professordavidwilliams - uts

28
Concepts in Biocompa.bility: New Biomaterials, New Paradigms and New Tes.ng Regimes Professor David Williams Wake Forest Ins.tute of Regenera.ve Medicine, USA EditorinChief, Biomaterials President, TERMIS Professor Emeritus, University of Liverpool, UK Visi.ng Professor Universi.es in Cape Town, Singapore, Shanghai, Beijing, Taipei, Sydney, Trivandrum MINNEAPOLIS May 2013 © D.F.Williams

Upload: others

Post on 29-Dec-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ProfessorDavidWilliams - UTS

Concepts  in  Biocompa.bility:    New  Biomaterials,  

New  Paradigms  and  New  Tes.ng  Regimes  

Professor  David  Williams  Wake  Forest  Ins.tute  of  Regenera.ve  Medicine,  USA  

Editor-­‐in-­‐Chief,  Biomaterials  President,  TERMIS  

 Professor  Emeritus,  University  of  Liverpool,  UK  

Visi.ng  Professor  Universi.es  in  Cape  Town,  Singapore,  Shanghai,  Beijing,  Taipei,  Sydney,  Trivandrum  

   MINNEAPOLIS  May  2013  

 

 

©  D.F.Williams  

Page 2: ProfessorDavidWilliams - UTS

Biological  evalua.on  of  medical  devices  Part  1:  Evalua.on  and  tes.ng  (ISO  10993-­‐1:2003)  

 •  ISO  10993  consists  of  the  following  parts,  under  the  general  .tle  Biological  evalua.on  of  medical  

devices  :  •  —  Part  1:  Evalua.on  and  tes.ng  •  —  Part  2:  Animal  welfare  requirements  •  —  Part  3:  Tests  for  genotoxicity,  carcinogenicity  and  reproduc.ve  toxicity  •  —  Part  4:  Selec.on  of  tests  for  interac.ons  with  blood  •  —  Part  5:  Tests  for    in  vitro  cytotoxicity  •  —  Part  6:  Tests  for  local  effects  a`er  implanta.on  •  —  Part  7:  Ethylene  oxide  steriliza.on  residuals  •  —  Part  8:  Selec.on  and  qualifica.on  of  reference  materials  for  biological  tests  •  —  Part  9:  Framework  for  iden.fica.on  and  quan.fica.on  of  poten.al  degrada.on  products  •  —  Part  10:  Tests  for  irrita.on  and  delayed-­‐type  hypersensi.vity  •  —  Part  11:  Tests  for  systemic  toxicity  •  —  Part  12:  Sample  prepara.on  and  reference  materials  •  —  Part  13:  Iden.fica.on  and  quan.fica.on  of  degrada.on  products  from  polymeric  medical  

devices  •  —  Part  14:  Iden.fica.on  and  quan.fica.on  of  degrada.on  products  from  ceramics  •  —  Part  15:  Iden.fica.on  and  quan.fica.on  of  degrada.on  products  from  metals  and  alloys  •  —  Part  16:  Toxicokine.c  study  design  for  degrada.on  products  and  leachables  

Page 3: ProfessorDavidWilliams - UTS

Concepts  in  Biocompa.bility:    New  Biomaterials,  

New  Paradigms  and  New  Tes.ng  Regimes  

 

 

• Biocompa.bility  and  biological  safety:  concepts  and  principles  

• Changing  perspec.ves  on  biomaterials  

• Changing  perspec.ves  on  biocompa.bility  

• Views  on  in  vitro  tes.ng  

• Challenges  with  animal  tes.ng  

• Genomics,  proteomics  and  computer  modeling  

• Sugges.ons  and  recommenda.ons          

Page 4: ProfessorDavidWilliams - UTS

Biocompa.bility  and  Biological  Safety  Concepts  and  Principles  

•  Devices   are   placed   on   the   market,   having   sa.sfactorily   undergone  industry-­‐standard  pre-­‐clinical   tes.ng  procedures,   but   problems   (real  or   apparent)   are   encountered,   such   that   they   have   to   be   removed  from  those  markets,  and  everyone  suffers.  

•  Devices   are   o`en   used   in   inappropriate   pa.ents,   with   improper  techniques.   Everyone   knows   this   but   we   s.ll   persist   in   promo.ng  their  widespread  use  in  the  interests  of  market  size  or  share.  Neither  tes.ng  procedures  nor  regulatory  processes  can  take  into  account  the  fact  that  pa.ent  selec.on  and  clinical  skills  are  o`en  more  important  than  intrinsic  biocompa.bility  in  determining  clinical  outcomes.  

•  These  difficul.es  are  now  being  compounded  by   the   introduc.on  of  new   biomaterials   and   new   therapeu.c   and   diagnos.c   concepts,  which   o`en   have   different,   and   perhaps   contradictory,   implica.ons  for  biological  safety  and  product  performance.    

Page 5: ProfessorDavidWilliams - UTS

Changing  Perspec.ves  on  Biomaterials  (Williams  DF  On  The  Nature  of  Biomaterials,  Biomaterials,  2009,  p  5897)  

•  Permanently  (long  term)  implantable  devices    •  Short  term  implantable  devices  •  Invasive  but  removable  devices  •  External  ar.ficial  organs      •  Organ  assist  devices    •  Surgical  and  clinical  accessories  •  Drug,  gene  and  vaccine  delivery  systems  •  Tissue  engineering  /  cell  therapy  systems    •  In  vivo  diagnos.c  systems  •  In  vitro  diagnos.c  systems  SHOULD  WE  BE  USING  THE  SAME  TESTING  REGIMES  FOR  ALL  

OF  THESE  PRODUCTS?  

Page 6: ProfessorDavidWilliams - UTS

Changing  Perspec.ves  on  Biomaterials  Williams  DF  Essen.al  Biomaterials  Science,  Cambridge  University  Press,  2014  

   

The  Williams  Defini?on  of  a  Biomaterial    

A  biomaterial  does  not  have  to  be  solid,  visible  and  tangible;  it  does  not  have  to  be  manufactured  by  conven.onal  top-­‐down  industrial  processes.    A  biomaterial  does  not  have  to  

be  dead.    

A  biomaterial  could  be  a  suspension  of  nanopar.cles,  or  a  self-­‐assembling  pep.de  hydrogel.    It  could  be  an  engineered  sheet  of  stem-­‐cells.  It  could  be  a  non-­‐viral  gene  vector  or  even  an  

engineered  viral  vector.  It  could  be  an  an.body  func.onalized  nanoscale  superparamagne.c,  drug-­‐loaded  en.ty  for  theranos.c  uses.  It  could  be  engineered  re-­‐cellularized  ECM.  

Page 7: ProfessorDavidWilliams - UTS

Changing  Perspec.ves  on  Biomaterials  (Williams  DF  On  The  Nature  of  Biomaterials,  Biomaterials,  2009,  p  5897)  

   

The  Williams  Defini?on  of  a  Biomaterial,  2009    

A  biomaterial  is  a  substance  that  has  been  engineered    to  take  a  form  which,  alone  or  as  part  of  a  complex  system,    

is  used  to  direct,  by  control  of  interac?ons  with  components  of  living  systems,  the  course  of  any  therapeu?c  or  diagnos?c  procedure.  

 DO  WE  NEED  NEW  PARADIGMS  OF  BIOLOGICAL  SAFETY  TESTING  TO  ACCOMPANY  THESE  NEW  

PARADIGMS  OF  BIOMATERIAL  DESIGN  AND  PERFORMANCE    

Page 8: ProfessorDavidWilliams - UTS

Changing  Perspec.ves  on  Biocompa.bility  Williams  DF  Essen.al  Biomaterials  Science,  Cambridge  University  Press,  2014  

   

Significance  of  Nanoscale  Biocompa.bility    

• In  vitro  nanopar.cle  cytotoxicity  is  highly  dependent  of  cell  type  • In  vitro  behavior  of  nanopar.cles  is  dependent  on  par.cle  size,  zeta  poten.al,  

aggrega.on  processes  and  protein  corona  characteris.cs  • In  vivo  performance  and  safety  of  nanopar.cles  is  dependent  on  transloca.on,  

biodegrada.on  and  biopersistence    • Internaliza.on  of  nanopar.cles  within  cells  partly  depends  on  mechanical  effects  on  

cell  membranes  • The  role  of  the  nanotopography  of  biomaterials  surfaces  on  biocompa.bility  is  largely  

unknown  

NONE  OF  THESE  PROCESSES  ARE  ADDRESSED  BY  STANDARD  ISO  10993  TESTS  

Page 9: ProfessorDavidWilliams - UTS

 Basic  concepts  in  regenera.ve  medicine  and  the  essen.al  

.ssue  engineering  paradigm    

Tissue  Engineering  

Tissue  engineering  is  the  crea?on  of  new  ?ssue  for  the  therapeu?c  reconstruc?on  of  the  human  body,  by  the  deliberate  and  controlled  s?mula?on  of  selected  target  cells  through  a  systema?c  combina?on  of  molecular  and  mechanical  signals    

 Williams  D.F.      To  engineer  is  to  create,  Trends  

in  Biotechnology,  2006,  24,  4-­‐8    

Page 10: ProfessorDavidWilliams - UTS

Tissue  Engineering  Templates  

In  order  to  achieve  spa.o-­‐temporal  control,  we  need  biomaterials  that  can  be  formed  into  a  suitable  template  which:  

•  May  be  pre-­‐formed  or  injectable  /  in  situ  selng  or  gelling  •  Has  the  appropriate  mechanical  and  biophysical  proper.es  •  Can  incorporate  and  release  of  necessary  specific  biomolecules  •  Degrades  with  the  appropriate  kine.cs  and  lack  of  toxicity    •  Has  the  appropriate  biocompa.bility  characteris.cs.  But  The  biomaterial  alone  cannot  perform  all  of  the  required  func.ons,  it  needs  to  be  

in  a  form  that  has  the  appropriate  architecture  and  morphology,  and  needs  to  convey  and  deliver  relevant  biomolecules.    

A  Tissue  Engineering  Template  comprises:  BIOMATERIAL  +  ARCHITECTURE  +  BIOMOLECULES  

We  have  no  procedures  that  are  able  to  assess  these  complex  templates  

 

Page 11: ProfessorDavidWilliams - UTS

Specifica?ons  for  Template  Biomaterials  • The  material  should  be  capable  of  orchestra.ng  molecular  signaling  to  the  

target  cells,  either  by  direc.ng  endogenous  molecules  or  delivering  exogenous  molecules,  

• The  material  should  be  of  a  physical  form  that  provides  appropriate  shape  and  size  to  the  regenerated  .ssue,  

• The  material  should  be  capable  of  forming  into  an  architecture  that  op.mizes  cell,  nutrient,  gas  and  biomolecule  transport,  either  or  both  ex  

vivo  or  in  vivo,  and  facilitates  blood  vessel  and  nerve  development,  • The  material  should  be  intrinsically  non-­‐cytotoxic  and  non-­‐immunogenic,  

and  minimally  pro-­‐inflammatory,      

TESTING  REGIMES  SHOULD  ADDRESS  ALL  OF  THESE  SPECIFICATIONS;  IT  IS  NOT  ACCEPTABLE  TO  SIMPLY  LOOK  FOR  CHEMICALLY-­‐DRIVEN  NEGATIVE  EFFECTS.  A  FAILURE  TO  POSITIVELY  STIMULATE  CELLS  YIELDS  A  NEGATIVE  

OUTCOME  

   

Page 12: ProfessorDavidWilliams - UTS

Op?ons  for  Template  Biomaterials    

Porous  solids  *  Hybrid  nano  /  micro-­‐structured  blends  of  synthe?c  (PHB)  /  natural  

(silk-­‐elas?n)  materials  Hydrogels  

*Engineered  pep?de  hydrogels  Decellularized  ECM  materials  

 NOTE;  Standard  biodegradable  synthe.c  polymers  prepared  by  standard  fabrica.on  routes  are  unlikely  to  provide  op.mal  .ssue  engineering  templates  and  prior  FDA  approval  of  materials  used  in  medical  devices  is  not    an  appropriate  specifica.on  for  a  template  

   

   

Page 13: ProfessorDavidWilliams - UTS

Views  on  In  Vitro  Tes.ng  

•  Simple,  standardized,  in  vitro  tests  should  mostly  be  considered  as  screening  procedures  that  warn  against  significant  adverse  effects,  

•  Since  most  tests  have  arbitrary,  semi-­‐quan.ta.ve,  criteria  for  the  interpreta.on  of  results,  effec.vely  giving  a  pass-­‐fail  conclusion,  where  repeated  tests  may  give  different  outcomes,  we  can  only  use  these  as  approximate  indicators  of  safety  

•  In  vitro  tests  should  be  mul.parametric,  involving  different  cell  types,  different  condi.on  and  several  types  of  outcome,  including  cell  morphology,  cell  func.on,  reac.ve  oxygen  species  produc.on  and  the  different  parameters  of  cell  death,  including  cytotoxicity  and  apoptosis.  

Page 14: ProfessorDavidWilliams - UTS

Challenges  with  Animal  Tes.ng  

•  Biocompa.bility  is  species  specific  •  As  with  humans,  the  host  response  in  animals  varies  with  age,  gender,  health  status,  pharmacological  status  etc  

•  There  are  few  acceptable  animal  models  for  most  clinical  situa.ons,  e.g.  pelvic  organ  prolapse,  spinal  fusion  

•  Very  difficult  to  balance  the  need  for  sta.s.cally  valid  long-­‐term  data  with  the  requirements  for  acceptable  economics  

Page 15: ProfessorDavidWilliams - UTS

Suggestions and Recommendations

•  Need  a  far  beoer  correla.on  between  the  science  of  biocompa.bility  and  the  pragma.c  aspects  of  biological  safety  tes.ng.    

•  Tes.ng  regimes  should  be  much  more  closely  aligned  to  the  characteris.cs  of  the  product,  including  mode  of  contact  between  biomaterial  and  .ssues.  

•  In  vitro  tes.ng  should  be  considered  as  preliminary  /  screening  procedures,  in  general  not  to  be  used  for  the  defini.ve  determina.on  of  safety.  

•  For  implantable  devices,  in  vivo  tes.ng  should  build  on  exis.ng  ISO  10993  guidelines  but  should  be  even  more  consistent  with  the  intended  func.on,  the  precise  loca.on  and  biomechanical  variables  

Page 16: ProfessorDavidWilliams - UTS

Suggestions and Recommendations

•  For  regenera.ve  medicine  products,  tes.ng  regimes  should  focus  on  func.onality  and  take  into  account  the  delivery  of  signaling  mechanisms  and  phenotypic  changes  to  the  target  cells.  

•  With  nanopar.cle  products,  both  for  diagnos.c  and  therapeu.c  purposes,  tes.ng  regimes  should  be  mul.variant  and  should  take  into  account  factors  such  as  aggrega.on,  biopersistence,  biodegrada.on,  cellular  uptake,  biodistribu.on  and  systemic  effects.    

•  Whenever  xenogeneic  and  allogeneic  sources  are  used  for  either  cells  or  .ssues,  full  account  should  be  taken  of  their  immunogeneic  poten.al.  

Page 17: ProfessorDavidWilliams - UTS

Suggestions and Recommendations

•  Greater  aoen.on  should  be  given  to  the  use  of  ‘substan.al  equivalence  designa.ons’.  Greater  weight  should  be  given  to  prior  evidence  of  intrinsic  biomaterials  biocompa.bility  and  less  weight  to  product  similari.es.  

•  There  should  be  greater  associa.on  between  pre-­‐clinical  tes.ng  regimes  and  clinical  studies.  The  logis.cs,  economic  burden  and  reliability  of  the  different  types  of  clinical  studies  should  be  re-­‐evaluated.  

•  Efforts  should  be  made  to  integrate  computer  modeling,  combinatorial  processes  and  gene  /  protein  expression  profiling  into  biocompa.bility  tests.  

Page 18: ProfessorDavidWilliams - UTS

Incon.nence  and  Pelvic  Organ  Prolapse  

This  involves  on-­‐going  li.ga.on;  Essen.ally  sub-­‐judice.  Curr  Urol  Rep.  2011  Oct;12(5):370-­‐6.  doi:  10.1007/s11934-­‐011-­‐0206-­‐0.  Epidemiology  of  stress  urinary  inconBnence  in  women.  Reynolds  WS1,  Dmochowski  RR,  Penson  DF.    Stress  urinary  incon.nence  is  common  and  affects  many  women  globally.  About  50%  of  women  with  urinary  incon.nence  report  symptoms  of  stress  incon.nence,  but  es.mates  of  the  prevalence  and  incidence  are  limited  by  inconsistent  methods  of  measurement  between  epidemiologic  studies  in  different  popula.ons.  Es.mates  also  are  affected  by  underlying  differences  in  the  age  and  ethnicity  of  study  popula.ons.  Longitudinal  studies  assessing  the  incidence  and  natural  history  of  stress  incon.nence  es.mate  an  annual  incidence  of  4%  to  10%.  While  remission  does  occur,  data  on  this  remains  sparse.  Mul.ple  risk  factors  have  been  associated  with  stress  incon.nence  and  may  to  contribute  to  the  development  of  the  condi.on.    

Page 19: ProfessorDavidWilliams - UTS

Prepared for the

World Summit on Regenerative Medicine, 2013

19–22 October 2013Sofitel Xi’an on Renmin Square, Xi’an, China

Xi’an World Summit on2013

Regenerative Medicine

THE XI’ANPAPERS

Page 20: ProfessorDavidWilliams - UTS

       

The  Xi’an  Protocol    

There  is  overwhelming  evidence  that  a  powerful  global  mul.disciplinary  community  is  emerging  which  can,  even  with  diverse  cultures,  economies  and  poli.cs,  orchestrate  a  

successful  pathway  between  the  legi.mate,  ethical  crea.on  of  wealth  and  the  delivery  of  therapies  in  area  of  un-­‐met  need.  

 • Scalable  manufacturing  and  control  of  supply  chain  

• Standardized  disease-­‐relevant  animal  models  • New  procedures  for  pre-­‐clinical  tes.ng  of  biomaterials  

• Business  models,  insurers,  pa.ent  groups,  service  vs  products  • Use  of  cosme.c/veterinary  markets  for  early  revenue    

• Recogni.on  of  lines  of  resistance  ‘  Culture  defeats  Strategy’  • Convergence  of  progressive  regulatory  procedures  

• Accelera.on  of  global  approaches  through  co-­‐opera.on      

 

Page 21: ProfessorDavidWilliams - UTS

SCENIHR  

SCIENTIFIC  COMMITTEE  ON  NEWLY  IDENTIFIED  

AND  EMERGING  HEALTH  RISKS    

 Opinion  on  “The  Safety  of  Human  Blood  and  

Organs  with  Regard  to  West  Nile  Virus”  

2006    

Page 22: ProfessorDavidWilliams - UTS

SCENIHR  

SCIENTIFIC  COMMITTEE  ON  NEWLY  IDENTIFIED  

AND  EMERGING  HEALTH  RISKS    

 Opinion  on  “The  Safety  of  Human-­‐derived  Products  with  regard  to  Variant  Creutzfeldt-­‐Jakob  Disease”  

2006    

Page 23: ProfessorDavidWilliams - UTS

SCENIHR  SCIENTIFIC  COMMITTEE  ON  NEWLY  

IDENTIFIED  AND  EMERGING  HEALTH  RISKS  

 OPINION  ON    

“THE  SAFETY  OF  MEDICAL  DEVICES  CONTAINING  DEHP-­‐  PLASTICIZED  PVC  OR  OTHER  PLASTICIZERS  ON  NEONATES  AND  

OTHER  GROUPS  POSSIBLY  AT  RISK”  2008      

Page 24: ProfessorDavidWilliams - UTS

SCENIHR  

SCIENTIFIC  COMMITTEE  ON  NEWLY  IDENTIFIED  

AND  EMERGING  HEALTH  RISKS    

Opinion  on  “The  safety  of  dental  amalgam  and  

alterna.ve  dental  restora.on  materials  for  pa.ents  and  users”  

2008      

Page 25: ProfessorDavidWilliams - UTS

SCENIHR  SCIENTIFIC  COMMITTEE  ON  NEWLY  IDENTIFIED  

AND  EMERGING  HEALTH  RISKS    

The  SCENIHR  opinion  states:  Nanotechnology  is  the  term  given  to  those  areas  of  science  and  engineering  where  phenomena  that  take  place  at  dimensions  in  the  nanometre  scale  are  

u.lised  in  the  design,  characterisa.on,  produc.on  and  applica.on  of  materials,  structures,  devices  and  systems.  Although  in  the  natural  world  there  are  many  

examples  of  structures  that  exist  with  nanometre  dimensions  (herea`er  referred  to  as  the  nanoscale),  including  essen.al  molecules  within  the  human  

body  and  components  of  foods,  and  although  many  technologies  have  incidentally  involved  nanoscale  structures  for  many  years,  it  has  only  been  in  

the  last  quarter  of  a  century  that  it  has  been  possible  to  ac.vely  and  inten.onally  modify  molecules  and  structures  within  this  size  range.  It  is  this  control  at  the  nanometre  scale  that  dis.nguishes  nanotechnology  from  other  

areas  of  technology.      

Page 26: ProfessorDavidWilliams - UTS
Page 27: ProfessorDavidWilliams - UTS
Page 28: ProfessorDavidWilliams - UTS

SAT  MECHANICAL  TAVI  DEPLOYMENT  DEVICE:    KEY  IP  FEATURES      •  Self-­‐homing,  straight  Transapical  Approach  independent  of  dimensional  /  

pathological  characteris.cs  of  femoral/iliac  arteries.    

•  Non-­‐occlusiveness  makes  slow  deployment  possible    

•  Short  deployment  rout  does  not  require  catheter-­‐skills  like  in  TF  route.    

•  Back-­‐flow  protec.on  secures  diastolic  pressures  essen.al  for  coronary  perfusion  while  protec.ng  the  ventricle  from  distending