q-han park korea univ

41
Q-Han Park Korea Univ. APSE 2010 1 The 4 th Yamada Symposium on Advanced Photons and Science Evolution 2010

Upload: boaz

Post on 22-Jan-2016

47 views

Category:

Documents


0 download

DESCRIPTION

Q-Han Park Korea Univ. APSE 2010. Electromagnetic field enhancement in nano optics. The 4 th Yamada Symposium on Advanced Photons and Science Evolution 2010. EM field enhancement - antennas. Monopole antenna. Marconi's antenna system at Poldhu Cornwall, December 1901. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Q-Han Park Korea Univ

Q-Han Park

Korea Univ.

APSE 2010

1

The 4th Yamada Symposium on Advanced Photons and Science Evolution 2010

Page 2: Q-Han Park Korea Univ

EM field enhancement - antennas

Marconi's antenna system at Poldhu Cornwall, December

1901.

Monopole antenna

Page 3: Q-Han Park Korea Univ

Antenna - receiver

Frequency independent antenna

Yagi antenna

Horn antenna

at Bell Labs, Holmdel, NJ that Penzias and Wilson used to discover the 3 K

cosmic microwave background radiation in 1965.

Page 4: Q-Han Park Korea Univ

Nano-optical antenna

Radio/microwave

20 C.

Optical antenna

21 C.

1900 1945 21st century

mm

nm

Radar

MarconiRF antanna

: human to human

Opt. Ant.

New frontier: human to nanoworld

NanoopticsSERSCancerLEDSolar cell

:

Cell Phonem

4

Page 5: Q-Han Park Korea Univ

Optical antenna-monopole

Optical monopole antenna

Bring it down to the optical regime !

N.F. van Hulst group,

Nano Lett. 7,28, 2006

nature photonics, 2008

Page 6: Q-Han Park Korea Univ

Optical antenna - sensor

Optical monopole antenna Single molecule fluorescence

Excitation 514 nm

Fluorescence 570 nm

Emission control by a monopole antenna

Page 7: Q-Han Park Korea Univ

Optical antenna as a vector field probe

D.S.Kim, Q.Park. et al, Nature Photonics 1, 53 (2007)

Page 8: Q-Han Park Korea Univ

• dipole plasmon resonance Transmission, bio-sensing, cancer therapy

N. Halas group

S.Cho, Q.H.Park, Angew. Chem.Int. 2007

•128 nm core diameter, 14 nm gold shell,

• peak absorbance at 820 nm

• 10 degree Temp increase

Nano metal particles

Page 9: Q-Han Park Korea Univ

B.Kim, Q.H.Park, JACS, 2007; JACS 2009

J.Joo, Q.H.Park, Adv. Mater. 2007

SP enhanced PLSERS, silver nanorod+plate

S.W.Han, Q.H.Park, JACS. 2009

Dodecahedron

Metallic nano structures

Page 10: Q-Han Park Korea Univ

Optical antenna - bowtie

Page 11: Q-Han Park Korea Univ

Bow tie antenna – EUV generation

S.W.Kim et al, Nature 2008

Page 12: Q-Han Park Korea Univ

Bow tie antenna

S.W.Kim et al, Nature 2008

Page 13: Q-Han Park Korea Univ

Terahertz – nano

Terahertz field enhancement by a metallic nano slitoperating beyond the skin-depth limit D.S.Kim, Q.Park et al.

Nature Photonics 3, 152, 2009

Page 14: Q-Han Park Korea Univ

EM field enhancement by nano slit

Electric field enhancement: ~1,000 with λ /10,000 size gap

Page 15: Q-Han Park Korea Univ

Diffraction theory claculation

Mordal expansion

/2 /20

0

0

00

/20

0

,

2, cos

,

z z

m m

z

I ikx ik z h ikx ik z hy

II i z i zy m m

m

III ikx ik z hy

H x z dk k e k e

m xH x z A e B e

a

H x z dk k e

22 2 20 0, 2 /z mk k k k m a

0 2 /k

Page 16: Q-Han Park Korea Univ

2 20 0 0

0

2 20 0

0

22 2

02 2

m m

m m

h hi i

m m mn mn m m m mn mn m nm

h hi i

m m mn mn m m m mn mn mm

a aA e W B e W a

a aA e W B e W

Boundary matching

Mode Coupling Strength W:

2 20 00

(1)0 00 0

1 2 2cos cos

2

1 2 2cos cos

2

ik x ya a

mn

a a

m x n y eW dx dy dk

a a k k

m x n ydx dy H k x y

a a

Page 17: Q-Han Park Korea Univ

Mordal method vs. FDTD numerical method

width = 0.0002 thickness = 0.002

Good quantitative predictions, but only good for global/specific geometry

Ex field at x=a/2, z=h/2

Field enhancement

Page 18: Q-Han Park Korea Univ

Local capacitor model

-zone

Local Capacitor Model for Plasmonic Electric Field EnhancementQ.Park Phys. Rev. Lett.102, 093906, 2009

Page 19: Q-Han Park Korea Univ

Slit

-zone capacitance

Static capacitance restricted to the -zone

Page 20: Q-Han Park Korea Univ

02 vC

,

2

aE t kz t

E k

sint w

0 0

0

1

2

effInd SZ ZQ dA K ndl

iw

iw i

##############

2IndEiav

Conformal mapping

Page 21: Q-Han Park Korea Univ

2IndEiav

width = 0.00067 thickness = 0.002

Enhanced electric field inside the gap

Page 22: Q-Han Park Korea Univ

Real metal case

Good qualitative agreement

Page 23: Q-Han Park Korea Univ

x

y

zy-polarized incident light

Metal tip near metal surface

Intensity profile near metal tip (FDTD calculation:xy-cut)

xz-cut

Page 24: Q-Han Park Korea Univ

Bowtie

Spheroidal prolate coordinates Field enhancement

Page 25: Q-Han Park Korea Univ

sinh sin cos ,

sinh sin sin ,

cosh cos

x a u v

y a u v

z a u v

Prolate spheroidal coordinates

tip surface: v = v0.

2

2 21 22 2 2 2 2 2

1 2 1 1 1 2 2 2

2

2 22 231 2

1 1 1 11 1

1 1

1 1

a a

a

1 2 3cosh , cos , u v

Static potential

Page 26: Q-Han Park Korea Univ

sinh sin cos ,

sinh sin sin ,

cosh cos

x a u v

y a u v

z a u v

Prolate spheroidal coordinates

1 2 3cosh , cos , u v

specify the shape of a hyperboloid tip by v = v0.

22

2 2

1 0

1

01 1

1 cos 1 cosln , ln

1 cos 2 1 cos

Vv vC C

v v

0 1

00

4

cos

CQ d

v

0

0

1

0

0

2 1 cosln

cos 1 cosv

Q vC

v

Page 27: Q-Han Park Korea Univ

/2

0/2

/2

0 0/2

0 0

1 ˆ ˆ

2 ˆ ˆ ˆ

4

indQ K n diw

n H n diw

Hiw

0 0

8indQ H

iw

Surface current in the back side

0 0 02

0

2 cos 1 cosln

1 cosind

ind

Q v vE

dC i d v

Induced current/charge

Page 28: Q-Han Park Korea Univ

ν0=π/6

0 0 02

0

2 cos 1 cosln

1 cosInd

v vE

i d v

LCM for a metal tip

Page 29: Q-Han Park Korea Univ

Slot antenna

/2

Half wave dipole antenna

Slot antenna

EH

Resonantly enhanced radiation

Page 30: Q-Han Park Korea Univ

THz slot antenna

Near field imaging of terahertz focusing onto rectangular aperturesD.S.Kim, P. Planken, Q.Park, Optics Express 16,20484, 2008

Page 31: Q-Han Park Korea Univ

Fourier transform terahertz imaging of E_x

Page 32: Q-Han Park Korea Univ

Energy Funneling: constant energy

Page 33: Q-Han Park Korea Univ

Substrate effect on aperture resonances in a thin metal filmJ. H. Kang, J.H. Choe, D.S. Kim, Q. Park, Optics Express 17,15652, 2009

Substrate effect

Page 34: Q-Han Park Korea Univ

Substrate effect

Page 35: Q-Han Park Korea Univ

ansres 2)75.025.0(

Resonance

23

322

)5.05.0(

)75.025.0(4

4

3

s

ssres n

n

ab

naT

Transmission at resonance

Page 36: Q-Han Park Korea Univ

Phased array antenna

X-Band Phased-Array Antenna

Page 37: Q-Han Park Korea Univ

r = 100 nm, p = 800 nm, t = 300 nm, Au on sapphire

SEMSEM

Extraordinary Optical TransmissionExtraordinary Optical Transmission

~ 5%!

T. W. Ebbesen et al., Nature 391, 667-669 (1998)

Page 38: Q-Han Park Korea Univ

Various slots for terahertz frequencies

SEM or Microscopic Images0.5 mm

At terahertz, metals are lossless: ~1/1000;wavelength: 0.1 mm~10 mm, skin depth=100 nm,

Shape resonance omni-directional terahertzfilters with near-unity transmittanceD.S. Kim et al. Opt. Expr. 14,1253,(2006)

Page 39: Q-Han Park Korea Univ

Perfect transmission

Page 40: Q-Han Park Korea Univ

Optical Yagi-Uda Antenna

Directional control of light by a nano-optical Yagi–Uda antennaTerukazu Kosako1, Yutaka Kadoya, Holger F. Hofmann, NATURE Photon, March, 2010

Page 41: Q-Han Park Korea Univ

Conclusions

Learn from analogies• receive and transmit• enhance and focus electric field• Directivity• Phased array

Learn from differences• can be active -- lasing• nonlinear optical processes• communicates with nano world:

- controlled chemistry/biology• more to come

Photonic crystal, metamaterial, optical antenna,…