problema resuelto de mecanica

3
August 14, 2003 PHYSICS 44 MECHANICS Homework Assignment VI SOLUTIONS Problem 1 (a) Consider the case involving motion on the ( x; y)-plane perpendicular to the angular velocity vector  ! = !  b z with the potential energy U (r) =  1 2  k ³ x 2 +  y 2 ´ : Using the Euler-Lagrange equations m Ä r  =  ¡rU (r)  ¡  m [ 2 ! £ _ r  +  ! £ ( ! £ r) ] ; derive the equations of motion for  x  a nd y. (b) By using the equations of motion derived in Part (a), show that the canonical angular momentum `  = b z ¢ (r £ p) is a constant of the motion. Solution (a) Using the vector identity j ! £ rj 2 = ! 2 r 2 ¡ (! ¢ r) 2 , we ¯nd @L @ _ r  =  m  ( _ r  +  ! £ r)  !  d dt à @L @ _ r !  =  m  ( Ä r  +  ! £ _ r) @L @ r  =  ¡rU (r) +  m h  ! 2 r  ¡  ! (! ¢ r) i  +  m  _ r £! or, using the identity  ! 2 r ¡ ! (! ¢ r) = ¡ ! £ (! £ r), the Euler-Lagrange equation is m Ä r  =  ¡r U  ¡  ! £ ( ! £ r)  ¡  2m ! £ _ r:  (1.1) We now consider two-dimensional motion under the in°uence of the e®ective potential U eff (x; y ) =  k 2 ³ x 2 + y 2 ´  ¡  m ! 2 2 ³ r 2 ¡ z 2 ´  =  K 2 ³ x 2 + y 2 ´ ; where  K  =  k ¡ m ! 2 . The Lagrangian in this case is L(x;  _ x; y;  _ y) =  m 2 ³ _ x 2 + _ y 2 ´  +  m!  (x  _ y ¡ y  _ x)  ¡  K 2 ³ x 2 + y 2 ´ :  (1.2) 1

Upload: hecttor-juarez

Post on 04-Mar-2016

7 views

Category:

Documents


0 download

DESCRIPTION

problema resuelto de mecanica por medio de la teoria lagrangiana

TRANSCRIPT

Page 1: problema resuelto de mecanica

7/21/2019 problema resuelto de mecanica

http://slidepdf.com/reader/full/problema-resuelto-de-mecanica-56d9ab6e87290 1/3

August 14, 2003

PHYSICS 44 MECHANICS

Homework Assignment VI

SOLUTIONS

Problem 1

(a) Consider the case involving motion on the (x; y)-plane perpendicular to the angularvelocity vector  ! = ! bz with the potential energy

U (r) =  1

2 k

³x2 +   y2

´:

Using the Euler-Lagrange equations

m Är   = ¡ rU (r) ¡   m [ 2!£ _r   +   !£ (!£ r) ] ;

derive the equations of motion for  x and y.

(b) By using the equations of motion derived in Part (a), show that the canonical angularmomentum `  = bz ¢ (r£p) is a constant of the motion.

Solution

(a) Using the vector identity j!£ rj2 = !2 r2 ¡ (! ¢ r)2, we ¯nd

@L

@ _r  =   m   (_r   +   !£ r)   !   d

dt

Ã@L

@ _r

!  =   m   (Är   +   !£ _r)

@L

@ r  =   ¡ rU (r) +   m

h !2 r  ¡   ! (! ¢r)

i  +   m   _r£!

or, using the identity ! 2 r¡! (! ¢ r) = ¡ !£ (!£ r), the Euler-Lagrange equation is

m Är   =  ¡ rU  ¡   !£ (!£ r) ¡   2m !£ _r:   (1.1)

We now consider two-dimensional motion under the in°uence of the e®ective potential

U eff (x;y) =  k

2

³x2 + y2

´ ¡   m !2

2

³r2¡ z 2

´  =

  K 

2

³x2 + y2

´;

where  K  =  k ¡ m !2. The Lagrangian in this case is

L(x;  _x; y;   _y) =  m

2

³_x2 + _y2

´  +   m!   (x _y ¡ y  _x) ¡   K 

2

³x2 + y2

´:   (1.2)

1

Page 2: problema resuelto de mecanica

7/21/2019 problema resuelto de mecanica

http://slidepdf.com/reader/full/problema-resuelto-de-mecanica-56d9ab6e87290 2/3

The Euler-Lagrange equations are

m Äx   = 2 m!   _y ¡   K x;   (1.3)

m Äy   =   ¡ 2 m!   _x ¡   K y:   (1.4)

(b) The canonical momentum  p  for this problem is de¯ned as

p   =  @L

@ _r  =   m   ( _r   +   !£ r) ;

so that the canonical angular momentum  `  = bz ¢ r£p is expressed as

`   = bz ¢ r£  (m _r   +   m!£r) =   m (x _y ¡ y  _x) +   m!³

x2 + y2´

:

Using Eqs. (1.3) and (1.4), we ¯nd

d`

dt  =   m (x Äy

¡y Äx) + 2 m!   (x   _x   +   y  _y) = 0:

That the canonical angular momentum   `  is a constant of the motion can also be seen bytransforming the Lagrangian (1.2) in Cartesian coordinates (x; y) into the Lagrangian

L(r;   _r;   _') =  m

2

³_r2 + r2 _'2

´  +   m! r2 _' ¡   K 

2  r2;   (1.5)

in polar coordinates (r; '), where x  =  r  cos '  and y  =  r  sin '. Since the Lagrangian (1.5)is independent of the polar angle  ' , the canonical angular momentum

 p'   =  @L

@   _'  =   mr2 ( _' + !) (1.6)

is a constant of the motion. It is easy to verify that `  = p'.

Problem 2

If a particle is projected vertically upward to a height  h  above a point on the Earth'ssurface at a northern latitude  ¸, show that it strikes the ground at a point

4!

3  cos ¸

s 8 h3

g

to the west. (Neglect air resistance, and consider only small vertical heights.)

Solution

The Coriolis acceleration equations are

Äx   = 2 !   sin ¸   _yÄy   =   ¡ 2 ! (sin ¸   _x   + cos ¸   _z )Äz    =   ¡ g   + 2 !  cos ¸   _y

9>=>; :   (2.1)

2

Page 3: problema resuelto de mecanica

7/21/2019 problema resuelto de mecanica

http://slidepdf.com/reader/full/problema-resuelto-de-mecanica-56d9ab6e87290 3/3

A ¯rst integration of Eq. (2.1) yields

_x   = 2 !   sin ¸ y   +   C x

_y   =   ¡ 2 ! (sin ¸ x   + cos ¸ z ) +   C y_z    =   ¡ g t   + 2 !  cos ¸ y   +   C z9>=>; ;   (2.2)

where (C x; C y; C z) are constants de¯ned from initial conditions (x0; y0; z 0) and (_x0;  _y0;  _z 0).

Here, the initial conditions are (x0; y0; z 0) = (0; 0; 0) and (_x0;  _y0;  _z 0) = (0; 0; v0). Thus,the constants are (C x; C y; C z) = (0; 0; v0) and integration of Eqs. (2.2) yields

x(t) = 2 ! sin ¸Z   t

0

y(¿ ) d¿;   (2.3)

y(t) =   ¡ 2 !   sin ¸Z   t0

x(¿ ) d¿  ¡   2 !  cos ¸Z   t0

z (¿ ) d¿;   (2.4)

z (t) =   v0 t ¡   g t2

2  + 2 !  cos ¸

Z   t0

y(¿ ) d¿:   (2.5)

To ¯rst order in  !, the equations (2.3)-(2.5) become

x(t) = 0;   (2.6)

y(t) =   ¡ 2 !  cos ¸Z   t0

µv0 ¿  ¡   g

2 ¿ 2¶

  d¿   = ¡ ! cos ¸µ

v0 t2 ¡   g

3  t3¶

;   (2.7)

z (t) =   v0 t ¡   g t2

2:   (2.8)

The projectile reaches its maximum height h after a time T   = v0=g and thus v0 = p 2 hg.

After a time 2T  =q 

8h=g, the projectile is back on the ground and has drifted by

y(2T ) =  ¡ !  cos ¸µ

4 v0 T 2 ¡   8g

3  T 3

¶  = ¡  4

3 !  cos ¸

 v30

g2  =  ¡   4

3 !  cos ¸

s 8 h3

g  :

Since  y(2T ) <  0, the drift is  westward .

3