quantizations of kac-moody algebrasleroy.perso.math.cnrs.fr/congres 2013/talks/kharchenko.pdfof a...

36
Outline Quantizations of Kac-Moody algebras V.K. Kharchenko FES-C UNAM MEXICO 1–4 of July 2013 Noncommutative Rings and their Applications LENS, France V.K. Kharchenko Quantizations of Kac-Moody algebras

Upload: others

Post on 05-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Quantizations of Kac-Moody algebras

V.K. Kharchenko

FES-C UNAM MEXICO

1–4 of July 2013Noncommutative Rings and their Applications

LENS, France

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 2: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Quantizations

I Quantized enveloping algebras:Drinfel’d (1985), Jimbo (1985).

I Multiparameter version:N. Reshetikhin (1990);P. Cotta-Ramusino, M. Rinaldi (1991);C. De Concini, V.G. Kac, C. Procesi (1992);M. Constantini, M. Varagnolo (1994).

I Deformations of Hall algebras: C. M. Ringel (1996).

I Two-parameter quantum groups:G. Benkart, S. Witherspoon (2004);N. Bergeron, Y. Gao, N. Hu (2005).

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 3: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Quantizations

I Quantized enveloping algebras:Drinfel’d (1985), Jimbo (1985).

I Multiparameter version:N. Reshetikhin (1990);P. Cotta-Ramusino, M. Rinaldi (1991);C. De Concini, V.G. Kac, C. Procesi (1992);M. Constantini, M. Varagnolo (1994).

I Deformations of Hall algebras: C. M. Ringel (1996).

I Two-parameter quantum groups:G. Benkart, S. Witherspoon (2004);N. Bergeron, Y. Gao, N. Hu (2005).

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 4: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Quantizations

I Quantized enveloping algebras:Drinfel’d (1985), Jimbo (1985).

I Multiparameter version:N. Reshetikhin (1990);P. Cotta-Ramusino, M. Rinaldi (1991);C. De Concini, V.G. Kac, C. Procesi (1992);M. Constantini, M. Varagnolo (1994).

I Deformations of Hall algebras: C. M. Ringel (1996).

I Two-parameter quantum groups:G. Benkart, S. Witherspoon (2004);N. Bergeron, Y. Gao, N. Hu (2005).

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 5: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Quantizations

I Quantized enveloping algebras:Drinfel’d (1985), Jimbo (1985).

I Multiparameter version:N. Reshetikhin (1990);P. Cotta-Ramusino, M. Rinaldi (1991);C. De Concini, V.G. Kac, C. Procesi (1992);M. Constantini, M. Varagnolo (1994).

I Deformations of Hall algebras: C. M. Ringel (1996).

I Two-parameter quantum groups:G. Benkart, S. Witherspoon (2004);N. Bergeron, Y. Gao, N. Hu (2005).

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 6: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Hopf algebras

I Algebras and coalgebras:

m : H ⊗ H −→ H product;

∆ : H −→ H ⊗ H coproduct;

I Examples:k[G ], ∆(g) = g ⊗ g , g ∈ G ;

U(L), ∆(l) = l ⊗ 1 + 1⊗ l , l ∈ L.

I Both are cocommutative:

∆(a) =∑

a(1) ⊗ a(2) =∑

a(2) ⊗ a(1).

I Thm. (Cartier–Kostant). Every cocommutative Hopf algebra(over C) has the form C[G ]#U(L).

I A quantum group = a Hopf algebra which is neithercommutative nor cocommutative, but it is close to.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 7: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Hopf algebras

I Algebras and coalgebras:

m : H ⊗ H −→ H product;

∆ : H −→ H ⊗ H coproduct;

I Examples:k[G ], ∆(g) = g ⊗ g , g ∈ G ;

U(L), ∆(l) = l ⊗ 1 + 1⊗ l , l ∈ L.

I Both are cocommutative:

∆(a) =∑

a(1) ⊗ a(2) =∑

a(2) ⊗ a(1).

I Thm. (Cartier–Kostant). Every cocommutative Hopf algebra(over C) has the form C[G ]#U(L).

I A quantum group = a Hopf algebra which is neithercommutative nor cocommutative, but it is close to.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 8: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Hopf algebras

I Algebras and coalgebras:

m : H ⊗ H −→ H product;

∆ : H −→ H ⊗ H coproduct;

I Examples:k[G ], ∆(g) = g ⊗ g , g ∈ G ;

U(L), ∆(l) = l ⊗ 1 + 1⊗ l , l ∈ L.

I Both are cocommutative:

∆(a) =∑

a(1) ⊗ a(2) =∑

a(2) ⊗ a(1).

I Thm. (Cartier–Kostant). Every cocommutative Hopf algebra(over C) has the form C[G ]#U(L).

I A quantum group = a Hopf algebra which is neithercommutative nor cocommutative, but it is close to.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 9: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Hopf algebras

I Algebras and coalgebras:

m : H ⊗ H −→ H product;

∆ : H −→ H ⊗ H coproduct;

I Examples:k[G ], ∆(g) = g ⊗ g , g ∈ G ;

U(L), ∆(l) = l ⊗ 1 + 1⊗ l , l ∈ L.

I Both are cocommutative:

∆(a) =∑

a(1) ⊗ a(2) =∑

a(2) ⊗ a(1).

I Thm. (Cartier–Kostant). Every cocommutative Hopf algebra(over C) has the form C[G ]#U(L).

I A quantum group = a Hopf algebra which is neithercommutative nor cocommutative, but it is close to.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 10: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Hopf algebras

I Algebras and coalgebras:

m : H ⊗ H −→ H product;

∆ : H −→ H ⊗ H coproduct;

I Examples:k[G ], ∆(g) = g ⊗ g , g ∈ G ;

U(L), ∆(l) = l ⊗ 1 + 1⊗ l , l ∈ L.

I Both are cocommutative:

∆(a) =∑

a(1) ⊗ a(2) =∑

a(2) ⊗ a(1).

I Thm. (Cartier–Kostant). Every cocommutative Hopf algebra(over C) has the form C[G ]#U(L).

I A quantum group = a Hopf algebra which is neithercommutative nor cocommutative, but it is close to.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 11: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Quantizations

I In what extend a quantum universal enveloping algebraof a Kac-Moody algebra g

is defined by multi-degrees of its defining relations?

I Rg is a class of character Hopf algebrasdefined by the same number of defining relationsof the same degrees as g is.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 12: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Quantizations

I In what extend a quantum universal enveloping algebraof a Kac-Moody algebra g

is defined by multi-degrees of its defining relations?

I Rg is a class of character Hopf algebrasdefined by the same number of defining relationsof the same degrees as g is.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 13: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Gabber-Kac representation

I Cartan matrix A = ||aij || : an integral n × n matrix• aii = 2, aij ≤ 0 for i 6= j ,• aij = 0 implies aji = 0.

I Generators: ei , fi ,hi , 1 ≤ i ≤ n.

I Relations: [hi ,hj ] = 0, [hi , ej ] = aijej , [hi , fj ] = −aij fj ;

[ei , fj ] = 0 if i 6= j , [ei , fi ] = hi ;

(ad ei )1−aij ej = 0, (ad fi )

1−aij fj = 0 if i 6= j ,

• (ad a)mb = [. . . [[b, a], a], . . . , a]︸ ︷︷ ︸m

.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 14: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Gabber-Kac representation

I Cartan matrix A = ||aij || : an integral n × n matrix• aii = 2, aij ≤ 0 for i 6= j ,• aij = 0 implies aji = 0.

I Generators: ei , fi ,hi , 1 ≤ i ≤ n.

I Relations: [hi ,hj ] = 0, [hi , ej ] = aijej , [hi , fj ] = −aij fj ;

[ei , fj ] = 0 if i 6= j , [ei , fi ] = hi ;

(ad ei )1−aij ej = 0, (ad fi )

1−aij fj = 0 if i 6= j ,

• (ad a)mb = [. . . [[b, a], a], . . . , a]︸ ︷︷ ︸m

.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 15: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Gabber-Kac representation

I Cartan matrix A = ||aij || : an integral n × n matrix• aii = 2, aij ≤ 0 for i 6= j ,• aij = 0 implies aji = 0.

I Generators: ei , fi ,hi , 1 ≤ i ≤ n.

I Relations: [hi ,hj ] = 0, [hi , ej ] = aijej , [hi , fj ] = −aij fj ;

[ei , fj ] = 0 if i 6= j , [ei , fi ] = hi ;

(ad ei )1−aij ej = 0, (ad fi )

1−aij fj = 0 if i 6= j ,

• (ad a)mb = [. . . [[b, a], a], . . . , a]︸ ︷︷ ︸m

.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 16: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Quantification of Cartan subalgebra

I h → exp(h) = 1 + h + h2

2 + h3

3! + h4

4! + · · ·

∆(h) = 1⊗ h + h ⊗ 1; ∆(exp(h)) = exp(h)⊗ exp(h).

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 17: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Quantification of Cartan subalgebra

I h → exp(h) = 1 + h + h2

2 + h3

3! + h4

4! + · · ·

∆(h) = 1⊗ h + h ⊗ 1; ∆(exp(h)) = exp(h)⊗ exp(h).

[hi ,hj ] = 0 G = exp(H) is a commutative group;[hi , ej ] = aijej , G acts on xj = q(ej) by a character χj ;

[hi , fj ] = −aij fj , G acts on x−j = q(fj) by a character χj−.

I

g−1yjg = χj(g)yj , g−1y−j g = χj−(g)y−j ,

χj− = (χj)−1.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 18: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Quantification of Cartan subalgebra

I h → exp(h) = 1 + h + h2

2 + h3

3! + h4

4! + · · ·

∆(h) = 1⊗ h + h ⊗ 1; ∆(exp(h)) = exp(h)⊗ exp(h).

[hi ,hj ] = 0 G = exp(H) is a commutative group;[hi , ej ] = aijej , G acts on xj = q(ej) by a character χj ;

[hi , fj ] = −aij fj , G acts on x−j = q(fj) by a character χj−.

I

g−1yjg = χj(g)yj , g−1y−j g = χj−(g)y−j ,

χj− = (χj)−1.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 19: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Hopf algebra structure

I Group-like element: ∆(g) = g ⊗ g , ε(g) = 1.The grouplikes span a Hopf subalgebra ∼=k [G ].

I A skew-primitive element:∆(a) = a⊗ h + f ⊗ a, with f , h ∈ G .

I Coproduct:

∆(y±i ) = y±i ⊗ h±i + f ±i ⊗ y±i , h±i , f ±i ∈ G .

I g−1y±j g = χj±(g)yj , χj

− = (χj)−1, g ∈ G .

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 20: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Hopf algebra structure

I Group-like element: ∆(g) = g ⊗ g , ε(g) = 1.The grouplikes span a Hopf subalgebra ∼=k [G ].

I A skew-primitive element:∆(a) = a⊗ h + f ⊗ a, with f , h ∈ G .

I Coproduct:

∆(y±i ) = y±i ⊗ h±i + f ±i ⊗ y±i , h±i , f ±i ∈ G .

I g−1y±j g = χj±(g)yj , χj

− = (χj)−1, g ∈ G .

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 21: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Hopf algebra structure

I Group-like element: ∆(g) = g ⊗ g , ε(g) = 1.The grouplikes span a Hopf subalgebra ∼=k [G ].

I A skew-primitive element:∆(a) = a⊗ h + f ⊗ a, with f , h ∈ G .

I Coproduct:

∆(y±i ) = y±i ⊗ h±i + f ±i ⊗ y±i , h±i , f ±i ∈ G .

I g−1y±j g = χj±(g)yj , χj

− = (χj)−1, g ∈ G .

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 22: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Hopf algebra structure

I Group-like element: ∆(g) = g ⊗ g , ε(g) = 1.The grouplikes span a Hopf subalgebra ∼=k [G ].

I A skew-primitive element:∆(a) = a⊗ h + f ⊗ a, with f , h ∈ G .

I Coproduct:

∆(y±i ) = y±i ⊗ h±i + f ±i ⊗ y±i , h±i , f ±i ∈ G .

I g−1y±j g = χj±(g)yj , χj

− = (χj)−1, g ∈ G .

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 23: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Second and third groups of relations

I [ei , fj ] = 0 if i 6= j , [ei , fi ] = hi ;

Rijdf= αij yiy

−j + βij y−j yi = 0,

Rii (yi , y−i )

df= αii yiy

−i + βii y

−i yi −

∑k

µik gk = 0, gk ∈ G .

I (ad ei )1−aij ej = 0, (ad fi )

1−aij fj = 0 if i 6= j :

Sij(yi , yj)df=

1−aij∑k=0

γijk yki yjy

1−aij−ki = 0, i 6= j ;

S−ij (y−i , y−j )df=

1−aij∑k=0

δijk (y−i )ky−j (y−i )1−aij−k = 0, i 6= j .

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 24: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Second and third groups of relations

I [ei , fj ] = 0 if i 6= j , [ei , fi ] = hi ;

Rijdf= αij yiy

−j + βij y−j yi = 0,

Rii (yi , y−i )

df= αii yiy

−i + βii y

−i yi −

∑k

µik gk = 0, gk ∈ G .

I (ad ei )1−aij ej = 0, (ad fi )

1−aij fj = 0 if i 6= j :

Sij(yi , yj)df=

1−aij∑k=0

γijk yki yjy

1−aij−ki = 0, i 6= j ;

S−ij (y−i , y−j )df=

1−aij∑k=0

δijk (y−i )ky−j (y−i )1−aij−k = 0, i 6= j .

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 25: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Second and third groups of relations

I H = G 〈yi , y−i ||Rij = 0,S±ij = 0〉, 2n3 + 3n2 parameters

αij , βij , µik , γijk , δijk .

I Theorem 1. The only way to keep the Hopf algebra structureon H is to replace the Lie operation in Gabber-Kac relationswith a skew commutator:

[u, v ] = χv (hu)uv − χu(fv )vu.

I Remains just n2 parameters, pij = χi−(hj)χ

i (fj), of 2n3 + 3n2.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 26: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Second and third groups of relations

I H = G 〈yi , y−i ||Rij = 0,S±ij = 0〉, 2n3 + 3n2 parameters

αij , βij , µik , γijk , δijk .

I Theorem 1. The only way to keep the Hopf algebra structureon H is to replace the Lie operation in Gabber-Kac relationswith a skew commutator:

[u, v ] = χv (hu)uv − χu(fv )vu.

I Remains just n2 parameters, pij = χi−(hj)χ

i (fj), of 2n3 + 3n2.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 27: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Second and third groups of relations

I H = G 〈yi , y−i ||Rij = 0,S±ij = 0〉, 2n3 + 3n2 parameters

αij , βij , µik , γijk , δijk .

I Theorem 1. The only way to keep the Hopf algebra structureon H is to replace the Lie operation in Gabber-Kac relationswith a skew commutator:

[u, v ] = χv (hu)uv − χu(fv )vu.

I Remains just n2 parameters, pij = χi−(hj)χ

i (fj), of 2n3 + 3n2.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 28: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Indecomposable Cartan matrices A = ||aij ||.

I Definition. A quantification H is regular if

pijpji = paij

ii .

I All known quantizations are regular.

I Theorem 2. There exists just a finite number of algebrastructures for exceptional quantizations of a given Kac-Moodyalgebra.

I Theorem 3. If one of the parameters pijpji , 1 ≤ i , j ≤ n isnot a root of 1 then the quantification H is regular.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 29: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Indecomposable Cartan matrices A = ||aij ||.

I Definition. A quantification H is regular if

pijpji = paij

ii .

I All known quantizations are regular.

I Theorem 2. There exists just a finite number of algebrastructures for exceptional quantizations of a given Kac-Moodyalgebra.

I Theorem 3. If one of the parameters pijpji , 1 ≤ i , j ≤ n isnot a root of 1 then the quantification H is regular.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 30: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Indecomposable Cartan matrices A = ||aij ||.

I Definition. A quantification H is regular if

pijpji = paij

ii .

I All known quantizations are regular.

I Theorem 2. There exists just a finite number of algebrastructures for exceptional quantizations of a given Kac-Moodyalgebra.

I Theorem 3. If one of the parameters pijpji , 1 ≤ i , j ≤ n isnot a root of 1 then the quantification H is regular.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 31: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Indecomposable Cartan matrices A = ||aij ||.

I Definition. A quantification H is regular if

pijpji = paij

ii .

I All known quantizations are regular.

I Theorem 2. There exists just a finite number of algebrastructures for exceptional quantizations of a given Kac-Moodyalgebra.

I Theorem 3. If one of the parameters pijpji , 1 ≤ i , j ≤ n isnot a root of 1 then the quantification H is regular.

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 32: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Indecomposable Cartan matrices A = ||aij ||.

I Definition. A matrix A is symmetrizable if there existsnatural d1, d2, . . . , dn such that, diaij = djaji , 1 ≤ i , j ≤ n.An n-tuple (m1,m2, . . . ,mn) is a modular symmetrization if

miaij ≡ mjaji (modN), 0 ≤ mi , mj < N, 1 ≤ i , j ≤ n.

I Theorem 4. The algebraic structure of a regularquantification is defined by two independent parametersq ∈ k̄∗ and m ∈ M so that

pii = qdi ξmi , m = (m1,m2, . . . ,mn),

where ξ is a fixed Nth primitive root of 1.

I In all known quantizations, m = (0, 0, . . . , 0).

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 33: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Indecomposable Cartan matrices A = ||aij ||.

I Definition. A matrix A is symmetrizable if there existsnatural d1, d2, . . . , dn such that, diaij = djaji , 1 ≤ i , j ≤ n.An n-tuple (m1,m2, . . . ,mn) is a modular symmetrization if

miaij ≡ mjaji (modN), 0 ≤ mi , mj < N, 1 ≤ i , j ≤ n.

I Theorem 4. The algebraic structure of a regularquantification is defined by two independent parametersq ∈ k̄∗ and m ∈ M so that

pii = qdi ξmi , m = (m1,m2, . . . ,mn),

where ξ is a fixed Nth primitive root of 1.

I In all known quantizations, m = (0, 0, . . . , 0).

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 34: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

Indecomposable Cartan matrices A = ||aij ||.

I Definition. A matrix A is symmetrizable if there existsnatural d1, d2, . . . , dn such that, diaij = djaji , 1 ≤ i , j ≤ n.An n-tuple (m1,m2, . . . ,mn) is a modular symmetrization if

miaij ≡ mjaji (modN), 0 ≤ mi , mj < N, 1 ≤ i , j ≤ n.

I Theorem 4. The algebraic structure of a regularquantification is defined by two independent parametersq ∈ k̄∗ and m ∈ M so that

pii = qdi ξmi , m = (m1,m2, . . . ,mn),

where ξ is a fixed Nth primitive root of 1.

I In all known quantizations, m = (0, 0, . . . , 0).

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 35: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

The number of exceptional quantizations

Here ϕi , i ≥ 0 is the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, . . . .

An ϕ2n − 2 G2 12 E(1)7 632

Bn 2ϕ2n − 2 A(1)1 6 E

(1)8 4344

Cn 2ϕ2n−2 + 4 A(1)l ϕ2n + ϕ2n−2 − 2 A

(2)2 24

E6 240 C(1)l 4ϕ2n−4 + 28 A

(2)2l 4ϕ2n−2 + 16

E7 632 G(1)2 38 D

(2)l+1 4ϕ2n + 2

E8 1658 F(1)4 91 E

(2)6 80

F4 40 E(1)6 635 D

(3)4 19

Dn ϕ2n + ϕ2n−7 − 2 D(1)l 15 ϕ2n−6 + 11 ϕ2n−8 − 2

A(2)2l−1 2ϕ2n−2 + 2ϕ2n−9 + 2 B

(1)l ϕ2n+1 + 5ϕ2n−5 − 2

V.K. Kharchenko Quantizations of Kac-Moody algebras

Page 36: Quantizations of Kac-Moody algebrasleroy.perso.math.cnrs.fr/Congres 2013/TALKS/Kharchenko.pdfof a Kac-Moody algebra g is defined by multi-degrees of its defining relations? I R g

Outline

THE END

THANK YOU

V.K. Kharchenko Quantizations of Kac-Moody algebras