quantum technology:

62
uantum Technology: Chris Monroe University of Maryland Department of Physics National Institute of Standards and Technology Putting Weirdness to Us

Upload: claude

Post on 26-Feb-2016

34 views

Category:

Documents


0 download

DESCRIPTION

Quantum Technology:. Putting Weirdness to Use. Chris Monroe. University of Maryland Department of Physics. National Institute of Standards and Technology. Quantum mechanics and computing. atom-sized transistors. molecular-sized transistors. 2025 . 2040 . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Quantum Technology:

Quantum Technology:

ChrisMonroe

University of MarylandDepartment of Physics

National Institute ofStandards and Technology

Putting Weirdness to Use

Page 2: Quantum Technology:

atom-sized transistors

2040

molecular-sized transistors

2025

Quantum mechanics and computing

Page 3: Quantum Technology:

“When we get to the very, very small world – say circuits of seven atoms - we have a lot of new things that would happen that represent completely new opportunities for design. Atoms on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum mechanics…”

“There's Plenty of Room at the Bottom” (1959)

Richard Feynman

Page 4: Quantum Technology:

QuantumMechanics

InformationTheory

Quantum Information Science

A new science for the 21st Century?

20th Century

21st Century

Page 5: Quantum Technology:

Computer Science and Information Theory

i

k

ii ppH 2

1

log

Alan Turing (1912-1954)universal computing machines

Claude Shannon (1916-2001)quantify information: the bit

Charles Babbage (1791-1871)mechanical difference engine

Page 6: Quantum Technology:

ENIAC(1946)

Page 7: Quantum Technology:

The first solid-state transistor(Bardeen, Brattain & Shockley, 1947)

Page 8: Quantum Technology:

Albert Einstein (1879-1955)Erwin Schrödinger (1887-1961)

Werner Heisenberg (1901-1976)

Quantum Mechanics: A 20th century revolution in physics

• Why doesn’t the electron collapse onto the nucleus of an atom?• Why are there thermodynamic anomalies in materials at low

temperature?• Why is light emitted at discrete colors?• . . . .

Page 9: Quantum Technology:

The Golden Rules of Quantum Mechanics

Rule #2: Rule #1 holds as long as you don’t look!

|0 and |1

Rule #1: Quantum objects are waves and can be in states of superposition.

“qubit”: |0 and |1

|1|0or

probability p 1-p

Page 10: Quantum Technology:

GOOD NEWS…quantum parallel processing on 2N inputs

Example: N=3 qubits

= a0 |000 + a1|001 + a2 |010 + a3 |011 a4 |100 + a5|101 + a6 |110 + a7 |111 f(x)

…BAD NEWS…Measurement gives random result

e.g., |101 f(x)

N=300 qubits: more information than particles in the universe!

Page 11: Quantum Technology:

depends on all inputs

…GOOD NEWS!quantum interference

Page 12: Quantum Technology:

|0 |0 + |1|1 |1 |0

quantumNOT gate:

e.g., |0 + |1 |0 |0|0 + |1|1

superposition entanglement

( )

…GOOD NEWS!quantum interference

depends on all inputs

quantumlogic gates

|0 |0 |0 |0|0 |1 |0 |1|1 |0 |1 |1|1 |1 |1 |0

quantumXOR gate:

Page 13: Quantum Technology:

Quantum State: [0][0] & [1][1]

John Bell (1964)

Any possible “completion” to quantum mechanics will violate local realism just the same

Page 14: Quantum Technology:

Entanglement: Quantum CoinsTwo coins in a

quantum superposition

[H][H] & [T][T]

1 1

Page 15: Quantum Technology:

Entanglement: Quantum CoinsTwo coins in a

quantum superposition

[H][H] & [T][T]

0 01 1

Page 16: Quantum Technology:

Entanglement: Quantum CoinsTwo coins in a

quantum superposition

[H][H] & [T][T]

0 01 10 0

Page 17: Quantum Technology:

Entanglement: Quantum CoinsTwo coins in a

quantum superposition

[H][H] & [T][T]

0 01 10 01 1

Page 18: Quantum Technology:

Entanglement: Quantum CoinsTwo coins in a

quantum superposition

[H][H] & [T][T]

0 01 10 01 11 1

Page 19: Quantum Technology:

Entanglement: Quantum CoinsTwo coins in a

quantum superposition

[H][H] & [T][T]

0 01 10 01 11 11 1

Page 20: Quantum Technology:

Entanglement: Quantum CoinsTwo coins in a

quantum superposition

[H][H] & [T][T]

0 01 10 01 11 11 10 0. .. .. .

Page 21: Quantum Technology:

Application: quantum cryptographic key distribution

+plaintextKEYciphertext

ciphertextKEY

plaintext+

Page 22: Quantum Technology:

Quantum Superposition

From Taking the Quantum Leap, by Fred Alan Wolf

Page 23: Quantum Technology:

Quantum Superposition

From Taking the Quantum Leap, by Fred Alan Wolf

Page 24: Quantum Technology:

Quantum Superposition

From Taking the Quantum Leap, by Fred Alan Wolf

Page 25: Quantum Technology:

Quantum Entanglement“Spooky action-at-a-distance” (A. Einstein)

From Taking the Quantum Leap, by Fred Alan Wolf

Page 26: Quantum Technology:

Quantum Entanglement“Spooky action-at-a-distance” (A. Einstein)

From Taking the Quantum Leap, by Fred Alan Wolf

Page 27: Quantum Technology:

Quantum Entanglement“Spooky action-at-a-distance” (A. Einstein)

From Taking the Quantum Leap, by Fred Alan Wolf

Page 28: Quantum Technology:

Quantum Entanglement“Spooky action-at-a-distance” (A. Einstein)

From Taking the Quantum Leap, by Fred Alan Wolf

Page 29: Quantum Technology:

David Deutsch“When a quantum measurement is made, the universe bifucates!”

• Many Universes• Multiverse• Many Worlds

Page 30: Quantum Technology:
Page 31: Quantum Technology:

David Deutsch (1985)Peter Shor (1994)Lov Grover (1996)

fast number factoring N = pqfast database search

Quantum Computers and Computing

Institute of Computer Science

Russian Academy of Science

ISSN 1607-9817

0

500

1000

1500

2000

2500

3000

# articles mentioning “Quantum Information”or “Quantum Computing”

NatureSciencePhys. Rev. Lett.Phys. Rev.

2005200019951990 2010

Page 32: Quantum Technology:

Quantum Factoring

A quantum computer can factor numbers exponentially faster than classical computers

15 = 3 5 38647884621009387621432325631 = ? ?

Look for a joint property of all 2N inputse.g.: the periodicity of a function

P. Shor, SIAM J. Comput. 26, 1474 (1997)A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996)

application: cryptanalysis (N ~ 10200)

𝑓 (𝑥 )=sin (2𝜋 𝑥𝑝 ) p = period

𝑓 𝑎 (𝑥 )=𝑎𝑥 (𝑀𝑜𝑑𝑁 ) r = period (a = parameter)

x 2x 2x (Mod 15)0 1 11 2 22 4 43 8 84 16 15 32 26 64 47 128 88 256 1 etc…

Page 33: Quantum Technology:

Error-correction Shannon (1948)

Redundant encoding to protect against (rare) errors

better off whenever p < 1/2

𝑝→ 3𝑝2 (1−𝑝)+𝑝3

unprotected

protected

0/1

potential error: bit flip

p(error) = p0/11/0

𝑝 (𝑒𝑟𝑟𝑜𝑟 )=3𝑝2 (1−𝑝 )+𝑝3

000/111 000/111potential error: bit flip

010/101 etc..

take majority

Page 34: Quantum Technology:

Decoherence

|0 + |1 P0 C C* P1

r

|0 + |1 /4{ |00000 + |10010 + |01001 + |10100 + |01010 |11011 |00110 |11000 |11101 |00011 |11110 |01111 |10001 |01100 |10111 + |00101 }

+ /4{ |11111 + |01101 + |10110 + |01011 + |10101 |00100 |11001 |00111 |00010 |11100 |00001 |10000 |01110 |10011 |01000 + |11010 }

5-qubit codecorrects all 1-qubit errorsto first order

Quantum error-correction Shor (1995)Steane (1996)

Page 35: Quantum Technology:
Page 36: Quantum Technology:

Trapped Atomic Ions

Yb+ crystal

~5 mm

C.M. & D. J. Wineland, Sci. Am., 64 (Aug 2008)R. Blatt & D. J. Wineland, Nature 453, 1008 (2008)

Page 37: Quantum Technology:

State |

N

S

N

S

Quantum bit inside an atom: States of relative electron/nuclear spin

State |

S

N

N

S

Page 38: Quantum Technology:
Page 39: Quantum Technology:

“Perfect” quantum measurement of a single atomstate | state |

# photons collected in 200ms

Prob

abilit

y

30201000

0.2

atom fluoresces 108 photons/sec

laser laser

atom remains dark

30201000

1

# photons collected in 200ms

>99% detection efficiency!

Page 40: Quantum Technology:

Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)

Trapped Ion Quantum Computer

Internal states of these ions entangled

Page 41: Quantum Technology:
Page 42: Quantum Technology:

AFM ground state order 222 events

Antiferromagnetic Néel order of N=10 spins

441 events out of 2600 = 17% Prob of any state at random =2 x (1/210) = 0.2%

219 events

All in state

All in state

2600 runs, =1.12

Page 43: Quantum Technology:

a (C.O.M.)b (stretch)c (Egyptian)d (stretch-2)

Mode competition – example: axial modes, N = 4 ions

Fluo

resc

ence

cou

nts

Raman Detuning dR (MHz)-15 -10 -5 0 5 10 15

20

40

60

a b

c

d

a

bcd

2a

c-a

b-a

2b,a

+c b+

c

a+b

2a

c-a

b-a

2b,a

+c

b+c

a+b

carrier

axial modes only

modeamplitudes

cooling beam

(see K. Brown)

Page 44: Quantum Technology:

1 mm

Page 45: Quantum Technology:

GaTech Res. Inst.Al/Si/SiO2

Maryland/LPSGaAs/AlGaAs

Sandia Nat’l Lab: Si/SiO2

NIST-BoulderAu/Quartz

Page 46: Quantum Technology:

optical fiber

trappedions trapped

ions

Photonic Quantum Networking

Linking ideal quantum memory (trapped ion) with ideal quantum communication channel (photon)

Page 47: Quantum Technology:

Single atom

here

Single atom

here

Page 48: Quantum Technology:

unknown qubit uploaded to

atom #1| + |

qubit transfered to atom #2

| & |

Quantum teleportationof a single atom

S. Olmschenk et al., Science 323, 486 (2009).

Page 49: Quantum Technology:

we need more time..

and more

qubits..

Page 50: Quantum Technology:

Large scale vision (103 – 106 atomic qubits)

Page 51: Quantum Technology:

• 1 layer of transistors, 9-12 layers of connectors• Interconnect complexity determines circuit complexity• Efficient transport of bits in the computer is crucial

ibm.com

Classical Computer Architecture

Page 52: Quantum Technology:
Page 53: Quantum Technology:

Physics ChemistryComputer Science

Electrical EngineeringMathematicsInformation Theory

QuantumMechanics

InformationTheory

Quantum Information Science

A new science for the 21st Century?

20th Century

21st Century

Page 54: Quantum Technology:

Quantum Computing Abyss

?noise

reduction

newtechnology

errorcorrection

efficientalgorithms

20 >1000

<100 >109

theoretical requirementsfor “useful” QC

state-of-the-artexperiments

# quantum bits

# logic gates

Page 55: Quantum Technology:
Page 56: Quantum Technology:

Quantum Information Hardware at

Other condensed-mattersingle atomic impurities in glasssingle phosphorus atoms in silicon

Semiconductorsquantum dots2D electron gases

SuperconductorsCooper-pair boxes (charge qubits)rf-SQUIDS (flux qubits)

Individual atoms and photonsion trapsatoms in optical latticescavity-QED

Page 57: Quantum Technology:
Page 58: Quantum Technology:

ENIAC(1946)

1947

Page 59: Quantum Technology:
Page 60: Quantum Technology:

We have always had a great deal of difficulty in understanding the world view that quantum mechanics represents…

…Okay, I still get nervous with it…

It has not yet become obvious to me that there is no real problem. I cannot define the real problem, therefore I suspect there’s no real problem, but I’m not sure there’s no real problem.

Richard Feynman (1982)

Page 61: Quantum Technology:

N=1028

N=1

Page 62: Quantum Technology:

Postdocs Susan Clark (Sandia)Wes Campbell (UCLA)Taeyoung ChoiChenglin CaoBrian NeyenhuisPhil RichermeGrahame Vittorini

Collaborators Luming DuanHoward CarmichaelJim FreericksAlexey Gorshkov

Grad StudentsDavid CamposClay CrockerShantanu DebnathCaroline FiggattDave Hayes (Sydney)David HuculVolkan InlekRajibul Islam (Harvard)Aaron LeeKale JohnsonSimcha KorenblitAndrew ManningJonathan MizrahiCrystal SenkoJake SmithKen Wright

UndergradsDaniel BrennanGeoffrey JiKatie Hergenreder

ARO

JOINTQUANTUMINSTITUTE

www.iontrap.umd.edu

NSA