probabilistic inference lecture 4 – part 2 m. pawan kumar [email protected] slides available...

Download Probabilistic Inference Lecture 4 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

If you can't read please download the document

Upload: tracey-nicholson

Post on 25-Dec-2015

217 views

Category:

Documents


2 download

TRANSCRIPT

  • Slide 1
  • Probabilistic Inference Lecture 4 Part 2 M. Pawan Kumar [email protected] Slides available online http://cvc.centrale-ponts.fr/personnel/pawan/
  • Slide 2
  • Integer Programming Formulation LP Relaxation and its Dual Convergent Solution for Dual Properties and Computational Issues Outline
  • Slide 3
  • Things to Remember Forward-pass computes min-marginals of root BP is exact for trees Every iteration provides a reparameterization
  • Slide 4
  • Integer Programming Formulation VaVa VbVb Label l 0 Label l 1 2 5 4 2 0 1 1 0 2 Unary Potentials a;0 = 5 a;1 = 2 b;0 = 2 b;1 = 4 Labelling f(a) = 1 f(b) = 0 y a;0 = 0y a;1 = 1 y b;0 = 1y b;1 = 0 Any f(.) has equivalent boolean variables y a;i
  • Slide 5
  • Integer Programming Formulation VaVa VbVb 2 5 4 2 0 1 1 0 2 Unary Potentials a;0 = 5 a;1 = 2 b;0 = 2 b;1 = 4 Labelling f(a) = 1 f(b) = 0 y a;0 = 0y a;1 = 1 y b;0 = 1y b;1 = 0 Find the optimal variables y a;i Label l 0 Label l 1
  • Slide 6
  • Integer Programming Formulation VaVa VbVb 2 5 4 2 0 1 1 0 2 Unary Potentials a;0 = 5 a;1 = 2 b;0 = 2 b;1 = 4 Sum of Unary Potentials a i a;i y a;i y a;i {0,1}, for all V a, l i i y a;i = 1, for all V a Label l 0 Label l 1
  • Slide 7
  • Integer Programming Formulation VaVa VbVb 2 5 4 2 0 1 1 0 2 Pairwise Potentials ab;00 = 0 ab;10 = 1 ab;01 = 1 ab;11 = 0 Sum of Pairwise Potentials (a,b) ik ab;ik y a;i y b;k y a;i {0,1} i y a;i = 1 Label l 0 Label l 1
  • Slide 8
  • Integer Programming Formulation VaVa VbVb 2 5 4 2 0 1 1 0 2 Pairwise Potentials ab;00 = 0 ab;10 = 1 ab;01 = 1 ab;11 = 0 Sum of Pairwise Potentials (a,b) ik ab;ik y ab;ik y a;i {0,1} i y a;i = 1 y ab;ik = y a;i y b;k Label l 0 Label l 1
  • Slide 9
  • Integer Programming Formulation min a i a;i y a;i + (a,b) ik ab;ik y ab;ik y a;i {0,1} i y a;i = 1 y ab;ik = y a;i y b;k
  • Slide 10
  • Integer Programming Formulation min T y y a;i {0,1} i y a;i = 1 y ab;ik = y a;i y b;k = [ a;i . ; ab;ik .] y = [ y a;i . ; y ab;ik .]
  • Slide 11
  • One variable, two labels y a;0 y a;1 y a;0 {0,1} y a;1 {0,1} y a;0 + y a;1 = 1 y = [ y a;0 y a;1 ] = [ a;0 a;1 ]
  • Slide 12
  • Two variables, two labels = [ a;0 a;1 b;0 b;1 ab;00 ab;01 ab;10 ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0 {0,1} y a;1 {0,1} y a;0 + y a;1 = 1 y b;0 {0,1} y b;1 {0,1} y b;0 + y b;1 = 1 y ab;00 = y a;0 y b;0 y ab;01 = y a;0 y b;1 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1
  • Slide 13
  • In General Marginal Polytope
  • Slide 14
  • In General R (|V||L| + |E||L| 2 ) y {0,1} (|V||L| + |E||L| 2 ) Number of constraints |V||L| + |V| + |E||L| 2 y a;i {0,1} i y a;i = 1y ab;ik = y a;i y b;k
  • Slide 15
  • Integer Programming Formulation min T y y a;i {0,1} i y a;i = 1 y ab;ik = y a;i y b;k = [ a;i . ; ab;ik .] y = [ y a;i . ; y ab;ik .]
  • Slide 16
  • Integer Programming Formulation min T y y a;i {0,1} i y a;i = 1 y ab;ik = y a;i y b;k Solve to obtain MAP labelling y*
  • Slide 17
  • Integer Programming Formulation min T y y a;i {0,1} i y a;i = 1 y ab;ik = y a;i y b;k But we cant solve it in general
  • Slide 18
  • Integer Programming Formulation LP Relaxation and its Dual Convergent Solution for Dual Properties and Computational Issues Outline
  • Slide 19
  • Linear Programming Relaxation min T y y a;i {0,1} i y a;i = 1 y ab;ik = y a;i y b;k Two reasons why we cant solve this
  • Slide 20
  • Linear Programming Relaxation min T y y a;i [0,1] i y a;i = 1 y ab;ik = y a;i y b;k One reason why we cant solve this
  • Slide 21
  • Linear Programming Relaxation min T y y a;i [0,1] i y a;i = 1 k y ab;ik = k y a;i y b;k One reason why we cant solve this
  • Slide 22
  • Linear Programming Relaxation min T y y a;i [0,1] i y a;i = 1 One reason why we cant solve this = 1 k y ab;ik = y a;i k y b;k
  • Slide 23
  • Linear Programming Relaxation min T y y a;i [0,1] i y a;i = 1 k y ab;ik = y a;i One reason why we cant solve this
  • Slide 24
  • Linear Programming Relaxation min T y y a;i [0,1] i y a;i = 1 k y ab;ik = y a;i No reason why we cant solve this * * memory requirements, time complexity
  • Slide 25
  • One variable, two labels y a;0 y a;1 y a;0 {0,1} y a;1 {0,1} y a;0 + y a;1 = 1 y = [ y a;0 y a;1 ] = [ a;0 a;1 ]
  • Slide 26
  • One variable, two labels y a;0 y a;1 y a;0 [0,1] y a;1 [0,1] y a;0 + y a;1 = 1 y = [ y a;0 y a;1 ] = [ a;0 a;1 ]
  • Slide 27
  • Two variables, two labels = [ a;0 a;1 b;0 b;1 ab;00 ab;01 ab;10 ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0 {0,1} y a;1 {0,1} y a;0 + y a;1 = 1 y b;0 {0,1} y b;1 {0,1} y b;0 + y b;1 = 1 y ab;00 = y a;0 y b;0 y ab;01 = y a;0 y b;1 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1
  • Slide 28
  • Two variables, two labels = [ a;0 a;1 b;0 b;1 ab;00 ab;01 ab;10 ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0 [0,1] y a;1 [0,1] y a;0 + y a;1 = 1 y b;0 [0,1] y b;1 [0,1] y b;0 + y b;1 = 1 y ab;00 = y a;0 y b;0 y ab;01 = y a;0 y b;1 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1
  • Slide 29
  • Two variables, two labels = [ a;0 a;1 b;0 b;1 ab;00 ab;01 ab;10 ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0 [0,1] y a;1 [0,1] y a;0 + y a;1 = 1 y b;0 [0,1] y b;1 [0,1] y b;0 + y b;1 = 1 y ab;00 + y ab;01 = y a;0 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1
  • Slide 30
  • Two variables, two labels = [ a;0 a;1 b;0 b;1 ab;00 ab;01 ab;10 ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0 [0,1] y a;1 [0,1] y a;0 + y a;1 = 1 y b;0 [0,1] y b;1 [0,1] y b;0 + y b;1 = 1 y ab;00 + y ab;01 = y a;0 y ab;10 + y ab;11 = y a;1
  • Slide 31
  • In General Marginal Polytope Local Polytope
  • Slide 32
  • In General R (|V||L| + |E||L| 2 ) y [0,1] (|V||L| + |E||L| 2 ) Number of constraints |V||L| + |V| + |E||L|
  • Slide 33
  • Linear Programming Relaxation min T y y a;i [0,1] i y a;i = 1 k y ab;ik = y a;i No reason why we cant solve this
  • Slide 34
  • Linear Programming Relaxation Extensively studied Optimization Schlesinger, 1976 Koster, van Hoesel and Kolen, 1998 Theory Chekuri et al, 2001Archer et al, 2004 Machine Learning Wainwright et al., 2001
  • Slide 35
  • Linear Programming Relaxation Many interesting properties Global optimal MAP for trees Wainwright et al., 2001 But we are interested in NP-hard cases Preserves solution for reparameterization Global optimal MAP for submodular energy Chekuri et al., 2001
  • Slide 36
  • Linear Programming Relaxation Large class of problems Metric Labelling Semi-metric Labelling Many interesting properties - Integrality Gap Manokaran et al., 2008 Most likely, provides best possible integrality gap
  • Slide 37
  • Linear Programming Relaxation A computationally useful dual Many interesting properties - Dual Optimal value of dual = Optimal value of primal
  • Slide 38
  • Dual of the LP Relaxation Wainwright et al., 2001 VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi min T y y a;i [0,1] i y a;i = 1 k y ab;ik = y a;i
  • Slide 39
  • Dual of the LP Relaxation Wainwright et al., 2001 VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi 11 22 33 44 55 66 11 22 33 44 55 66 i i = i 0
  • Slide 40
  • Dual of the LP Relaxation Wainwright et al., 2001 11 22 33 44 55 66 q*( 1 ) i i = q*( 2 ) q*( 3 ) q*( 4 )q*( 5 )q*( 6 ) i q*( i ) Dual of LP VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi i 0 max
  • Slide 41
  • Dual of the LP Relaxation Wainwright et al., 2001 11 22 33 44 55 66 q*( 1 ) ii ii q*( 2 ) q*( 3 ) q*( 4 )q*( 5 )q*( 6 ) Dual of LP VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi i 0 i q*( i ) max
  • Slide 42
  • Dual of the LP Relaxation Wainwright et al., 2001 ii ii max i q*( i ) I can easily compute q*( i ) I can easily maintain reparam constraint So can I easily solve the dual?
  • Slide 43
  • Continued in Lecture 5