principles and practical techniques of xps

25
Principles and Practical Techniques of XPS Xinqi Chen ESCALAB 250Xi K Alpha

Upload: others

Post on 01-May-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Principles and Practical Techniques of XPS

Principles and Practical Techniques of XPSXinqi Chen

ESCALAB 250Xi K Alpha

Page 2: Principles and Practical Techniques of XPS

Outline

1. Brief introduction of the shared instruments in Keck‐II 

2. XPS basic principles and instrumentation

3. Various characterization techniques with XPS

Questions 

Page 3: Principles and Practical Techniques of XPS

FT‐IR

Bruker Lumos IR Microscope Thermo Nicolet iS50 FT‐IR spectrometer

Mode:

• Transmission• ATR• DRIFT

Sample:

• Powder• Film• Solution• Gel• Micrometer spot

Page 4: Principles and Practical Techniques of XPS

Surface Profiler

Optical profilometer(3D optical microscope) Stylus profilometer

Page 5: Principles and Practical Techniques of XPS

Ellipsometer

Page 6: Principles and Practical Techniques of XPS

High lateral resolution (< 50 nm) with the new Nanoprobe 50.

From nm to µm – DSC, the high‐performance work horse for inorganic depth profiling with O2 and Cs.

Quantitative depth profiling in MCs+ Mode

Gas Cluster Ion Source ‐ The best solution for organic depth profiling

Focused ion beam (FIB) – cross section analysis

Sample Heating and Cooling

ION TOF M6 TOF SIMS

Page 7: Principles and Practical Techniques of XPS

XPS Background

During the mid 1960’s Dr. Kai Siegbahn and his research group developed the XPS technique.    

– Electron Spectroscopy for Chemical Analysis (ESCA)– In 1981, Dr. Siegbahn was awarded the Nobel Prize in Physics for the development of the XPS technique

– Manne Siegbahn (Kai’s father) was awarded the Nobel Prize in Physics in 1924 "for his discoveries and research in the field of X‐ray spectroscopy".

XPS technique is based on Einstein’s discovery of the photoelectric effect in1905

• The concept of photons was used to describe the ejection of electrons from a surface when photons were impinged upon it. 

• 1921 Nobel Prize in Physics "for his discovery of the law of the photoelectric effect"

Page 8: Principles and Practical Techniques of XPS

Core Electron

KE=hv-BE-Ø

BE=hv-KE-Ø

Equation

Page 9: Principles and Practical Techniques of XPS
Page 10: Principles and Practical Techniques of XPS

Basic Components of XPS Instrumentation UHV system (i.e., ~10‐9 torr):

– Ultra‐high vacuum keeps surfaces clean– Allows longer photoelectron path length

X‐ray source:– Typically Al Kα radiation (1486.6 eV)– Monochromated using quartz crystal

Lens, energy analyser & detector

Low energy electron flood gun:– Low energy e‐ (plus Ar+)– Analysis of insulating samples

Ion gun:– Typically noble gas ions (monatomic or clusters)– Sample cleaning– Depth profiling

Hemispherical Electron Energy Analyzer

Multi‐ChannelDetector

ArgonIon Gun

Argon Ion/ElectronFlood Gun

Al Kα X‐ray Source

Monochromator

ElectronTransfer Lens

SampleStage

Digital Cameras

Page 11: Principles and Practical Techniques of XPS

X‐Rays and the ElectronsX-Ray

Electron without collision

Electron with collision

The noise signal comes from the electrons that collide with other electrons of different layers. The collisions cause a decrease in energy of the electron and it no longer will contribute to the characteristic energy of the element.

Page 12: Principles and Practical Techniques of XPS
Page 13: Principles and Practical Techniques of XPS
Page 14: Principles and Practical Techniques of XPS

103 eV

99 eV

Page 15: Principles and Practical Techniques of XPS

XPS Spectra: 10% Pd/Activated Carbon Catalyst

• XPS survey spectra (left) provide qualitative and quantitative elemental surface information.

• High resolution XPS spectra (right) provide chemical state surface information.

330340350

Intensity

Binding Energy (eV)

Pd 3d5/2

Pd 3d3/2Pd 3d XPS spectra have twospin‐orbit split peaks (i.e., Pd3d5/2 and 3d3/2) for eachchemical species present.

01002003004005006007008009001000110012001300

Intensity

Binding Energy (eV)

C 1s

O 1s

Pd 3dNa 1s

Cl 2p

Surface Composition (Atomic %)C ‐ 91.6%O ‐ 5.5%Na ‐ 1.6%Cl ‐ <0.1%Pd ‐ 1.2%

Na KLL

O KLLC KLLPd 3p

Pd MNN

Page 16: Principles and Practical Techniques of XPS

Peak Fit for the Pd 3d XPS Spectrum: 10% Pd/Activated Carbon Catalyst

330340350

Intensity

Binding Energy (eV)

Pd 3d5/2 Pd Metal

Pd 3d3/2 Pd MetalPd 3d5/2 PdO

Pd 3d3/2 PdO

Pd 3d5/2 PdO2

Pd 3d3/2 PdO2

Pd 3d Plasmon Loss

Pd Species Detected by XPS:Pd Metal (~15%)PdO (~80%)PdO2 (~5%)

Page 17: Principles and Practical Techniques of XPS
Page 18: Principles and Practical Techniques of XPS

Si

Ag

Page 19: Principles and Practical Techniques of XPS

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

8.00E+04

9.00E+04

1.00E+05

1.10E+05

9596979899100101102103104105106107108109110

Cou

nts

/ s

Binding Energy (eV)

Compare-2

Angle=90

Angle=20

Sampling depth = d = 3 sinΘΘ = electron take‐off angle

= IMFP

Variation in Sampling Depth with Angle‐Resolved XPS (ARXPS)

Native SiO2 on Silicon

Si

Si4+

Page 20: Principles and Practical Techniques of XPS
Page 21: Principles and Practical Techniques of XPS

Sample plate temperature range: ‐170C to 300C

Heating and Cooling in Analysis Chamber 

Page 22: Principles and Practical Techniques of XPS

Summary of XPS Analysis Capabilities

1. Provides quantitative elemental and chemical state information for all elements except H and He.

2. Detection limit is ~0.05‐0.1 atomic % for most elements.

3. Sampling depth ≤ 10 nm.

4. Can be used for point analysis, line scans, and area analysis (mapping and imaging).

5. Can provide in‐depth analysis by AR‐XPS (1‐10 nm) or ion sputter depth profiling (sputtered depths of 10 µm ormore now possible).

6. Can be used for conductive and insulating solid samples, e.g., metals, metal oxides, catalysts, ceramics, coatings,multi‐layer thin films, polymers etc.

7. Samples can be fibers, foil, particulate, powder, rods, sheet, thin film, etc. In general, no special samplepreparation is required.

8. Samples must be compatible with ultrahigh vacuum (~10‐8 torr or lower) and stable under Al Kα X‐raybombardment.

Page 23: Principles and Practical Techniques of XPS

Pros

Quantitative elemental composition Chemical bonding information Surface sensitive All solid materials including insulator, 

semiconductor, and metals Analysis is fast and easy

Cons

Poor lateral resolution UHV compatible 

Page 24: Principles and Practical Techniques of XPS

Avantage software is free downloadable. XPS Knowledge View is helpful.

Page 25: Principles and Practical Techniques of XPS

Detailed data process procedure is available in Avantage help file.