presentation03 kinematic analysis of mechanisms

Upload: destansza

Post on 22-Feb-2018

260 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    1/17

    Presentation03: Kinematics analysis of mechanisms

    Outline

    Four-bar linkage: introduction; velocity and acceleration analyses (graphical

    .

    Crank-slider mechanism: position, velocity, and acceleration analyses

    .

    General analytical approach: the matrix formulation.

    Elements for the analytical study of Relative Motions.

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    2/17

    FOUR-BAR LINKAGE

    -

    GRASHOFs rule

    a: longest bar, b: shortest bar

    c, d: intermediate length bars.

    a + b < c + d Grashof mechanism

    a + b > c + d non-Grashofian mechanism

    a + b = c + d Change-point mechanism

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    3/17

    FOUR-BAR LINKAGE

    Grashof-t e four-bar

    CRANK ROCKER

    Dead-point configurations

    Grashof -type four-bar

    TWO CRANKSGrashof-type four-bar

    TWO ROCKERS

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    4/17

    FOUR-BAR LINKAGE

    Change-point mechanism

    Isosceles

    linkage

    Table lampParallelogram linkage Antiparallel

    Locomotive

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    5/17

    FOUR-BAR LINKAGE

    Position analysis

    Known: geometry, 1

    O1O3

    O1A

    B

    BO3

    13

    A2

    B

    4

    1

    O O

    13

    2

    4O1 O33

    1

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    6/17

    FOUR-BAR LINKAGE

    Position analysis

    A NO SOLUTION

    1

    1

    4O1 O3

    BB

    1 1SINGULARITY

    1 3

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    7/17

    FOUR-BAR LINKAGE

    Velocity analysis

    C24Known: geometry, position,

    1

    2

    v

    2

    3

    A

    vB

    C12

    23

    1 vA, 2 vB, 3

    1

    3

    34 114 3

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    8/17

    FOUR-BAR LINKAGE

    Acceleration analysis

    1 aA

    Known: geometry, position, 1 (assumed

    as constant), 2, 3

    2B

    A

    2 BAn BAt BAn

    3aBn (aBt? aBn)

    1

    aBAnaBnaBt

    4O1 O3

    aBaBn

    aB aBn aBt

    aA aBAn

    aBt aBAtaA aBAn

    aBAt

    aBn aB aB = aA +aBAt +aBAt

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    9/17

    RRRP (or 3R-P) KINEMATIC CHAIN

    Crank-Slider mechanism

    Crank-Slotted mechanism

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    10/17

    CRANK-SLIDER MECHANISM

    Velocity analysis

    C

    1 v

    A,

    2 v

    B

    C

    A C12C31 vA

    B2

    3

    C23

    1 vBO

    4

    C14

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    11/17

    CRANK-SLIDER MECHANISM

    Kinematic analysis: analytical method

    A

    lr

    O B

    s

    cos( ) cos( ); sin( ) sin( )B

    s r l Position

    2 2

    sin(2 ) cos( )(sin( ) );

    2 cos( )1 sin ( )

    Bs r

    Velocity

    2 2

    2 2

    cos( ) cos( ) sin( ) sin( );

    Acceleration

    B

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    12/17

    KINEMATIC ANALYSIS: ANALYTICAL METHOD

    Matrix formulation

    Position: q s 1 DOF systems:

    q:= independent variable=( , ) 0f q s Closure equations

    1( , )0

    d f q s f f s s B h k

    , ,

    1det( ) 0B

    dt q s

    Bh 1

    det( ) 0B

    Acceleration:

    'd s k

    , , , ,q s q s q s

    SINGULARITY

    s q q q q q

    dt q

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    13/17

    KINEMATIC ANALYSIS: ANALYTICAL METHOD

    Matrix formulation: example (Crank-slider)

    ( , ) 0f q s Position:Closure equations

    :q

    cos( ) cos( ) 0

    sin( ) sin( ) 0

    Br l s

    r l

    Bs

    Velocity: 1( , ) 0 ( ) ( )d f q s f f

    q s s B h q q k q qdt q s

    det( ) 0B

    Bh

    sin sin 1r l

    0cos( ) cos( ) 0

    B

    r ls

    det( ) cos( ) 02

    B l

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    14/17

    KINEMATIC ANALYSIS: ANALYTICAL METHOD

    Matrix formulation: example (Crank-slider)

    Velocity: 1( , )

    0 ( ) ( )d f q s f f

    q s s B h q q k q q

    dt q s

    det( ) 0B

    Bh

    1 cos( )0 sinr

    2 cos( ) cos( )

    cos( )1 tan( ) sin( ) tan( ) cos( )B

    lrs r r

    Acceleration: 2 2'( )( )

    d s k qs k q q q k q k q

    dt q

    2

    cos s n

    cos( ) cos( )

    sin tan cos cos tan sins r r r r

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    15/17

    RELATIVE MOTION

    Position

    0 1 1 0 1 1 1 1 0 0 0 0( - ) ( - ) ( - ) x y x yP O P O O O i j i j

    1 Velocity

    P

    y1

    2

    0( - )P

    d P O

    dt v

    y0O

    1

    x1j1 i1

    1 1

    0 0 0 0 1 1 1 1 1 1x y x y x yd d

    dt dt

    i j

    i j i j

    0

    i0x0O0

    1 1( )

    O r T r P O v v v v

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    16/17

    RELATIVE MOTION

    - - - x xP O P O O O i i

    0 0 0 0 1 1 1 1 1x y x y ( )P P O

    v i j i j

    Acceleration

    1 1 10 0 0 0 1 1 1 1 1 1 1

    ( )x y x y x y ( )

    P

    d d d P OP O

    i ja i j i j

    2

    1 1O r r

    T r C

  • 7/24/2019 Presentation03 Kinematic Analysis of Mechanisms

    17/17

    KINEMATICS: SUMMARY

    op c ro em

    Kinematics of a particle

    et o s

    Cartesian planar vectors;

    Complex Numbers

    (Rivals theorem, Instant Centre ofRotation, Kennedy-Aronhold theorem,

    Rotational/Translational/Rolling motions)

    Complex Numbers

    Kinematic analysis of mechanisms

    Position Velocit and Acceleration anal ses

    Graphical approach;

    Anal tical a roaches:Relative motion)

    explicit formulation

    matrix formulation

    Complex Numbers