programming interface. main points process concept creating and managing processes – fork, exec,...

66
Programming Interface

Upload: duane-foster

Post on 26-Dec-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Programming Interface

Page 2: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Main Points

• Process Concept• Creating and managing processes

– fork, exec, wait• Communicating between processes• Example: implementing a shell

Page 3: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Objectives• To introduce the notion of a process --

a program in execution, which forms the basis of all computation

• To describe the various features of processes, including scheduling, creation and termination, and communication

Page 4: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process vs. Program• Review:

– Program

• Process is an instance of an executing program.

• Relationship:– Program can create many processes– Many processes can be running the same program

Page 5: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process Concept

• An operating system executes a variety of programs:

– Batch system – jobs– Time-shared systems – user programs or tasks

• Textbook uses the terms job and process almost interchangeably

Page 6: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Operating System View of Process

• At start of process, the Operating System’s duties include:– Load program into memory– Allocate memory for program data– Set up kernel bookkeeping:

Process ID Priority User IDs Process State

Address of executing instruction

Address of return instruction

Page 7: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Typical Process Layout

• Libraries provide the glue between user processes and the OS– libc linked in with all C

programs– Provides printf, malloc,

and a whole slew of other routines necessary for programs

OBJECT1OBJECT2

Stack

Heap

Data

Text

HELLO WORLDGO BIG RED CS!

printf(char * fmt, …) { create the string to be printed SYSCALL 80}malloc() { … }strcmp() { … }

main() { printf (“HELLO WORLD”); printf(“GO BIG RED CS”);! Program

Library

Activation Records

Page 8: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Stack and Stack Framessquare (int x){ return x*x }

doCalc(int val) { printf (“square is %d\n”,

square(val) }

main (int x, int y) { key = 9999

doCalc (key) }

STACK

Frames for C run-time start up functions

Frame for main

Frame for doCalc

Frame for square

Page 9: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process in Memory

Page 10: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Full System Layout

• The OS is omnipresent and steps in where necessary to aid application execution– Typically resides in high

memory

• When an application needs to perform a privileged operation, it needs to invoke the OS

OBJECT1OBJECT2

Stack

HeapDataHELLO WORLD

GO BIG RED CS!printf(char * fmt, …) {

main() { … }

Program

Library

Activation Records

USER OBJECT1OBJECT2

OS Stack

OS HeapOS DataLINUX

syscall_entry_point() { … }

OS Text

Kernel Activation Records

Page 11: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process State

• As a process executes, it changes state– new: The process is being created– running: Instructions are being executed– waiting: The process is waiting for some event to occur– ready: The process is waiting to be assigned to a processor– terminated: The process has finished execution

Page 12: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Diagram of Process State

Page 13: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process Creation

Parent process create children processes, which, in turn create other processes, forming a tree of processes

UNIX examples fork system call creates new process

Child process is almost an exact duplicate of parent processexec system call used after a fork to replace the process’

memory space with a new program

Page 14: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process Creation (Cont)

• Generally, process identified and managed via a process identifier (pid)

• Resource sharing– Parent and children share all resources– Children share subset of parent’s resources– Parent and child share no resources

• Execution– Parent and children execute concurrently– Parent waits until children terminate

• Address space– Child duplicate of parent– Child has a program loaded into it

Page 15: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process Termination• Process executes last statement and asks the

operating system to delete it (exit)– Output data from child to parent (via wait)– Process’ resources are deallocated by operating system

• Parent may terminate execution of children processes (abort)– Child has exceeded allocated resources– Task assigned to child is no longer required– If parent is exiting

• Some operating system do not allow child to continue if its parent terminates

– All children terminated - cascading termination

Page 16: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process Termination

Parent ProcessIt is useful for the parent to know how and when the child terminates Waiting on a child process:

Wait() system call waits for one (any one) of the child processes to end Returns the process ID (PID) of the child being terminated Returns status of the child Kernel adds the process CPU times and resource statistic to the running total

for all children of the parent process Releases resources held by child to system pool

SIGCHLD signal Q.E.D.

Page 17: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Orphans and ZombiesOrphan

Parents ends before Child process Who becomes the parent?

INIT, the ancestor of all processes. INIT will periodically clean up orphans

Zombie Child terminates before the parent performs wait()

Kernel turns process into ZOMBIE Most resources held by child are returned to the system pool Un-killable processes – Are waiting for their parent to issue wait()

Wait for parents to exit when they will become orphans Big problem for daemons.

Page 18: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process Control Block (PCB)Bookkeeping/Management of a processIncludes:

• Process ID• Program Counter• CPU Registers• CPU scheduling information• Priority• Process state• Memory management information• Accounting information• List of I/O devices allocated to process

Page 19: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process Control Block (PCB)

Page 20: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

UNIX Process Management

• UNIX fork – system call to create a copy of the current process, and start it running– No arguments!

• UNIX exec – system call to change the program being run by the current process

• UNIX wait – system call to wait for a process to finish

• UNIX signal – system call to send a notification to another process

Page 21: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process CreationParent my perform other actions here

Memory of parent copied to child

Child statuses passed to parent

Kernel restarts parent

Page 22: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

C Program Forking Separate Process

int main(){pid_t pid;

/* fork another process */pid = fork();if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");exit(-1);

}else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);}else { /* parent process */

/* parent will wait for the child to complete */

wait (NULL);printf ("Child Complete");exit(0);

}}

Page 23: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

UNIX Process Management

Page 24: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Question: What does this code print?

int child_pid = fork();if (child_pid == 0) { // I'm the child process printf("I am process #%d\n", getpid()); return 0;} else { // I'm the parent process printf("I am parent of process #%d\n", child_pid); return 0;}

Page 25: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Implementing UNIX fork

Steps to implement UNIX fork– Create and initialize the process control block (PCB)

in the kernel– Create a new address space– Initialize the address space with a copy of the entire

contents of the address space of the parent– Inherit the execution context of the parent (e.g.,

any open files)– Inform the scheduler that the new process is ready

to run

Page 26: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Implementing UNIX exec

• Steps to implement UNIX fork– Load the program into the current address space– Copy arguments into memory in the address space– Initialize the hardware context to start execution

at ``start''

Page 27: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Windows CreateProcess

• System call to create a new process to run a program– Create and initialize the process control block (PCB) in the

kernel– Create and initialize a new address space– Load the program into the address space– Copy arguments into memory in the address space– Initialize the hardware context to start execution at

``start'’– Inform the scheduler that the new process is ready to run

Page 28: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Windows CreateProcess API(simplified)

if (!CreateProcess( NULL, // No module name (use command line) argv[1], // Command line NULL, // Process handle not inheritable NULL, // Thread handle not inheritable FALSE, // Set handle inheritance to FALSE 0, // No creation flags NULL, // Use parent's environment block NULL, // Use parent's starting directory &si, // Pointer to STARTUPINFO structure &pi ) // Pointer to PROCESS_INFORMATION structure)

Page 29: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Context Switch• When CPU switches to another process, the system must save the

state of the old process and load the saved state for the new process via a context switch

• Context of a process represented in the PCB• Context-switch time is overhead; the system does no useful work

while switching• Time dependent on hardware support

Page 30: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

CPU Switch From Process to Process

Page 31: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

CPU Switch From Process to Process

Page 32: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process Scheduling

• Multiprogramming

• To have CPU always active, we switch between processes.

• Process Scheduler– Select an available process from a set of processes for

program execution.– May force a process to become idle, so another can

run.

Page 33: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Process Scheduling Queues• Job queue – set of all processes in the system• Ready queue – set of all processes residing in main

memory, ready and waiting to execute• Device queues – set of processes waiting for an I/O

device• Processes migrate among the various queues

Page 34: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Representation of Process Scheduling

Page 35: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Interprocess Communication• Processes within a system may be independent or cooperating• Cooperating process can affect or be affected by other processes,

including sharing data• Reasons for cooperating processes:

– Information sharing– Computation speedup– Modularity– Convenience

• Cooperating processes need interprocess communication (IPC)• Two models of IPC

– Shared memory– Data Transfer

Page 36: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Cooperating Processes

• Independent process cannot affect or be affected by the execution of another process

• Cooperating process can affect or be affected by the execution of another process

• Advantages of process cooperation– Information sharing – Computation speed-up– Modularity– Convenience

Page 37: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Communications Models

Message Passing Shared Memory

Page 38: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Producer-Consumer Problem• Paradigm for cooperating processes,

producer process produces information that is consumed by a consumer process

Page 39: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

IPC Data Transfer – Message Passing

• Mechanism for processes to communicate and to synchronize their actions

• Message system – processes communicate with each other without resorting to shared variables

• IPC facility provides two operations:– send(message) – message size fixed or variable – receive(message)

• If P and Q wish to communicate, they need to:– establish a communication link between them– exchange messages via send/receive

• Implementation of communication link– physical (e.g., shared memory, hardware bus)– logical (e.g., logical properties)

Page 40: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Implementation Questions

• How are links established?• Can a link be associated with more than two

processes?• How many links can there be between every

pair of communicating processes?• What is the capacity of a link?• Is the size of a message that the link can

accommodate fixed or variable?• Is a link unidirectional or bi-directional?

Page 41: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Direct Communication

• Processes must name each other explicitly:– send (P, message) – send a message to process P– receive(Q, message) – receive a message from process Q

• Properties of communication link– Links are established automatically– A link is associated with exactly one pair of

communicating processes– Between each pair there exists exactly one link– The link may be unidirectional, but is usually bi-

directional

Page 42: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Indirect Communication• Messages are directed and received from mailboxes

(also referred to as ports)– Each mailbox has a unique id– Processes can communicate only if they share a mailbox

• Properties of communication link– Link established only if processes share a common mailbox– A link may be associated with many processes– Each pair of processes may share several communication

links– Link may be unidirectional or bi-directional

Page 43: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Indirect Communication• Operations

– create a new mailbox– send and receive messages through mailbox– destroy a mailbox

• Primitives are defined as:send(A, message) – send a message to mailbox Areceive(A, message) – receive a message from mailbox A

Page 44: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Indirect Communication

• Mailbox sharing– P1, P2, and P3 share mailbox A

– P1, sends; P2 and P3 receive– Who gets the message?

• Solutions– Allow a link to be associated with at most two processes– Allow only one process at a time to execute a receive

operation– Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

Page 45: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Synchronization• Message passing may be either blocking or non-

blocking• Blocking is considered synchronous

– Blocking send has the sender block until the message is received

– Blocking receive has the receiver block until a message is available

• Non-blocking is considered asynchronous– Non-blocking send has the sender send the message and

continue– Non-blocking receive has the receiver receive a valid

message or null

Page 46: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Buffering• Queue of messages attached to the link;

implemented in one of three ways1.Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)2.Bounded capacity – finite length of n

messagesSender must wait if link full

3.Unbounded capacity – infinite length Sender never waits

Page 47: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Examples of IPC System PIPES

Data streaming Direct communication

Ordinary pipesProducer – Consumer fashionCannot be accessed outside the process that creates it.Usually Parent – Child communication Deleted when process terminates

Named pipes Alias: FIFO in unix Appear as typical files in the system

Page 48: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Examples of IPC SystemsShared Memory

• POSIX Shared Memory– Process first creates shared memory segmentsegment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);

– Process wanting access to that shared memory must attach to itshared memory = (char *) shmat(id, NULL, 0);– Now the process could write to the shared memorysprintf(shared memory, "Writing to shared memory");

– When done a process can detach the shared memory from its address space

shmdt(shared memory);

Page 49: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Examples of IPC Systems - Mach

• Mach communication is message based– Even system calls are messages– Each task gets two mailboxes at creation- Kernel and

Notify– Only three system calls needed for message transfermsg_send(), msg_receive(), msg_rpc()– Mailboxes needed for commuication, created viaport_allocate()

Page 50: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Examples of IPC Systems – Windows XP

• Message-passing centric via local procedure call (LPC) facility– Only works between processes on the same system– Uses ports (like mailboxes) to establish and maintain

communication channels– Communication works as follows:

• The client opens a handle to the subsystem’s connection port object• The client sends a connection request• The server creates two private communication ports and returns

the handle to one of them to the client• The client and server use the corresponding port handle to send

messages or callbacks and to listen for replies

Page 51: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Examples of IPC Systems - POSIXPOSIX Message PassingProcesses can exchange messages by using four system calls: msgget(mailbox_name, IPC_CREAT) Converts a mailbox name to a message queue ID (msqid). It will create the mailbox if necessary. Returns the msqid.

msgsnd(msqid, message@, message_size) Sends the message to the mailbox

msgrcv( msqid, message@, message_size, priority, synch/asynch)Receives the message from the mailbox

msgctl(msqid, IPC_RMID, dummyParam@)Release the mailbox from process resources

Page 52: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Communications in Client-Server Systems

• Sockets• Remote Procedure Calls

Page 53: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Sockets• A socket is defined as an endpoint for

communication• Concatenation of IP address and port• The socket 161.25.19.8:1625 refers to

port 1625 on host 161.25.19.8• Communication consists between a

pair of sockets

Page 54: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Socket Communication

Page 55: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Socket Communication

P1 P2

Socket Socket

Page 56: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Remote Procedure Calls

• Remote procedure call (RPC) abstracts procedure calls between processes on networked systems

• Stubs – client-side proxy for the actual procedure on the server

• The client-side stub locates the server and marshalls the parameters

• The server-side stub receives this message, unpacks the marshalled parameters, and peforms the procedure on the server

Page 57: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Execution of RPC

Page 58: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

System Call : fork()

• Create a child process• Returns to both the child and parent

Page 59: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

System Call : exec()

• Run application in current process exec(prog, args)

Execl( pathname, arg[0], arg[1]…. 0)Excelp(arg[0], arg[1]…. 0)

http://www.yolinux.com/TUTORIALS/ForkExecProcesses.html

Page 60: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

System Call: wait()

• Pause until child process has exited

wait(): Blocks calling process until the child process terminates. If child process has already teminated, the wait() call returns immediately. if the calling process has multiple child processes, the function returns when one returns.

waitpid(): Options available to block calling process for a particular child process not the first one• http://

www.yolinux.com/TUTORIALS/ForkExecProcesses.html

Page 61: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

System call : system()

• Invokes the command processor to execute a command.

• Uses fork() exec() and wait()

• The call "blocks" and waits for the task to be performed before continuing.system(“ls –l”);

Page 62: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

UNIX Signal

• Facility for one process to send another instant notification

• Send an interrupt to a processsignal(processID, type)

• Signal Handling example– http://www.yolinux.com/TUTORIALS/C++

Signals.html

Page 63: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

System Call : dup2()

• Replace the tofileDesc file descriptor with a copy of the fromfiledesc file descriptor. Used for replacing stdin or stdout or both in a child processdup2(fromFileDesc, toFileDesc)

• Example:http://www.cs.loyola.edu/~jglenn/702/S2005/Examples/pipe.html

Page 64: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Shell

• A shell is a job control system – Allows programmer to create and manage a set of

programs to do some task– Windows, MacOS, Linux all have shells

• Example: to compile a C programcc –c sourcefile1.ccc –c sourcefile2.cln –o program sourcefile1.o sourcefile2.o

Page 65: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

Implementing a Shellchar *prog, **args;int child_pid;

// Read and parse the input a line at a timewhile (readAndParseCmdLine(&prog, &args)) { child_pid = fork(); // create a child process if (child_pid == 0) { exec(prog, args); // I'm the child process. Run program // NOT REACHED } else { wait(child_pid); // I'm the parent, wait for child return 0; }}

Page 66: Programming Interface. Main Points Process Concept Creating and managing processes – fork, exec, wait Communicating between processes Example: implementing

POSIX

• POSIX, an acronym for "Portable Operating System Interface", is a family of standards specified by the IEEE for maintaining compatibility between operating systems. POSIX defines the application programming interface (API), along with command line shells and utility interfaces, for software compatibility with variants of Unix and other operating systems.

http://en.wikipedia.org/wiki/POSIX