quark-gluon plasma physicsreygers/lectures/... · 2019. 10. 3. · j/ψ might form again from...

16
Quark-Gluon Plasma Physics 10. Quarkonia Prof. Dr. Klaus Reygers Heidelberg University SS 2017

Upload: others

Post on 05-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Quark-Gluon Plasma Physics

10. Quarkonia 


    Prof. Dr. Klaus Reygers Heidelberg University SS 2017

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    Charmonium and bottomium

    ■ Non-relativistic treatment for heavy quarks (mc ≈ 1.3 GeV, mb ≈ 4.7 GeV) ■ Charmonium and bottomium states reproduced by 


    solving Schrödinger equation using Cornell potential:

    2

    V (r) = �↵r+ �r

    σ ≈1 GeV/fm, α ≈ π/12

    Quarkonia: tightly bound, smaller radius than light mesons

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    Debye screening in the QGP■ Matsui, Satz (Phys. Lett. B 178 (1986)): ‣ Potential between two heavy quarks is modified in the QGP, preventing initially

    produced charm anticharm quarks to form a J/ψ ‣ J/ψ suppression is a QGP signal

    3

    V (r ,T ) = �↵re�µr + �r

    1� e�µr

    µr

    ■ Simple parameterization of the screened potential (“Debye screening”)

    rD = 1/µscreening radius
depends on 
temperature:

    ■ Basic idea: heavy-quark bound state melts in the QGP if

    ■ There is a dissociation temperate Td for each state 
(“sequential melting”):

    µ = µ(T ) / g(T )T

    Debye mass

    Can the different Td’s serve as a QGP thermometer?

    arXiv:0706.2183

    rQQ̄ & rD

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    Heavy quark potential for different temperatures from lattice QCD

    4

    -1

    -0.5

    0

    0.5

    1

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1r [fm]

    F1(r,T) [MeV]

    T=147MeV178MeV194MeV222MeV320MeV442MeV479MeV732MeV

    free energy

    arXiv:1302.2180v1

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    Interaction range and J/ψ radius in the medium as a function of the temperature

    ■ J/ψ radius becomes larger with increasing T ■ No bound state anymore for T ≳ 2 Tc

    5

    0.5 1.0 1

    1.0

    0.5

    r (T)D [fm]1.5

    T/Tc

    0

    0.5

    1

    1.5

    2

    2.5

    1 1.2 1.4 1.6 1.8 2 2.2

    R[fm

    ]

    T/Tc

    J/psi

    H. Satz, hep-ph/0512217

    Interaction range vs T J/ψ radius vs. T

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    A new twist:
J/ψ might form again from deconfined charm

    ■ Requires large number of initially produced c cbar pairs: ■ Expect J/ψ suppression at SPS, RHIC and J/ψ enhancement at high

    energies (LHC)6

    Low (RHIC) energy

    Start of collisionDevelopment of

    quark–gluon plasma Hadronization

    High(LHC) energy

    c–c

    c–c

    D–

    D

    D–

    DD

    D–

    D–D–

    D

    D–

    D

    J/ψ

    D

    DJ/ψ

    NJ/ / N2cc̄

    Braun-Munzinger, Stachel, Nature 448 (2007) 302

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    Expected J/ψ signal with or without statistical recombination of charm quarks

    7

    J/

    Prod

    uctio

    n Pr

    obab

    ility

    ψ

    1

    Energy Density

    thermal dissociation

    statistical recombination

    Kluberg, Satz, 0901.3831

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    Time scales

    CERN SPS energies and below:

    8

    Separation of scales at the LHC (and also RHIC):

    Interpretation of the J/ψ signal easier at the LHC (and at RHIC) 
as absorption in cold nuclear matter should not be irrelevant

    Collision time:

    Hadron formation time:

    Charm pair formation:

    ⌧hadron

    ⇡ 1 fm/c

    QGP formation:

    ⌧cc̄ =1

    2mc⇡ 0.08 fm/c

    ⌧QGP,SPS ⇡ 1 fm/c , ⌧QGP,SPS < 0.5 fm/c , ⌧QGP,LHC < 0.1 fm/c

    tcoll

    = 2R/�cm (RHIC: 0.1 fm/c ,LHC: 5 · 10�3 fm/c)

    tcoll

    ' ⌧QGP

    ' ⌧hadron

    → pre-resonant state can be absorbed in cold nuclear matter

    absorption of 
pre-resonant state in nuclear matter

    tcoll

    ⌧ ⌧QGP

    < ⌧hadron

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    J/ψ suppression at the CERN SPS and at RHIC

    ■ Same suppression at midrapidity at the CERN SPS and at RHIC, in spite of larger energy density at RHIC

    ■ RHIC: suppression large at forward rapidity, in spite of larger energy density at mid-rapidity

    ■ Not easy to explain in pure dissociation picture

    9

    RAB =dN/dpT |A+B

    hTABi ⇥ d�inv/dpT|p+p,

    where hTAB

    i = hNcoll

    i /�NNinel

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    J/ψ suppression at RHIC and the LHC

    10

    =0η |η/dchdN

    0 200 400 600 800 1000 1200 1400 1600

    ψ J

    /AAR

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2=2.76 TeVNNs15% syst.), ±ALICE (2.5

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    J/ψ RAA at the LHC is reproduced by models based on the regeneration mechanism

    ■ Two different approaches ‣ Statistical hadronization at

    the phase boundary ‣ Kinetic recombination of

    charm and anti-charm quarks in the QGP
(hep-ph/0007323)

    ■ Important model input:
number of initial charm quark pairs

    11

    partN0 50 100 150 200 250 300 350 400

    ψ J

    /AAR

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4 13% syst. uncert.)±ALICE (|y|

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    )c (GeV/Tp

    0 1 2 3 4 5 6 7 8

    AAR

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4 = 0.2 TeVNNs = 2.76 TeV and Au-Au NNsPb-Pb

    8%±20% global syst. =

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    J/ψ seems to flow, too — Support for thermalization of charm quarks in the QGP

    13

    ) c (GeV/Tp

    0 1 2 3 4 5 6 7 8 9 10

    2v

    -0.1

    0

    0.1

    0.2

    0.3 < 4.0y = 2.76 TeV), centrality 20%-60%, 2.5 < NNsALICE (Pb-Pb

    Y. Liu et al., b thermalized Y. Liu et al., b not thermalized X. Zhao et al., b thermalized

    1.4%±global syst. =

    ALICE, arXiv:1303.5880v4

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    Υ at the LHC: 
Υ(2s) and Υ(3s) more suppressed in Pb-Pb than Υ(1s)

    14

    ]2) [GeV/c-µ+µMass(

    7 8 9 10 11 12 13 14

    )2

    Eve

    nts

    / (

    0.1

    Ge

    V/c

    0

    100

    200

    300

    400

    500

    600

    700

    800

    = 2.76 TeVNNsCMS PbPb

    Cent. 0-100%, |y| < 2.4

    > 4 GeV/cµ

    Tp

    -1bµ = 150 intL

    data

    total fit

    background

    ]2) [GeV/c-µ+µMass(7 8 9 10 11 12 13 14

    )2Ev

    ents

    / ( 0

    .1 G

    eV/c

    0

    10

    20

    30

    40

    50 = 2.76 TeVsCMS pp

    |y| < 2.4 > 4 GeV/cµ

    Tp

    -1 = 230 nbintL

    datatotal fitbackground

    CMS, 1208.2826

    Qualitatively consistent with sequential melting for the Υ states

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    Υ at the LHC: RAA vs Npart

    15

    partN0 50 100 150 200 250 300 350 400

    pp(1

    S)]

    ϒ(2

    S)/

    ϒ /

    [Pb

    Pb(1

    S)]

    ϒ(2

    S)/

    ϒ[

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4 = 2.76 TeVNNsCMS PbPb -1bµ = 150 intL

    |y| < 2.4 > 4 GeV/cµ

    Tp

    0-5%

    5-10%10-20%

    20-30%30-40%

    40-50%

    50-100%

    stat. unc.syst. unc.pp unc.

    partN0 50 100 150 200 250 300 350 400

    AAR

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4 = 2.76 TeVNNsCMS PbPb -1bµ = 150 intL

    |y| < 2.4 > 4 GeV/cµ

    Tp

    0-5%5-10%10-20%

    20-30%

    30-40%

    40-50%

    50-100%

    (1S), stat. unc.ϒ(1S), syst. unc.ϒ(2S), stat. unc.ϒ(2S), syst. unc.ϒ

    CMS, arXiv:1208.2826

    Υ(1S) appears to be suppressed stronger than one would expect 
from the Υ(2S) and Υ(3S) suppression alone (feeddown)

  • QGP physics SS2017 | K. Reygers | 10. Quarkonia

    Summary/questions quarkonia

    ■ Two main effects discussed in A-A collisions ‣ Suppression due to color screening in the QGP ‣ Regeneration of quarkonia for sufficiently large numbers of deconfined c quarks

    ■ √sNN dependence of J/ψ production consistent with regeneration picture 
(at RHIC and, more pronounced, at the LHC) ‣ However, need stronger constraints on initial number of charm quarks from

    hard scattering ■ What is the appropriate description of the J/ψ regeneration? ■ Does the melting scenario hold for Y production at the LHC? ■ Can yields of Y states serve as a QGP thermometer?

    16