progress in gamma-ray detector technology and gamma-ray

42
Dec. 27, 2004 T. KamaeT. Kamae, Gamma-Ray Detectors (RIKEN) 1 Progress in Gamma-Ray Detector Technology and Gamma-Ray Space Missions Tuneyoshi Kamae (SLAC and KIPAC, Stanford University) Part I: New Detector Technology for Gamma-Ray Detectors Micro Gas Electron Multiplier Array Semiconductor Array Detectors Part II: Gamma-Ray Space Missions and Unexplored Area GLAST/AGILE, Polaization Measurement Temporal Measurement

Upload: others

Post on 01-Oct-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. KamaeT. Kamae, Gamma-Ray Detectors (RIKEN) 1

Progress in Gamma-Ray Detector Technology and

Gamma-Ray Space MissionsTuneyoshi Kamae

(SLAC and KIPAC, Stanford University)

Part I: New Detector Technology for Gamma-Ray DetectorsMicro Gas Electron Multiplier ArraySemiconductor Array Detectors

Part II: Gamma-Ray Space Missions and Unexplored Area GLAST/AGILE, Polaization MeasurementTemporal Measurement

Page 2: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 2

Physical Quantities to be Measured and

Applicable Detection Processes

•Pair plane•Total/sampl. calorimetry•Pair tracking•Shower direction

~100MeV to 100GeV

•Compton scatt.•Total calorimetry•Kinematical constraint

•Coll/mask (active)•Compton kinematics

~50keV to ~1MeV

•Air Cherenkov light yield•Shower direction> ~100GeV

•Compton scatt.•Total/sampl. calorimetry•Coll/mask (active)•Compton kinematics

~1MeV to ~5 MeV

•Pair plane•Total/sampl. calorimetry•Pair tracking~5MeV to ~100MeV

PolarizationEnergyDirectionEnergy

•No new detection mechanism proposed for >10 yrs but still room for improvement.•Only few polarization measurements done in the X-ray and γ-ray bands.

Page 3: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 3

Emerging Detector Technology

•Micro Pattern Gas Detectors

– GEM

Gas Ion. Ch.

•Imaging–atmosphere–water–quartz and others

•Silicon•Active pixel sensors•CdTe/CZT (Takahashi)

•Avalanche PD•Hybrid PD

Position/Tracking

•Total calorimetry•Sampling w/ hi-Z converters

•Hi-Z scinti. •Avalanche PD

Calorimetry

Cheren. DetecorSemicond. DetectorScintillator

Application of some known technologies to large area coverage.

Page 4: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 4

Selected Experiments Developing New Detector Technology

Takahashi’s talkCdZnTe, CdTeIntegral/Swift

Large pixelized PDHybrid pixel det. (Si)Gas Electron Multiplier

LHCH. E. accel. exp.

Large pixelized PDCherenkov ring imagingSuperK/Milagro/Hyper K

GLAST/AGILESilicon strip detectorGLAST/AGILE

Large X-ray detectorActive Pixel Sensor (Si)HERA/Linear Collider

Large pixelized PDLarge photomultiplierEUSOVHE ν exp.

Atmospheric scintillationHIRES/AugerGround-based astro.

Pixel array

Technology Future ApplicationExperiment

Large X-ray detectorNeXT/XeusSatellite astro.

Collaboration between H.E. experiments and Astrophysics

Page 5: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 5

Active Pixel Sensors/Detectors (Si)

• General review: Norbert Wermes, arXiv:physics/0401030 (Jan 2004)

• Monolothic Active Pixel Sensor (MAPS):An extensive list of Literatures are given at

http://www-zeus.desy.de/~gregork/MAPS/Papers/Maps_papers.htmAn example (linked from above):

W. Dulinski, “Monolithic CMOS Pixel Sensors for High Resolution Particle Tracking”, Talk at Brookhaven National Laboratory, New York (USA), 9 April 2003.

H. Matis et al. (LBNL-UC Irvine-OSU), “Recent progress on a CMOS Active Pixel Sensor for STAR” Vertex 2003

• Depletion Field Effect Transistor (DEPFET) pixel detector:This is more attractive for medical and space applications, but may have to wait longer. Examples:

Bonn-Mannheim-HILL Munich (Vertex 04 Como, Italy)PNSensor GmbH and MPI Munich

Page 6: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 6

Monolothic Active Pixel Sensor (MAPS) 1/

Page 7: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 7

Monolothic Active Pixel Sensor (MAPS) 2/Ex. 1) H. Matis et al. (LBNL-UC Irvine-OSU), “Recent progress on a CMOS Active Pixel Sensor for STAR”, Vertex 2003

Page 8: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 8

Monolothic Active Pixel Sensor (MAPS) 3/

Ex. 2) FillFactory (Belgium)-Kodak(USA) , G. Meynants, B. Dierickx, A. Alaerts, D.Uwaerts, S. Cos, D. Scheffer, S. Noble

Page 9: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 9

DEPFET Pixel Sensor 1/Depletion Field Effect Transistor (DEPFET) pixel detector:Example by PNSensor GmbH and MPI MunichL. Strüder, G. Hasinger, P. Holl, P. Lechner, G. Lutz, M. Porro, R. Richter, H. Soltau, J. Treis; “XEUS wide-field imager: first experimental results with the X-rayactive pixel sensor DEPFET”, SPIE, vol.5165 (2004) p.10-18

Page 10: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 10

DEPFET Pixel Sensor 2/

Page 11: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 11

Avalanche Photo-Diode Array 1/

T. Ikagawa, J. Kataoka, Y. Yatsu, T. Saito, Y. Kuramoto, N. Kawai,M. Kokubun, T. Kamae, Y. Ishikawa, N. Kawabata; “Study of large area Hamamatsu avalanche photodiode in ag-ray scintillation detector” NIM A

Page 12: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 12

Avalanche Photo-Diode Array 2/J. Kataoka, T. Saito, Y. Kuramoto, T. Ikagawa, Y. Yatsu, J. Kotoku, M. Arimoto, N. Kawai, Y. Ishikawa and N. Kawabata; “Recent progress of avalanche photodiodes in high-resolution X-rays and γ-rays detection”, Sept. 2004

Page 13: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 13

Micro Gas Detector - Time Proj. Chamber

A. Takada, K.Hattori, H.Kubo, K.Miuchi, T. Nagayoshi, H.NishimuraY. Okada, R. Orito, H. Sekiya, A. Takeda, T. Tanimori; “Development of an advanced Compton camera with gaseous TPC and scintillator”arXiv:astro-ph/0412047 v1 2 Dec 2004

Page 14: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 14

Gas Electron Multiplier 1/Gas Electron Multiplier (GEM): F. Sauli, “Novel Cherenkov Photon Detectors”, in RICH 2004

PhotocathodeEDRIFT

∆VGEM

Page 15: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 15

Gas Electron Multiplier 2/• Gas Electron Multiplier (GEM):

F. Sauli, “Novel Cherenkov Photon Detectors”, in RICH 2004

S. Bachmann et al, Nucl. Instr. and Meth. A479(2002)294

Page 16: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 16

Gas Electron Multiplier 3/- Time Proj. Chamber -

Phenix Upgrade (BNL): Hadron-blind RICHIdentification of e+e- pairs

C. Aidala et al, Nucl. Instr. Methods A502(2003)200

e+ e-

GEM CsI

RADIATOR

GRID

E

Page 17: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 17

Gas Electron Multiplier 4/- Scinti. Prop. Counter -

PARALLAX-FREE X-RAY DETECTORCsI - Quad-GEM in pure Xenon X-ray

Primary Scintillation Ionization

G. Charpak, S. Majewski and F. Sauli, Nucl. Instr. and Meth. 126(1975)381L. Periale, V. Peskov, P. Carlson, T. Francke, V. Pavlopulos, P. Picchi, F. Pietropaolo,Nucl. Instr. and Meth. 478(2002)377

0

10

20

30

40

50

60

70

5 6 7 8 9 10C

sI Q

uant

um E

ffici

ency

(%)

Photon energy (eV)

CsI QE

CsI QE+Xe scint

Xe scintillation

Xe scintillation yield (A

U)

Page 18: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 18

Large Pixelized Photon Sensor 1/

R. Bouclier et al, IEEE Trans. Nucl. Science NS-44(1997)646D. Mormann et al, Nucl. Instr. and Meth. A478(2002)230

Photocathode

Entrance window

Page 19: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 19

Large Pixelized Photon Sensor 2/

D. Mörmann et al, Nucl. Instr. and Meth. A530 (2004)258

Reflective CsI Photocathode: GEM geometry dependence of Q.E.

Page 20: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 20

Large Pixelized Photon Sensor 3/

Single Photoelectron Position Accuracy (One-d Readout Strips):Two positions of collimated beam 200 µm apart

200 µm

160 µm FWHMBeam ~ 100 µm FWHM

Intrinsic accuracy ~ 125 µm FWHM

Page 21: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 21

Large Pixelized Photon Sensor 4/DOUBLE PHOTON EVENT

Page 22: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 22

Large Pixelized Photon Sensor 5/

31 cm

Large Size Hexaboard For Mice (Muon Ionization Cooling Experiment):

V. Ableev et al, Nucl. Instr. and Meth. A518(2004)113

Page 23: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 23

Hybrid Photon Sensor ArrayD. Ferenc, E. Lorenz, D. Kranich, A. Laille (UC-Davis)

Page 24: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 24

Hybrid Photon Sensor ArrayD. Ferenc, E. Lorenz, D. Kranich, A. Laille (UC-Davis)

Page 25: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 25

Hybrid Photon Sensor ArrayD. Ferenc, E. Lorenz, D. Kranich, A. Laille (UC-Davis)

Page 26: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 26

Hybrid Photon Sensor ArrayD. Ferenc, E. Lorenz, D. Kranich, A. Laille (UC-Davis)

Page 27: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 27

Hybrid Photon Sensor ArrayD. Ferenc, E. Lorenz, D. Kranich, A. Laille (UC-Davis)

Need efficient magnetic shield

Page 28: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 28

Satellite-Based γ-Ray Observatories- GLAST (1/3) -

Ch. particle rejection:Anti-coincidence Detectors

Energy: Calorimeter

Photon Direction:Si SSD Tracker

1.8 m

Large Area Telescope (LAT)US(NASA,DOE), Italy, Japan, France, Sweden

GLAST Burst Monitor (GBM)US(NASA), Germany

Page 29: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 29

F(E>E

t)

1.0 Crab

100 mCrab

10 mCrab

1 mCrab3 mCrab

Cangaroo III

(1yr)

(1yr)

AGILE (1

yr)

Satellite-Based γ-Ray Observatories- GLAST (2/3) -

A few mCrabsensitivity in the sub-GeV to sub-TeV range

Page 30: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 30

200 γ bursts per year⇒ prompt emission sampled to > 20 µs

AGN flares > 2 month⇒ time profile + ∆E/E ⇒ physics of jets and

acceleration

γ bursts delayed emission

all 3EG sources + 80 new in 2 days⇒ periodicity searches (pulsars & X-ray binaries)

⇒ pulsar beam & emission vs. luminosity, age, B

5-10 thousand sources in 1-yr survey⇒ AGN: logN-logS, duty cycle,

emission vs. type, redshift, aspect angle

⇒ extragalactic background light (γ + IR-opt)

⇒ new γ sources (µQSO,external galaxies,clusters)

100 s

1 orbit

1 day

LAT 1 yr3 10-9

cm-2 s-1

3EG limit

0.01

0.001

Satellite-Based γ-Ray Observatories- GLAST (3/3) -

Page 31: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 31

Satellite-Based γ-Ray Observatory- AGILE 1/1 -

Mass: 80kgE band: 30MeV-10GeVFOV: 3srPSF: 4.7 deg (@0.1GeV)

1.3 deg (@1GeV)0.5 deg (@ 10GeV)

Sensitivity: a factor 1.3-3 improvement over EGRET

Page 32: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 32

Polarization Measurement 1/- MEGA -

Prototype produced and tested with radioactive sources and γ-ray beam. The project has been discontinued in Germany. The prototype is now in UNH and will be flown on a balloon in 2005.

Simulation

Page 33: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 33

Polarization Measurement 2/- NeXT SGD -

Prototype produced and tested with polarized photon beam at Spring-8.

Page 34: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 34

73.2keV

• MF~(2400-1000)/(2400+1000)~41%• Small differences btwn ch1/ch7, ch2/ch6, and ch3/ch5.

are a little smaller than those at 60.2keV

41%

Polarization Measurement 3/- PoGO -

Prototype produced and tested with polarized photon beam at APS (ANL) and Photon Factory (KEK).

ch1

ch3

ch5

ch2

ch6

ch7

Page 35: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 35

Polarization Measurement 4/- PoGO -

Prototype produced and tested with polarized photon beam at APS (ANL) and Photon Factory (KEK).

ch1ch6BGO branch

Fast scintillatorbranch

0 30 60 90 120 150

030

6090

120

150

(keV)

(keV

)

Page 36: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 36

Multi-Wavelength Sensitivity Map in 20071) Sensitivity means 3σ detection in a ∆E=E (ie. E=0.618E - 1.618E). 2) AGILE and GLAST 1yr survey: Bkgnd Sreekumar’s Extra-Galactic Background Emission. 3) ACT: 50 hrs observation.4) RXTE, AstroE: 105sec observation

1GeV

1TeV

1MeV

Crab Nebula

EGBR in msr

GLASTACT’s

AstroEHXD

Will be updatedwith Integral data

Page 37: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 37

Identification of EGRET Unidentified Sources- Thanks to M. Roberts, D. Sowards-Emmerd, D. Thompson, and D. Torres -

•Pulsars – 7 confirmed γ–ray pulsars (M. Robert’s summary)•AGNs – ~6 probable + a few possible (Mattox 01,Wallace 02,Sowards-Emmerd 04)•Massive stars in binary systems –3EG J2022+4317(?) (Grenier 2004)•X-ray binaries – 3EG 0634+0521/SAX J0635+0533,3EG 0542+2610/A0535+26•Micro-quasars – 3EG J1824-1514, 3EG 0241+6103 (Mirabel 04,Romero 04)•Supernovae – 3EG 0617+2238/IC443,3EG J1714-3857/G347.3-0.5 (Torres 03)•AXPs (Hermsen 2004)•High Latitude Molecular Cloud•Star Barst Galaxies and LIRGs/ULIRGs − (Torres 04, Gao & Solomon 2004 )•Radio Galxies - 3EG J1621+8203, 3EG J1735-1500 (Mukherjee et al.: Combi et al, Cillis et al 04)

web page:http://www.physics.mcgill.ca/~roberts/survey.html

Probable ID since 3rd Catalog ~10-15, Possible ID ~ 10-15

Page 38: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 38

Crab (radio pulsar SNR)

EGRET All Sky Map (>1 GeV)3C279 (blazar)

Geminga (radio-quiet pulsar)

Vela (radio pulsar)

LMC (Cosmic ray interactions

with ISM)PKS 0208-512 (blazar)

3EG J1746-2851 (Galactic Center?)

Orion Cloud (Cosmic ray interactions with ISM)

3EG J1835+5918 (γ-ray pulsar?)

3EG J0010+7309 (CTA 1 SNR?)

3EG J0241+6103 (LSI +61o303 Binary System?)

3EG J2020+4017 (γ Cygni SNR?)

3EG J1837-0423 (unidentified transient)

Page 39: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 39

ID of Brightest (E>1GeV) 22 EGRET UnIDThanks to help by Jim Chiang and Mallory Roberts

Catalog No. Glon Glat ID Reference3EG_J1835+5918 88.74 25.07 γ-ray pulsar Mirabal et al. 01 3EG_J0852-1216 239.06 19.993EG_J2021+3716 78.06 0.33 γ-ray pulsar Roberts et al. 023EG_J0210-5055 276.1 -61.893EG_J2033+4118 80.27 0.733EG_J1856+0114 34.6 -0.54 PWN or SNR? eg. Frail et al. 3EG_J1837-0606 25.86 0.4 γ-ray pulsar D’Amico et al. 01 3EG_J1027-5817 284.94 -0.523EG_J0010+7309 119.92 10.54 PWN or Pulsar? eg. Halpern et al.3EG_J1048-5840 287.53 0.47 PSR B1046-58 Kaspi et al., 003EG_J0617+2238 287.53 0.47 IC 443?3EG_J1826-1302 18.47 -0.44 PWN Roberts et al. 013EG_J1958+2909 66.23 -0.163EG_J0241+6103 135.87 0.99 LSI +61 303

Radio emitting X-ray Binary 3EG_J1410-6147 312.18 -0.35 SNR G312.4-0.2? Doherty et al. 033EG_J1800-2338 6.25 -0.18 pulsar PSR B1758-233EG_J1734-3232 355.64 0.153EG_J1744-3011 22.19 13.423EG_J1420-6038 313.63 0.37 γ-ray pulsar and/or D’Amico et al. 01

Rabbit PWN? Roberts et al. 013EG_J0237+1635 156.46 -39.283EG_J1625-2955 348.67 13.383EG_J0530+1323 191.5 -11.09

Page 40: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 40

Unexplored Temporal Domain: No.1/2- Other Interesting Possibilities -

1) ID based on time-variability (lesson learned from EGRET analyses)

2) Transient phenomena incl. GRB (alert to narrow-FOV instruments)

3) AGN flaring frequency (scheduled coordinated observations)

4) Pulsar stability including glitches (coordination with radio facilities)

Page 41: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 41

Unexplored Temporal Domain: No. 2/2- Strong lensing in time variability (1/2): Study in radio band -

Strong lensing (>50 samples) in time domain detected in the radio band

Time(days) Time(days)

Shifted by1.4yr1.4yrs Same time

profile repeated 417days later

Williams & Schechter, astro-ph/9709059v1

Kundic et al. ApJ 482, 75 (’97)

Page 42: Progress in Gamma-Ray Detector Technology and Gamma-Ray

Dec. 27, 2004 T. Kamae, Gamma-Ray Detectors (RIKEN) 42

Conclusion

1. Among new detector technologies, following three are most promising• Micro Gas Electron Multiplier array as a 3D hard X-ray sensor or a large area photon sensor• Depletion FET Semiconductor array as a large format X-ray imager to replace the X-ray CCD.• Avalanche Photo-Diode array as a high q.e. photon sensor.

2. There are two important areas yet to be explored. For this, newtechnology is required.

• Polaization Measurement requires a 3D detector capable of tracking the recoil electron.• Temporal Measurement requires a large imager with a large FOV.