustion side of the tube set-up.

1.5 Fuel Flow Pressure Drop Get-Up

Fuel flow pressure drop tests were conducted using the 8-inch plexiglass tube -ct-up described in Paragraph 1.1. The two-inch thick test specimens were bonded to the divider plate containing a hole which was 50'" of the cross sectional area. A flow straightoner consiiting of a ?-inch thick piece of aluminum honeycomb was Installed in the flow tuoe inlet stction. Fluid pumping rates wore varied from 50 to 150 gallons per minute using JT-1* at ambient temperatures a; the i'low media.

Preceding page blank 79

Page 94: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

1.5.1 Fuel Flow Teat Instrumentation

Data instrumentation consisted of a turbine; type flowmeter connected to a frequency counter to measure fuel flow, a U-cube manometer for mcanurinc test specimen differential pressure and a pressure gauge to measure fuel inlet pres- sure. Flow measurements were taken from a dicital read-out type Secknan counter. System accuracy for the flow instrumentation was + 2 percent.

1.6 Thermünhysieal Propertios Test Get-Up

1.6.1 Thermal Conductivity

A guarded hotplate apparatus with ±2* accuracy within a moan temperature range of 150 to 3000F was used to generate the thermal conductivity data. Measurements were taken, with the material in a vacuum, in increments of IOC ? o-."er a mean temperature range of 150 to l*00oF.

1.6.2 Specific Heat

Data fur the specific heats of selected materials was taken with a Thcrno- pbyslea Model AC-lOO adiabatic calorimeter. Temperature increments of 100 ? over a range of 0 to u00oF were used for specific heat data points with an accuracy of ±2'.

1.6.3 differential Thermal Analyzer

The Robert L. Stone Model KA-2HD differential thermal analyzer was used to determine material melting points, latent heats and heats of reaction. XblB technique measures the differential temperature between an inert reference and the sample material due to chemical reactions as a function of temperature. Data is recorded on thermograms which are shown in Figures U5 through 55.

1.6.^ Surface Area

Surface area measurcnentr. were made by the American Instrument Co. using a :.'unlnico Model A?A k. This device measures surface area by the lev; temperature gas absorption technique where the quantity of gas necessary to form a mono- layer of gas molecules on the surface of the Siaterial is lueacurcd and recorded as surface area per unit material weight.

2.0 MATERIAL TiilST COiVFICURATIONS

2.1 General

All material specimens for this phase of the program were tested in 2-inch thicknesses, cylindricai:.y-cut to fit inside the plexiglass test set-up.

2.2 Material Configurations

Sixteen basic materials and configurations were tested to demonstrate their arrestor effectiveness. In addition, eleven coatings were applied to these various materials and configurations varying their chemical and thermophysicol properties to determine any relationships applicable to their arrestor effectiveness. The material configurations and coatings tested are presented in Table 15. Table 16 describes these materials and their respective properties.

80

Page 95: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

3.0 TSiT rROC^DUR:-

3.1 Combustion Tests

In order to evaluate the many material confiruratlonc with a minimum number of tests, a test procedure was set up so aj to test naterials at th- least MVtr« tost conditions first where failure would eliainate further tostinn; of that material. This was accomplished by arraruUnr; the test set-up with a com- bustion volume to relief volume ratio of 1 to 10, initial system pressure of 0 psip and the natirlal wetted with JP-^. Specimens that failed to show flaaie arrestor capabilities within the defined success criteria at these condition;, vere olialnated from further t;st':nj>

Icnitlon tost procedures were the same for each specimen and test para- meter- The sample was bonded to the plexiglass tube divider plate and weighed. The specimen was then wetted when applicable, allowed to drain for five minutes and acaln weired. ■":: • llvlder plate and attached specimen were installed in the set-up and the pressure in the plexiglass tube reduced to 0.5 PSIA by a water eiuctor system. A pr«--mixed stoichiomctric propane/air mixture was introduced into both ends of the tort fixture to a positive pressure, which was then vented through the bomb-scnplor. ./hen the desired test pressure was established, the vent was closed and the mixing tank and bomb-sanpler isolated by closing the necessary valves. The bomb sample mixture was ignited ani the pressure monitored to verify the stoichiometrio mixture of the propane/air media. The mixture in the test article was then lt-nitcd and pressure and temperature measurements recorded on an oscillograph trace.

After the system was purgsd« the test plate was again weighed (Table 17). If the tested specimen was effective in limiting the system over-pressure to ■.ithin the defined success criteria, the test was repeated at 2 and subsequently 5 psig initial syster. pressure. This procedure was repeated with combustion to relief volume ratios of 1 to 5 and 1 to 1.

Coatings as listed in Table 15 wire applied to materials that showed a measure of success Including all the honeycomb configurations in spite of their poor performance. Tests on these coated materials followed the sa^ae sequence as described in the previous paragraph.

Both wet and dry sample tests were conducted. Wetting agents included JP-5 and water.

3.2 Fuel Flow Tests

Fuel flow pressure-drop tests were conducted on candidate mat trials using JT-1* as the fluid media. The specimen vas bonded to the plexiglass tube divider plate and installed in the test set-up. Pressure-drop readings were taken while increasing and decreasing flow rates from 50 to 150 and back to 50 gpm. I'atu for these are shown in Table 13 and Figures 5^ through 59«

81

Page 96: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

3.3 Thermophysleal Properties Tests

Thermophysical properties testa were co.-lucted or. car:dldate materials as listed in Table 14. Thermal coriductlvlty moasurjmei.tr, within + if were made in increments of 100oF over a mea,, temperature ra.-.t.e of 150 to UOO0?'. Each of the ti st samples was sandwiched between the heater plate and a water-cooled heat 'ink.. The heat throuf;h each te^t sample (one-half of the total electrical pow^r supplied to the ce.-.tral heater) was raa..ually adjusted by rheostates. Rheostates were also used to manually match the temperature of the guarded heater to the temperature of the co; tral heater, 1.1.us ensurini a unidirectional heat flux through the test samples. By measuring the electrical power supplied to the central heater, the temperature drop across each test sample, and the thick- ness of each test sample, the thermal conductivity of the test material was calculated at steady-state by means of the one-dlmenslonal form of Fourier's law of heat conduction. Data for these tests are shown in Figure 60.

Specific heatn of the materials were measurer», In Increments of 10G F over the range of 0 to '♦00oF. The sample was Installed In the small flat box calorimeter which waa lowered i:ito the adiabatic guard chamber. A radiation shield was folded around the tiuard chamber and B vacuum bell-jar placed over the entire assembly. After evacuation f the enclosure, liiuid nitrogen flowed throu,^h the cooling coil which wis an ir.tegral part of the adiabatic r.uard chamber, thus lowering the chamber and calorimeter to their Initial starting temperature. Upon reaching the desired low tempcr:iture, the heater on the calorimeter was turned on and a regulated preset D.Ci power, was supplied to the calorimeter and contained sample. The snorgy suppll-i to the calorimeter serves only to raise the tefperature of the calorimeter plus the enclosed sample. The heat supplied per legree rise in tompernture represonts the heat capacity of the two. -'Ubtractlng the predetermined heat capacity of the calorimeter from the total yields the heat cnpaclty of the jample. The L-peclfic heat of the sample was obtained by dividing the sample heat capacity Dy Ui«i ..as.^ of the sample. Data for those tests are shown in "iguro 6l.

Melting point, latent heat a:.i heats of reaction were determined by differ- e:tial thermal an:dysir. The 3pecimei. wao place I In cj;itact with or.w Junction of a differential thermocouple while the other Junction wat placed in contact with an amount of high purity alumina having the came thermal r.nec as that of the specimen. Temperature was then increased at a pro^remmed rate in a con- trolled atmosphr-e. Whan the specimen undergoes an exothermic or endcthermic reaction, the Junctions of the differential thermocouple become unbalanced and an emf is generated and recorded, free Figure ^5 through pj,

Specimen displacement volumes were obtained by submerging a weighed sample in a graduated cylinder partially filled with a known fluid. The displacement volume, 7+ in percent of total bulk volume is given by:

V. . 0\ - Pb/Pt (100)

pt = true density-

Po = bulk density

82

AiM

Page 97: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Fuel retention of the three succesoful ccrabustlcn candidate materials was determined by submerging a weighed test sample in a room temperature fuel bath. The sample was then drained and re-weighed.

Surface area wnc measured by a low temperature t^as absorption technique which measures the iunr.tity of gas necossary to form a nonolaycr of gas molecules on the surface of a weighed sample.

1*.0 RESULTS AMD DISCUGGIOH OF RESULTS

U.l Combustion Tests

Data for the combustion tests of the Phfse II effort are presented in tabular and graphical form. Table 20 and Figures 6:-' through 65. The tables represent the raw data and reflect pres ■ re increases from combustion for both the Ignition and receiver sides of the test article. Testing of each specimen was initiated at the least severe system paraneters of combustion to relief volume ratio of 1 to 10 and a JP-5 wetted speciiieii. ^here material flame arrestor effectiveness at this condition did not meet the defined success cri- teria as previously discussed, no further combustiDn testing was performed with that specimen. It can be seen from Table 20, that considerable effort was naved using this method in that a great number of material configurations did not warrant further testing.

Graphs of the Phase 11 data are presented in the form of relief volume to combustion volume ratio versus the absolute final combustion pressure to initial system precsure ratio. Only 9 materials could be tested at a sufficient number of system parameters to successfullj 'e graphed. There are shown in Figures 62 through 65 and give excellent correlation with the theoretical curve as pre- viously establishec".. Other material data points where obvious failure occurred correlate with- this clicoretlcal curve when the combustion volume is made e^ual to the total tube system volume minus the material volume. These were not plotted as the pressure rises and rise rates were too great to be useful as an aircraft fuel tank suppressant system. It can be seen that data correlation using this method Is accomplished with the Phase I effort of the program. Of the nine configurations tested only three base materials produced results which warrant their consideration as effective flame arrestors. Tnese were 25 ppl reticulated polyurethane foam, fire extinguishing foam and i.V Scotch Brite felt. Aluminum tube core and polyester scretn produced erratic results and therefore their degree of success is questionable with respect to this testing.

The 25 ppl foam successfully suppressed the explosions for the following test conditions:

(1) Vr/Vc ratio of lO/l at 0, 2 and 5 psig initial system pressores with wetted, water-wetted and dry materials.

(2) Vr/Vc -atio of 5/1 and l/l at 0 and 2 psig initial pressure with JP-5 and water-wetted material.

83

Page 98: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

The fire extinguishing foam was effective for the following test condlt' ms:

(1) Vr/Vc ratio of 10/1 and 5/1 at 0, 2 and 5 psig initial system pre'aure with JP-5 wetted, water-wetted and dry matericC .

(2) Vr/Vc ratio of l/l at 0 and 2 psig initial pressure with both wet and dry material.

Scotch Brite material was successful at all ratios of Vr/Vc tested for 0, 2 and 5 psig and wetted or dry material.

Coatings were applied to various materials as listed in Table If and In one case showed marked Improvement in the results. Aluminum tube core cjated with flourel In a Vr/Vc set-up of 10/1 at ambient initial pressure reduc 1 the combustion over-presrrure from 17.5 psig to 1.5 psig. This only performed with such over- whelming results in one case of several similarly coated materials, but indicates that with the right combination of materials, configurations and coatings con provide Improved flame arrestors. Other coatings tested showed Irtprovements also, reducing combustion over-pressures by from 12 tO 2h%. Polysulflde-coated l/8-inch perforated aluminum honeyconb showing a 12''. reduction in over-p.essures and glasc; resin-coated fiberglass providing the 2U^ change. Results of <ther material and coating combinations ranged between this minimum and maximum ycrcent improvement as can be scon in Table 20, Coated foams showed little if ary improvement over the base material results and in the case of the K3r and KI rjatlngs, higher com- bustion over-pressurob were obtained. Copper-coated foam h's a greater flame arresting effectiveness than nickel-coated foam or tne MSU polyurethane foam materials from an over-pressure standpoint.

V.'ator and JP-5 wetted arrestor material performed better than dry naterids with respect to limiting pressure rise and flame propagation. The water wetted samples performed only slightly better than the JP-5 wonted and dry specimen at large Vr/Vc ratios in spite of the jverwhelminc thsnul sink. This would indicate that the action was more physical jr chemical than thermal. At low Vr/Vc ratios; i.e., 1:1 only the '..'etted material was successful in 3limlnating flame propation. Merc again the water wetted samples only slightly out performed the JP-5 wetted materials indicating strong cr.emical effects.

Flame speeds for the combustion tests conducted at 0 psig initial pressure with a stolchlometric propane air mixture were measured by high speed motion pictures (1000 frames/sec). The number of frames that were spent showing the propagation of the ignition kernal in the calibrated tube were counted and the flame speed calculated. The average flame speed for these tests was 19 ft/sec.

U.2 Flow Test Results

Results of these tests are given in Table 18 and shown in Figures 51* through 59. Of the three most successful arrestor test materials, the 25 ppi foam resulted in the lowest pressure drop. As can be seen from the tabulated data, pressure drop reading for the foam and felt materials do not repeat as the flow is cycled from 50 to 150 to 50 gpm rates. This is due to the collapsing of the material as the flow is increased and the failure of the material to regain

8k

mm

Page 99: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Itö original shape as the flow is decreased. After a period of time, the material does return to its original shape and the tests results wore rjper.table. Materials felt to have promising flame arresting capablliti'.»: in adlition to the three discussed above, were also flow tested for latu correlation purposes and syatoin analysis.

Ix ', Thünnophysical Properties Test

Thormophysical properties measurements, included thermal conductivity, specific heat, surface area, bulk density, specific fuel retention, melting temperature and heat of reaction of selected materials. Con- figurations that showed little or no potential flame arresting capabilities were not carried through the complete thermophysical properties testing in that no benefit could be realized toward the comparison of materials without successful combustion test data. Table 19 shows the data applicable to the various materials. Figures 60 and 6l represent the thermal conductivity and specific heats at various test temperatures. Figures ^5 through 53 show the traces from the DM neasurements. Thermal conductivity and specific heat data have been included as a variable in the regression analysis of Phase III of the program and are given in Section VI of this report.

85

-■- - ■ _

Page 100: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

SECTION V

CONCLUSIONS AND RECOMMENDATIONS

5.0 Conclusions

Phase II of tbe program has shown that other materials and configurations can be effectively employed as fire and explosion attenuators In aircraft fiel tanks. Although the number of material configurations that performed vlthln the test article vas not representative of an actual aircraft fuel system.

o Hie most efficient flame arrestor mattrials tested for all combustion parameters considered were the 3M polyester felt, (Scotch Brite) followed by fire extinguishing and 25 ppl Scott reticulated polyurethane foam.

o Hie proper coobination of material configurations and coatings can be effective flame arrestors. Felts and foams appear to be the most promising configurations.

o Large pore diameter materials are not effective flame arrestor configurations.

o Wetting the material affected system performance from an over-pressure standpoint and showed a greater flame arresting effectiveness where the Vr/Vc ratios were small.

o More material damage resulted in tests with dry specimens.

o Ttxe combination of fiberglass honeycomb coated with glass resin produced the greatest Improvement in arrestor effectiveness due to coating addition.

o JP-U fluid pressure drop is lower for the 25 ppl reticulated polyurethane than other equally effective foam and felt materials.

o The material thermophysical properties of thermal conductivity and specific heat have a small effect on the explosion attenuating effectiveness.

6.0 RECOMMENDATIONS

It is recommended that further testing of arrestor materials be conducted where specimen thickness to combustion volume can be varied and the L/D ratios for effective flame arresting can be determined. It is also recommended that these testj concentrate on foam and felt materials. Ignition energy also needs to be investigated as a variable for this type system.

Preceding page blank a?

J

Page 101: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Hnat of ~on ~

1 34 enl/gr

Hout of R<HH:tion ··' 30BO c:11l/gr cp • 0.6'1 Bwl# -°F JJ Temp of Fusion " 200°C ~ ?:' Temp of Reaction .• 2ll8°C ./ i :;

I

~ II":: : I'' : ji 500°C (932°F) -

1 t.< 1·>_) ••..•. .. ·;

~.' I ;~ ····• . ,, f; :· ;; .·•·

.. ;, '"*:: .. ~: \} < ·--

~ t_ ii'···' .. ; :.}_t' :,/i.· <·· ::::';.,. .. ,:, .... ,·,:,. ·::H ......._ (•':

:tl;& r.;; 400°C (752°F)- (' ... ···•·. ·.'

' .: .. ;: : . •... /> ....

•· ,· ';

I 'J ••........ •.·'.;·.

. ;:.; .;·· ..... '

.•.... ; •. '

~

\... ~~i :·;·f!:(·· I

I -----1--i; :

' •••••

I ,. I __ L 300°C (572°F) ~ I

' r--

~t\ ~~

..

Melting ,.-Point

2oo0c 1392°Fl

Exothermic Endother I!-me

FIGURE 45 OTA TRACE

25 PPI FOAM 150 IJV 2.239 :ng Sempl•

OP1,.,60Ml

88

Page 102: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Heat of Fusion ■ 17 6cal/gr

Heat of Reaction » 2530 cal/gr

cp-0.48Btu/#-0F

Temp of Fusion ■ 210oC

Temp of Reaction = 227

-Exothermic -•- Endothermic —

FIGURE 46 DTA TRACE

FIRE EXTINGUISHER FOAM 150 ^V 2.451 mg Sample

GP71 1606 11

89

. .

Page 103: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

... i .

~--. ---~ I \ t

,__ ____ ,:·---·-...__u52°F) 400°C ;:::J::=;:t-----t-"1 _ __._ _ __.___.,

I I I ..

r i : : t : 1~-. -~!--, __...._: - i I I t ! : j 11 I 1' -+--t:t-t-+---1-------i ..___ ___ .._ ___ . __.__,_ --~

:',~r i I' V 1-- Mtllting Poln

1t

FIGURE 47 DTA TRACE 3M SCOTCH BRITE 150 ~iV 2.647 mg Sample

01'71 tl\0!\ ':>

()

Page 104: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

1

Heat of Fusion ■

I Heat of Reaction ■ 763

3520

cal/gr

cal'gr

1

/

\i 00C(

"1

fcp-0.47 Btu/«UF

Temp of Fusion 2250C

Temp of Reaction ■ 2750C 3320f

s / l=bU 1

1

^ /

L4 S <*"- ̂

1

i

N L. "i

4( X)0C( 7520F)—~- ^/

1 \

1 i -N \^

N \

300"C. 157 ?0FI- L.-\ 1

i

i L - -j |

Reverse \.

Polarity—^ \

1 '

—1—

2 OCCI 392° c»—^

1 1

■1

! ; i t- E xotnei mic —— » 1 — Endothe rmicJ

FIGURE 48 DTA TRACE 25 PPI FOAM COATED WITH POLYSULFIDE 150 fiV 3 581 mg Sample

C.P7) 160'j 14

91

Page 105: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

r----~·------------·~--~--~~~-r--,-~~~ Ht!iJI of Fw;ton •· 70.0 Clll/or

Hu;n c•f Heactinn '" 2700 cal/gr

cr) " D. 5!1 Rtu/# -°F ·- h.t-+--+-+-+---1--"-P--t r~'rnp of != u~lon " 230°C - .~ .. ( Temp of Roilction .. 202°C/ r- 5oo0c WJ2° r: 1 +r----flf-~-o·~, ~--o...w--+--t--+---1--+---i

/l',f

. .r:-Melting .. .r I Point . _

. I 1----'1---t--+--"t--t-Exothermic ~f---t+--Endothermic-. I I I : .

200°C(3920~~:::t:: :

i l l I

I

FIGURE 49 DTA TRACE

25 PPI FOAM COATED WITH GL/\SS RESIN 150 11V 3.300 mg Sample

C\P11 11\05 10

92

Page 106: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

------:r-Ht•nt of F •;c./on · t1tJ c;d/gr

Hent of R~ti!Cl ion c 2/tl\1 c;;f/gr

cp ~ 0.33 Bru;:l;:_o,~

Temp of F'"'on ' 244°C I ~ Tilrnp of ne .. ctioll 28fl°C I i '

-·l·-·-r- :mooc (932°F 1 =-1 .

I I ~~i .• : ···._··•···•····· I I !l 4{ .... ,, ~-J_. ~L~ r .. I it,ll'; I i I I . ,; ~~· '.~:. ::{;·;. I l i I . '.····

I I I I ~' ·\l'.;.,/ .. t;;;·2:t -~--~w .. · .... eli{

I v , . ·.· ,· j·... !. " ~' i i CJ~--- i >u }:'> ;.:;).~:; < ,,

I I 1 l ··:~ . / . i·\ , ! ::./;. I IO<l"·' <752?1 1'\ • ·.~. • .: I f-H v I '[\,)·~ .< '-+-H / ... ''· I>F, I I I \ .<~' ··•·•·· . i~:ti\;} I H-t ! .I \ •. iT •. M, I••·;)•~ I : I "\ •. I< . I> !;11 ' ' t l. i 1 i K . .'l' •': l:.i:j\} i I I ! ... f" !)· ·.···'1<?:·.

1

I I

~········'''' I I ! f I 300°C (572°F} ~a;

i I i I

,....,

~ i l -~

·-i ;

I ~ i i

! I I I

~~~ ' i ' I I I I I

---l- f-- Meltin11 Point I

I I I I I I I I I

. I

I I 200oc (3920F)-1-

cp700 I I Exothermic Endothermic-

FIGURE 50 DTA TRACE 25 PPI FOAM COATED WITH REDAR VITON 150 IJV 4.137 mg S1mplo

OP 7 1 -1110l\ 1

93

I

Page 107: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

:' I

I I

l

H;' I 1', .··. ! t,.

I ~~ .. I ~~ -~--~~,~~ ... ++~-~~· -+~~

I ! i I i\. I i

~

;

-

I

I

I I I I I I ' I

r-------+l __ :_.l_l3oo0 c 1sn°F~-\ I J

I : I l-f+· · !. j_·4-+~r-~~~'-·~ i,

i ; i

[

I' I I I I '· I I I i i I

! I i . '1, i II I : I i i ;

: 1 I : j i ' 1 · ).- Meltinq

I ' I I I i /iii Pninl I ; : ~ I j I : J

H·-t--1 ll I ! L I I ! I ! I I I l I I 200°C (392fT l I

~~-__ L: i'. I I I I -++-+--+--+---4

LJ_____ - I J El<olt~Prmlc--l·--Emlnthermk FIGURE 51 DTA TRACE

25 PPI FOAM COATED WITH KEL·F 150 IJV 3.057 mg Sample

01' 1l I 001'111

Page 108: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

1

i i i u...i ,,t * '--

1 1 97 7 <-»l/nr

1 Heat of Reaction ^ 1830cal/gr

I CP = 0.18Btu/«-0F

mp of Fusion ■ 206oC J00oC

1 1 Te

h V f Temp ot Reac ion « 250UC

t J00o(

__ ;(752 0F|-

,

___

J

4-

1

,

1

1

1 '

3C 0oC( J720F 1

< I

s S \ 1

'

|

— 1

—,

•*■ —

. ^

.

i ^_ Itinq f 'omt

1 1 l 7nn0r (iq70Fi—

s

RxoTh etmic —Fn lother mic-

POLYESTER SCREEN

FIGURE 52 DIA TRACE

150/JV 6.285 mg Sample GP7 1 1605 13

95

Page 109: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

1 la^FIMCC L r -^-5 + - Heat of Fusion 0

^ k ^__ 4 -4- ' Heat of Reaction 3160 cal P \ cp 0 41 Biu a 0F >

V, i ; Temp of Fusion ?630C \ 1 Temi )of R eartion 2590C

^ A 1

♦ -—^-V—

■ —

400oC(752oFl A

LJ—__—A. T \ |

—i—i

^ r \

i 1

300oC(57?oFl—t- \ I : 1 -J

—'

J K -.

\ .

(

\ —

\

41

-Exo thprtr K -^ 1 — En (tothe mic

FIGURE 53 DTA TRACE NOMEX HONEYCOMB 150 ^iV 3 581 mg Simple

LiP/l 1r-0b 1!

96

mmm

Page 110: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

>...: ;..;

f---4-4---it---t--t --+--t--+---+---+------------.-----~ .. ·-----·-·1 Ji'oem 15 ppi

-1---4--+--t-----------··--·-· ---··---·-.--· 1-"ire Ex:tinguiehing Foam

,3M S<:otch Brite

Aluminum. Honoycoob

Aluminum 1/8" Hex.agnol Honeycomb

-----4-·--~-4--~---+---4-4----i,__-4--------------·· .. -;..;

:1: *: . r--l--1----l

Perforated Aluninum Honaycomb

Aluminum 'l'ube Core (Dimpled)

Fiberglass Round Honeycomb {Tubea)

________ ._, .... ,_ -··-··--

XI~ 1--+-+·-f--1---+---!-:--f--+-+-+---------.. ---------

l~ ·---

Fiberglass Sine \-lave Honeycomb (Cot•re~tion) 1 .. -

Nomex RoWld Honeyc\-mb r---t--+--4----t--+---+----+---+--+---+--------·-··----·--·------

Nomex. Sine Wave Honeycanb (Corregation) ><I

1--1:---+--+-+--1--t--+--i--t---+------·----·-·-·--~-··-· Stainleos Steol Tubes .3/16 Diameter 0.0~9 Wall

Viton Tuboe

Polyester Scre~.n (Rollod)

1 1---+--1---+---+--1---·-·-··-+--...._....-J ____ i--------------·-.,·-l

St&inleas S!;,eel ScnH.:n 11

(Chovron) I

t---t--+--+-+---+--t---i----+--~-4-------·-~----·--------l

Copper Plated ~~--~~=--r·~~~----·1 t-k-+-"'--l--+--+---i--+--t--+--r--+-N-ic_k_o_l_P_l_at_o_· a_· <5 _!Pi ~-~

Page 111: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

'&, __

____

., ____

---···-·------~---......---· ------------,-

---------

.:cr

.. :i~~.:=:tti

on

;,~

~~si

:,--

,nat

ion

l.

Ec:r

:~::

.:c..:

.b

Al-

l/S

-505

2-.a

:m:-t

... 5

2.

11~eycor~b

Al-

-?/3

0-50

52-

.C(n

:W-4

.3

J.

l'on

eycc

:co

AL

-1/'3

-505

2-.(X

)_)-

12.1

4-

Hon

e:rc

cc:b

A

L-1

/S-5

052-

.001

]!1

<:

Hon

e-;c

O"-

:b

.,.

H!m

-10

-1/S

-3 .o

I 6.

Hon

eyco

rl:

H:r

u-lO

-F/5

0-3.

5

7.

Hon

.eyc

a-:.b

H

?..f-

J/1

6-4

.0

g_

Hon

eyco

nb

H?.

F-r

/50-

3.5

9.

=~tal r~;b~s

::ate

rial

.~u:

-:--

L'1c

:::

All

oy

58

52 I

l39

Al'..

l":'..i

nu.':l

A

llo

y

5052

HJ9

.Alu

r:d.

r::z

: A

llo

y

5052

H39

Alur.in~ A

llo

y

5052

HJ:'

Mo

nt

~kr:.ex.

?Iyl

on F

arer

[)..l

f'ont

Ha>

ex

z:yl

on f

ap

cr

Gla

ss F

a"br

ic

Zle

in.fo

rced

Il

ssti

c

Gla

ss F

abri

c P.

ei.:1

.!' o

i'c ed

. H

asti

c

Al t:

.--.in

t:::

ID

-.m

;"

Cell

.3

ze

{In

ch

1/o

1/S

1/8

l/3

J/16

.137

5

~ ·1

· ~ ·

,

I -----~T

r0

1

1:1

2C

r:J1

e1

3

. i

(In

ch

) l

Cell

i:a

lls

~Cell

Sh

afe

.cx.

11

' rJ

on

-rerf

cra

ted

Jl

exas

on

al

t t

i

lllc

n-f

.orC

ora

t'd

I ?l

"~--Ccre

! I

I

4.5

j I

~.3 '

.CO

J P

erfo

rate

d

Hex

aso

nal

I

12.1

.001

3 T

ube

Co

re

!Ion

-Per

fora

ted

Hex

:a.g

cnal

).

0

Uon

-1 e

rfor

ated

. F

lex

-Co

re

).5

:~on-Per!."orated

Hex

.ago

nal

Uon

-Fer

i'ora

t.ed

Fle

x: -c

ore

.049

0

Page 112: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

,12

. I l I

lJ.

1.4

.. ' ;

1.5.

16

.

1.7.

1.8 .

. I 1.

9.

20

..

21.

Scr

;:en

:::

loth

(6

9'\

op

en

a.re

F..)

Scre

e!l

Clo

th

{ 5.

-~

';J.

J ~ o

pen

ei-

:!a

)

Ret

ic:u

l.at

ed

?oar

:.

Ret

icu

late

d

Foam

.

Ret

icu

late

d

Foam

Felt

(S

cotc

h B

rite

)

PC 1

.981

, 3M

Com

pany

R/M

L-3

20

3-6

, R

aybe

stos

/Man

hatt

an

Typ

e 65

0 G

lass

R

esin

, O

wen

s-U

lin

ois

Red

ar-R

F-9

02-o

l.,

R.Z

. D

arl.

ing

CCIIf

i.Sa.Y

I I Ste~l

?oly:.u-~t..i:m ..

'le

Po

lyu

reth

ane

Po

lyu

reth

ane

vit

h

fire

reta

rdan

t ch

em

ica

l.s

Po

lyes

ter

Kel

-F

Flo

ure1

Po

1y

sult

ide

Gla

ss R

esin

Red

ar V

ito

n

:,r-

!nsi

ty

.7/Y

t.3

500

.

I ! lG

G

""""

'li"

·I

1 · .. ;

ire

jia..

=

' !/~ ~

.. !.b

! ~

' t li

near

beh

! .0

2)

I 1

I i

I l

I I

25 ?

Pi

l 1

.}6

'

I I

I .1

5 p

pi

I I 1.

36

' '

I I

35 p

pi

I I I I

J I

I

Page 113: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

.....

0 0

I i I L..

...

:~

I .::c

:. ! ! 2

).

24

.

25. '

::::

o:1f

igur

at i•

)!<

~ c

Des

ign

atio

:.

l

Vib

rath

a.1

1e

A-7

61,

U:1

iroy

al C

hem

ical

Reti

cu

late

d F

oam

Ret

:\.c

ulat

ed F

oam

Tef

ion

-S 9

58-2

07

Gre

en,

Dup

ont

. i I

-------~-

Mat

eria

l

Po

lyu

reth

ane

:a P

lati

ng

S

olu

tio

n

Cu

Pla

tin

g

So

luti

on

Tef

lon

-·~~

\~G~

·:

.< 'J r

( c·~

\: :·

r' ~.)

~·~;;:~E::i

IAL

!-'?

CJP-

·:RI

.,I:

~:,

Cell

Siz

e

-. .;all

I'h

i:k

ness

(I

nch

) (I

nch

)

I

j -~

! ~ .. '":

'T"\

~1._

... !

" i

Cel

l ·J

al.l

s C

ell

.3h

ape ~ ~;?t:Y I

' i

I I

' .

I I I I

I

' I

'

Page 114: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

Bef

ore

?:i.

r:t:n

.g

Aft

er F

irin

g

I Sa

mpl

e .,.

T-

---P

late

:1

ate

rial

ilett

ing

Sa

mpl

e D

ry

' I

Tes

t W

ai@

lt w

eigh

t Ag

en:~

Ieig

ht

S1!m

ple

(A~~

)) I

;;~~

~ N

o.

Mat

eria

l (O

z)

(Oz)

(O

z)

~~)

Wei

ght

~)

(Oz}

I 1

Foam

25

pp

1

49

.5

52.0

50

.5

49.0

1.

5 JP

-5

2 F

aa

25

pp

i 49

1.

0 52

.0

51.5

50

.0

I .;;

JP

-5

I I 3

3M S

eo

tch

-Brl

te

49

2.0

52

.0

52.0

-

0 I

JP-.5

I

I 4

Fo

a 15

pp

i 48

1

.5

52.5

50

.0

I 2.

5 JP

-5

I -

5 F

o•

25 p

p1.

48

2.0

53.0

52

.0

-1.

0 JP

-5

6 3

ll S

co

teh

-Bri

te

48

1.5

51.0

50

.5

.5

JP-5

7 JH

Sco

tch

-Bri

te

49

1.5

52.0

52

.0

l 0

JP-5

I

8 JH

Seo

tch

-Brl

te

51.5

51

.0

50.0

.5

H;

P

9 JH

Sco

tch

-Brl

te

52.5

52

.0

51.0

.5

H

2()

10

JH

Sco

tch

-Bri

te

52.5

52

.0

51.0

.5

H

2()

ll

Fir

e H

ltti

ng

u1

shin

g

52.0

51

.5

51.0

.5

JP

-5

Fosa

.

12 Fire~

53.0

52

.5

52.0

.5

JP

-5

Fo

a I

I

13

Fir

e !

ltti

Dg

uia

hin

g

53.0

52

.5

51.5

.5

JP

-5

Fo

a

14

Yo

. 2S

pp1

54

.0

51.5

50

.5

1.0

~

l

I '

Page 115: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

'

!est

No.

15

16

l7

t i t 1

8

I i 19

l

...-I

CJ

I ~

:'\)

! j 21

t

22

2J

24

25

2S

2"'

2~

~-~

Fo

e 2

5 p

pi

FO!IO

25

pp

i

Fi~ :x

tin

gu

:is.

.lrl

ng

F

oa

Fir

e E

rt.l

ng

uis

hin

g

Fo

Fo.

a 25

pp

i

Fo

e 2

5 n

i

FOS!

l 25

Pi=

-\

Fo

a 25

PFi

FO

lD 2

5 p

t'i

Fo

• 25

~i

Fir

e ~ir~ing

!"':;

)8

Vir

e !X

ting

-JJ.

.shi

ng

?oaa

~~eh-:ite

,:-,..:

-· .. :~-;~: ~.

•.:

_...._ __

_ " ___

_ ..._ --

--.... -~

4B

43

4B

43

48

~

~

43 .. ~

55.0

54

.0

56.0

56.0

54

.0

57.0

5

7.0

1.5

51.0

2.5

52.5

52

.0

2.5

52.0

50

.5

1.5

54

.5

5J.

5

2.0

55.0

52

.0

2.0

54.5

5

).5

).0

54

.5

52.0

4. 5

58

.0

55.0

J.C.

55.0

5

).)

,;a.

,.i

5!.

-.. -

-~--

... -· _

_ .., __

_ -~~--·-

-~-------·

52.0

52.0

5J.5

55.0

50.5

51

.0

52.0

51.~

·---

---·

·

Age

nt

1.0

2.0

2.0

0

JP-5

.5

JP-5

1.5

JP

-5

1.0

H

;,P

).0

H

;fl

1.0

I

H;!

)

2.5

1

JP-s

).0

I J

P-S

l.O

I v

'P-S

I

_<-~ J

~~--_' _

___.

Page 116: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

,-,-

I I

i !

Tea

t I

No.

M

ater

ial

I

JO

I S

cctc

ll-&

:tte

l

Jl

Fir

e E

lcti

ng

uis

.llln

.g

Foa

:a

)2

Fo

m 2

5 p

pi

JJ

Yo

el 2

5 pp

1

J4

Fo

sa 2

5 p

p1

35

Fo

. 25

. .- 0

J6

P'o

a 2

5 pp

1.

w

J7

Seo

t.ch

-Eri

t.e

JS

Fir

e 1

Xti

.ng

uis

h1

ng

P

'oaa

39

Fa

. 25

pp1

.

1/)

F

oa

2S

pp1

41

Fa

. 25

42

fire

Erl

.i.•1

gn1

aMn

g

lo.

43

Fir

e P

.d.i

ngu1

shin

g Y

o.

n.re

Ea:Ua&~dsb~ na

48

F

o.a

).0

1.5

2.0

1.5

1.5

2.0

4.0

2.0

2.0

1.0

2.0

55.0

52.0

56.0

59.0

5l.O

49.0

50.0

4B.5

48.5

49.5

50.0

52.0

52.0

50.5

54.0

54.0

so.o

50.0

so.o

so.s

51.0

Dr-

y

Dry

t ~;

{~

Dry

L>ry

Dr7

Dry

Dr7

Dry

J.O

H;P

1.5

JP-5

DrT

2.0

JP-5

s.o

H40

Page 117: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

..-----~

I I

Ka

teri

a.l

I

Tes

t I

I N

o.

, -

I ~

I -

l 4 5

I

F'ir

e E

:rli

n,&

'J.b

hing

'

1 T~

!I_

Sco

tch

Bri

ta

4 7

Sco

tch

Bri

te

48

49

50

83

8S

S6

88

Seo

teh

Bri

te

Sco

tch

Brl

te

Foam

25

pp

i P

ink

Fa

.

.U-1

/8"

Hex

ap

1

Boo

eyca

:ab

Kel

-P

Co

atin

g

Al-

Tab

e C

ore

Kel

-F

Coa

t!D

g

Al-

1/B

" H

ex.e

gnol

H

c:lD

e;Jc

c.b

Xel

-F

Co

aU

ng

Plb

erg

l&sa

1/8

-~

Roa

nd J

lon

eJca

lb

lel-

Y C

oet

1n

g

JJ.-

1/8"

Pe

rto

rat«

<

~Xel-P

Coa

t.!D

g

lc:a

Dt

!ten

S1a

e W

aft

Jfc

De.1c

CDb

Kel

-P

Co

atin

g

Pla

te

Wei

ght

(Oz)

48

L.8 48

48.0

413

48

J.5

2.0

).0

).0

2.0

4.5

7-5

).9

2.9

9.3

55.0

5J.O

59-5

59.0

52.0

52.5

51.0

51.0

49.5

53.8

57.9

55.0

51.5

58.4

52.0

1.0

.)

1.6

4.0

.J

.s

----

-l I

-,;;

!~~

I

~a

JF-5

JP-5

JP-5

JP-5

Ji'-5

1

Page 118: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

I B

efo

re F

irin

g

Alt

er F

irin

g

--I

I I

Sam

ple

T

Pla

te

Mat

eria

l W

etti

ng

Sooi

pl.IT

; Dr

.r T

eat

W.e

ight

. W

eig

ht.

A

gent

. W

eig

ht

Scp

le

(A}-

(B}

We

ttin

g

Bo.

}{

at eri

al

(Oz)

(O

z}

(Os)

(O

z) ~

(Oz)

A

gent

(A

) (B

) I

(Oz~

89

ll<:

iim~

J/J.

.btf

Rou

nd

48

J.4

5

2.2

5

1.2

I

--I

1.0

JP

-5

HG

"ne7

Ccm

b K

el-F

I

I C

oa

tin

g

90

J.l'

iber

gl.u

a 1/

8" S

ine

48

J.O

52.0

51

.5

-.s

JP-5

' f I W

lrfe

Honey-~ Kel~F

Co

atin

g

92

Al-

1/8'

• P

erl'o

rate

d 48

9.

0 57

.7

57.0

-

.7

JP-5

~Glasa

l R

esin

93

Al.-1~ l

f«u

gn

ol

4S

4.1

5).

6

5J.

l.

~

.5

JP-S

~Gl.Ms

Res

in

94

.U-l.

/8'•

Hex.a

gno1

48

4.

5 54

.2

53-9

-

.J

JP-5

H

ale7

ccab

Gl.

ue

R

esin

95

Fib

erg

1&

ss 1

/811

R

ound

48

J.

4

5).9

5

).0

-

.9

JP-S

Hc

nt~J

ccab

Gla

sa

. '

l?.e

aira

l

96

Jl-T

ub

e C

ore

Gla

ss

48

7.8

58.4

58

... 2

-.2

.na

-s P

.esi

n

.

rn

.U-1

/8"

Per

fora

ted

48

9.

1 58

.7

58.7

-

0 JP

-5

lfcae

7cca

b R

edar

V

itoD

Co

atin

g

98

.U-1

/8"

Jfe:x:

a&n0

1 48

4.

S 54

.4

54.1

.)

.na

-s flo

ne:rc

aatb

Vit

on

C

oat

ing

;

L .

--·-

'----· -

--

Page 119: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

lDl

102

lOS

106

Fib

erg

lass

1/8

" S

ine

\rla

ve H

on:q

c:C

Db

Vit

on

C

oat

ing

Al-

Tub

e C

ore

Vit

on

C

oat

ing

Fib

er&

].as

s 1

/811

R

ound

H

on

eyc

cab

Po

l;:r

sul!

ide

Co

atin

g

llc:

:as

3/16

" R

ound

H

on

eyc

cab

Po

l.y

sul!

'id

e C

oat.

iDg

Fib

erg

lass 1

/8'*

Sin

e W

ave

Jfone

Jcam

b P

ol,

.wti

de C

oati

l'lg

Al-

1/t

r' H

exag

n.ol

lfo

ne7c

c:ab

Po

l:y

sult

ide

Co

atin

g

9.0

6.2

6 .. 7

5.9

8.)

48

s.a

-~-

---<

~ -w

-.----

·

JP-5

52.8

52

.5

.J

JP-5

53.4

52

.8

.6

JP-5

58.9

.8

-

JP-5

5J.3

56

.0

JP-5

56.0

55

.4

.6

JP-5

.)

JP-S

57.1

57

.0

.1

.lP-S

58.7

58

.4

.)

.lP-S

---

·--·--

--~ -·«~

~ ---

--__ ,...

....,.

, . -

Page 120: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

,---~---

"~--------

----

----

----

----

----

----

----

-·--

--.-

----

----

----

, B

efo

re n

r....r

:.g

Aft

er F

irin

g_

--

--.-

---

r---i

Sam

ple

,..

I P

l.i"l.

te

r~'ltedd

',;:-

;;tt

ing

Smnp

..1u

nz,y

! ,_

.,:

l Te~

\l:l

igh

t ',•

:eig

ht

i~~t:.nt

;-led

g."l

t

I S:r.

mp1

c

I N

o.

rr.a

terh

l ((

}.;)

(O

s)

(<4)

(0

!1)

Wei

ght

(A)

(B)

{03

)

I lD

S

A1-

l/&1

He.

u.gn

o1

I 49

7

.4

57.0

56

.a

I •

Hon

e;rc

rn.tb

Pol

:nru

J.,r

ide

I C

oa

tin

g

I I

I I

t.-J.4

62

.9

I 10

9 A

l.-1

/811

P

erf

ora

ted

4

0

1).

0

t

r l

(A)-

(s)

wet

ting

1j

( 0:1

) !g

ent

.2

JP-5

.5

JP-5

H

oney

eCD

b PoJ.r.ru.lfi~e

Co

atin

g

11

0 Po~ R

oll

48

lS

.O

68.5

JP

-5

lll

n-Tu

be C

ore

48

14.0

6

).5

6

).0

-5

JP

-5

. il1

2

25 p

pi-

Fo

a

48

1.9

6).

4

52.'6

49

.9

Gla

ss R

esin

10

.5

JP-5

11

) 25

pp

i-F

oa

48

J.5

6)

.9

52.0

ll

.9

JP-5

lf

i C

oati

ng

114

25 p

p1

-FO

B

48

2.6

5).6

48

.0

50.6

5.

6 JP

-5

Ke1

-F C

oat

ing

115

25 p

pi-

Fo

e

48

2.6

I 54

.7

5J.

J 5Q

.6

Glu

e

Res

i.'l

'116

25

pp

1-

Fa

. 48

2.

6 55

.7

52-~

50.6

'

Vit

on

Coa

t:in&

I

I

1.4

JP

-S

).2

JP

-5

I 56

.2

117

25 p

p!.

-F

o.

48

4.2

54

.0

2.2

JP

-5

Pol7

5Ulf1

de C

oati

ng

us

Al-

Tnb

e C

ore

48

8

.8

59.0

58

.7

.)

R-5

F

lou

rel

Co

atin

g

' 11

9 P

ol7e

ster

Rol

l 48

I

3.4

I 20

.0

121

25 p

p1 -

Fo

m

49

_:~~:r

. Ccat

1.-:_~

-----·

. L __

____

... 2.

1 ..

I 5~-2

: 54

.1.

I ---

------

:_ ___

__

,_

_,,,,,,, ---

---.._

_ __

___

-----

----

--·-

-I

JP-.5

" "'T

-5

. ....

Page 121: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

J!

,.--

--·---

----

----

--

f Aft

e:P

Fir

ing

~;fo:t~ F

irin

g

----

·-·-

----

-..--

I --,-

--, r·--

-----r-

---l

Sei

nple

I

I -

1 T~,,

~ l

P1:~

t6

! M

ate

dE

ll

H"e

tti.

ng

Sm

::tpl

e D

ry

" '

( ..

-::;

, .. ,.

, .. ~

; !

! ...

i; ·.

·: ·~~

ii &

...:,.

,:· .~.

·;~ .. t:

J. :;

\ r"~

}..-··

.._

• !. ~:

! ..

-l '

~ -· 4 !

.. .;

:. .·

i (~

i i

·:....

.to

. =~terhl..l

<oz)

I (~~)

(Oz)

I

We

igh

t (0

:1)

Ag~ .. ·t

, (A

) (B

) (a

S)

' -

I I

56.<

::

I 122

25 p

pi -

Foar

.:t

48

;.o

;4.2

53

.0

2.0

JP

-5

Po

ljr'

sul!

ide

Co

atin

g

123

.25 p

pi

-Fo

6&U

48

2.6

5

J.l

51.8

.5

().6

1.

3 JP

-5

p •

I G

l.ass

.. e

s:L"

'l

124.

25

pp1

-Fo

am

48

.l.o

53

.1

52.5

50

.6

.6

JP-~

J K

el-F

Coa

tin

g

' '

; :

b (D

;

I I

l

·. ·,

Page 122: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

TABLE XVIII

H.ATERI.ALS FUEL P'WW PRESSURE J:roP DATA I

"'~·-~------~-----

Fuel P'low R4lte Pre1aure Drop K~?.tCrt:"ial (GPM) (In. Fuel)

,-..,.... .. .,.,_ ...

ppi Pmtrn 52.0 1.6 103.0 6.2 148.0 l2.b 10),0 b.8

--..-~ 49.0 l.b -52.0 1.7

103.0 6.4 150.0 17.b 102.0 7.5

5'!.0 2.0 59.0 1.8 ·•. ""

103 .. 0 5.3 150.3. 12.0 105.0 7.0

Fire Extinguishing Poem 49.0 12.1 10b.O 15.4 140.0 28.8 102.0 16.3

51.0 .L5.2 49.0 13.9

102.0 16.1 140.0 ,30.,3 102.0 16.7

53.0 15.2 ....... -------~-~-

311. Scotch Brite 55-4 6.1 100.6 17.0 156.0 39.4 104.0 19.1

!>b.S b.? 102.0 18.2 15,3.0 41.0 102.0 19.5

57.7 s.J 104.0 15 • .3 152.0 .32.5 60.0 s.B

---"-Al-1/8" Hre:reanb 2" Thick 6,3.0 0.4 h. 5 lb/ft 105.0 1.0

·150.0 2.0 106.0 ... .,._ 1.1

54.0 0.2 6,3.5 0.4

105.0 1.0 150.0 2.0 106.0 1.1 ..

54.4 0.2

-·-··

l09

Page 123: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

M!\torial

Al­Hon

1/8" Per!or1.tod 2" 'J'htr.i< eyeanb 12.1 lb/ft2

1/8" Haxegnol ? 11

1eyccnb 4.3 1b/ft2 'rh J.ck

----Al Tube Cora

I r--;:~ er~la.ss l/A11 Round 2"

eycomb 3.0 1b/ft2 Thick

1 Hon

~--Fib

,,_ . .._.,

erp;lrus:l 1/S" 3L"1e

I e Honev-ccmb

11 lb /rt2 • I

\~av .., ...;•

I __ _ "----

I

i

25 ?"' • J.

rri Fomr. Copper a ted

L_

?" Thick

·-I 25

Co ppi Fe~ Polysulfide

I a ted

·-" __ . _ _.._, ____ ... __

~--

"""""-

Fuel Flow Rate Pres8W"e Dro~ (OPH) Cin. Fuel)

s6.s 0.6 10,3.0 1.4 155.0 "- ).0 104.0 1.5

55.5 o.s -

52.0 0,4 104.C 1..3 -150.0 2.3 102.0 1..3 51.0 0,4

59.0 o.e 103.0 1.7 151.0 ,3.5

"-57.5 0.3

104.0 1.0 150.0 2.0 103.0 0.9 65.5 o.s 54.4 0.2

102.0 o.s 146.0 1.7 100.0 o.s ;6.5 0.2 1

l I 54.0 4 • .3 .

105.0 s.s I 150.0 11.1 102.0 5.6 5).0 5.1

53.0 2.0 104.0 7.9 141.0 20.8 10).0 10.1

50.0 1.9 51.0 '·- . ...._ 1.8

103.0 8.2 14.3.0 22.4 104.0 10.8 53.0 2.1

, .... , .. ._. ~ ."

uo

Page 124: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

ö u. ui Z < I

11 Ei R| u. > O Q a UJ o s i « Q8

M I S2 > o

si

lanj ssipui ■ dojQ «jnstsjj

1U

Page 125: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

to Ku

LU lU QC CD

S5

S 1 in *

^^

oi UJ a cc a.

co O to (J

OL •-

S S s g) o g

IT) in

D

\ar\j sanniii dojQ sjnsssi,)

UX'

Page 126: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

jo 2

- §

-i

R O V) CC LU

o >

ii | F B <

a QC _. a. S

o > O £ "-

o ■ §i X U.

si s is

-8

Irid-j saipuj - dojo sinssa/j

113

Page 127: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

i |3nj ssipui doiQ ainssajj

LU

Page 128: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

i.inj ssgauj doiQ ajnssajj

115

Page 129: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

\anj sat) mi doiQ ajmsajj

116

Page 130: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

---------------------------~~~~~~~~~---~~~---~~-~-------

~1'Ar.L.t.

;, .i.

A

l·~rrRiftL

'I'HER

?<C

FR"i

SIC

,:.L

F-~~ OP:::n?F~S

-----------·--:::;:::::.,-----.---·-.,..------r----r·---l-------r-7"0~=,.. -..

.,--------.

r -_

_::

::::

:::j

1

spr.:

cn-:_

,; ,

?R

OP

M:T

ES

---------

~,K B

TU-r

-,~;

T

H

EA

T O

F P

nLK

__

Ft

rl!L

SUR

FAC

E .

__..-

-·•

Cp

;.aT

R

EAC

TIO

N

DS

NS

11Y

D

ISP.

uAC

EHEN

'J R

ETEN

TIO

N

ARE

A

~-----

----

~.A'IERI

AL R

R-n

-2

F Y:I

DJ/ #

-F

F'

-+-B

TU_f_

if_' -+-

#/_n_3

-+---~

-o ---

t--#

_'f_

n_3 -t

--~-~_

'1 __

1

r FOA.

.. 2

5 p

pi

i 0

.47

__

+--

_.6

3 _

__

}_?2

556o

!.

66

2

2.5

6 (5

~) 48

eo

,

j ~~

-mr~

~--

-o_._l

3 __ 4

-_

__

._53 _

__ .~_

41_9~r

--4~--

--+---

2_.~--

-~----

2,_o_9

__ -+~

-·-~-{

_7_·3_

~_)-r-

---4~-

·----~

'

I !

FO

AM

-25

pp

i KEL~F

0.3

2

.58

4)(

59

90

--

-63

50

FOA

M-P

OLY

SULF

IDE

0.33

43

7 63

50

--

-34

20

0.41

.5

9 41

.6

4980

-

--

685o

0.21

40

40

--

-44

oo

t l

...-FO

AM-K

Br

0.3

0

.5

--

--

-10

750

~~-------------------+-------r-------1----~----~-----~-------~-----~r----------;

roA

H-K

I 0.

32

.52

--

--

-)I

J20

FIR

E E

XTI

MG

UIS

HD

IG F

OAM

0.

24

' -5

5 41

0 3-

77

4.4

0.3

9

--

--

--

24llo

~----------------------+--------r-------4----1~----1-------r-------~r-------r----------,

1.52

-

: -

--

--

1965

.18

401

3300

.41

5700

Page 131: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

O 25 ppi Foam

• Scotch Brite I3MI

A 25 ppi Foam Kel F

A 25 PP< Foam I Polysulfidc O 25 ppi Foam t Gla's Resin

B 25 ppi Foam t Redai Vitun

0 25 ppi Foam t KBt

' 8P f 25ppiFoa.-, I Kl Q Fire Extinguishing Foam

; |_ ^ 25 ppi, Foam Ni Plated

■^•25 ppi, FoarnCu Plated

200 3a Mean Temjierature F

FIGURE 60 THERMAL CONDUCTIVI fY OF FLAME ARRESTOR MATERIALS

500

GP/1 1606 6

118

Page 132: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

1.01 0.9 t--------+------+----- -1-----+-----+------f

0.8t-----------+----------+----------+----------+----------+--------~

0.2

0 25 ppi Foam

0 Scotch Brite i3M)

D. 25 ppi Foam Ke! F

0 25 ppi Foam+ Polvsulfide

<> 25 ppi Foam .f Class Rt!sin \l 25 ppi Foam + K Br

0 25 ppi Foam+ Kl 0 Fire Extingui~hing Foam

0~.-----·-----~----------._ ______ --_. __________ ._ ________ ___ 50 100 150 200

Temperature· °F

250 300

FIGURE 61 SPECIFIC HEAT OF FLAME ARRESTOR MATERIALS

119

350

OP 11 Ulotl 5

I

Page 133: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

I A

."'lb

ient

I

::ater:iCl~

l re

ssu

re

I (r

sia)

I i ,- I Fo

e;::

25

r:ri

J..

4.50

r I F

oar:t

25

rri

11;..4

.4

FOS

."':l

25 r

:ri

11;..

27

Foan

25

:rri

11

;..48

Fo

an

25

Fri

14

.43

Foa;

:: 25

rri

14

.31

Fo

sn 2

5 rr

i 14

.5

Foa

:: 2

5 rr

i 14

.5

Foc

r: 2

5 :r

ri

14.1

..1

Fo

s::

25 rr

i 11

... 2

3

Fo

an

2'>

J=ri

14 I

''

•-"0

Fos;:

1 25

rri

.

;

14.3

1

Foan

25

rri

14

.4S

:o~r

t 25

n

i

1.4.

!.,8

Fo

e.

25 r

r1

14.3

1

7o

r. 2

5 rr

i lJ

.,.JS

Fo

r. 2

5 rr

i 14

.41

:··oa:-

. 2 >

lJ i

14

.)7

. .

TAB

LE

XX

:':.A

Till

iAL

CO

l ffi

lJJT

IU;

T-::·~·)"TS

1Ube

V

olur

:e

J.at

io

Init

ial

tres

sure

H

~>r

.. ,, ~ ,,

(pia

) :.

I_;

10/1

]4

. 50

10

/l

14.4

1 ..

10/1

12

..27

5/l

14

.43

5/1

14-4~

-'I

)J

, 14

.31

I

1/1

14

-.)

1/1

14

-.)

1/1

11..4

1

10/1

16

.23

10/1

16

.4S

10/1

16

.31

5)1

16.4

J

5/1

16.4

n

5/1

16.3

1

5/1

16.3~

1/1

16

.41

1'"

I~

16.J

7

DT

61

I

• >

. \.o

: :bc..:~t io

n

Jeceiv

er

Jid

e ~·,..~

·~,i

etti

:..g

.:

:J~u

e

Cis

ig)

(}:s

ig)

.A.~e.J.t.

' I -

2.0

2.1

JI 5

i

1.7

1

.3

H20

1.e

1.8

iJ

ry

4.1

3.

9 JF

5

].5

2.

5 H 20

3.8

3-7

Dry

17.0

14

.5

Jt:- .. ,

17.0

14

-5

Jf5

62

.9

62.6

D

ry

2.4

2

.4

Jr5

2.0

2.

1 H 20

T!l

.:

Xce

ss O

f 35

fP

. 'i

}ri

'

' 4.

3 4.

1 Ji

5

!._.2

4.

2 n 2o

1.9

1.~

0:7

4.5

4.

4 D

ry

1;.

o

14.3

Jl

5

J..4.<

) 1.

4.4

H 20

Page 134: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

,-~----------------------------,

-r --r--·

T

l k

l.b

ien

t.

'/o

lu::

e T

ube

llt

Lu-

••

t .

· ·8

-~r

1al

F

ress

ure

I E

at.i

o II

'.it.

ial

C•)

<:-.b

ust.i

cn

;~eceive:t:

·.-.;ett:L~

1 (r

sia)

'1 .. /V

... 1-fess~e

Sid

e S

ide

Ag

en

t I

~'-

\.,

~~~~

(~ig}

(~j

r i

........

I t

.. • ;)

~{:1

.rr~

14.~6

10/1

19

.46

-I

-JF

5 ' .

?car

:. 25

rr

:t

u~.:s

10

/l

"':-

,...

., . ·'

I }

.0

2.5

I

H2o

..... "1

" 4.

-~)

fOI!

t:'l

25

rr

i 1

4.)

1

10/1

1

9.)

1

79.5

-

I Dr

:r F

oan

25 rr

i 14

.!,·3

5

/l

1').4

<:1

In :

..:X:

cess

o

f 35

rs

i JI

-5

Fos

:: 2

5 n

·i

14.4

3 5

/1

19

.4d

In

:.:X

cess

of

35 r

si

H2o

;

I

I

• f

Page 135: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

l'ub

e

' L

\r

! !

.. t:b

i~~~

nt

Vol

u.-.

e :n

itis

l C

Dr:'

,b:..

ts t i

on

1

leceiv

er

:;ett

lng

r~ate:--1al

Fre

ssu

re

:lati

o

1-r

essu

re

Sid

s S

ide

Ag

en

t

I (r

sia.

) V

:/V

, (J

si:

;)

(I si,~)

(rsi

;s)

.. \.

,

'?::

I ri

Foa:~

11;. ·

10

/1

14-4

2.

5 2.

2 I

JF5

I ... .

~

' : ·

:..:l:

rs :ll

:""'

i d '"'"'

! • I

,-rr

i ?o

e::

I 14

.7

)/1

1.

47

! ...

:..

4.1

JF

5 ..,

:J

• 1

Po l:

rsCll~-il e Coatin~.

25 r

ri ?

oa

-:

u~. 5

J.

/1

14.5

-

-Jf

5

Fo

l-rs

t.tE

ide

Go

at in.~

25 r

ri ;;

"oa-

: 1.

4.4.

1

0/1

16

.4,

2.5

2.J

Jl

-5

Red

.ar-

V it

on

' .,-

rP.

?ca

rt

1.4.

7 5'

1 14

-7

4-7

4.4

Jf

5 ...

;~

# ~

Vi t

on

t:oatin~

I

25 n

:i F

oa

o

14.5

1

/1

14.5

5S

.a

58.6

Jf

5

Vit

o:t

Co

ati

n1

Page 136: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

I ::

ate

dal

I I

-j

o•tin•

l k.

:~~i

t"!r

. t

'/o

l:::

:c

Go"'"

,:_, I

.~1

"'*'-

.. <..

. J

I r~

Jsst

.:.;

:"~_

: ~~t.io

.:d

tial

Cr:J

.-.~

~5 t

ion

I

:~ec

civ.

c;r

A-_~cnt

(rsia

) v..

, ·v-.

es

surc

.3

ide

3id

e :/

'v

(rsia

) (t

:sig

) (:

;:si

d

~· ·

~· 11

...00

10

/1

11,..

60

1.7

1

.7

JI-5

m

-,.n

L~~

- I ""'"

~int~~shL~~

I .,

1

t .-<

\.

10

/l

'1

, t

~~

i 1

.5

1.4

}i

zO

::!.

re

I .J.

..i ..

.. "-

i--'•-

) .l.

...L+

•""''

-"

Foa

n I

I

Fir

e =

xt.i

n~s.

l-tL

'\rt

: 11

•• 5

0 10

/1

la.o

o 2

('

.u

2.0

Jf

5

FO&

:I I

Fir

e :!din~ shilL~

JJ ...

;.e

10/1

l6

.l~J

l.

9

1.7

H

2o

FO

fll

Fir

e !

:Xt~

··ui

shi.

"'t.

~ ~-42

1;1

1

6.4

2

15.6

1

5.2

D

ry

' F

os:t

'

l '

Fir

e ?

!cti

n";t

lisi

li.r

•. :~

11-+

.Go

10/1

1'

}.60

2.

2 2.

2 JF

5 P

'osa

Fir

e :

:!d

in ~S.lria1

14.4

S

10/1

1

9.4

3

2.1

2.1

H 20

'?o

a

Fir

e :

xti

n "':

Uis

!l i."

'l. "'!

14.1

.3

10/1

19

.:~)

2.

4 2

.)

De

y F

oa

l

FJr

e ~1n":Uis.'lin ~

u.:

... J 5/

1 19

.1.3

·:'!

5.

0 4.

7 Jl

-5

Po

•·

.. -

<

f. F

ire

~inmdshin'!

14-4

3 5/

1 l'

].4

J ~~

-5

I 4.

4 ~

H 0

2

Poap

.

Pi:

e ::

xt in

"';U

ishi

n1

14

.)1

5/

1 1

9.)

1

4.5

4.5

;r.y

F

or.

Fir

e :X

t.in

":Ui

s.~i

.nF;

1

4.4

1

l./1

1

?.4

1

17.2

16

.7

Jf5

?oa:

:

Fi:-

o .X

tinr;

.us!

rln

:"!

14.!~1

l/1

19

• .+1

16

.!>

16.0

H

O

fOS

"t

2

' Fir~ ~in~in~

1' ••

:..2

1/l

11 1

.42

;

93.5

-

;)ey

Fo

e:

Page 137: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

~-------------T--

1 I t,;~~~

~, ....

... ...

..., .•

a~i:!rl.a.:..

l 'i::-;1~:;

:c ;t

.,'lt

io

..,/~ 1/'

! 1., .•

v

10

/:

1/1

T'J

be

I1ri

tial

! :'

"~SS

Ur0

2,}

Cc:

.h:1

st.i

on

1.6

11~.

9

\ .

......

.. l

~

. ,;

.ece

.lve

:-

l.b

Age

nt

,J15

~------------------~--------------4------------+----------~-------------r---------------r--------~

):: .:;cot<±-Bri~e

]:~

3co

t6-I

3ri

te

)I:

Sco

tch

-3ri

te

1.4.

:,.4

1.4.

)1

.)!~

Sco

tch

-Dri

te

14.4

0

):f

Sco

!.ch

-B::

-ite

10

/1

1

10

/1

10

/1

t; 1

-,

i ..L

5/1

1/1

1/1

1')

.!.0

19.6

8

19.4

4

19.1

.4

19.1

.4

1')

.)1

19.4

0

1•).

40

19

.40

2.l

2.)

2.5

5.2

17

.'/

17.6

20

.)

2.3

2.)

17

.)

17.4

....

Page 138: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

l A.-.

b.=.er

~t I

\'ol

ur·~

e L

..-u

tial

C

o:·l

n:st

io:n

I

,,.•+

iJL

-. I

I !

:~ecciver

I ::

ate

r-ia

l P

.r"E

.3S

C:.:

:"'<!

Ia

tio

1-

ress

:..L.

-e

Sid

e S

ide

~· t;

-J'\

.o

' ::

, '

I :~

~

(Isia

) 'r

"'

(}

.:si

~)

(J.-

si:;

) f:

t:si

:;)

' • :

i/ • c

i

rU-"

?a:.:

e Ccr~

ll. .

. 7

10

/l

!.4.

7 59

.0

57

.2

Ji-5

1

:

.Al-

'l'..

:be

Cc,

..,.

14.4

1

0/1

l4

I.

5!...

.3

';.~2.7

J15

, ...

Al-'l'ub~

Cor

i! 14

.5

lOfl

lA

.5

I 17

·'·

I 17

.5

Jl-5

..U

-1'u

h'}

Cor

e , '

-l0

/1

16.5

71

.1

57 • .

2 Jf

5 -'

-'•·

)

I A

l-'?

:lbe

Cor

e 14

-43

10/1

14

-43

27.4

2

4.3

n

v

2

A • -

T-i!

:i.::

Cor

e F1

aur1

11

14.4

10

/1

14

.4

1.5

1.4

Jl

-5

Coati.~

f i

Al-

Tub

e C

ore

Flo

Lre

1 14

.4

10/:

. 16

.4

66.5

64

.7

Jt-

; I

Co

atin

g

Al-

'l'ub

e C

ore

Flo

ure

l•

14.7

5/

1 14

-7

51.9

44

-J

Jf5

C

oat

in~

Al-

Tu

bc

Cor

e 1.

4.7

10

/l

14-7

1

5.0

1

5.0

Jf

-5

Gla

ss C

oati

n-:

Al-

'I'u

l;e

Cor

e k

l-:i

-'

14.7

1 10

,1

14.7

1 6

1.0

52

.. 9

Jf-5

Coatir~

' A

l-1'

.Jb9

Cor

e tf

ito

n

14.7

10

/1

14.7

5

1.)

I

50

.0

Jf)

C

oat

in~

..U

-Tu

be

Cor

e 7

e!"

lon

14

.5

10/1

1.

4.5

51.~

55.2

JI

5 C

oa

t in

'!

Al-1"'~

Cor

e 14

.5

lOil

14

.5

51.4

55

.1

.ns

J ol;

r1re

than

e r.

cati

.n't

J

Page 139: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

v -x

> v tc ^ .rt T3 -H ^i 0) -H n

^< P »A.

^ <5 ^ ^ ^ ^ ^

<

■ o

■H 4> ^^ (0 0) (J S TI •rl

n 'T w b ^-' O

a ri t;

j ♦> n in

■ ^ o u 3 -H ?. o « .-^ > rT >

c 3 « «1 01 -H

•H n n

j

o n n I o '1

r^i

".H O (0 n o

•I" HI

I in n 4) c

9

t O

n m u l I in n 4) F

3 4 4

O H O

c> ITv C^ Q m O O o r\ <^ m ~t r\ r\ -* 444444444

I o

I •H

■u •« x; O ID «)

n n H o o o Ü rj o

B B 6 ■ i i

m 0

o o Ü u

•o

« o o

o 'J

Ü

•H

U t- U U U, U »-.

i o o

B i

iA in iA m

UMM

120

Page 140: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

c o o

5

1 hi

M U^ IA 'A 1 l/> IA IA IA IA IA 1 'A "5 1 ■1

-a -5 -s Al -a •^ "»

o C-- (V m ■0 rH to (M C-- O 00 Al

•H T3 -H H

rv m i r IA si «0 IA

M «0 IA IA IA

'- 0 •H

n l- t■ O O -*

n o *•-

rH

O 'A

(A

r-i IA

O rA

i CA

IA

UN ■

SS

fA • IA IA

D

o <d d t.-

t~ jx. r- ir> IA 'A -* -* P ?! c- t--

*3I~ 4 4 4 4 \i 4 4 4 4 4 4 4

L: o o d -H > rH rH rH rH H rH rH rH H iH rH ■^

o « n 3 IA 'S» in rH O

rH <r 3 Si o rH 3 s & §

ent

sure

ia

)

r- t- f^. u> IA IfN -* Al r- Al

r- r^ r-

IfZ ^ 4 4 4 4 4 4 4 4 4 4 4 *~

-a •H L o I

rH rH

1 rH

8 rH H

rH o

8. 1 V t:

rl

|

5

1 o

B o C (H

rj rH a) ci ll •» rH IJ 5 "

C 01 ll S X ,^

I) 1- 4) 0)

«1 -H »1 •• I o ■ XI — * X X

■ 11; ri ■P •ü •tJ d 4) ") 4 rH V

1 X

: 0

rH « +> 1 C a

t 1 I

rH E n

! n 1

r—1 1

ll 00 u

11 11| 5 SU lb l c n

M O O O ■p o •H > 3^: rl O O

< X Ü =355 35«! 3&Si

127

Page 141: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

X

8

«I

<1

L 0) ^> > 0) no

•H T) -H (U -rt CO Ü '0 M,

C o

•H

3 uT- ^i J -O -H

»A a. "9

(U ^ 3 M

n -H

m-

u

+J t.'^ C 3 C8

•H (o n

IP S 4

I P. 1

-Li -3

A. lA

'S

IA to IA

o «

*

4

4 4 IA

4

0) •o

g'r [3 f

III d 11

X o

III I C «

H O O < s o

il ■ £

(1) J if ■

11

128

!*

>

!55

Ij 12

9 11 II

III il rll

c « o o X Ü

c o

r-i

||5

3£5

-3

o r I

c^- IA -* »/> f\i 0 TO N

IA IA i IA 8 IA IA IA IA

4

4

•P c E B

l&

^j E |o|

Page 142: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

__ , __

__

J Tub~

AP

J

AP

A

:nbi

ent

Vol

ume

Init

ial

Com

bust

ion,

R

eceiv

er

Pre

ssu

re

Rati

o

fl'C

Ssu

re

Sid

e j

Sid

e W

etti

ng

J

l~'tterial

(pai

g)

\'R/V

c (p

sig

) (p

sig

) (p

sig

) A

gent

Al-

l/8"

Per

fora

ted

14.4

10

/1.

14.4

68

.8

55.5

JP

5 H

oney

com

b

Al-

1/8"

Perf

cra

ted

I

14.7

10

/1.

14.7

59

-7

58.0

JP

5 H

on

eyc

om

b

Al-

1/8"

Perf

ora

ted

14

.7

10/1

. 14

.7

63.8

62

.0

JP5

Hor

.eyc

omb

Ke

l-F

co

atin

g

Al-

1/8

" P

er:t

ol'

l'lt

ed

14.7

10

/1.

14.7

55

·3

53.5

JP

5 H

ooey

eam

b P~ultide

Co

ati

ng

Al-

1/8

" P

er:

tora

ted

1.

4.7

10/1

1.

4.7

59-7

57

-5

JP5

Hon

eyco

mb

Re

da

r V

ito

n C

oat

ing

-

I

I I

Page 143: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

o o

H a <

■ iA IA IA lA lA lA 1. il % % I 1 % 1

S§ 0) < ?t Is ■»

h 41 ^-N 00 OJ CO o tA IA r»" > O Ü0 • • • • • •

CU ^H T* "H

S t) CO a

ON 1A 9 5 ^R lA

IA 9 D >_ tc

c o

■H ^^ +J 4) Ü0 IA OJ lA m CO IA o a. m -o -H • • • • • •

^ 3 -H in ^ .Q w a t- «s 0! s M £

S ^- o u

■ ^ a) 3 'S

OJ -H ü) «H ir\ lA t^ N t- r- t- ^ ,J U5 Ü) • • • • 9 «4 M A

EH C C^ j- -» ^t -t ■t * .* r* r^ ■H rH rH A H

N a,

i o o rH r-l ^1 iH rH rH rH 3 -^t > ^ "•^«^ -^ >^ ■^ "^ r-l +J -^ o o o o o o o" o m ,r. H r-( r^ rH H rH rH > K >

V

c 3 « lA LA N r^ r- 1^ t>- »1 Ul -H ■ ■ • • • • •H CO U) -» -* ■r -s -* -* * x> v o. H r-l rH i-t rH rH rH

MES

(U 1) 0) i) ■ D T3 ■Ö | > > > •H ■H 1 a) I 0) V^ G r« DC •» »3 l ll 3 to (U V V b. v in 3 fc t c c C 1 B >> 0 i o >. •H f-f •rt r^ S r-t K rH K H

•H CO CO (0 4) tn o 4) 0 h M C i X r Pu 1 - ■ - ■ ^O \o

+> CO P 00 ^ CO j> CO £> rH Ä rH n

1 ^ B 51 a >» a ro 0 M

•^ a ■ r-l O rH 0 H" 0 00 rH O 60 no 0 M rH

t) ■ ü C O C ill O X >> X >> X >>-H X >>-H X >»-H ■ li 11 0) 1) •»->

SCO) 0 o o

Jl 4) +1 a c d o o ö o o 3 11? K

2 Ä 5 as ss as o s ac o a ae o z as o r-

130

Page 144: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

'-·-

----

---·

···-

·---

--·-

-r--

·-l'

-..m

_b_i

.-e-

-n·t

---·

-··-

---·

-·--

~~-~

~~--

--~-

-~~~

al

Press~

,.;..r

e R

ati

o

I P

res5

ul"

e

~---2-

5-p-~-

1-t;-~

~-i-al

-----i

:---:-

:-:-~-

)---rl

~:~:c

I ::~

::) t·.

Po

tass

ium

I~U

de

I

. C

oat

ing

II.

25 p

pi F

oam

P

ota

ssiu

m I

od

ide

I C

oati

ng

25 p

pi F

oam

P

ota

ssiu

m B

rom

ide

Co

att.

ng

·

25 p

pi

Foa

m

Po~sium B

rOid

de

Co

ati

ng

c) p

pi

Foa

m

Gla

ss R

esi

n

25 :

pp

i F

oam

G

lass R

esin

25 p

pi

Foam

G

lass

Resi

n

14

.4

25 p

pi

Fo

ul

Cla

ss R

esi

n

i 1

4.5

25 ;

pi

Foam

K

e1

-F C

oa

tin

g

25 p

p1 F

oam

K

el-F

Co

atin

g

I

14.5

10

/1

16

.58

10

/1

14

.)8

t

10

/1

16

.58

10

/1

14

.7

10

/1

16

.4

5/1

1/1

5/1

1/1

.O.P

C

om

bu

stio

n

Sid~

(psi

g)

13.5

71

.0

12

.4

62.0

2.5

4.5

4.4

62.0

AP

R

ecei

.. er

Sid

e

(psi

g)

1*.6

13

.7

2.2

4.8

4.2

l

\letti

ng I

Age

nt

i

JP~ I

~5 I

JP5

JP5

JP5

.JP5

JP5

JP5

JP5

JP5

Page 145: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

.... w

i\)

r w

ett

ing

A

gen

t Y~t

e~.~--

---T-~

;;~pe

--~-i~

~rr---

t-,~~:

-r,l··

c~iE~:

;:~-r?

:~b~r

'----

----

----

----

----

4---

----

----

---+

----

----

. ----~~------------~--------~

r !--

I I

! 25

;::::

: :!.

-F'

oar:J

l:

... 7

lC

/l

h. 7

i H

o :;

at a

4 B

urn

'rn

ru

I ;a

co

ati

ng

l

j

25

pp

i -

Fo?..

!!l

·j 1

4.4

4

10

/1

16

.44

P

ress

ure

in

I:::X

:ces

s o

f 3

5 p

si

!11

Co

ate

d.

25

pp

i -

Foam

U

i C

oat

ed

i I

14

.44

1

0/1

1

9.4

4

Pre

ssu

re i

n ~ces5

of

35 p

si

I I I

I ~-

----

----

·~'~

----

--~-

_._

L_

. __

j ___

___ _

JF5

JP5

JP5

Page 146: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

10

VVC 5

i 1 111 0 Foam 25 ppi HjO

1 1 A Foam 25 ppi JP 5 1 1 1 I

1 \ \

\ A"Th 'oreticdl Curve

\ /

V A ^^^ A

2 psig Initial Pressure

,

1 6 7 8 9 10

Pc,Pl

FIGURE 62 PRESSURE RATIO ws RELIEF TO COMBUSTION VOLUME RATIO

PLEXIGLAS TUBE TESTS

GP71 1605 4

133

Page 147: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

VR/VC 5

^H-l

Q Fire Extinguisher Foam (Dry)

H.^M'.M

1 (7A

\ rJt*° etical Curve

v. *

. -

1 R 9 10

Pc'P1

FIGURE 63 PRESSURE RATIO vs RELIEF TO COMBUSTION VOLUME RATIO

PLEXIGLAS TUBE TESTS GP71 IliOb 1

13^

■—■ii — i .

Page 148: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

10

9

8

7

6

VVC 5

4

3

2

1

0

|-TÄ>

I O Scotch Bnte (H20)

A Scotch Brite (JP 5) l ill

T

\ r11" ■MM Curve

\ /

V ^J ^<*.

8 9 10

Pc/Pl

FIGURE 64 PRESSURE RATIO vs RELIEF TO COMBUSTION VOLUME RATIO

PLEXIGLAS TUBE TESTS GP71 1605 I

135

-

Page 149: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

rf*>

Vvc

I — O 25 ppi Foam Viton Co.ifmq (JP 5)

O 25 ppi Foam GIJS'. Coating (JP 5)

D 25 ppi Foam Cu CnalM) (Dry) V 25 ppi Foam Cu Coaled (JP 5)

_ A 25 ppi Foam Kel F Coalpri (JP 5)

Q 25 ppi Foam Polysultide Coaled (JP 51 ^— < -L-

FIGURE 65 PRESSURE RATIO vs RELIEF TO COMBUSTION

7 8 9 10

VOLUME RATIO

PLEXIGLAS TUBE TESTS

136

UP 71 I i.Of, }

■MM

Page 150: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

SECTIOU VI

I'HAGE III

1 .0 J\iJALYSI~~ OF PROGnAl·l RZSULTS

1.1 Gcnernl

The ob,~ect of Phnr.e III of the progrrun wnc clcfin~d o.a rl'lt!J nnaly:;lr; of :•ttns<.!B I end II results. The analysis \.IO.S to lead to nn engine•:ring cctil!'.at! of the future potential of the concepts und tcchn iquen dev·~lopari and an •}vnlunt.ion of th·~ t:I:J.terio..la invest1e;ntcd with respect to th•.:ir :J.nr.tc nrrnat~.n · d'fe~t:i'.rcnc~.;s. In order to accomplish thts tnsk, an e.nnlytico.l mod'!l of th(! ex::~losion snppr·::G~ion system we.G established nnd ll compu\...Jr rc!e:rr.!;;s.!.on <:n:U.;::;::: 0f 'th·~ :l::ttn was conducted.

The sJmrlc ... t model of a relieved explosion which gimu.l:1ted thl! t0cta pe!"formcd is a s~ngle-cell configuration us shown in Figur~~ 66-,\. ~r: th!:> !:lodcl Vc i::; the combuntion volume nnd Vf the arrestor volume. 711~ r:::!.•.!f volt<me in this case is supplied by the arrestor materinl only. If, h.:-·..z.;v::r, th0 •l2pth of the O.lTesto:r m:lteria.l is r;reo.ter th:m that n<:!e;ied to ·~li~lnnL fl<'f:;'.! p·orO.f"/lt:ton, then voiding behind the arrestor matcr'!.al i:~ p(');;~!bl:: {'.:> sho·,m :!.n :·'ir.~ur·~ i)() .... n. The relief volu!ne no'W i'1 '.'r plun ·:r '"'ith b·t< i~;tlly n.:. r.n~mrJ;t~ ::1 th·.: model parrun•Jters.

l ( ,',)

FIG. 66

( il)

v r

Furth•1r expn.n:;ion of the cornplexity of the rnorl~l to cimulr.tt~ a ;..ult !c•f'll ·.:!tw t.'J.nk, :.Jould b':) to place n wall behind the nrrcstot• matnri:ll 'Wh~ch ·J.~.-.·.-··~ :'~·~· ·­:,urc COTI'JnUnJen.tion, bUt wtth l.l VO.riable dcr,rce Of reGtr.i.ct~On ar. :;h:y.;n ::1 I·'igur': 67-!, .~ n.

(A) FIG. 6'7

MULTI CBIJ:, tiOtl~,

137

Vr

(P)

Page 151: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

1'11 1:1 mo(tel configurnt.ion Jo !JOt:cntinlly u two-ctJll modal which enn net aa thtJ <>inf!,.\1:' cell C·.1g. a;/',~~- B) whC~1 t,hf! X'f!BtrictLon is zero or infinity. 'I'he molf(tl c~~·, b1~ further ·~xpm:de'l to n multict.'ll conf!curntion by ntld1nc rnorc unite, cimu­lntl!ll'; ~t wing tn.nk with :1 munbcr of cells formed by the porforntcd ribn nnd 5por:s.

,\ll fc<ttr modt!l:• cnn be nnnly1.cd by uo1ng the mo<lel .i.n P'lr,ur(: 67~'5 within the ;;tnt11d limJtn :: :tn.;u t'.w other modvl conf1gur11t 1onn nr11 !'Jlmply npcc1ul CflO!..'r! -Jf Figure 67 -B.

·:'lJ'! nnn.lysi.t> ,J!' the mod .. !l twa:::: tho :::impl!: r, '1 1 T, relntionchipo before nnd r.ft.:r the combuatlon rroce~HJ while n.llowin~ frc•! •!XpMnion to occur. Although .~t.:ti;i•:: e.J.Uil:ibrinm condl.tionr. nrc nssumed, the :.mulya!:::: is valid for the non­!··.:.:tr~~~t·.:J r~onnr;m·t~ttonc, nn(t by lntro(iucinc; nn experlrr.·~ntnlly determined ~:·t·':·nc:•: rc~;tr1etion fader, tho mo.ximum dyno.mic r.re:Hl\::~IJ in the combustion '!Ol 1U:':·-' ~.~w be correlnt'.:!d,

··~;,c:r· .:n th•: c.Ynbur:tlon c!' hydrocnrbons ·.-~ith r.J.lr, little or no chanc:! occur~ Ln t;~'-' :n··:rar~-· "ol·~'~\LL'1r •,w t[3ht or totnl mole:.: of ~fW pr~.:sent, the following r·::l~:tlon~hip is a~~:ti.L"neJ to be trut~.

p1 '/1/'i], ~-

~-'tl:rth·~r, :;tnce tht! ~n..x.lrr.um rntio of (T2/'1'1) i::; .::ir,ht fer most hydrocarbon/ ;'li,r ::toi(!hlor:.etrtc: :~:xtur-·.::r> of inter·~~Jt and lG ~n·~·.!pcndcnt of all other mo:iel pnrn­meter:~, it ts c:on~;~·to::!r·~·d a con:1tnnt, K, the n.dinbo.tic cx:pnnsion fnctor in the n.nnl;n:.~•. Th:1s tl:·.: ::ombnstlon ·.·occnu, can be wr!.tten ns

:"'fl . . •• • t p 'p "' ;.: · '· l '1 "' 1 ;) ':::' or · 21 1 ··

':'1:1·~ nbov .. ~ ~~-iuntiu:: i:: G:.ttiGfac_tory for unrelieved ex:plo.Q..ions; hO\olt.•V~~r,

•,.;i1'?r1 free CXJ::Ct..'1Sion i:::; (t].lO',.IC\l nnd no.me !'I'Opagntion i:::; lirni ted to the UVn.ilnbl:.! ·r;::.bu.;tion volwnl!, :;~verr...l nttunua.ting effcctr; taY.!.! pla.c~. FirGt ao:r;c of the ~,v:t a:,blc unr~rtctGrl and pn.rtinlly rco.ctert (qucnchf!d) combustible ca:;cr. nrc tr~t:1srorted throur;h tho :1rrestor mnte:rinl into the relief volume. Con:ocquently, not ,il of th~ orlginnlly a.vnilnble co:nbuotlon voltL~t~ is reacted, Concurrently, h::cnus·::: of rn~G:> trun::;fer into the relief volume 1 the corrc::;pond · nc relief prc:l- ·· · :;urc increases lirnitine; subse-1wmt mas:J tran!:fcr. The restriction plntc behind the ':U'r~J:::;tor ( fora:r) rein forces this lflttor c f!'cct resul tine in hi{l)ler effective relief pressures nnd thereby higher combustion cham'!Jer over-pressures.

Returning to th·~ mod•.;!l nnd introducinG Vx ( ;.'lc;, 68) o.s thn.t porticn of t.~!U combu~.,;tlon vol.tlf.ic twtuo.lly rco.ctcct and which when fully c:<pnnrtE"d np;ninot r.:.~: relief bn~k-prc:;::nrr'1 cxpondn just to the nrrentor fnce, we obtnin thC! f'olJ.o•..,.ln;; equ':1.tlon: -

hl Vc

FIG. 68 HULTICE!L t·~ODSL

Vr J

Page 152: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

(3)

'~here P1 is the initial pressure, and n is the reversible polytropic exponent

>;hert~ rvn = constclnt. Using t;ne relationohip PV"•C and summing the initi&l. PV" ,'lroducts to final equUibrll.lm, r"sulta in tbe following I'elationehips:

P1KVx0

+ Plvcn - P1vxn + P1vr" + P1vrn • P2vt", and (4)

P ,, n L n ,, n p V n p V n c " c ·, ' c " 1' + r r 1111 2 t { 5)

Ecl'_w.tin~r Eqa. (4) and (5) and substituting Eq. (3) to eliminate Vx yields:

Pc K(An + B0 + 1)~

pl {KA0 + KBn + ~) (6)

\!here A "" Vr/Vc and B a Vr/Vc. The )\ term io the average restriction value dcfinc::J as the rrv io of Pc/Pr· It can be seen from Eq. (6) that as the relief volume goes to ze:·o, A, goes to zero and the eq_uation reduces to that of a slnp;Le cell 'Ji th ;·c orifice restriction fnctor, and (Pc • P2):

K(Bn + l) "" (KBn + l) (7)

LU:e11ise, 8f3 B e.pproaches zero the equation reduces to

Pc P,, "' t:.

::t K, PJ. n

~ ' ·'·

the mruc!.mum exploe;ton over-pressure given in Eq. (2).

Since the p:rc·cess modeled is no't constant pr~t~sure, volume or temperature "'<.he Vli!.ue of n m.riea. The value used in correlating the data herein was n • l ( looth,:!"mal).

1. 2.1 fhas~ I D~~:~-~ nnd Model Analysis

Trw Ph,.toe ! i•tt.n gcnero.llJ' followed the model analytih. Divergence from ti'l~ a.rwlyticllt mcul•:!l rHd occur 'With respect to initial pressure yielding a ·l!rttnc~t. curve for esch initial p:reosure. This effect was more pronounced ror t.h·~ hollow body C".,nfJgurationa. For thio reason, the initial. preuure waa 1 n·.:lurled, Jn the ':·•:nputer r.nnlynio o.~ one of the variables. It vas al.[lo ·1otteed th1:Ti.t div"":·;Jcnce from tho model anal.ynis occurred at Vr/Vo ratioa 'below L ). T~H! cxplttn·,·~ !.on of thin divergence is felt to be the tact that h18bor prenHLI!''!!£ rer:ntlthfl, f'ro~n t.he combustion cause deeper penetration ot tber name :\·on"'. J :rt, the I'1Hlll theroby increasing 'the eom'buation volume.

139

I

Page 153: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

'..:ho:rtl rrog:reno:!vo burning occurred which wno only in the mult1coU or multi-votd confie;urntloM atrone; deviation from the model o.nol.yota \#O.s intlico.wd. ~ t 1.1ns f<.-,und by ot.ur1y of the ooclllogrnph trace:: a however that tho initial. rrr•:sr.ure pen}{ cor~·ol~~ted well with the model Md thn.t it the preosure a.t \#hieh ~:lw follov:l.rl(~ pi:Ht},o :'ltnrt.ed wns uaed uo ru1 initin.l prccnure 1 thiD data, too, :~orreltJ.tt::<l 'Well w J.th "'.:!t•.! nnnlyticlll model. Dome small diocrcpe.nclos with thio r;rocedurt~ were not·:!d ~!1 cnncs where the c~'ecrnAJ. volume arouurl the hollow bodios ·::1c; f1::~nll. !n thin clwe, the G·i_Uece;ec efn:ct of cliffcrentin.l burnina and thore-

p:r<:~osurc pumping Ol" circulation of the combustibie mixture from within the hrJllo·.,r bf.:'trt:L!G wns conjectured. Gtudy of high-opc,;,d motion pictures ot' these ronfi[',urntion::~ would indico.te thin posr;ibllity. Hhon the external voi<l ia lnrc': nnd hn•; g,)O'i fl.cu~~~ pnths, then the cxternn.l it:)I'lition is rnpid and wtit'orm, ;.;:i.ving b•~tt~~r resuJ. ts. Thin ca.n be seen by compnring the ocvcn end one-half irlch d iwneter cyl !ndcr date.. The ohorte:r hemiephericnl head cylinders with t:w int~rconnr~cted extel"nnl voids out perf'orrood the long :nat end cylinders ' ':i1ich hnd a number of small independent external voids. 'J.lhc external ignition n thf: l:).tter case lo.cted much longer allowing ~or greater ci!"cula.M.on of'

unbm·ncc~ 3n.sen a11d. therefore more combustible vo.po:rc were burned.

l • 2.:? P!!nsc I Conreute r Rc gre o s ion Anlllls is

rJ\m methods of e':l.untinG the Phase I 9ystcm parrunetera \tere used in nn ::':t.tempt to get further insight into the explosion supprcsnlon syntem. Tile firGt n.nal.ysls e,1unted prensure-rioe with the various nyatem parameters in nn nttempt tn conclo.te the t'!nt.:l with the .model analysio par0111etcrs- !H.nety-nine t•.;5t po:Lnto including o.ll initioJ. preonures, o.nd fuaelage as well as wins tDxl.k test do.tn were run. T'ne equation derived from this o.nalysis was as follows:

where:

tr = .00357 (P1)3•095

Vr. )"2973 (Vr y72'J7 <vc Vc

llP = Over pr~ssure (psid) ?1= Initi&J. prcasu:re (poio.)

Vr= 'rotnl volume - conioustion volwnc ( in3) 'If"" Ar:re:;tor volwnc (in3) Vc= Combu:Jtion volume (in3)

It cn.n be sc1~n frr-;m thin cmpcrico..l rel().tic,nship thnt initial .prcusurc f,,llo'.1•!d by the ;·ntioc of forun volwnc to combt~stion volume and rel1of volume to conbu~ti.on voJ.1.tme rn•c? the order of rclcvcnce of tho test pnrrunctcro incltrl•lrt. 'Ji1'! ~:'=pnn~nt of Lhc inltittl preoauro ohown why nomnJ.:tzntion o:r tho finnl. to .Jr.lti'l.L presn1tre in the model nnn.lyoio didn't fit the dntn yielding on 'n(lcp(m(!!mt ;·urv~': for each initial prerHilU'Q.

'ihc ~;cctmd computer nnu..1.ysio of tho dntn equo.ted forun volume to tho other •··!ot pl<.\·nmetr•r.n. 1~1 thio nnn~yaio oighty .. eight points were rwt again including

140

~

l

I

:~i

-1 'l

1

! '~ :j ,, ~ :l :-Jl

,·: :I ~ r~

' ;;; ,.

Page 154: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

nll l:litiul prr~nnux•cs and tank confjguratio;,c, The resulting empirical Cto~Uiltio;; ~.~~;t~J no followr~:

,!t88 (Vc) .150 (Vr) ·574 (Pl) .277

~) .0~5

(Vr) = Totol volum':! - combustion volume (1n3);104

(Vr) "' Foam volume (in3);104

L\1' = Ove'l:'Pressure (psid) F1 == Idtia.l pr~ssure (psia.)

'I'he reur:o:: for the relief volume i:1crca.si:1g '-'ith the foam •tolume i--: thl~ equation is that a portio:-. of the l"~lief volume in each oyst:er.t co::figuratio:l is fo::un volume. ':!:he expor:ents of the variables o.re a~: indica.tior or their L. importar:ce '-'ith :respect to fonm volume. The exp0!1ents '-'ill not chru:ge if the 10 fo.ctors n.re removed. ns this procedure will only change the constant. The reaso:. for lntorduc:i!lg this factor was to accommodate the computer '-'hieh o:tl.y fits the ::;ignificnnt numbers.

1.2. 3 Pha:::Je ii ::~to. Annl.Y;sis

The data generated in this portion of the program was an attempt to evnluate the flrune a.rrent.tnr, effectiveness of 1'1 variety of materials and. configuratior.s with respect to their thr~rmAl 1 physical and chetnical properties. Their ~ffec­tiveness cf.l.n only be measured with respect to system pressure rise nnd re-1uired thi.ckness of mnte:rinl. to eliminate flnme propagation. For those cases '-'here flan:e ;Jropagation through the arrestor mo.teria.l didn't occur the data correlo.teri well 'r!ith the model nns.lysia. The divergence from the model could be taken as nn, i~dicntion of the arrestor effectiveness. This is a weak. effect, however, whereen the rc~uired arrestor thickness '-'ith respect to combustion volume gives the st:ronger delineation. Unfortu.."lntely insufficient data ""ns cenernted '-lith respect to th l s lnnt parm:K!tc:r o.nd. there fore th iG evaluation cannot be made.

Computer n.no..lysi"l of the pressure rise dntn '-'ith respect to the material properties was mariE:. 'I'he best f:lt log-log regresc ion annlysis of the data yi•!lrkd th·~ follmd.ng e-s,untion 1 from th~ 52 test conditions entered •

• 054 (Vc) .9h83 (Pl)l.076 (K) .1762 (f) .2536 (A) .2147

(C )•2164 p

141

I

Page 155: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

AP ::. Ovcrprcr;nu:ru (prJtd) '\ "' lultinl prcoDure (poic.)

'..1 c "' Co:r.buntlo:. volume (ir)) /100

rn .. ::.~:c~ cnpn.dty of mnt~:r!·tl (n~·n/ f/-~)

!'~ '~ 'i'h<:!md conductivity ( n~·u- IN/ { °F .. ft~

~ "" :)e!:r.ity - (#jrt3) ,\ .. Gurfnce nrco. (ft2/"1) ; 103

t • Thick1msa (2 inches conatnnt)

The datn bput for thin e~p!.ricnl- u~1nly:;t~ 1~1clu:ieci r. tc;~._:to O'!C Vf'r:J~til')r . . ~'"·r<bU!lt :!:.~1•: 'lolw~ 11h ~J.·: )101-:l int~ th•• r~:l ir:?f volu~~ ~onoto.nt. 1:. c.ct·l it ion ··~

th~:.:, tl:r: other :;;r~·t;~r, vr.rlnblt~ of lnitirJ. prt':i3ure \mr. varied by 30 · .• :cv>Jrn.l ~ont.tn~~ n.r.d. thr:-!c bunlc r:~~t•;!rialr; n:;ri. their thcrmc.:phyr.jcrtl prO:"~P.rttes 'Were :·l;.o inclurl.c:d. '2hc n:1nlys:L::: reo;ultcd 1~1 n curv1! f1t •:lthin 10 ~ of thn ~xperi­, ... ·: tr,l vnlue s.

It ir; uppo.re:·t fro~ thi:> empirical rclotion:;h.!p thRt by increnr-1~~ thl! he~t (:':"?-~~city of th~· :u-r'~stor ·..:hil; red.ucine; itz thermnl. conductivity n:1d d.~nsity, ~m}~rOV(!·i. nrr~utor cffcct:!.V'..!nnsr. occurr:. It r;houl.:i h~: note:\ l\dre 1 however, that '.ncr,~:-~:;LlC th•~S'! pr,rr.m·.!t :rc.;, tht;:!.r off.:ct on i:JJ~ r\ecrl1ncna du~ to th~~ fro.ctio:~al

~x:'O'.~rts. ':'hin fits 'W:~ll with the foct 'thnt water wP.t n.nd ,JP-5 "o~et Rrr.,r.tcrs ;):::rf0rm sorcl•J\-Ih:-Jt b·.:ttnr thun the dry specimen::. ;Usc '"''.!tt:.:.~,~ thP. spccim~~;

· .. ·cttld hcV·..! " t'.!!;:!.c:~cy tn rt~,iucw the microourfnct! or01' . .Lnmrovinr. th~ perfor­:J.'' '.cc. !i:.J'.-ICVcr, by comp·1.rb1~ thn rl11tc. of tho.1r:: ::pec1m·~·,r: which fnilerl a~ •. i. :1·.er2b:,c •,;er·.~ ::ot ir~,~lu"i•..:,1 i:: tho n:1o.lys in, th" nnhlyn1 G of th!! ~urfrtc·~ ::rl~,.. .... · ;--r~~"::t ~.::. :Jorn,;\,·!:rtt qu(!rtlo;~~blt:.

. ) 1 ...... ~ ......

::::~: Jata r~·)r.:;r:-:t'!-i l:1 thin proGram inrUr.nt·~n th..,t tho;! t.?Xi":\.~')n!:'l" :-:uri)rc:~:;:!_o., ·:_:.;t•::-:-: c:o~~r:r'\J.r.".t!.f:r-. :t1; .tlcv.v11. 'b:· tho :-i.~" ·; .. ·l t:r:v: ::;f fncl tnnt: b~l:~r ~on-.' ~. ·~·~· '. ':'h·~ t•,Jn ty:·::: of r.o·1fiL.;urnt:ton r~r·· nlr,rl•.! c·~ll nr'i. nulticell <:'r ::n"..tl~·rol<t ~:r~:;t,_ms. L"nis ~~sult ls 11U:l.tn cv:!·i'.!nt b:: lnr.pectinc; the .tntP. :r·:~u:-~+~:"1 in ·~:::1.bl0 'll.

~ .. ~ .1.1 Rl'oroduced from b~o~t available copy,

;~11:nln.g€? tn-1'-':r\ (~<1n·:r;1lli fall i:1to the :; !nrl• .. !~~~11 clr:u.iA 1 h~··:•·!w'r, 'l~ th~

·::·.:11 b•:L'0!""'.~0 l~tT(I;.:!l' 1 th•J !'·!-!lli!'t'l f'OO.l'l'l VCl\l:r.•. t~ !~j'!lbu:"'.tion V!)lU.'n•: i!'~rl~tl\•1C to ··, rol:.t .,...h,)r•~ 1111'1 t.i ~v~1 i cor.fir;urntionn p...:rfcrm b~ttcr than n!nclc <":·-11. con:'icur~t·

t l :):·,::;. In thi::; pr,;l3rO..':\ ,,·herl: the :;imulo.tutl fu:::elt.lt~L.l t!lnk "o~nA of lCJ ~:nllo•HJ

~:; :-•(:!t:r, U1•: 10', vol.ki lined w~Lll confl('(nrnt~cn pqrfo:rm~..d th·.~ b•1r:t ':IVC!" th•' r•1't[~/l oro, 2 nnl. ) pclv, initinl tu.nk prcrH:.urc.~. ?or thin oonflr,uration, the t,:~.01r. voLl voluml] perr.~ntc. for 10 plliC ov~rprc:wurl.) ,.,.crt:, 52, 46 on;\ 3fl percent r•·:m::cl.ivcly. 'i'htl l.5-lr.c:h dinmctar cylindt:rn fu."\~ttoncd orfuet.lvoly up to 58· vo.L\ vnhtr.:c, but .,.,~l"G llmitc:,.i to 0 puia initi!\l pr(Jusuro.

l42

Page 156: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

The lined wn.U and egg crnte configurations o.ppeo.r to be tho most otf'ic1ent explosion suppre~sion eyatems configurationo for multieell wing tonke. Asain ns t.hc combuntion volume gets larger the multivo:td (egg crate) configuration cut-pcrf'onnn the s j.n(l,lc void (lined. woJ.l.) confip;uration. Voiding percentages ro~ the (300-gnllon) siX·cell simulated wing tank oxoeoded 90% ror both the egl)-crnte nnd l:l.ned wall configurations. When the cell stze was doubled, (the three-c(.)J.l, 300 ga.llor1 wing tank) the preferred :foom configuration becasm thE' egg crate ntyle providing up .to 58;t voiding for the lO _ _paig overpreosure critf:rion. 'rhe lined. wall cont'igurn.t:l.on wns only good to 43,; voiding as experienced in the single cell funelage tank. Hnd the system been tested with voided lined wol.ls, the results might have bMn q,uite different, with up to 55.~ or larger voiding realized as indicated in the fuselage tanks with a simUnr foam configuration.

1.3.1.3 Advanced l,io.teriol.s

Substitution of the 3f,t felt or Scott's fire extinguishing foam evaluated in the Pha:;e II portion of this program might well change the allowable void percentage for n~J. of the configurations tested. Both of these materials have superior flrune arresting properties at elevated initial pressures as indicated by the Phase II results. Their increased voiding, however, ~ould have to make up for t~eir grenter oJ.splncP.ment and absorption penalties; as discussed below, in o1·der to compete \4e ig.i.twise with the 25 ppi foam systems.

1.3.2 Fon.m S;rstem re~~

~he r~suJ.ts of the gross voided faa~ explosion suppression system configura­ti.on test!> CP-rt now be converted into aircraft penalties. The penalties of concern ore ra.t1ge pcma.lties and gross tnke-off weight penalties.

L 3.2.1 ~___2oided Foam - nange Penaltiea

R~rtge pennltie~ are of greater concern in the case of a retrofit system :>hlce ::!.n ne"' nirc:ro.ft design, the direct fuel loss can be offset in the desibn by increasing the tank size. '!hE> retrofit range loss for the first approxima· tion is BL"liply the volume percent penalty, This is the sum of the percent fuel c:J.~plnccmcnt rmd percent fuel o.bcorption. Figure 69 shows the relationship of 10) 15 and 25 ppi forun nnd allowable voiding for this penalty. The values of fuel d:tr,placcm:::nt and ful!l retention req,uir'2d to plot volume and weight penal­ti,~s for the ?5 ppi foum were obtained in Phase II and are given in Table 19. Do:tn. for the 10 and i5 ppi foam material curves shown in Figure 69 were obtained. from previously suppl i.cd Air Force test reports. It can·. be seen that the increonc in voidtng permitted by decrensed llOre oize over ohadows the veisht anrl volu.m·~ pcnnJ.t:!.co incurred by mnteriol absorption and diaplacemont.

1. 3.2 .2 ~roG!J Voided Foom - Gros_s Take-off Weight Penalties

The gross tnkc-off weight penalty for n. new design aircraft is not shown, 'but Jr; nJ.mply the -weif".ht pennl.ty M given in Figure 69 times the g:rovth to.ctor for i:h"' typic~:tl fle;h+.er or eargo n.ircrnrt. '·1eight penalty 11 tho re-r~ent by WC1(Y)1t fomn minun the percent by weight ruel displaced, Since both or these

Page 157: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

factor~; for the smn.llcr pore n lze J.ow-dcncity fonr!::J rLra c~w,J. anrt J..!o::~ thnn ttl'J 10 ppi cto.ndnrd. hifjl-dcnnity fou:n the n.dvnntace of ::'5 ppi fCJn.r:t n._.~,t not b'.! 'mhonccd hy the l)ro::JG voiding tcchni~ues (Figure 69). Ho.,..'evor

1 the voitiine

clo0s improve the ctnturc of th·~ syotel'l mr.tkinB it \Wi('.ht compct1:tivo •,11th oth~r LnertinR systems.

~-io far the mntcrin.ls phynicn.l weig.ht pen~ltic:l nro o..ll th:1.t hn.vc b~·:n r.cc·.!~>G·Jci. In thu ~~ur.c of c;roo~J voidin~ 1 o.ttn.chncnt of th(! fco.r.1 or th.:: O.BS1!r.bl~ni~ of the ~·o;:un requi:rcr. in some cnncc mecho.nicol fnr.tt!ncrn or ndhcc1ve-bon11ne •r:hich menifost ttwmcelvcs in nn ndrHtiona.l weight :rennl:ty. i!!xpcrience has sho'"!: thnt bondinr, of thir. r:mteria.l nearly doubles the forun weight penalty. Concre­IJllcntly, adhesive bon1ing should be nvo:i.ded if pot:nlble. In th·~ ens': of the hollO'..: bo<Ues 1 thi~; em be nccompllshcrl by l:'inl,.tnr: th·J:x .t'omr. !.n tvc nr r.lO!:"':

t·.;L~~;~~opinc po.rts. Compression p.1cl.o:.inr; of th':·~·) bcdinn ln tb-.J cubJ . .::et tnnk :1 iJ!llnnt2::: any further fo.::;tcninr re :1uir(mcr.t. In the cn.~0 cf cr,;j cro.t lng l)r .Llrv~(1 \-Jttlls, lnterloc1,~1.ng fo~un noner.1blit~~ h;. .. v':! pr'C"."::n r~nt1n-r:-cto-r:,r, ·.T!1·:r~ ::-,c~ch:mic::tl fnst(•n,~r::; rt1"C" rt:!-:i_Uirert, 1'1cinc: h~·'3 b: .... •n fc11:1rl ]1\·:t,.. ':'nt1:-f::~!tnry ·"·ith only n. 10 to 30:' nd.ditionnJ. ~,·clr;ht pennJ.ty,

;\n.~t.~·~r n.Gp(~ct cf the gro~s •roll·.;:l f<J:lr.l cynt.':!:n which mu::t bP- fl:ilr•..;;;r,c•i it:; c ffc ct upon fuel system operation::;. ·.ath et l:!.ttln cnr:lnct~rin~, M~~t

()rob:!.r~;-;s cn.n be hrcnclJ.ed. l'lumhlnr;, r,a.ugin1~ c:.nd fll,1l tr.:m'1fr~r 'lr•.: the pr!!",r.r:' ::ucl c:.y.~~·2m fu11ction:'; of c:onct~rn. ·~·l~:! hcllow bcvly r;ros!:: ._._.,,d~nr: cC"ne •:·t r>·!:,rt: 'l uit'-: ~fell :in thnt rrope r slz. i n(j r-".:i ·~vntro~.lcd p~c;~lng r•rav1der. vo; d:; b0.L:• ··~1 +.h~ ·r~ul:ies thernr;·2lv•::s .'md thf! tnnl: ·.·1:-tll:; t:.•l•.quntc fer gnu;~:.i.ng prober., pmr.~ .;_nlct::: or v-ent v~1.lvin[~. 7his Js :~:.~o tr,.Jc fc1· th~~~ 1 ~nr-(1 wn.ll C" .. nd :·~<t~ "!T'~-.t·"' <.:rJnJ'·Jp;urntlon ln th~~ vr!rtic~Ll. v.!.-:-~1. '.,'here.: 1.-.'nll plumbJn~ cnmes thru h. hol·.~ ;n the fonn, proper sc,.J.lnr.; 'will ~lo•,.,r t.hL~ r.:,•ct·~~n to fu.nction

1u'itc well.

l. 3 . 3 .1 F'uc 1 Plow

i;er:Lnl refuel1np: repreGentc th(~ hlc;h rnte of fu,:l flow 1v·~n by ~~.l:r~rn t't fuel oyntemn. !"iinct:! the n.bsolutc pr(~G::~urc drop j:: lt1a: for thd r:rc'"' ,,.,i'i~o rorun eonfit;urntion than the fully p::~.cketl :Jyr.tt~mc \olhich nrc ~·.,:·:~·ntflbh:

1 JJ."l ~:r:"l­

blemo o.:r.e llnticipatcrl.. Two pr(~ViOilSly performed tr;)!JtS Of r,ro;.:.; VOld·~·'· r~')~r, :LnstalJ.nt1.ono in rr.odern f'ighr~r o.ircrnft !'ucl nyot.emr. b'Htr out. this conclur.ton • .Ln these test, maximum rcftteling flow rrtteo \ole~ impooe,\ wlth ~ln(l wlthnut the r:roc:a voided forun syst(.!m \~ithout dif'f'icultics or .tnm·onr.,.!d rcfuellnr t:troo. ;:., l tJ.ow prcr.oura drop throue;h th:J r.m!Ulcr port.~ dinmc•tt:r foum 1 wldl·~ gr""t<'r, !s 101 t .a problt!m r.J.ncc the prounu.rc l'irop in n. function or th-~ thlnltnr'\r,,., t.hrnurh which the fur:]. mw;t prts!'l. ,:;rosn voidinr, draoticl\lly reduc·!n th~ th:tclmes•• t":tf tht~ 25 ppi foum result. inc; in n lc::;r.cr pr<!souro .\rop th1\11 thnt of the M\l~l~ 1 h :n":·~:­lnrG~r pore diameter i'nrun.

Forun rl:l nt".t'lU•lt!cn nntl plru:~.:!mnnt r.hculd b~ ,icao ir,M.-i to !M\ll'\) thnt tl~·~ p·. · " ;~elJcf volume! to cor.tbuotion volume rt'1tiJ ia mrtintolnc,! nt. ~1l'!. fuol lev·:L.>.

1.44

I

Page 158: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

ThJ::; 1;; not u Pl'obJ.mn in n.ny of the ~Jngle-ceU d.eoisn configurationo, however in the cnr.~ of the mLtt tJ ~cell lined wall coufiguration, conSiderations or t.hie :tcquirement ncedn nttcnt:con. The multi-cell system utilizeo the interconrnunieatin~ OpC'n:l.ngs between cella for preasure relief of the ignited ceU. Fuel levela li:nlt nnd ln oom.:.: cnncs toto.l.ly eliminate this commtUiication, l'ed.Ucing the syatem effecttvely to n o:tne;lt.:: cell which requires o.dd1tiono.l. relief volume

1 thuo more

fo~t!n. Ily proportioning the forun EJUCh that a greo.ter percentage is located in tho top (normal usnge volur.~e) of the tank, the problem disappears. Ouch u oy~tem ht't!:i been den:i.gned nnd ;,tualified on o.n advanced fighter aircraft.

l. 3. 4 InctoJ.l~!.;i .. ~~ Considcrntion::~

'J.".-~o typen of in::;tnllntion are of concern; new nircrnft and retrofit ~ro~:: volded !'orun systcmn.

l.j.h.l ~w A~.f.t Systcns

1~1 the case of new aircro.ft, erentur dt.'lsir,n latitude and free acr:ena to the tr~aks r~duce the insto..llntion rrcblcru:;. Of the erose: vo!dcd t'onm confi~t1r3-i~i.on:: under ccnnidcrntion 1 the lined wo.l.l and ce;c; cl"o.te multicell (wine ta.n:t~ s::·~:t.::!r:: ::.::: th~ r1ost difficult to inotnll. Isolation of each cell re'luires te:llou:::. d..::nign to insure the :ninimum thickness of forun in aJ.l flame pc.ths and. to obtnin scaln around :UJ. pass th.rouo:h components including bracketry a.nd 1:;rtnc; nut :.:hanncl::;. Fuel tro.nofer holec and tank venting holes between compnrt­rr:c:-\t::; :>.r': pr>..rt::.culnrly cliffictllt in tha.t the wing skins form part of the pcrif:r; o:' tht.: holes I:L'"'\,:'1. fnstcnerG o.rc nearly DJ.wa.ya present. These problems are not il~~:~urmou.ntnble' but 1o present nn cnainccrlng dcoien problem. Tho enginoerine e:f'Cort ia w.:!ll .,.,.orth it however, in that 8o to 90,~ voiding is possible as compo:~:! tc th~ l10 to voiding avo.1lo.blc ".~hen uning hollow free bodies.

1.3.4.2 Retrofit Systems

'.:'he retrr;fit cn.::;e 15 ,tuitc different. J\cccoc to to.nks particul.o.rly winc; to.n}~s t;cmcro.lly iJ ::liffi~ul t and in some co.oes rc:;.uirea mnjor o.irero.ft otructur<: re-work. Here for the ::ml':.e of simplicity 1 the hollow body eonfigurR.tion is :pnrticula.rly ·.~·311 suited. The hollow bodies cc.n be compressed to po.sa throucjl small openings anll possibly cv"!n be strung to fncilitRte removol.. Random hcllow body ortentc.tion "hich occurs throue;h thi;:; method of pnckins could. tr.ter­f'crc •.d th fuel nystcm component a 1 by~ thio should not be n mo.jor problem sin":"e all mccho.nic:o.l cg,uir>•nent in mo.de o.ccerlG:!.ble due to maintenance· requirements. R~movt.tl of the component to plo.ce n nylon or some other mnterinl co.ge around the critic~ 5 ttcr. '\Jill. alleviate the problem. Uniform distribution of the hollow bod leo in n.lJ. cells is not nec:essnry, nevertheless 1 · n good degNe of untformi ty ohould be atri'l(:d for.

I

Page 159: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

TAB1~-KXI l.,aee I 8Y't'Jt(J':'I Void Percentages

•> ·M-'"·""'-"'- ---~·. -·-•><'~"' .. "''-~¥"'_"_ .. __ ... _

~ -··-·-------·-F-'u_e_e_lag..,_e_T_aru_as_(_lOO __ «_all_,o_na_) -------r-------i I I

'

, r ,1 nod ;·Jal)

1 :;;~ Void eel IJ . .-1ed ','i'all

2).~ Voided L:tned <!s.ll

c) .li a. (>rll ntlrr'~ . Al :'~JdS

7.5'' m.a. Cyl.lnrl~r:J HI'.J:\i. J·nd~.

F, f, Voi.k'·l Lined .!n.U ': •. rr\ ,

I I

I I I

I I

0 PSIG

41.0%

53.0%

47.'5%

44.5%

58.5%

'i0.5%

50.5%

29.0%

• ··--······- ••• -·· •• J

2 Psm

40.0%

. 52.0.%

44.5%

-u.O% 35.~

45.0%

-. ,.,. ,.

···-~--- .. --f, CeLl. ::tnp; Tank (SO r,a1lons each)

s Psm

37 .C>:'

47.'),

---

23.0~

32.5!£

-

... . ....... r·- ---· ......... -----.. --.. --------,---------f

7. S" ,Jia. Cy linrlP.rs i ~>rJ . :Jids.

80.0%-r

92.0%

'>9.0%

70.0%

! Rnproduced from I best :wail~ble copy.

80.0%-t

B?.O~

40.()%

so.~

79.()%

I ............ -·-. ----------'"-------..,.--1---------"'--------f 3 CeU ~.Jinv: Tank (100 p:allon each)

I. .......... --·-· ---·---·-·---~--------,-·---------...,.-------.....f

I JS-45Z *

J --~~-~---- )0.0~ 1·:,-.rr Crate so.~ . -· "" --·-· ____ ........ ______ __. : rnrrreesive FaDur'" 1 r<f'!SR Ouild Up Df!pcnds on number and aize or Cella.

Page 160: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

·--§, 'v ~ --; ::> u. iii .... 0 I-

0 1f1

?: iii c QJ a. ... J:: .5:' OJ

~ ::::. 2

.:,(.

"' I-t! 0

l5

3,(!

'

'\ --·-

\ 3.7 4.0

1\ __ .,.

~ \ !Allowable Foam Voiding (FuselaQe-l", 1\ ~- I

Configurations)

~'--. ~---+-- e-.--

~~ ~~~\. I l--r \. t--4--· ~ ~-\. ~l\;--+---- ·-·-···- --·- 1-----

i

! 1- ! ~~ \1 .

2.8

2.4

2.0

3.0

'1/1. . ?: I ~ \ .

I --\~\ 1.13 I

I

2.0 J e

"-," ,j:- ~f\! -N \ .. ·- I

~ '

~+.·-~ ~-- -~~ -

K ---···~

""15& . ~ . !\. ""l

, .2

0.8 1.0

""!~ 1' ~

~ ~ ----~ I ~ ~":: ~~~ 10 PI?!_ 15 ppl ~ ........ r-::::

0.4

~ 0 0 0 10 20 30 40 50 60 70 80 90 100

Foam Voiding ·%

FIGURE 69 FOAM WEIGHT AND VOLUME PENALTIES·% OF FUEL vs FUSELAGE SYSTEM VOIDING

.2 0 >

Page 161: £r ADVANCED FLAME ARRESTOR MATERIALS ^ … TR-72-12 & £r ADVANCED FLAME ARRESTOR MATERIALS ^ AND t- TECHNIQUES FOR FUEL TANK PROTECTION Quentin C. Malmberg Edwin W. Wiggins MCDONNELL

RESULTS OF TH.i CHROKATOJRATHIC ANALYSIS OF PROPANE GAMPLSS

Contaminants

Acotylona

ethane

rropanu

Butane

0.138

.0001

.025

91.107

Ö.730

jctuctlon l,i:nitD (')

.00 so

.0001

.0001

.0001

.0001

148

--