q structure of the nucleon in the valence quark rr …rabbertz/office/physics_talks/qnp... ·...

40
QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 1 Q Q Q U U U A A A R R R K K K S S S & & & N N N U U U C C C L L L E E E A A A R R R P P P H H H Y Y Y S S S I I I C C C S S S 2 2 2 0 0 0 0 0 0 4 4 4 Structure of the Nucleon in the Valence Quark Region Structure of the nucleon; Inclusive spin responses Valence region and quark orbital angular momentum Moments of spin structure functions Burkhardt-Cottingham sum rule Color polarizabilities Structure of the nucleon; Semi-inclusive spin response Transversity, Collins, Sivers, etc... Z.-E. Meziani Temple University

Upload: nguyenngoc

Post on 20-Aug-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 1

QQQUUUAAARRRKKKSSS&&&NNNUUUCCCLLLEEEAAARRRPPPHHHYYYSSSIIICCCSSS222000000444

Structure of the Nucleon in the Valence QuarkRegion

Structure of the Nucleon in the Valence QuarkRegion

• Structure of the nucleon; Inclusive spin responsesValence region and quark orbital angular momentumMoments of spin structure functions

Burkhardt-Cottingham sum ruleColor polarizabilities

• Structure of the nucleon; Semi-inclusive spin responseTransversity, Collins, Sivers, etc...

Z.-E. MezianiTemple University

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 2

Introduction

Understand the nucleon structure in the valence quark regionComplete knowledge of parton distribution functions (PDFs).

Unpolarized, helicity dependent and transversity distribution functions…

Why large x?large x exposes valence quarks- free of sea effects

x->1 behavior – sensitive test of spin-flavor symmetry breaking

important for higher moments of

PDFs - compare with lattice QCD

intimately related with resonances, quark-hadron duality

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 3

Inclusive DISInclusive DIS• Unpolarized structure functions

F1(x,Q2) and F2(x,Q2)Proton & neutron measurementsprovide d/u distributions ratio

• Polarized structure functions g1(x,Q2) and g2(x,Q2)

Proton & neutron measurementscombined with d/u provide the spin-flavor distributions ∆u/u & ∆d/d

Q :Four-momentum transferx : Bjorken variableν : Energy transferM : Nucleon massW : Final state hadrons mass

L

T

U

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 4

Virtual photon-nucleon asymmetriesVirtual photon-nucleon asymmetries

In the quark-parton model:F1(x, Q

2) =

1

2

f

e2f qf(x, Q

2) g1(x, Q

2) =

1

2

f

e2f ∆qf(x, Q

2)

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 5

World data for A1World data for A1

Proton Neutron

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 6

Polarized quarks as x--> 1• SU(6) symmetry:

A1p = 5/9 A1

n = 0 d/u=1/2∆u/u = 2/3 ∆d/d = -1/3

• Broken SU(6) via scalar diquarkdominance

A1p 1 A1

n 1 d/u 0∆u/u 1 ∆d/d -1/3

• Broken SU(6) via helicity conservationA1

p 1 A1n 1 d/u 1/5

∆u/u 1 ∆d/d 1

Note that ∆q/q as x--> 1 is more sensitive to spin-flavor symmetry breaking effects than A1

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 7

Hall A Experimental SetupHall A Experimental Setup

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 8

Hall A at Jefferson LabHall A at Jefferson Lab

Left HRS

Right HRS

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 9

Hall B Experimental SetupHall B Experimental Setup

CEBAFLargeAcceptanceSpectrometer

• Large kinematical coverage

• detection of charged andneutral particles

•Multiparticle final state

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 10

JLab Polarized 3He targetJLab Polarized 3He target

Performance of the target

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 11

Polarized 3He Target

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 12

Spokespeople: J.P. Chen,Z.-E.M. & P. SouderThesis student:X. Zheng

JLab E99-117 A1n ResultsJLab E99-117 A1n Results

Phys. Rev. Lett. 92, 012004 (2004)

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 13

Helicity-Flavor DecompositionHelicity-Flavor Decomposition

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 14

Hall B EG1b preliminary resultsHall B EG1b preliminary resultsPROTON

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 15

Duality in the neutron spin structureDuality in the neutron spin structure

Hint of spin duality for the neutron!

Helicity independent caseProton and Deuteron

Niculescu et al. PRL 85 (2000) 1182

See W. Melnitchouk

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 16

HRS+MAD spectrometers in Hall A

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 17

A1n at 11 GeV with MAD in Hall AA1n at 11 GeV with MAD in Hall A

W>1.2

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 18

A1p at 11 GeV with CLAS++A1p at 11 GeV with CLAS++

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 19

Hall A with MAD Hall B with CLAS++

Helicity-Flavor DecompositionHelicity-Flavor Decomposition

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 20

Burkhardt-Cottingham Sum RuleBurkhardt-Cottingham Sum Rule

• Dispersion relation for a spin-flip Compton amplitudeCausalityAnalyticityAbsence of a J=0 pole with non polynomial residue

• Doesn’t follow from Operator Product Expansion and is valid at allQ2 if valid at one Q2

• Many scenarios of g2’s low x behavior which would invalidate thesum rule are discussed in the literature.

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 21

Γ2 Results of Jlab E94-010

M. Amarian et al. Phys. Rev. Lett. 92, 022301 (2004)

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 22

Quark-Gluon Correlations and g2Quark-Gluon Correlations and g2

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 23

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 24

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 25

Moments of Structure FunctionsMoments of Structure Functions

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 26

Study of Higher Twists (continued)Study of Higher Twists (continued)

•To extract f2, d2 needs to be determined first.

•Both d2 and f2 are required to determine the color polarizabilities

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 27

Color “polarizabilities”Color “polarizabilities”

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 28

d2 results of Jlab E94-010

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 29

Adding the elastic contributionAdding the elastic contribution

E155x: d2 =0.0079 ± 0.0048Updated value using E99-117: d2=0.0062 ± 0.0028

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 30

g2 and d2 with 11 GeV at JLabg2 and d2 with 11 GeV at JLab

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 31

Semi-Inclusive/TransversitySemi-Inclusive/Transversity• Three twist-2 quark distributions:

Density distribution: q(x,Q2)= q ↑↑↑↑(x) + q↓↓↓↓(x)Helicity distribution: ∆q(x,Q2)= q ↑↑↑↑(x) - q↓↓↓↓(x)Transversity distribution: δq(x,Q2)= q⊥⊥⊥⊥(x) + q⊥⊥⊥⊥(x)

• Some characteristics of transversity:δq(x) =∆q(x) for non relativistic quarksδq and gluons do not mix

--> Q2 evolution for δδδδq and ∆∆∆∆q are different

Chiral-odd--> not accessible in inclusive

• It takes two chiral-odd objects to measuretransversity

Drell-Yan (doubly transversely polarized p-p collision)Semi-inclusive DIS

Chiral-odd distribution function (transversity)Chiral-Odd fragmentation function (Collins function)

See N. Makins

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 32

Semi-inclusive DIS

dσ =∑

fe2

f qf (x) Dhf (z)

• Spin-flavor decomposition of valence and seaquarks by tagging hadron (e.g. π, K) in currentfragmentation region

D(z) quark--> hadronfragmentation function

unpolarized or polarized beam and targetmass of unobserved X system, Wx > 2 GeV

z = Eh/ν

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 33

All Eight Quark Distributions Are Probed in Semi-Inclusive DISAll Eight Quark Distributions Are Probed in Semi-Inclusive DIS

×=4

26 4

Qsx

dπα

σ

Unpolarized

Polarizedtarget

Polarized beamand target

SL and ST: Target Polarizations; λλλλe: Beam Polarization

Sivers

Transversity

{[ ( ) ] ( ) ( , )

( ) cos( ) ( ) ( , )

| | ( ) sin( )

,

( )

,

1 1

14

2

14

2

2 21 1

2

2

22

11

12

2

22

+ −

+ −

− −

⊥ ⊥ ⊥⊥

y e f x D z P

yP

z M Me h x H z P

S yP

z M Me h

qq q

q qh

h

N hhl

qq q

q qh

Lh

N hhl

q

φ

φ 111

12

21 1

2

2 21

1

112

Lq q

q qh

Th

hhl

Sl

qq q

q qh

Th

Nhl

Sl

qq q

T

x H z P

S yP

zMe h x H z P

S y yP

zMe f

⊥ ⊥⊥

⊥ ⊥⊥

⊥ ⊥

+ − +

+ − + −

( )

,

,

|,

(

( ) ( , )

| | ( ) sin( ) ( ) ( , )

| ( ) sin( )

φ φ

φ φ 111

2

3

3 22

12

12

21 1

16

3

112

)

( )

,

,

( ) ( , )

| | ( ) sin( ) ( ) ( , )

| | ( ) ( ) ( ,

q qh

Th

N hhl

Sl

q Tq q

hq q

e L qq

q q

qh

x D z P

S yP

z M Me h x H z P

S y y e g x D z P

⊥ ⊥ ⊥⊥

+ − −

+ −

φ φ

λ 22

211

121

12

)

| | ( ) cos( ) ( ) ( , )},

( )+ − −⊥⊥∑λ φ φe T

h

Nhl

Sl

qq q

Tq q

hS y yP

zMe g x D z P

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 34

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 35

Jlab Hall A E03-004 / 3He↑ (e,e’π-)XJlab Hall A E03-004 / 3He↑ (e,e’π-)X• Beam

Polarized (P~80%) e-, 15 µA,helicity flip at 60Hz

• TargetOptically pumped Rb+spinexchange 3He, 50 mg/cm2,~40% polarizationTransversely polarized withtunable direction

• Electron detectionBigbite spectrometer, Solidangle 60 msr, θ=30°

• Charged pion detectionHRS spectrometer, θ=16°

Spokespeople: J.-P Chen, X. Jiang & J.-C. Peng

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 36

Disentangling Collins and Sivers EffectsDisentangling Collins and Sivers Effects

Asymmetry versus Sivers angle Asymmetry versus Collins Angle

Monte Carlo assuming 1.0% asymmetry due to Sivers effect

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 37

Expected result from JLab at 6 GeVExpected result from JLab at 6 GeV

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 38

Jlab 12 GeV projectionsJlab 12 GeV projections

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 39

SummarySummary• Neutron A1 crosses zero around x ~ 0.4 and becomes positive at

large x.• ∆d/d is negative up to x= 0.6 consistent with RCQM models but not

with hadron helicity conservation assumption.• The Burkhardt-Cottingham sum rule seems verified within errors

for Q 2 < 1 GeV2 .• Neutron d2 is small but finite in the resonance region. Precision

measurements of g2 in the range 1 < Q2 < 4 GeV2 are required for anaccurate extraction of color polarizabilities.

• 11 GeV at JLab will allow to extend the investigation of the nucleonspin structure in the large x region through inclusive and semi-inclusive reactions, this includes transversity and other transversemomentum distributions.

QUARKS & NUCLEAR PHYSICS 2004, INDIANA, USA 40