root multiplicities of the kac-moody algebra hdn(1)plavnik/quantum2013/wilson.pdf · introduction...

67
Introduction Construction of HD (1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root Multiplicities of HD (1) n Summary References Root Multiplicities of the Kac-Moody Algebra HD (1) n Evan A. Wilson IME-USP Joint with: Kailash C. Misra March 23, 2013 Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD (1) n

Upload: others

Post on 05-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Root Multiplicities of the Kac-Moody AlgebraHD(1)

n

Evan A. Wilson

IME-USPJoint with: Kailash C. Misra

March 23, 2013

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 2: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Outline

1 Introduction

2 Construction of HD(1)n from D(1)

n

3 Crystals of Affine Kac-Moody Algebras

4 Root Multiplicities of HD(1)n

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 3: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Classification of Kac-Moody Algebras

Symmetrizable Kac-Moody algebras can be classified intothree types, based on the properties of their GCM:

1 finite,2 affine,3 indefinite.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 4: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Classification of Kac-Moody Algebras

Symmetrizable Kac-Moody algebras can be classified intothree types, based on the properties of their GCM:

1 finite,2 affine,3 indefinite.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 5: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Classification of Kac-Moody Algebras

Symmetrizable Kac-Moody algebras can be classified intothree types, based on the properties of their GCM:

1 finite,2 affine,3 indefinite.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 6: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Classification of Kac-Moody Algebras

Symmetrizable Kac-Moody algebras can be classified intothree types, based on the properties of their GCM:

1 finite,2 affine,3 indefinite.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 7: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Some Motivation

Figure: Example of a hyperbolic tesselation.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 8: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Root Multiplicities

An element α ∈ h∗, is called a root of g if α 6= 0 and{0} 6= gα = {x ∈ g|[h, x ] = α(h)x ,h ∈ h}.A fundamental problem in the study of Kac-Moody algebras isto determine the root multiplicities, i.e. the dimension of the rootspaces gα.These are known to be 1 for finite type, and affine type rootmultiplicities are also all known.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 9: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Root Multiplicities

An element α ∈ h∗, is called a root of g if α 6= 0 and{0} 6= gα = {x ∈ g|[h, x ] = α(h)x ,h ∈ h}.A fundamental problem in the study of Kac-Moody algebras isto determine the root multiplicities, i.e. the dimension of the rootspaces gα.These are known to be 1 for finite type, and affine type rootmultiplicities are also all known.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 10: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Root Multiplicities

An element α ∈ h∗, is called a root of g if α 6= 0 and{0} 6= gα = {x ∈ g|[h, x ] = α(h)x ,h ∈ h}.A fundamental problem in the study of Kac-Moody algebras isto determine the root multiplicities, i.e. the dimension of the rootspaces gα.These are known to be 1 for finite type, and affine type rootmultiplicities are also all known.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 11: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

For indefinite type Kac-Moody algebras, some results havebeen given for

1 HA(1)1 (Feingold and Frankel, 1983)

2 HA(1)n (Kang and Melville, 1994),

3 E10 = HE (1)8 (Kac, Moody, Wakimoto, 1998), HG(1)

2 andHD(3)

4 (Hontz and Misra, 2002), and

4 HC(1)n (Klima and Misra, 2002).

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 12: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

For indefinite type Kac-Moody algebras, some results havebeen given for

1 HA(1)1 (Feingold and Frankel, 1983)

2 HA(1)n (Kang and Melville, 1994),

3 E10 = HE (1)8 (Kac, Moody, Wakimoto, 1998), HG(1)

2 andHD(3)

4 (Hontz and Misra, 2002), and

4 HC(1)n (Klima and Misra, 2002).

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 13: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

For indefinite type Kac-Moody algebras, some results havebeen given for

1 HA(1)1 (Feingold and Frankel, 1983)

2 HA(1)n (Kang and Melville, 1994),

3 E10 = HE (1)8 (Kac, Moody, Wakimoto, 1998), HG(1)

2 andHD(3)

4 (Hontz and Misra, 2002), and

4 HC(1)n (Klima and Misra, 2002).

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 14: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

For indefinite type Kac-Moody algebras, some results havebeen given for

1 HA(1)1 (Feingold and Frankel, 1983)

2 HA(1)n (Kang and Melville, 1994),

3 E10 = HE (1)8 (Kac, Moody, Wakimoto, 1998), HG(1)

2 andHD(3)

4 (Hontz and Misra, 2002), and

4 HC(1)n (Klima and Misra, 2002).

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 15: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

For indefinite type Kac-Moody algebras, some results havebeen given for

1 HA(1)1 (Feingold and Frankel, 1983)

2 HA(1)n (Kang and Melville, 1994),

3 E10 = HE (1)8 (Kac, Moody, Wakimoto, 1998), HG(1)

2 andHD(3)

4 (Hontz and Misra, 2002), and

4 HC(1)n (Klima and Misra, 2002).

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 16: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Introducing HD(1)n

Consider the Kac-Moody algebra HD(1)n with Dynkin diagram

given below:

t t tt

t t tt

t-1 0 2

· · ·

1

3

n − 1

n − 2 n

It is an indefinite Kac-Moody algebra containing the affineKac-Moody algebra D(1)

n . There is a construction of HD(1)n in

terms of D(1)n -modules.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 17: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Introducing HD(1)n

Consider the Kac-Moody algebra HD(1)n with Dynkin diagram

given below:

t t tt

t t tt

t-1 0 2

· · ·

1

3

n − 1

n − 2 n

It is an indefinite Kac-Moody algebra containing the affineKac-Moody algebra D(1)

n . There is a construction of HD(1)n in

terms of D(1)n -modules.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 18: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Outline of the Construction

The construction of HD(1)n has three ingredients:

The Lie algebra g0 := D(1)n .

The g0-modules V (Λ0) and V ∗(Λ0).A g0-module homomorphism ψ : V ∗(Λ0)⊗ V (Λ0)→ g0.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 19: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Outline of the Construction

The construction of HD(1)n has three ingredients:

The Lie algebra g0 := D(1)n .

The g0-modules V (Λ0) and V ∗(Λ0).A g0-module homomorphism ψ : V ∗(Λ0)⊗ V (Λ0)→ g0.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 20: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Outline of the Construction

The construction of HD(1)n has three ingredients:

The Lie algebra g0 := D(1)n .

The g0-modules V (Λ0) and V ∗(Λ0).A g0-module homomorphism ψ : V ∗(Λ0)⊗ V (Λ0)→ g0.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 21: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Outline of the Construction

The construction of HD(1)n has three ingredients:

The Lie algebra g0 := D(1)n .

The g0-modules V (Λ0) and V ∗(Λ0).A g0-module homomorphism ψ : V ∗(Λ0)⊗ V (Λ0)→ g0.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 22: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

The g0-module homomorphism.

Theorem ([Benkart Kang Misra 93])The map

ψ : V ∗(Λ0)⊗ V (Λ0)→ g0

given by

v∗ ⊗ w 7→ −∑i∈I〈v∗, xi · w〉xi − 2〈v∗,w〉c

is a g0-module homomorphism, where g0 is considered as amodule under the adjoint action.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 23: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

The Lie Algebra g̃.

Now, let g̃1 := V (Λ0), g̃−1 := V ∗(Λ0), g̃− and g̃+ be the free Liealgebras generated by g̃−1 and g̃1 respectively. Letg̃±i = span{[y1, [y2, [. . . , [yi−1, yi ] . . . ]]]|y1, y2, . . . , yi ∈ g̃±1}.

Theorem ([Benkart Kang Misra 93])The vector space g̃ := g̃− ⊕ g0 ⊕ g̃+ is a graded Lie algebra withbracket given by extending the following:

[v∗,w ] = ψ(v∗ ⊗ w).

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 24: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

The Lie Algebra g̃.

Now, let g̃1 := V (Λ0), g̃−1 := V ∗(Λ0), g̃− and g̃+ be the free Liealgebras generated by g̃−1 and g̃1 respectively. Letg̃±i = span{[y1, [y2, [. . . , [yi−1, yi ] . . . ]]]|y1, y2, . . . , yi ∈ g̃±1}.

Theorem ([Benkart Kang Misra 93])The vector space g̃ := g̃− ⊕ g0 ⊕ g̃+ is a graded Lie algebra withbracket given by extending the following:

[v∗,w ] = ψ(v∗ ⊗ w).

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 25: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

The Ideal J.

Let J±k := {x ∈ g̃k |[y1, [y2, . . . , [yk−1, x ] . . . ]] =0,∀y1, y2, . . . , yk−1 ∈ g̃±1}. Let J± :=

⊕k>1 J±k and

J := J+ ⊕ J−.

Theorem ([Benkart Kang Misra 93])

J+ and J− are ideals of g̃, and J is the maximal graded idealthat intersects g̃−1 ⊕ g0 ⊕ g̃1 trivially.

Theorem ([Benkart Kang Misra 93])

Let g(A) be the Kac-Moody algebra with GCM A, and let g0 bea subalgebra of g(A). Then g(A) is isomorphic to g̃/J.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 26: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

The Ideal J.

Let J±k := {x ∈ g̃k |[y1, [y2, . . . , [yk−1, x ] . . . ]] =0,∀y1, y2, . . . , yk−1 ∈ g̃±1}. Let J± :=

⊕k>1 J±k and

J := J+ ⊕ J−.

Theorem ([Benkart Kang Misra 93])

J+ and J− are ideals of g̃, and J is the maximal graded idealthat intersects g̃−1 ⊕ g0 ⊕ g̃1 trivially.

Theorem ([Benkart Kang Misra 93])

Let g(A) be the Kac-Moody algebra with GCM A, and let g0 bea subalgebra of g(A). Then g(A) is isomorphic to g̃/J.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 27: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

The Ideal J.

Let J±k := {x ∈ g̃k |[y1, [y2, . . . , [yk−1, x ] . . . ]] =0,∀y1, y2, . . . , yk−1 ∈ g̃±1}. Let J± :=

⊕k>1 J±k and

J := J+ ⊕ J−.

Theorem ([Benkart Kang Misra 93])

J+ and J− are ideals of g̃, and J is the maximal graded idealthat intersects g̃−1 ⊕ g0 ⊕ g̃1 trivially.

Theorem ([Benkart Kang Misra 93])

Let g(A) be the Kac-Moody algebra with GCM A, and let g0 bea subalgebra of g(A). Then g(A) is isomorphic to g̃/J.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 28: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Kang’s Multiplicity Formula

By Kostant’s theorem for Lie algebra cohomology and theEuler-Poincaré principle:∏α∈∆−(S)

(1− e(α))dim(gα) = 1−∑

w∈W (S)

`(w)≥1

(−1)`(w)+1ch(V (w(ρ)− ρ))

whereS = {0,1, . . . ,n}: The index set of simple roots ofg0 = D(1)

n .∆S : The set of roots of g0.∆±S : The set of positive (resp. negative) roots of g0.∆±(S) : ∆±\∆±S .W (S) : {w ∈W |w∆− ∩∆+ ⊆ ∆+(S)}.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 29: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Kang’s Multiplicity Formula

By Kostant’s theorem for Lie algebra cohomology and theEuler-Poincaré principle:∏α∈∆−(S)

(1− e(α))dim(gα) = 1−∑

w∈W (S)

`(w)≥1

(−1)`(w)+1ch(V (w(ρ)− ρ))

whereS = {0,1, . . . ,n}: The index set of simple roots ofg0 = D(1)

n .∆S : The set of roots of g0.∆±S : The set of positive (resp. negative) roots of g0.∆±(S) : ∆±\∆±S .W (S) : {w ∈W |w∆− ∩∆+ ⊆ ∆+(S)}.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 30: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Kang’s Multiplicity Formula

By Kostant’s theorem for Lie algebra cohomology and theEuler-Poincaré principle:∏α∈∆−(S)

(1− e(α))dim(gα) = 1−∑

w∈W (S)

`(w)≥1

(−1)`(w)+1ch(V (w(ρ)− ρ))

whereS = {0,1, . . . ,n}: The index set of simple roots ofg0 = D(1)

n .∆S : The set of roots of g0.∆±S : The set of positive (resp. negative) roots of g0.∆±(S) : ∆±\∆±S .W (S) : {w ∈W |w∆− ∩∆+ ⊆ ∆+(S)}.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 31: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Kang’s Multiplicity Formula

By Kostant’s theorem for Lie algebra cohomology and theEuler-Poincaré principle:∏α∈∆−(S)

(1− e(α))dim(gα) = 1−∑

w∈W (S)

`(w)≥1

(−1)`(w)+1ch(V (w(ρ)− ρ))

whereS = {0,1, . . . ,n}: The index set of simple roots ofg0 = D(1)

n .∆S : The set of roots of g0.∆±S : The set of positive (resp. negative) roots of g0.∆±(S) : ∆±\∆±S .W (S) : {w ∈W |w∆− ∩∆+ ⊆ ∆+(S)}.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 32: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Kang’s Multiplicity Formula

By Kostant’s theorem for Lie algebra cohomology and theEuler-Poincaré principle:∏α∈∆−(S)

(1− e(α))dim(gα) = 1−∑

w∈W (S)

`(w)≥1

(−1)`(w)+1ch(V (w(ρ)− ρ))

whereS = {0,1, . . . ,n}: The index set of simple roots ofg0 = D(1)

n .∆S : The set of roots of g0.∆±S : The set of positive (resp. negative) roots of g0.∆±(S) : ∆±\∆±S .W (S) : {w ∈W |w∆− ∩∆+ ⊆ ∆+(S)}.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 33: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Kang’s Multiplicity Formula

By Kostant’s theorem for Lie algebra cohomology and theEuler-Poincaré principle:∏α∈∆−(S)

(1− e(α))dim(gα) = 1−∑

w∈W (S)

`(w)≥1

(−1)`(w)+1ch(V (w(ρ)− ρ))

whereS = {0,1, . . . ,n}: The index set of simple roots ofg0 = D(1)

n .∆S : The set of roots of g0.∆±S : The set of positive (resp. negative) roots of g0.∆±(S) : ∆±\∆±S .W (S) : {w ∈W |w∆− ∩∆+ ⊆ ∆+(S)}.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 34: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Perfect Crystals

Definition (Perfect Crystal)For a positive integer l > 0, we say that a finite classical crystalB is a perfect crystal of level l if it satisfies the followingconditions:

1 there exists a finite dimensional U ′q(g)-module with acrystal base whose crystal graph is isomorphic to B,

2 B ⊗ B is connected,3 there exists a classical weight λ0 ∈ P̄ such that

wt(B) ⊂ λ0 +∑

i 6=0 Z≤0αi , and #(Bλ0) = 1,

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 35: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Perfect Crystals

Definition (Perfect Crystal)For a positive integer l > 0, we say that a finite classical crystalB is a perfect crystal of level l if it satisfies the followingconditions:

1 there exists a finite dimensional U ′q(g)-module with acrystal base whose crystal graph is isomorphic to B,

2 B ⊗ B is connected,3 there exists a classical weight λ0 ∈ P̄ such that

wt(B) ⊂ λ0 +∑

i 6=0 Z≤0αi , and #(Bλ0) = 1,

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 36: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Perfect Crystals

Definition (Perfect Crystal)For a positive integer l > 0, we say that a finite classical crystalB is a perfect crystal of level l if it satisfies the followingconditions:

1 there exists a finite dimensional U ′q(g)-module with acrystal base whose crystal graph is isomorphic to B,

2 B ⊗ B is connected,3 there exists a classical weight λ0 ∈ P̄ such that

wt(B) ⊂ λ0 +∑

i 6=0 Z≤0αi , and #(Bλ0) = 1,

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 37: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Perfect Crystals

Definition (Perfect Crystal)For a positive integer l > 0, we say that a finite classical crystalB is a perfect crystal of level l if it satisfies the followingconditions:

1 there exists a finite dimensional U ′q(g)-module with acrystal base whose crystal graph is isomorphic to B,

2 B ⊗ B is connected,3 there exists a classical weight λ0 ∈ P̄ such that

wt(B) ⊂ λ0 +∑

i 6=0 Z≤0αi , and #(Bλ0) = 1,

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 38: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Perfect Crystal (cont.)

Definition (Perfect Crystal (cont.))4 for any b ∈ B, we have 〈c, ε(b)〉 ≥ l ,5 for each λ ∈ P̄l there exist unique bλ ∈ B and bλ ∈ B such

that ε(bλ) = λ, ϕ(bλ) = λ,

where ε(b) =∑

i∈I εi(b)Λi , ϕ(b) =∑

i∈I ϕi(b)Λi , andP̄l = {λ ∈ P̄+|〈c, λ〉 = l}.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 39: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Perfect Crystal (cont.)

Definition (Perfect Crystal (cont.))4 for any b ∈ B, we have 〈c, ε(b)〉 ≥ l ,5 for each λ ∈ P̄l there exist unique bλ ∈ B and bλ ∈ B such

that ε(bλ) = λ, ϕ(bλ) = λ,

where ε(b) =∑

i∈I εi(b)Λi , ϕ(b) =∑

i∈I ϕi(b)Λi , andP̄l = {λ ∈ P̄+|〈c, λ〉 = l}.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 40: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Perfect Crystal (cont.)

Definition (Perfect Crystal (cont.))4 for any b ∈ B, we have 〈c, ε(b)〉 ≥ l ,5 for each λ ∈ P̄l there exist unique bλ ∈ B and bλ ∈ B such

that ε(bλ) = λ, ϕ(bλ) = λ,

where ε(b) =∑

i∈I εi(b)Λi , ϕ(b) =∑

i∈I ϕi(b)Λi , andP̄l = {λ ∈ P̄+|〈c, λ〉 = l}.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 41: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Example: level 1 perfect crystal for D(1)4

11

22

3

34

4

44̄

3

22̄

11̄

0

0

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 42: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Affine Crystals

Theorem ([KKMMNN 92])Fix a positive integer l > 0 and let B be a perfect crystal of levell . For any classical dominant weight λ ∈ P̄+

l , there exists aunique crystal isomorphism

Ψ : B(λ)→ B(ε(bλ))⊗ B

given by uλ 7→ uε(bλ) ⊗ bλ, where bλ is the unique element in Bsuch that ϕ(bλ) = λ.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 43: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Path Model (cont.)

Set λ0 = λ, λk+1 = ε(λk ),b0 = bλ,bk+1 = bλk+1 . Thesequences

wλ := (λk )∞k=0,bλ := (bk )∞k=0,

are periodic with the same period N.

Definition1 The sequence bλ is called the ground-state path of weightλ.

2 A λ-path in B is a sequence p = (pk )∞k=0 with pk = bk forall k � 0.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 44: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Path Model (cont.)

Set λ0 = λ, λk+1 = ε(λk ),b0 = bλ,bk+1 = bλk+1 . Thesequences

wλ := (λk )∞k=0,bλ := (bk )∞k=0,

are periodic with the same period N.

Definition1 The sequence bλ is called the ground-state path of weightλ.

2 A λ-path in B is a sequence p = (pk )∞k=0 with pk = bk forall k � 0.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 45: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Example: top part of B(Λ0) for D(1)4

0

(2)

2

(3)

1

(2,3)

3

(4)

4

(4)

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 46: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

We now consider only g = HD(1)n .

The degree of a root α = −∑n

i=−1 aiαi is defined to be a−1and is denoted deg(α).Consider the element −lα−1 − kδ ∈ Q−, whereδ = α0 + α1 + 2

∑n−2i=2 αi + αn−1 + αn. Then we have the

following:

Theorem ([Klima Misra 08] for C(1)n , analogous proof)

α = −lα−1 − kδ is a root of HD(1)n only if k ≥ l . If l = k then

mult(α) = n.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 47: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

We now consider only g = HD(1)n .

The degree of a root α = −∑n

i=−1 aiαi is defined to be a−1and is denoted deg(α).Consider the element −lα−1 − kδ ∈ Q−, whereδ = α0 + α1 + 2

∑n−2i=2 αi + αn−1 + αn. Then we have the

following:

Theorem ([Klima Misra 08] for C(1)n , analogous proof)

α = −lα−1 − kδ is a root of HD(1)n only if k ≥ l . If l = k then

mult(α) = n.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 48: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

We now consider only g = HD(1)n .

The degree of a root α = −∑n

i=−1 aiαi is defined to be a−1and is denoted deg(α).Consider the element −lα−1 − kδ ∈ Q−, whereδ = α0 + α1 + 2

∑n−2i=2 αi + αn−1 + αn. Then we have the

following:

Theorem ([Klima Misra 08] for C(1)n , analogous proof)

α = −lα−1 − kδ is a root of HD(1)n only if k ≥ l . If l = k then

mult(α) = n.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 49: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

We now consider only g = HD(1)n .

The degree of a root α = −∑n

i=−1 aiαi is defined to be a−1and is denoted deg(α).Consider the element −lα−1 − kδ ∈ Q−, whereδ = α0 + α1 + 2

∑n−2i=2 αi + αn−1 + αn. Then we have the

following:

Theorem ([Klima Misra 08] for C(1)n , analogous proof)

α = −lα−1 − kδ is a root of HD(1)n only if k ≥ l . If l = k then

mult(α) = n.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 50: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

A Lemma on W (S).

Here are the elements of W (S) of length 1 and 2:

`(ω) ω ωρ− ρ level1 r−1 −α−1 = Λ0 12 r−1r0 −2α−1 − α0 = Λ2 − δ 2

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 51: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

A Lemma on W (S).

Here are the elements of W (S) of length 1 and 2:

`(ω) ω ωρ− ρ level1 r−1 −α−1 = Λ0 12 r−1r0 −2α−1 − α0 = Λ2 − δ 2

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 52: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Roots of degree 1

If α = −α−1 − kδ then mult(α) = dim(V (Λ0)α). These are givenfor D(1)

n by the following generating series:

∞∑k=0

dim(V (Λ0)Λ0−kδ)qk =∞∏

i=1

(1− qi)−n.

Using the binomial expansion (1− qi)−n =∑∞

j=0(−n

j

)qij , we

can in principle compute the multiplicity of α for any k . Inparticular, we see that it is a polynomial in n of degree k .

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 53: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Roots of degree 1

If α = −α−1 − kδ then mult(α) = dim(V (Λ0)α). These are givenfor D(1)

n by the following generating series:

∞∑k=0

dim(V (Λ0)Λ0−kδ)qk =∞∏

i=1

(1− qi)−n.

Using the binomial expansion (1− qi)−n =∑∞

j=0(−n

j

)qij , we

can in principle compute the multiplicity of α for any k . Inparticular, we see that it is a polynomial in n of degree k .

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 54: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

The first few multiplicity polynomials are given in the followingtable:

Root Multiplicity−α−1 − δ n−α−1 − 2δ n(n+3)

2−α−1 − 3δ n(n+1)(n+8)

6−α−1 − 4δ n(n+1)(n+3)(n+14)

24

−α−1 − 5δ n(n+3)(n+6)(n2+21n+8)120

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 55: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Degree 2 Roots

For τ ∈ P+2 let

X (τ) =∑λ<τ

dim(V (Λ0)λ)dim(V (Λ0)τ−λ).

Then Kang’s formula gives:

mult(−2α−1 − 3δ) = X (2Λ0 − 3δ)− dim(V (Λ2 − δ)2Λ0−3δ).

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 56: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Degree 2 Roots

For τ ∈ P+2 let

X (τ) =∑λ<τ

dim(V (Λ0)λ)dim(V (Λ0)τ−λ).

Then Kang’s formula gives:

mult(−2α−1 − 3δ) = X (2Λ0 − 3δ)− dim(V (Λ2 − δ)2Λ0−3δ).

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 57: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Consider the root α = −2α−1 − 3δ.

Let λi =

Λi − Λi−1 if 1 ≤ i ≤ n, i 6= 2,n − 1,Λ2 − Λ0 − Λ1 if i = 2,Λn−2 − Λn−1 − Λn if i = n − 1.

λ dim(V (Λ0)λ) dim(V (Λ0)α−λ) Count

Λ0 1 n(n+1)(n+8)6 1

Λ0 ± λi ± λj − δ, i < j 1 n 4n(n−1)2

Λ0 − δ n n(n+3)2 1

We have: X (2Λ0 − 3δ) = n(n+1)(n+8)6 + n2(5n−1)

2 .

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 58: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Consider the root α = −2α−1 − 3δ.

Let λi =

Λi − Λi−1 if 1 ≤ i ≤ n, i 6= 2,n − 1,Λ2 − Λ0 − Λ1 if i = 2,Λn−2 − Λn−1 − Λn if i = n − 1.

λ dim(V (Λ0)λ) dim(V (Λ0)α−λ) Count

Λ0 1 n(n+1)(n+8)6 1

Λ0 ± λi ± λj − δ, i < j 1 n 4n(n−1)2

Λ0 − δ n n(n+3)2 1

We have: X (2Λ0 − 3δ) = n(n+1)(n+8)6 + n2(5n−1)

2 .

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 59: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Theorem (Misra, W., 2012)

dim(V (Λ2)2Λ0−2δ) =n2(5n − 1)

2

Therefore,

mult(−2α−1 − 3δ) = X (2Λ0 − 3δ)− dim(V (Λ2 − δ)2Λ0−3δ),

=n(n + 1)(n + 8)

6+

n2(5n − 1)

2− n2(5n − 1)

2,

=n(n + 1)(n + 8)

6.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 60: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Theorem (Misra, W., 2012)

dim(V (Λ2)2Λ0−2δ) =n2(5n − 1)

2

Therefore,

mult(−2α−1 − 3δ) = X (2Λ0 − 3δ)− dim(V (Λ2 − δ)2Λ0−3δ),

=n(n + 1)(n + 8)

6+

n2(5n − 1)

2− n2(5n − 1)

2,

=n(n + 1)(n + 8)

6.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 61: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Conjecture (Misra, W.)

Let α be a root of HD(1)4 of degree 2. Then mult(α) depends

only on 1− (α|α)2

If true, then the following is a generating series for the rootmultiplicities:

∞∑k=0

f (k)qk =

( ∞∑k=0

p4(k)qk

)(1−3q8+7q10−15q12+30q14−· · · )

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 62: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Conjecture (Misra, W.)

Let α be a root of HD(1)4 of degree 2. Then mult(α) depends

only on 1− (α|α)2

If true, then the following is a generating series for the rootmultiplicities:

∞∑k=0

f (k)qk =

( ∞∑k=0

p4(k)qk

)(1−3q8+7q10−15q12+30q14−· · · )

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 63: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Possible future work

Further areas to explore:Proving the conjecture of polynomial behavior of rootmultiplicities for HD(1)

n of fixed degree k .Proving Frankel’s conjectured bound on the rootmultiplicities.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 64: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Possible future work

Further areas to explore:Proving the conjecture of polynomial behavior of rootmultiplicities for HD(1)

n of fixed degree k .Proving Frankel’s conjectured bound on the rootmultiplicities.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 65: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Possible future work

Further areas to explore:Proving the conjecture of polynomial behavior of rootmultiplicities for HD(1)

n of fixed degree k .Proving Frankel’s conjectured bound on the rootmultiplicities.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 66: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

References

Benkart G., Kang, S.-J., Misra, K. C., Graded Lie Algebrasof Kac-Moody Type, Adv. Math. 97 (1993), no. 2, 154–190.

Feingold, A. J., Frenkel, I. B., A Hyperbolic Kac-MoodyAlgebra and the Theory of Siegel Modular Forms of Genus2, Math. Ann. 263 (1983), no. 1, 87–144.

Kang, S.-J., Kac-Moody Lie Algebras, Spectral Sequences,and the Witt Formula, Trans. Amer. Math. Soc. 339 (1993),no. 2, 463–495.

——– Root Multiplicities of Kac-Moody Algebras, DukeMath. J. 74 (1994), no. 3, 635–666.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n

Page 67: Root Multiplicities of the Kac-Moody Algebra HDn(1)plavnik/quantum2013/Wilson.pdf · Introduction Construction of HD(1) n from D (1) n Crystals of Affine Kac-Moody Algebras Root

IntroductionConstruction of HD(1)

n from D(1)n

Crystals of Affine Kac-Moody AlgebrasRoot Multiplicities of HD(1)

nSummary

References

Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T.,Nakashima, T., Nakayashiki, A., Affine Crystals and VertexModels, Int. J. Mod. Phys. 7 (suppl. 1A) (1992), 449–484.

Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T.,Nakashima, T., Nakayashiki, A.: Perfect crystals of quantumaffine Lie algebras, Duke Math. J. 68(3): 499–607, 1992.

Kang, S.-J., Kashiwara, M., Misra, K. C., Crystal Bases ofVerma Modules for Quantum Affine Lie Algebras,Compositio Math. 92 (1994), 299–325.

Klima, V., Misra, K. C., Root Multiplicities of the indefiniteKac-Moody algebras of symplectic type, Commun. Algebra.36 (2008), 764–782.

Evan A. Wilson Root Multiplicities of the Kac-Moody Algebra HD(1)n