presentation mcb seminar 09032011

72
Introduction and State Space Models Reminder on some Monte Carlo methods Particle Markov Chain Monte Carlo SMC 2 SMC 2 : A sequential Monte Carlo algorithm with particle Markov chain Monte Carlo updates N. CHOPIN 1 , P.E. JACOB 2 , & O. PAPASPILIOPOULOS 3 MCB seminar, March 9th, 2011 1 ENSAE-CREST 2 CREST & Universit´ e Paris Dauphine, funded by AXA research 3 Universitat Pompeu Fabra N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC 2 1/ 72

Upload: pierre-e-jacob

Post on 06-Dec-2014

2.372 views

Category:

Education


4 download

DESCRIPTION

Slides on the SMC^2 algorithm, by N. Chopin, P.E. Jacob, O. Papaspiliopoulos. Presentation at the MCB seminar on March 9th, 2011.

TRANSCRIPT

Page 1: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

SMC2: A sequential Monte Carlo algorithm withparticle Markov chain Monte Carlo updates

N. CHOPIN1, P.E. JACOB2, & O. PAPASPILIOPOULOS3

MCB seminar, March 9th, 2011

1ENSAE-CREST2CREST & Universite Paris Dauphine, funded by AXA research3Universitat Pompeu Fabra

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 1/ 72

Page 2: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Outline

1 Introduction and State Space Models

2 Reminder on some Monte Carlo methods

3 Particle Markov Chain Monte Carlo

4 SMC2

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 2/ 72

Page 3: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Outline

1 Introduction and State Space Models

2 Reminder on some Monte Carlo methods

3 Particle Markov Chain Monte Carlo

4 SMC2

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 3/ 72

Page 4: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

State Space Models

Context

In these models:

we observe some data Y1:T = (Y1, . . .YT ),

we suppose that they depend on some hidden states X1:T .

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 4/ 72

Page 5: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

State Space Models

A system of equations

Hidden states: p(x1|θ) = µθ(x1) and when t ≥ 1

p(xt+1|x1:t , θ) = p(xt+1|xt , θ) = fθ(xt+1|xt)

Observations:

p(yt |y1:t−1, x1:t−1, θ) = p(yt |xt , θ) = gθ(yt |xt)

Parameter: θ ∈ Θ, prior p(θ).

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 5/ 72

Page 6: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

State Space Models

Some interesting distributions

Bayesian inference focuses on:

p(θ|y1:T )

Filtering (traditionally) focuses on:

∀t ∈ [1,T ] pθ(xt |y1:t)

Smoothing (traditionally) focuses on:

∀t ∈ [1,T ] pθ(xt |y1:T )

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 6/ 72

Page 7: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

State Space Models

Some interesting distributions [spoiler]

PMCMC methods provide a sample from:

p(θ, x1:T |y1:T )

SMC2 provides a sample from:

∀t ∈ [1,T ] p(θ, x1:t |y1:t)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 7/ 72

Page 8: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Examples

Local level yt = xt + σV εt , εt ∼ N (0, 1),

xt+1 = xt + σW ηt , ηt ∼ N (0, 1),

x0 ∼ N (0, 1)

Here: θ = (σV , σW ). The model is linear and Gaussian.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 8/ 72

Page 9: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Examples

Stochastic Volatility (simple)yt |xt ∼ N (0, ext )

xt = µ+ ρ(xt−1 − µ) + σεt

x0 = µ0

Here: θ = (µ, ρ, σ), or can include µ0.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 9/ 72

Page 10: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Examples

Population growth modelyt = nt + σwεt

log nt+1 = log nt + b0 + b1(nt)b2 + σεηt

log n0 = µ0

Here: θ = (b0, b1, b2, σε, σW ), or can include µ0.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 10/ 72

Page 11: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Examples

Stochastic Volatility (sophisticated)

yt = µ+ βvt + v1/2t εt , t ≥ 1

k ∼ Poi(λξ2/ω2

)c1:k

iid∼ U(t, t + 1) ei :kiid∼ Exp

(ξ/ω2

)zt+1 = e−λzt +

k∑j=1

e−λ(t+1−cj )ej

vt+1 =1

λ

zt − zt+1 +k∑

j=1

ej

xt+1 = (vt+1, zt+1)′

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 11/ 72

Page 12: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Examples

Time

Obs

erva

tions

−4

−2

0

2

100 200 300 400 500 600 700

(a)

Time

Squ

ared

obs

erva

tions

5

10

15

20

100 200 300 400 500 600 700

(b)

Figure: The S&P 500 data from 03/01/2005 to 21/12/2007.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 12/ 72

Page 13: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Examples

Athletics records model

g(y1:2,t |µt , ξ, σ) = {1− G (y2,t |µt , ξ, σ)}2∏

i=1

g(yi ,t |µt , ξ, σ)

1− G (yi ,t |µt , ξ, σ)

xt = (µt , µt)′ , xt+1 | xt , ν ∼ N (Fxt ,Q) ,

with

F =

(1 10 1

)and Q = ν2

(1/3 1/21/2 1

)

G (y |µ, ξ, σ) = 1− exp

[−{

1− ξ(y − µσ

)}−1/ξ

+

]

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 13/ 72

Page 14: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Examples

Year

Tim

es (

seco

nds)

480

490

500

510

520

530

1980 1985 1990 1995 2000 2005 2010

Figure: Best two times of each year, in women’s 3000 metres eventsbetween 1976 and 2010.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 14/ 72

Page 15: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Why are those models challenging?

It’s all about dimensions. . .

pθ(x1:T |y1:T ) =pθ(y1:T |x1:T )pθ(x1:T )

pθ(y1:T )∝ pθ(y1:T |x1:T )pθ(x1:T )

. . . even if it’s not obvious

p(θ|y1:T ) ∝ p(y1:T |θ)p(θ)

=

[∫XT

p(y1:T |x1:T , θ)p(x1:T |θ)dx1:T

]p(θ)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 15/ 72

Page 16: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Outline

1 Introduction and State Space Models

2 Reminder on some Monte Carlo methods

3 Particle Markov Chain Monte Carlo

4 SMC2

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 16/ 72

Page 17: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Metropolis-Hastings algorithm

A popular method to sample from a distribution π.

Algorithm 1 Metropolis-Hastings algorithm

1: Set some x (1)

2: for i = 2 to N do3: Propose x∗ ∼ q(·|x (i−1))4: Compute the ratio:

α = min

(1,

π(x?)

π(x (i−1))

q(x (i−1)|x?)

q(x?|x (i−1))

)

5: Set x (i) = x? with probability α, otherwise set x (i) = x (i−1)

6: end for

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 17/ 72

Page 18: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Metropolis-Hastings algorithm

Requirements

π can be evaluated point-wise, up to a multiplicative constant.

x is low-dimensional, otherwise designing q gets tedious oreven impossible.

Back to SSM

p(θ|y1:T ) cannot be evaluated point-wise.

pθ(x1:T |y1:T ) and p(x1:T , θ|y1:T ) are high-dimensional, andcannot be necessarily computed point-wise either.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 18/ 72

Page 19: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Gibbs sampling

Suppose the target distribution π is defined on X d .

Algorithm 2 Gibbs sampling

1: Set some x(1)1:d

2: for i = 2 to N do3: for j = 1 to d do

4: Draw x(i)j ∼ π(x

(i)j |x

(i)1:j−1, x

(i−1)j+1:d)

5: end for6: end for

It allows to break a high-dimensional sampling problem into manylow-dimensional sampling problems!

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 19/ 72

Page 20: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Gibbs sampling

Requirements

Conditional distributions π(xj |x1:j−1, xj+1:d) can be sampledfrom, otherwise MH within Gibbs.

The components xj are not too correlated one to another.

Back to SSM

The hidden states x1:T are typically very correlated one toanother.

If the target is p(θ, x1:T |y1:T ), θ is also very correlated withx1:T .

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 20/ 72

Page 21: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

Context

Suppose we are interested in pθ(x1:T |y1:T ), with θ known.

We want to get a sample x(i)1:T , i ∈ [1,N] from it.

General idea

We introduce the following sequence of distributions:

{pθ(x1:t |y1:t), t ∈ [1,T ]}

Sample recursively from pθ(x1:t |y1:t) to pθ(x1:t+1|y1:t+1).

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 21/ 72

Page 22: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

Definition

A particle filter is just a collection of weighted points, calledparticles.

Particles

Writing (w (i), x (i))Ni=1 ∼ π means that the empirical distribution:

N∑i=1

w (i)δx(i)(dx)

converges towards π when N → +∞.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 22/ 72

Page 23: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

Importance Sampling

Suppose:

(w(i)1 , x (i))Ni=1 ∼ π1

and if we define:

w(i)2 = w

(i)1 ∗

π2(x (i))

π1(x (i))

then(w

(i)2 , x (i))Ni=1 ∼ π2

under some common-sense assumptions on π1 and π2.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 23/ 72

Page 24: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

From one time-step to the other

Suppose

(w(i)t , x

(i)1:t)Ni=1 ∼ pθ(x1:t |y1:t)

We want(w

(i)t+1, x

(i)1:t+1)Ni=1 ∼ pθ(x1:t+1|y1:t+1)

Decomposition

pθ(x1:t+1|y1:t+1) ∝ pθ(yt+1|xt+1)pθ(xt+1|xt)pθ(x1:t |y1:t)

∝ gθ(yt+1|xt+1)fθ(xt+1|xt)pθ(x1:t |y1:t)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 24/ 72

Page 25: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

Proposal

Propose x(i)t+1 ∼ qθ(xt+1|x1:t = x

(i)1:t , y1:t). Then:(

w(i)t , (x

(i)1:t , x

(i)t+1)

)Ni=1∼ qθ(xt+1|x1:t , y1:t+1)pθ(x1:t |y1:t)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 25/ 72

Page 26: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

Reweighting

w(i)t+1 = w

(i)t ×

gθ(yt+1|x (i)t+1)fθ(x

(i)t+1|x

(i)t )

qθ(x(i)t+1|x

(i)1:t , y1:t+1)

and finally we have

(w(i)t+1, x

(i)1:t+1)Ni=1 ∼ pθ(x1:t+1|y1:t+1)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 26/ 72

Page 27: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

Resampling

To fight the weight degeneracy we introduce a resampling step.

Notation

Family of probability distribution on {1, . . .N}N :

a ∼ r(·|w) for w ∈ [0, 1]N such thatN∑i=1

w (i) = 1

The variables (a(i)t−1)Ni=1 are the indices of the parents of (x

(i)1:t)Ni=1.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 27/ 72

Page 28: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

Algorithm 3 Sequential Monte Carlo algorithm

1: Propose x(i)1 ∼ µθ(·)

2: Compute weights w(i)1

3: for t = 2 to T do4: Resample at−1 ∼ r(·|wt−1)

5: Propose x(i)t ∼ qθ(·|xa

(i)t−1

1:t−1, y1:t), let x(i)1:t = (x

a(i)t−1

1:t−1, x(i)t )

6: Update w(i)t to get w

(i)t+1

7: end for

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 28/ 72

Page 29: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

timeFigure: Three weighted trajectories x1:t at time t.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 29/ 72

Page 30: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

timeFigure: Three proposed trajectories x1:t+1 at time t + 1.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 30/ 72

Page 31: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

timeFigure: Three reweighted trajectories x1:t+1 at time t + 1

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 31/ 72

Page 32: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

Output

In the end we get particles:

(w(i)T , x

(i)1:T )Ni=1 ∼ pθ(x1:T |y1:T )

Requirements

Proposal kernels qθ(·|x1:t−1, y1:t) from which we can sample.

Weight functions which we can evaluate point-wise.

These proposal kernels and weight functions must result inproperly weighted samples.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 32/ 72

Page 33: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Sequential Monte Carlo for filtering

Marginal likelihood

A side effect of the SMC algorithm is that we can approximate themarginal likelihood ZT :

ZT = p(y1:T |θ)

with the following unbiased estimate:

ZNT =

T∏t=1

(1

N

N∑i=1

w(i)t

)P−−−−→

N→∞ZT

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 33/ 72

Page 34: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Outline

1 Introduction and State Space Models

2 Reminder on some Monte Carlo methods

3 Particle Markov Chain Monte Carlo

4 SMC2

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 34/ 72

Page 35: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Reference

Particle Markov Chain Monte Carlo methods

is an article by Andrieu, Doucet, Holenstein,JRSS B., 2010, 72(3):269–342

Motivation

Bayesian inference in state space models:

p(θ, x1:T |y1:T )

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 35/ 72

Page 36: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Idealized Metropolis–Hastings for SSM

If only. . .

. . . we had p(θ|y1:T ) ∝ p(θ)p(y1:T |θ) up to a multiplicativeconstant, we could run a MH algorithm with acceptance rate:

α(θ(i), θ?) = min

(1,

p(θ?)p(y1:T |θ?)

p(θ(i))p(y1:T |θ(i))

q(θ(i)|θ?)

q(θ?|θ(i))

)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 36/ 72

Page 37: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Valid Metropolis–Hastings for SSM ??

Plug in estimates

However we have ZNT (θ) ≈ p(y1:T |θ) by running a SMC algorithm,

and we can try to run a MH algorithm with acceptance rate:

α(θ(i), θ?) = min

(1,

p(θ?)ZNT (θ?)

p(θ(i))ZNT (θ(i))

q(θ(i)|θ?)

q(θ?|θ(i))

)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 37/ 72

Page 38: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

The Beauty of Particle MCMC

“Exact approximation”

Turns out it is a valid MH algorithm that targets exactly p(θ|y1:T ),regardless of the number N of particles used in the SMC algorithmthat provides the estimates ZN

T (θ) at each iteration.

State estimation

In fact the PMCMC algorithms provide samples fromp(θ, x1:T |y1:T ), and not only from the posterior distribution of theparameters.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 38/ 72

Page 39: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Particle Metropolis-Hastings

Algorithm 4 Particle Metropolis-Hastings algorithm

1: Set some θ(1)

2: Run a SMC algorithm, keep ZNT (θ(1)), draw a trajectory x

(1)1:T

3: for i = 2 to I do4: Propose θ? ∼ q(·|θ(i−1))5: Run a SMC algorithm, keep ZN

T (θ?), draw a trajectory x?1:T

6: Compute the ratio:

α(θ(i−1), θ?) = min

(1,

p(θ?)ZNT (θ?)

p(θ(i−1))ZNT (θ(i−1))

q(θ(i−1)|θ?)

q(θ?|θ(i−1))

)

7: Set θ(i) = θ?, x(i)1:T = x?1:T with probability α, otherwise keep

the previous values8: end for

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 39/ 72

Page 40: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Why does it work?

Variables generated by SMC

∀t ∈ [1,T ] xt = (x(1)t , . . . x

(N)t )

∀t ∈ [1,T − 1] at = (a(1)t , . . . a

(N)t )

Joint distribution

ψ(x1, . . . xT , a1, . . . aT−1) =

(N∏i=1

qθ(x(i)1 )

)

×

(T∏t=2

r(at−1|wt−1)N∏i=1

qθ(x(i)t |x

a(i)1:t−1

1:t−1 )

)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 40/ 72

Page 41: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Why does it work?

Extended proposal distribution

The PMH proposes: a new parameter θ?, a trajectory xk?,?

1:T , andthe rest of the variables generated by the SMC.

qN(θ?, k?, x?1 , . . . x?T , a

?1, . . . a

?T−1)

= q(θ?|θ(i))wk?,?T ψ?(x?1 , . . . x

?T , a

?1, . . . a

?T−1)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 41/ 72

Page 42: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Why does it work?

Extended target distribution

πN(θ, k , x1, . . . xT , a1, . . . aT−1)

=p(θ, x1:T |y1:T )

NT

ψθ(x1, . . . xT , a1, . . . aT−1)

qθ(xbk11 )∏T

t=2 r(bkt−1|wt−1)qθ(xbktt |x

bkt−1

1:t−1)

with bk1:T the index history of particle x(k)1:T .

Valid algorithm

From the explicit form of the extended distributions, showing thatPMH is a standard MH algorithm becomes straightforward.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 42/ 72

Page 43: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Particle MCMC: conclusion

Remarks

It is exact regardless of N . . .

. . . however a sufficient number N of particles is required toget decent acceptance rates.

SMC methods are considered expensive, but easy toparallelize.

Applies to a broad class of models.

More sophisticated SMC and MCMC methods can be used,and result in more sophisticated Particle MCMC methods.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 43/ 72

Page 44: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Outline

1 Introduction and State Space Models

2 Reminder on some Monte Carlo methods

3 Particle Markov Chain Monte Carlo

4 SMC2

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 44/ 72

Page 45: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Our idea. . .

. . . was to use the same, very powerful “extended distribution”framework, to build a SMC sampler instead of a MCMC algorithm.

Foreseen benefits

to sample more efficiently from the posterior distributionp(θ|y1:T ),

to sample sequentially from p(θ|y1), p(θ|y1, y2), . . . p(θ|y1:T ).

and it turns out, it allows even a bit more.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 45/ 72

Page 46: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Idealized SMC sampler for SSM

Algorithm 5 Iterated Batch Importance Sampling

1: Sample from the prior θ(m) ∼ p(·) for m ∈ [1,Nθ]2: Set ω(m) ← 13: for t = 1 to T do4: Compute ut(θ

(m)) = p(yt |y1:t−1, θ(m))

5: Update ω(m) ← ω(m) × ut(θ(m))

6: if some degeneracy criterion is met then7: Resample the particles, reset the weights ω(m) ← 18: Move the particles using a Markov kernel leaving the dis-

tribution invariant9: end if

10: end for

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 46/ 72

Page 47: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Valid SMC sampler for SSM ??

Plug in estimates

Similarly to PMCMC methods, we want to replacep(yt |y1:t−1, θ

(m)) with an unbiased estimate, and see whathappens.

SMC everywhere

We associate Nx x-particles to each of the Nθ θ-particles.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 47/ 72

Page 48: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Valid SMC sampler for SSM ??

Marginal likelihood

Remember, a side effect of the SMC algorithm is that we canapproximate the incremental likelihood:

1

Nx

Nx∑i=1

w(i ,m)t ≈ p(yt |y1:t−1, θ

(m))

Move steps

Instead of simple MH kernels, use PMH kernels.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 48/ 72

Page 49: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Why does it work?

A simple idea. . .

. . . especially after the PMCMC article.

Still. . .

. . . some work had to be done to justify the validity of thealgorithm.

In short, it leads to a standard SMC sampler on a sequence ofextended distributions πt (proposition 1 of the article).

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 49/ 72

Page 50: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Why does it work?

Additional notations

hnt denotes the index history of xnt , that is, hnt (t) = n, and

hnt (s) = ahnt (s+1)s recursively, for s = t − 1, . . . , 1.

xn1:t denotes a state trajectory finishing in xnt , that is:

xn1:t(s) = xhnt (s)s , for s = 1, . . . , t.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 50/ 72

Page 51: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Why does it work?

Here is what the distribution πt looks like:

πt(θ, x1:Nx1:t , a1:Nx

1:t−1) = p(θ|y1:t)

× 1

Nx

Nx∑n=1

p(xn1:t |θ, y1:t)

Nt−1x

Nx∏i=1

i 6=hnt (1)

q1,θ(x i1)

×

t∏

s=2

Nx∏i=1

i 6=hnt (s)

Wais−1

s−1,θqs,θ(x is |xais−1

s−1 )

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 51/ 72

Page 52: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Why does it work?

PMCMC move steps

These steps are valid because the PMCMC invariant distributionπ?t defined on

θ, k , x1:Nx1:t , a1:Nx

1:t−1

is such that πt is the marginal distribution of

θ, x1:Nx1:t , a1:Nx

1:t−1

with respect to π?t .

(Sections 3.2, 3.3 of the article)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 52/ 72

Page 53: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Benefits

Explicit form of the distribution

It allows to prove the validity of the algorithm, but also:

to get samples from p(θ, x1:t |y1:t),

to validate an automatic calibration of Nx .

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 53/ 72

Page 54: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Benefits

Drawing trajectories

If for every θ-particle θ(m) one draws an index n?(m) uniformly on{1, . . .Nx}, then the weighted sample:

(ωm, θm, xn?(m),m1:t )m∈1:Nθ

follows p(θ, x1:t |y1:t).

Memory cost

Need to store the x-trajectories, if one wants to make inferenceabout x1:t (smoothing).If the interest is only on parameter inference (θ), filtering (xt) andprediction (yt+1), no need to store the trajectories.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 54/ 72

Page 55: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Benefits

Estimating functionals of the states

We have a test function h and want to estimate E [h(θ, x1:t)|y1:t ].Estimator:

1∑Nθm=1 ω

m

Nθ∑m=1

ωmh(θm, xn?(m),m1:t ).

Rao–Blackwellized estimator:

1∑Nθm=1 ω

m

Nθ∑m=1

ωm

{Nx∑n=1

W nt,θmh(θm, xn,m1:t )

}.

(Section 3.4 of the article)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 55/ 72

Page 56: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Benefits

Evidence

The evidence of the data given the model is defined as:

p(y1:t) =t∏

s=1

p(ys |y1:s−1)

And it can be used to compare models. SMC2 provides thefollowing estimate:

Lt =1∑Nθ

m=1 ωm

Nθ∑m=1

ωmp(yt |y1:t−1, θm)

(Section 3.5 of the article)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 56/ 72

Page 57: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Benefits

Exchange importance sampling step

Launch a new SMC for each θ-particle, with Nx x-particles. Jointdistribution:

πt(θ, x1:Nx1:t , a1:Nx

1:t−1)ψt,θ(x1:Nx1:t , a1:Nx

1:t−1)

Retain the new x-particles and drop the old ones, updating theθ-weights with:

uexcht

(θ, x1:Nx

1:t , a1:Nx1:t−1, x

1:Nx1:t , a1:Nx

1:t−1

)=

Zt(θ, x1:Nx1:t , a1:Nx

1:t−1)

Zt(θ, x1:Nx1:t , a1:Nx

1:t−1)

(Section 3.6 of the article)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 57/ 72

Page 58: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Warning

Plug in estimates

Not any SMC sampler can be turned into a SMC2 algorithm, byreplacing the exact weights with estimates: these have to beunbiased. . . !!

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 58/ 72

Page 59: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Warning

Example

For instance, if instead of using the sequence of distributions:

{p(θ|y1:t)}Tt=1

one wants to use the “tempered” sequence:

{p(θ|y1:T )γk}Kk=1

with γk an increasing sequence from 0 to 1, then one should findunbiased estimates of p(θ|y1:T )γk−γk−1 to plug into the idealizedSMC sampler.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 59/ 72

Page 60: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Numerical illustrations

Stochastic Volatility (sophisticated)

yt = µ+ βvt + v1/2t εt , t ≥ 1

k ∼ Poi(λξ2/ω2

)c1:k

iid∼ U(t, t + 1) ei :kiid∼ Exp

(ξ/ω2

)zt+1 = e−λzt +

k∑j=1

e−λ(t+1−cj )ej

vt+1 =1

λ

zt − zt+1 +k∑

j=1

ej

xt+1 = (vt+1, zt+1)′

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 60/ 72

Page 61: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Numerical illustrations

Time

Squ

ared

obs

erva

tions

0

2

4

6

8

200 400 600 800 1000

(a)

Iterations

Acc

epta

nce

rate

s

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

(b)

Iterations

Nx

100

200

300

400

500

600

700

800

0 200 400 600 800 1000

(c)

Figure: Squared observations (synthetic data set), acceptance rates, andillustration of the automatic increase of Nx .

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 61/ 72

Page 62: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Numerical illustrations

µ

Den

sity

0

2

4

6

8

T = 250

−1.0 −0.5 0.0 0.5 1.0

T = 500

−1.0 −0.5 0.0 0.5 1.0

T = 750

−1.0 −0.5 0.0 0.5 1.0

T = 1000

−1.0 −0.5 0.0 0.5 1.0

Figure: Concentration of the posterior distribution for parameter µ.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 62/ 72

Page 63: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Numerical illustrations

Multifactor model

yt = µ+βvt+v1/2t εt+ρ1

k1∑j=1

e1,j+ρ2

k2∑j=1

e2,j−ξ(wρ1λ1+(1−w)ρ2λ2)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 63/ 72

Page 64: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Numerical illustrations

Time

Squ

ared

obs

erva

tions

5

10

15

20

100 200 300 400 500 600 700

(a)

Iterations

Evi

denc

e co

mpa

red

to th

e on

e fa

ctor

mod

el

−2

0

2

4

100 200 300 400 500 600 700

variableMulti factor without leverageMulti factor with leverage

(b)

Figure: S&P500 squared observations, and log-evidence comparisonbetween models (relative to the one-factor model).

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 64/ 72

Page 65: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Numerical illustrations

Athletics records model

g(y1:2,t |µt , ξ, σ) = {1− G (y2,t |µt , ξ, σ)}2∏

i=1

g(yi ,t |µt , ξ, σ)

1− G (yi ,t |µt , ξ, σ)

xt = (µt , µt)′ , xt+1 | xt , ν ∼ N (Fxt ,Q) ,

with

F =

(1 10 1

)and Q = ν2

(1/3 1/21/2 1

)

G (y |µ, ξ, σ) = 1− exp

[−{

1− ξ(y − µσ

)}−1/ξ

+

]

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 65/ 72

Page 66: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Numerical illustrations

Year

Tim

es (

seco

nds)

480

490

500

510

520

530

1980 1985 1990 1995 2000 2005 2010

Figure: Best two times of each year, in women’s 3000 metres eventsbetween 1976 and 2010.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 66/ 72

Page 67: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Numerical illustrations

Motivating question

How unlikely is Wang Junxia’s record in 1993?

A smoothing problem

We want to estimate the likelihood of Wang Junxia’s record in1993, given that we observe a better time than the previous worldrecord. We want to use all the observations from 1976 to 2010 toanswer the question.

Note

We exclude observations from the year 1993.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 67/ 72

Page 68: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Numerical illustrations

Some probabilities of interest

pyt = P(yt ≤ y |y1976:2010)

=

∫Θ

∫XG (y |µt , θ)p(µt |y1976:2010, θ)p(θ|y1976:2010) dµtdθ

The interest lies in p486.111993 , p502.62

1993 and pcondt := p486.11t /p502.62

t .

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 68/ 72

Page 69: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Numerical illustrations

Year

Pro

babi

lity

10−4

10−3

10−2

10−1

1980 1985 1990 1995 2000 2005 2010

Figure: Estimates of the probability of interest (top) p502.62t , (middle)

pcondt and (bottom) p486.11t , obtained with the SMC2 algorithm. The

y -axis is in log scale, and the dotted line indicates the year 1993 whichmotivated the study.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 69/ 72

Page 70: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Conclusion

A powerful framework

The SMC2 framework allows to obtain various quantities ofinterest, in a quite generic and “black-box” way.

It extends the PMCMC framework introduced by Andrieu,Doucet and Holenstein.

A package is available:

http://code.google.com/p/py-smc2/.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 70/ 72

Page 71: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Acknowledgments

N. Chopin is supported by the ANR grantANR-008-BLAN-0218 “BigMC” of the French Ministry ofresearch.

P.E. Jacob is supported by a PhD fellowship from the AXAResearch Fund.

O. Papaspiliopoulos would like to acknowledge financialsupport by the Spanish government through a “Ramon yCajal” fellowship and grant MTM2009-09063.

The authors are thankful to Arnaud Doucet (University of BritishColumbia) and to Gareth W. Peters (University of New SouthWales) for useful comments.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 71/ 72

Page 72: Presentation MCB seminar 09032011

Introduction and State Space ModelsReminder on some Monte Carlo methods

Particle Markov Chain Monte CarloSMC2

Bibliography

SMC2: A sequential Monte Carlo algorithm with particle Markovchain Monte Carlo updates, N. Chopin, P.E. Jacob, O.Papaspiliopoulos, submittedMain references:

Particle Markov Chain Monte Carlo methods, C. Andrieu, A.Doucet, R. Holenstein, JRSS B., 2010, 72(3):269–342

The pseudo-marginal approach for efficient computation, C.Andrieu, G.O. Roberts, Ann. Statist., 2009, 37, 697–725

Random weight particle filtering of continuous time processes,P. Fearnhead, O. Papaspiliopoulos, G.O. Roberts, A. Stuart,JRSS B., 2010, 72:497–513

Feynman-Kac Formulae, P. Del Moral, Springer

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 72/ 72