predicting chemical and biochemical properties using the abraham

373
APPROVED: William Acree, Jr., Major Professor Thomas R. Cundari, Committee Member Diana Mason, Committee Member Guido Verbeck, Committee Member Michael Richmond, Chair of the Department of Chemistry Sandra L. Terrell, Dean of the Robert B. Toulouse School of Graduate Studies PREDICTING CHEMICAL AND BIOCHEMICAL PROPERTIES USING THE ABRAHAM GENERAL SOLVATION MODEL Christina Mintz, B.A. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS May 2009

Upload: others

Post on 03-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

APPROVED: William Acree, Jr., Major Professor Thomas R. Cundari, Committee Member Diana Mason, Committee Member Guido Verbeck, Committee Member Michael Richmond, Chair of the Department of

Chemistry Sandra L. Terrell, Dean of the Robert B. Toulouse

School of Graduate Studies

PREDICTING CHEMICAL AND BIOCHEMICAL PROPERTIES USING

THE ABRAHAM GENERAL SOLVATION MODEL

Christina Mintz, B.A.

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

May 2009

    Mintz, Christina. Predicting Chemical and Biochemical Properties Using the Abraham

General Solvation Model. Doctor of Philosophy (Chemistry), May 2009, 361 pp., 45 tables, 35

illustrations, 547 references.

Several studies were done to illustrate the versatillity of the Abraham model in

mathematically describing the various solute-solvent interactions found in a wide range of

different chemical and biological systems. The first study focused on using the solvation model

to construct mathematical correlations describing the minimum inhibitory concentration of

organic compounds for growth inhibition towards the three bacterial strains Porphyromonas

gingivalis, Selenomonas artemidis, and Streptococcus sobrinus. The next several studies expand

the practicallity of the Abraham model by predicting free energies of partition in chemical

systems. The free energy studies expand the use of the Abraham model to other temperatures and

properties by developing correlations for the enthalpies of solvation of gaseous solutes of various

compounds dissolved in water, 1-octanol, hexane, heptane, hexadecane, cyclohexane, benzene,

toluene, carbon tetrachloride, chloroform, methanol, ethanol, 1-butanol, propylene carbonate,

dimethyl sulfoxide, 1,2-dichloroethane, N,N-dimethylformamide, tert-butanol, dibutyl ether,

ethyl acetate, acetonitrile, and acetone. Also, a generic equation for linear alkanes is created for

use when individual datasets are small. The prediction of enthalpies of solvation is furthered by

modifying the Abraham model so that experimental data measured at different temperatures can

be included into a single correlation expression. The temperature dependence is directly

included in the model by separating each coefficient into an enthalpic and entropic component.

Specifically, the final study describes the effects of temperature on the sorption coefficients of

organic gases onto humic acid. The derived predicted values for each research study show a

good correlation with experimental values.

ii

Copyright 2008

by

Christina Mintz

iii

ACKNOWLEDGEMENTS

I would like to acknowledge the many people who offered their guidance and

encouragement throughout my time at the University of North Texas. First and foremost, I

gratefully and sincerely thank Dr. William Acree, Jr. for his guidance, understanding, patience,

and friendship during my graduate studies. His dedication and passion for research and teaching

continues to amaze and inspire me today. I have learned so much from him and consider myself

very lucky to have had such a compassionate advisor that made coming to school each day

something I could look forward to.

I thank all of the members of the Acree group, especially Laura Sprunger, Kaci Bowen,

Stacy Rae Payne, Katherine Burton, and Tara Ladlie who joined us through the REU program.

Thank you for all of your constant support and all of the laughter. I had a lot of great times

together, and I have truly made lifelong friends. I also thank Dr. Michael Abraham for his

collaboration and contributions with all of my publications.

My greatest gratitude is also extended to Dr. Diana Mason who was my inspiration to

further my education by attending graduate school. She showed me that there really is a fun side

to chemistry, and is the reason I became interested in this field from the very beginning.

Everyday, I miss our demonstration shows and travels to the many chemistry education

conferences. I will forever be grateful for her guidance, knowledge, enthusiasm, and friendship.

To all of my committee members, I also thank you for taking the time to work with me during

this endeavor.

Finally, and most importantly, I would like to thank my husband Ben. I could not have

gotten through graduate school without his unwavering support, patience, and love. He believed

that I could do anything even when I could not quite believe it myself. I am looking forward to

iv

our next big endeavor together with our little girl. I thank my family, especially my parents,

Robert and Jane Forsbach, and my brother, Nathan, for their unending encouragement and

support. The countless sacrifices that you made for me have gotten me where I am today. To

my grandparents, Meme and Papaw, thank you for teaching me the importance of a good

education and financially helping me through my many years of school. You taught me that

through focus and determination you can find the answers to anything. Last, but certainly not

least I thank my mother-in-law Pam Mintz. She also endured and survived the experience of

graduate school and provided me with much needed encouragement throughout the last four

years.

  

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ............................................................................................................iii LIST OF TABLES ....................................................................................................................... .vii LIST OF ILLUSTRATIONS ........................................................................................................ .ix Chapters

1. INTRODUCTION ...................................................................................................1 2. THE ABRAHAM GENERAL SOLVATION PARAMETER MODEL ................4

2.1. Introduction ..................................................................................................4

2.2. General Principles of the Abraham’s General Solvation Model .................6

2.3. Cavity Effects...............................................................................................9 3. STATISTICAL ANALYSIS .................................................................................18

3.1. Multiple Linear Regression Analysis.........................................................18

3.1.1. Standard Deviation.........................................................................18

3.1.2. Correlation Coefficient and the Coefficient of Determination ......19

3.1.3. Average Error and Absolute Average Error ..................................20

3.1.4. Fischer Statistic ..............................................................................21

3.2. Validation Statistics ...................................................................................22

3.2.1. Test and Training Sets ...................................................................22

3.2.2. The Bootstrap Method ...................................................................22 4. CORRELATION OF MINIMUM INHIBITORY CONCENTRATIONS

TOWARD ORAL BACTERIAL GROWTH BASED ON THE ABRAHAM MODEL .................................................................................................................24

4.1. Introduction ................................................................................................24

4.2. Methods......................................................................................................26

4.3. Results and Discussion ..............................................................................27 5. ENTHALPY OF SOLVATION CORRELATIONS FOR GASEOUS SOLUTES

DISSOLVED IN WATER AND VARIOUS ORGANIC SOLVENTS ................43

5.1. Introduction ................................................................................................43

vi

5.2. Experimental Methods ...............................................................................45

5.3. Results and Discussion ..............................................................................48

5.3.1. 1-Octanol and Water ......................................................................48

5.3.2. Carbon Tetrachloride and Toluene ................................................53

5.3.3. DMSO and Propylene Carbonate...................................................60

5.3.4. Dibutyl Ether and Ethyl Acetate ....................................................65

5.3.5. Chloroform and 1,2 Dichloroethane ..............................................80

5.3.6. Benzene and Alkane Solvents ........................................................84

5.3.7. Alcohol Solvents ............................................................................97

5.3.8. Linear Alkanes .............................................................................105

5.3.9. N,N-Dimethylformamide and tert-Butanol .................................112

5.3.10. Acetonitrile and Acetone .............................................................121 6. CHARACTERIZATION OF THE PARTITIONING OF GASEOUS SOLUTES

INTO HUMIC ACID WITH THE ABRAHAM MODEL AND TEMPERATURE-INDEPENDENT EQUATION COEFFICIENTS .................127

6.1. Introduction ..............................................................................................127

6.2. Experimental Methods .............................................................................128

6.3. Results and Discussion ............................................................................131 7. SUMMARY .........................................................................................................146

APPENDIX: SUPPLEMENTAL MATERIAL ..........................................................................148 REFERENCES ............................................................................................................................336

vii

LIST OF TABLES

Table 2.1. The Abraham General Solvation Model Descriptors .................................................. 5

Table 2.2. Coefficients in the Abraham Solvation Equation ........................................................ 6

Table 4.1. Experimental minimal inhibitory concentrations of organic compounds, -log MIC (millimolar) to Porphyromonas gingivalis, Streptococcus sobrinus and Selenomonas artemidis oral bacteria. ........................................................................ 27

Table 4.2. Comparison of coefficients in Eq. 4.4 for water to solvent partitions, and for aqueous toxicity towards various organisms. ............................................................ 38

Table 5.1. Inter-correlation matrix, in R2, for solute descriptors in Eq. 5.29 ............................. 67

Table 5.2. Inter-correlation matrix, in R2, for solute descriptors in Eq. 5.30 ............................. 67

Table 5.3. Inter-correlation matrix, in R2, for solute descriptors in Eq. 5.41 ............................. 76

Table 5.4. Inter-correlation matrix, in R2, for solute descriptors in Eq. 5.42 ............................. 77

Table 5.5. Equation c oefficients f or ∆HSolv correlations ba sed on t he G oss m odified Abraham model. ........................................................................................................ 79

Table 5.6. Enthalpies of solvation of gaseous solutes in cyclohexane, ∆HSolv,Cy (kJ/mol) calculated from published water-to-cyclohexane enthalpy of transfer data. ............. 92

Table 5.7. Comparison of di rect vs . i ndirect e nthalpies of t ransfer f or a lcohol s olutes between water and cyclohexane. ............................................................................... 96

Table 5.8. Inter-correlation matrix, in R2, for solute descriptors for Eq. 5.63. ........................... 98

Table 5.9. Inter-correlation matrix, in R2, for solute descriptors for Eq. 5.64. ........................... 98

Table 5.10. Summarized c omparison of t he d escriptive ability of t he s olvent-specific Abraham model correlations for enthalpies of solvation in hexane, heptane, and hexadecane vs. the generic alkane correlation equation. .................................. 111

Table 5.11. Inter-correlation Matrix, in R2, for Solute Descriptors in Eq. 5.78. ........................ 113

Table 5.12. Inter-correlation Matrix, in R2, for Solute Descriptors in Eq. 5.79. ........................ 113

Table 5.13. Summary of test set computations for tert-butanol ................................................. 117

Table 5.14. Inter-correlation Matrix, in R2, for Solute Descriptors in Eq. 5.87 ......................... 120

Table 5.15. Inter-correlation Matrix, in R2, for Solute Descriptors in Eq. 5.88 ......................... 120

viii

Table 6.1. Equation Coefficients for the Abraham Model Correlations for Describing the Gas-to-Humic Acid Partition Coefficient Data at Different Temperatures ............. 135

Table 6.2. Temperature-Independent Equation Coefficients for Eq. 6.9 of the Abraham Model for Correlating the Gas-to-Humic Acid Partition Coefficients .................... 137

Table 6.3. Summarized C omparison of t he D escriptive A bility o f E q. 6.9 V ersus the Temperature-Specific Abraham Model Correlation Equations ............................... 139

Table 6.4. Coefficients in Eq. 2.2 for Gas-to-Solvent Phase Partitions .................................... 144

ix

LIST OF ILLUSTRATIONS

Figure 2.1. The i nfluencing f actors between a gas p hase an d s olvent can b e used t o calculate the partition between two solvent phases. Figure was reproduced in modified form from Abraham et al.2 .................................................................. 7

Figure 2.2. Illustration of the cavity effects. Figure was reproduced in modified form from Abraham et al. 2 .............................................................................................. 9

Figure 3.1. Interpretation of t he correlation c oefficient and t he c oefficient of determination. ....................................................................................................... 20

Figure 4.1. A pl ot of c alculated va lues ba sed on E q. 4.5 ve rsus obs erved va lues f or Porphyromonas gingivalis. ................................................................................... 32

Figure 4.2. A pl ot of c alculated va lues ba sed on E q. 4.7 ve rsus obs erved va lues f or Selenomonas artemidis. ........................................................................................ 34

Figure 4.3. A pl ot of c alculated va lues ba sed on E q. 4.9 ve rsus obs erved va lues fo r Streptococcus sobrinus. ........................................................................................ 35

Figure 4.4. A pl ot of t he s cores of P C2 a gainst t he s cores of P C1 f or t he pr incipal component analysis: ■ water to wet solvent partitions No 1 -19; □ water to dry s olvent pa rtitions No 20 -24; ∆ aqueous t oxicity N o 25 -40; ▲ equations found in this work No 41-43................................................................. 38

Figure 4.5. A plot of b-coefficients against v-coefficients for the systems in Table 3: ■ water to wet solvent partitions No. 1-19; □ water to dry solvent partitions No. 20-24; ∆ aqueous toxicity No. 25-40; ▲ equations found in this work No. 41-43. ............................................................................................................. 41

Figure 5.1. Plot of the calculated va lues of ∆ HSolv,W on Eq. 5.8 against the observed values. ................................................................................................................... 50

Figure 5.2. Plot o f the calculated values o f ∆ HSolv,W on Eq. 5.9 a gainst the observed values. ................................................................................................................... 51

Figure 5.3. A pl ot of t he c alculated va lues of ∆H Solv,CT in E q. 5.15 a gainst t he observed values ..................................................................................................... 55

Figure 5.4. A pl ot of the calculated v alues o f ∆H Solv,Tol in E q. 5.18 a gainst t he observed values ..................................................................................................... 57

Figure 5.5. A p lot o f t he cal culated v alues o f ∆HSolv,DMSO on E q. 5.21 a gainst t he observed values. .................................................................................................... 61

Figure 5.6. A pl ot of t he c alculated va lues of ∆HSolv,PC on E q. 5.25 a gainst t he observed values. .................................................................................................... 64

x

Figure 5.7. A plot of the calculated values of ∆HSolv,BE based on E q. 5.29 a gainst the observed values. .................................................................................................... 68

Figure 5.8. A plot of the calculated values of ∆HSolv,EA based on E q. 5.34 a gainst the observed values. .................................................................................................... 71

Figure 5.9. A pl ot of t he c alculated va lues of ∆HSolv,CFM on E q. 5.43 a gainst t he observed values. .................................................................................................... 81

Figure 5.10. A pl ot of t he c alculated va lues of ∆HSolv,DCE on E q. 5.46 a gainst t he observed values. .................................................................................................... 83

Figure 5.11. A pl ot of t he calculated va lues of ∆H Solv,Hp in E q. 5.49 a gainst t he observed values. .................................................................................................... 86

Figure 5.12. A plot of the calculated values of ∆HSolv,Cy in Eq. 5.55 against the observed values. ................................................................................................................... 89

Figure 5.13. A plot of the calculated values of ΔH Solv,MeOH on E q. 5.63 a gainst t he observed values. .................................................................................................... 99

Figure 5.14. A plot of the calculated values of ∆H solv,EtOH based on Eq. 5.66 against the observed values. .................................................................................................. 101

Figure 5.15. A plot of the calculated values of ΔHSolv,BtOH on E q. 5.69 a gainst t he observed values. .................................................................................................. 103

Figure 5.16. A plot of the calculated values of ΔHSolv,Hx from E q. 5.72 a gainst t he observed values. .................................................................................................. 107

Figure 5.17. A pl ot of t he c alculated va lues of ∆HSolv,Alk from E q. 5.76 a gainst t he observed values. .................................................................................................. 110

Figure 5.18. A plot of the calculated values of ∆H Solv,DMF based on Eq. 5.78 against the observed values ................................................................................................... 114

Figure 5.19. A plot of the calculated values of ∆H Solv,t-BTOH based on E q. 5.81 a gainst the observed values ............................................................................................. 116

Figure 5.20. A plot of the calculated values of ∆H Solv,DMF based on Eq. 5.87 against the observed values ................................................................................................... 119

Figure 5.23. A plot of the calculated values of ΔHSolv,ACN (kJ/mole) based on E q. 5.89 against the observed values. ................................................................................ 122

Figure 5.24. A plot of the calculated values of ΔHSolv,ACE (kJ/mole) based on E q. 5.92 against the observed values. ................................................................................ 124

xi

Figure 6.1. A plot of the calculated values log K LHA on Eq. 6.7 against the observed values. ................................................................................................................. 132

Figure 6.2. A plot of the calculated values log KLHA on Eq. 6.9 against the observed values. ................................................................................................................. 138

Figure 6.3. A plot of the scores of PC2 against the scores of PC1; points numbered as in T able 6.4. T he poi nt f or w ater, no. 25, i s of f-scale as s hown b y t he arrow. .................................................................................................................. 143

1

CHAPTER 1

INTRODUCTION

Accurate p rediction o f s olution-phase p roperties i s i mportant i n m any industrial

applications, r anging f rom t he de sign of c hemical s eparation pr ocesses, t o t he selection of

reaction media for opt imizing product yields, to the synthesis of potential new drug molecules

that require delivery to a specific body organ or target site. Each process involves the dissolved

solute interacting with solvent molecules in a surrounding solubilizing media. A useful approach

in describing partitioning processes in chemical and biochemical systems is to use the Abraham

general s olvation m odel. T he m odel i s ba sed on l inear free e nergy relationships of s olute

descriptors and system constants, and the model system constants provide information regarding

the various interactions between a solute and solvent. The following studies in this dissertation

illustrate th e u sefulness of the A braham m odel to mathematically describe t he va rious s olute-

solvent interactions found in a wide range of different chemical and biological systems.

In t he first p art o f this dissertation, t he ba ckground of t he A braham general s olvation

model is explored. Chapter 2 gives general background information about the Abraham model

including its solute descriptors and system coefficients. The cavity theory of solvation, which is

a b asic founding principle of t he m odel i s a lso discussed. C hapter 3 describes th e s tatistical

techniques employed in obtaining the coefficients that describe the system and the statistics used

to validate the predictive ability of the model.

The remaining chapters of this dissertation go through recent research projects. Chapter 4

illustrates the usefulness of the Abraham model to predict free energies of partition in biological

systems. Specifically, the study focuses on using the solvation model to construct mathematical

correlations describing the minimum inhibitory concentration of organic compounds for growth

2

inhibition towards the three bacterial strains Porphyromonas gingivalis, Selenomonas artemidis,

and Streptococcus sobrinus. The derived predicted mathematical correlations obtained show a

good correlation t o t he published observed inhibitory d ata. T he r esults ar e f urther an alyzed

using Principle Component Analysis to show that the three growth inhibition systems behave as

though a solute is transferred from water to an environment that is still quite water-like.

Chapters 5 and 6 illustrate the usefulness of the Abraham Model to predict free energies

of p artition in c hemical s ystems. Previous publ ications us ing t he A braham general solvation

model focused on developing correlations for both water-to-organic solvents and gas-to-organic

solvents a t 298.15 K . However, m anufacturing a nd bi ological pr operties a re not restricted t o

298.15 K. There is a growing need to estimate partitioning properties of organic solvents at other

temperatures as w ell. In C hapter 5 , I expand my considerations t o ot her t emperatures a nd

properties by developing Abraham model correlations for the enthalpies of solvation of gaseous

solutes of va rious compounds di ssolved i n water, 1 -octanol, h exane, h eptane, h exadecane,

cyclohexane, be nzene, t oluene, c arbon t etrachloride, c hloroform, m ethanol, e thanol, 1 -butanol,

propylene c arbonate, di methyl s ulfoxide, 1,2 -dichloroethane, N,N-dimethylformamide, tert-

butanol, di butyl ether, ethyl a cetate, a cetonitrile, a nd a cetone. I also e xpand the us e of t he

Abraham solvation model by creating a generic equation for linear alkanes. T he alkanes tested

were h exane, h eptane, and h exadecane. The d erived p redicted v alues f or ea ch r esearch s tudy

show a good correlation with experimental enthalpy of solvation values.

The goal of the research project described in Chapter 6 was to further my prediction of

enthalpies of solvation by modifying the Abraham model so that experimental data measured at

different t emperatures c an b e i ncluded i nto a s ingle correlation ex pression. T he t emperature

dependence is directly included in the model by separating each coefficient into an enthalpic and

3

entropic component. Specifically, the project describes the effects of temperature on the sorption

coefficients of organic gases onto humic acid. Humic acid is found in soil organic matter and

along many upland streams. Adsorption of organic compounds to humic acid plays an important

role in the transport of chemical compounds in the environment.

4

CHAPTER 2

THE ABRAHAM GENERAL SOLVATION PARAMETER MODEL

2.1. Introduction

The general s olvation parameter m odel of A braham1-8 is one of t he m ost us eful

approaches for the analysis and prediction of free energies of partition in chemical and biological

systems. T he m ethod r elies on t wo l inear f ree energy r elationships, one f or pr ocesses w ithin

condensed phases

SP = c + e·E + s·S + a·A + b·B + v·V (2.1)

and the other for processes involving gas-to-condensed phase transfer

SP = c + e·E + s·S + a·A + b·B + l·L (2.2)

The de pendent va riable, S P, i s s ome pr operty of a s eries of s olutes i n a f ixed pha se. T he

independent variables, or descriptors, are solute properties as follows: E and S refer to the excess

molar r efraction a nd di polarity/polarity de scriptors of t he s olute, r espectively, A a nd B a re

measures of the solute hydrogen-bond acidity and hydrogen-bond basicity, V is the McGowan

volume of t he s olute, a nd L i s t he l ogarithm of t he s olute g as p hase di mensionless O stwald

partition c oefficient f or hexadecane at 298 K . The f irst f our de scriptors c an be r egarded a s

measures of the tendency of the given solute to undergo various solute-solvent interactions. The

latter two descriptors, V and L, are both measures of solute size, and so will be measures of the

solvent cavity term that will accommodate the dissolved solute. General dispersion interactions

5

are also related to solute size; hence, both V and L will also describe the general solute-solvent

interactions. See Table 2.1 to see the symbols used for the solute descriptors and a description of

its contribution to the equation.

Table 2.1. The Abraham General Solvation Model Descriptors

Solute Descriptor New Old

E R2 The excess molar refraction ((cm3 mol-1)/10) represents solute polarisabilty and gives a measure of the ability of a solute to interact with a solvent through n- and π- electron pairs.

S pH2

The solute dipolar/polarisabilty parameter gives a measure of the solutes ability to stabilize a charge or dipole.

A aH2

The hydrogen bond acidity descriptor measures the extent of hydrogen bonding by the solute in a basic solvent.

B bH2

The hydrogen bond basicity descriptor measures of the extent of hydrogen bonding by the solute in an acidic solvent.

L logL16 The Otswald solubility coefficient between gas to wet solvent at 298 K, which represents cavity size and dispersion forces.

V Vx McGowan’s characteristic volume ((cm3 mol-1)/100), used to describe the transfer between water and wet solvents, reflects the three-dimensional space occupied by the solute. It is calculated from atomic size and the number of chemical bonds within the solute.

One additional note about the Abraham solute descriptors. In describing partition systems that

contain an appreciable quantity of water in the organic (or animal) phase one uses the alternative

basicity solute descriptor, Bo. For most solutes B and Bo are numerically equivalent. There are a

few solutes, ho wever, such as alkyl sulfoxides, a nilines and a lkylpyridines, for B and Bo may

differ.

The regression coefficients and constants (c, e, s, a, b, v, and l) are obtained by regression

analysis of experimental data for a s pecific process. In the case of partition coefficients, where

6

two solvent phases are involved, the c, e, s, a, b, v, and l coefficients represent differences in the

solvent phase properties.9 Each of these model system constants provide a breakdown of solute-

stationary ph ase i nteractions i n t erms of t he c ontribution t o r etention of cavity f ormation a nd

dispersion i nteractions, l one-pair electron i nteractions, i nteractions of a di pole-type, a nd

hydrogen-bonding interactions.10 See Table 2.2 for a description of each regression coefficient.

Table 2.2. Coefficients in the Abraham Solvation Equation

Regression Coefficients Description

e Describes the solvents tendency to interact with the solute through π and σ electron pairs.

s Measure of the solvent phase’s dipolarity/polarizability.

a Measure of the solvent phase’s hydrogen bond basicity.

b Measure of the solvent phase’s hydrogen bond acidity.

l Measure of both the work needed to create a solvent cavity and of dispersion forces.

v Reflects the hydrophobicity of the solvent that results from both the work need to create a solvent cavity and dispersion forces.

2.2. General Principles of the Abraham’s General Solvation Model

The m ethod of Abraham i s pr imarily concerned w ith th e p roperties of s olutes a s it

transfers from one phase to another. Figure 2.1 illustrates these types of transfer processes that

can be de fined b y t he e quilibrium t ransfer c oefficients K w (gas-to-water), K s (gas-to-solvent),

and the partition coefficient between two solvent phases P.11

7

Figure 2.1. The influencing factors between a gas phase and solvent can be used to calculate the partition between two solvent phases. Figure was reproduced in modified form from Abraham et al.2

The different partitioning processes occur at infinite dilution where solute-solute interactions are

negligible. T he r elationship be tween l og K w and l og K s can b e u sed t o calculate t he p artition

between two solvent phases using the equation:

Log P = Log KS – Log KW (2.3)

Accurate p rediction o f s olution-phase p roperties i s i mportant i n m any industrial

applications, r anging f rom t he de sign of c hemical s eparation pr ocesses t o t he s ynthesis of

potential new drug molecules that require delivery to a specific body organ or target site. Each

process i nvolves t he di ssolved s olute i nteracting w ith s olvent m olecules i n t he s urrounding

solubilizing me dia.12 The e quilibrium t ransfer f rom s olute-to-solvent i s c ontrolled by t he

standard Gibbs free energy of the compound in the two phases, which is also directly related to

the standard Gibbs free energy of solvation in a solvent and water,11 ∆Gos and ∆Go

w:

8

∆G˚s = -RTlnKs = -2.303RTLogKs (2.4)

∆G˚w = -RTlnKw = -2.303RTLogKw (2.5)

where K in each equation is the gas-to-liquid partition coefficient. Using Eqns. 2.4 and 2.5, I am

able to express the standard Gibbs free energy of transfer (∆G˚t) using the equations:

∆G˚t = -RTlnP = -2.303RTLogP (2.6)

∆G˚t = ∆G˚s - ∆G˚w (2.7)

The partition coefficient, Log P, is determined using Eq. 2.3.

In o rder f or t he A braham c orrelation equation to ha ve a ph ysical i nterpretation i t i s

necessary that each descriptor be related to Gibbs free energy. The Abraham Model of Solvation

is a l inear c orrelation equation be cause i t i s constructed s o t hat t he de scriptors us ed as

independent variables actually describe the same type of process as the dependent variable. For

example, the Abraham descriptors used as a measure for hydrogen bond strength (A and B) are

Gibbs free energy quantities derived from Log K. Therefore, the descriptors can be used in the

correlation of Gibbs free energy of transfer and the Partition Coefficient (log P) as the dependent

variables.10

9

2.3. Cavity Effects

The i nfluence of s olute s tructure on pa rtitioning pr ocesses i s de scribed b y t he c avity

theory of solution13, see Figure 2.2. The Abraham Solvation Model uses this theory to describe

the partition of a solute between the gas phase and a solvent. In the cavity theory the solvation

process is broken down into three steps10:

1) A cavity, the same size as the solute, is formed within the solvent. This process involves

the endothermic breaking of molecular interactions and, therefore, the Gibbs free energy

change is positive and is energetically unfavorable.

2) The reorganization of the bulk solvent molecules into their equilibrium position around

the n ewly created cavity, for w hich t he Gibbs f ree en ergy change i s assumed t o b e

negligable.

3) The solute is inserted into the cavity and various interactions take place between the solute

and s olvent. D epending on t he f unctional groups, t he s olute-solvent in teractions ma y

involve h ydrogen-bonding, di pole-dipole i nteractions, e tc. T his s tep i s exothermic, an d

the Gibbs free energy change is negative making this step energetically favorable.

Figure 2.2. Illustration of the cavity effects. Figure was reproduced in modified form from Abraham et al. 2

10

The theory is simplified even further by holding the solvent constant and only changing the

solute type. T herefore, the solvent properties would not need to be considered and only the

properties of t he s olute would ne ed t o be d etermined. In r elating t he cavity t heory t o t he

Abraham model, the V or L descriptor is taken as the solute size descriptor from step (1) of

the cavity theory. In step (3), because the solvent is thought to be constant, the solvent-solute

interactions s hould be r elated t o t he s olute pr operties or de scriptors us ed i n t he Abraham

Model.2

2.4 Selected Applications

In t he chemical lite rature o ne c an f ind n umerous q uantatitive s tructure-activity

relationships ( QSARs), qua ntitative s tructure-property r elationships ( QSPRs), qua ntitative

structure-toxicity r elationships ( QSTRs) a nd lin ear free energy relationships ( LFERs) for

predicting pr operties r anging f rom boi ling poi nt t emperatures, va por pressures, w ater-to-

organic solvent and gas-to-organic solvent partition coefficients, water-to-micellar surfactant

partition coefficients, gas-to-body organ and blood-to-body organic partition coefficients, gas

chromatographic r etentions of s olutes on a g iven l iquid or s olid s tationary pha se, ga s

chromatographic retention factors (defined as the ratio of the solute’s adjusted retention time

divided b y t he r etention t ime of a n unr etained s olute) of s olutes on a g iven l iquid or s olid

stationary phase, hi gh p erformance l iquid c hromatographic (HPLC) r etention t imes w ith a

given m obile pha se-stationary p hase p air, retention time s a nd s electivities o f s olutes in

micellar electrokinetic chromatographic systems, permeability of solutes through human and

animal skin from aqueous solution, adsorption of solutes onto activated carbon (carbon black,

activated c harcoal, e tc.) from a queous s olution, rat a nd hum an i ntestinal absorption data of

11

drugs and pha rmaceuticals, aqueous s olubilities, Draize e ye s cores an d eye i rritation, n asal

pungency, odor threshold, lethal toxicity of organic compounds to a given aquatic organism,

and the inhibition of growth by organic compounds against selected bacteria, algae, tumor cell

lines an d can cer cel l l ines. P ublished co rrelations h ave em ployed a w ide v ariety o f s olute

descriptors and solute properties, which are calculable from measured experimental data (such

as the Hildebrand solubility parameter, which is defined to be the square root of the energy of

vaporization at 298.15 K divided by its molar volume, δ = (ΔEvap,298 K/V)0.5 ), from molecular

structure considerations or using quantum mechanical computations. The advantage that the

Abraham model has over other published QSAR, QSPR and LFER models is that the same set

of solute descriptors i s used in every de rived correlation. O ne does not have to calculate a

different s et of s olute de scriptors f or e very pr operty t hat i s t o be c orrelated. A s di scussed

later, by using the same set of solute descriptors for every correlation, one can compare the

chemical similarity of the different processes as the calculated equation coefficients (see Eq.

2.1 and 2.2 do contain chemical information regarding the solubilizing media’s polarity and

hydrogen-bonding characteristics. One final no te, t he A braham m odel was d eveloped t o

describe partitioning processes, or properties that are directly related to partitioning processes.

The model should not be used to describe processes that are a result of chemical reactions.

To date, Abraham model correlations have been reported to describe solute partitioning

into 1-octanol14,15 from water

Log Pwet = 0.088 + 0.562 E – 1.054 S + 0.034 A – 3.460 B + 3.814 V (2.8)

Log Pdry = - 0.034 + 0.489 E – 1.044 S – 0.024 A – 4.235 B + 4.218 V (2.9)

12

and from the gas phase

Log Kwet = -0.222 + 0.088 E + 0.701 S + 3.473 A + 1.477 B + 0.851 L (2.10)

Log Kdry = -0.120 – 0.203 E + 0.560 S + 3.576 A + 0.702 B + 0.939 L (2.11)

and into other a lcohols ( methanol, e thanol, 1 -propanol, 1 -butanol, 1 -pentanol, 1 -hexanol, 1 -

heptanol, 1 -decanol, 2 -propanol, 2 -butanol, 2 -methyl-1-propanol, 2 -methyl-2-propanol, 2 -

pentanol, 3 -methyl-1-butanol),4,7,8,16,17 into alkanes ( butane, hexane, h eptane, o ctane, n onane,

decane, u ndecane, d odecane, h exadecane, c yclohexane, m ethylcyclohexane, 2 ,2,4-

trimethylpentane),18-21 in aromatic hydrocarbons (benzene, toluene),19-21 in halogenated alkanes

(dichloromethane, t richloromethane, c arbon t etrachloride, 1,2-dichloroethane, methylene

iodide),22,23 in ha logenated b enzenes ( fluorobenzene, c hlorobenzene, bromobenzene,

iodobenzene),24 in alkyl acetates (methyl acetate, ethyl acetate, butyl acetate),25 in ethers (diethyl

ether, di butyl e ther, t etrahydrofuran, 1,4 -dioxane, m ethyl tert-butyl e ther),26,27 in ke tones

(acetone, 2 -butanone, c yclohexanone)28 and i n s everal m iscellaneous s olvents ( such as

acetonitrile, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetate, olive oil, saline

solution).20,29-32 Correlation e quations a re pe riodically upda ted as m ore ex perimental d ata

becomes available. In total Abraham model correlations have been derived for approximately 40

different organic solvents. Most of the derived correlations for solute partitioning into organic

solvents from either water or the gas phase pertain to 298.15 K. Many industrial manufacturing

processes and chemical separations take place at temperatures other than 298.15 K. T here is a

13

growing need to be able to extrapolate measured and/or predicted partition coefficients to higher

and lower temperatures.

The Abraham model can describe practical water-to-organic partition coefficients as well

as “hypothetical” water-to-organic solvent partition coefficients. P ractical partition coefficients

refer to the equilibrium distribution of the solute between an organic solvent saturated with water

and an aqueous phase saturated with the organic solvent. Hypothetical partition coefficients, on

the ot her ha nd, r efer t o the h ypothetical pa rtition pr ocess o f s olute t ransfer f rom w ater t o t he

anhydrous ( dry) or ganic s olvent. H ypothetical pa rtition c oefficients c an be c alculated a s t he

ratio of t he s olute’s m olar s olubility i n t he a nhydrous or ganic s olvent di vided b y i ts a queous

molar solubility, ie., P = [solute]dry organic solvent/[solute]water. Even though hypothetical in nature,

these partition coefficients are valuable in that one can use the predicted values to calculate the

solute’s m olar s olubility in t he or ganic s olvent, pr ovided t hat t he s olute’s a queous m olar

solubility is known. For solvents that are partly miscible with water, such as ethyl acetate or 1-

butanol, pa rtition c alculated a s a s olubility r atio m ay not e qual t hose obt ained f rom di rect

equilibrium pa rtition measurements. T he pr esence of w ater i n t he or ganic s olvent c an ha ve a

significant effect on t he solubilizing properties of the equilibrium organic phase. Care must be

taken not to confuse the two sets of partitioning correlations. O ne will note that Eqs. 2.8 and

2.10 have b een s ubscripted “w et” t o i ndicate t hat t he co rrelations p ertain th e d irect p artition

measurement describing the equilibrium distribution of the solute between 1-octanol (saturated

with w ater) an d w ater ( saturated w ith 1 -octanol). Equations 2.9 a nd 2.11 refer t o t he

hypothetical partitioning processes, and are thus labeled as “dry.” The equation coefficients for

the “wet” and “dry” partitioning processes are not the same for 1-octanol as the water-saturated

1-octanol or ganic pha se doe s c ontain a n a ppreciable a mount of di ssolved w ater. P ublished

14

Abraham model c orrelations g enerally de note whether t he equation d escribes a p ractical o r

hypothetical p artition p rocess. F or s olvents th at a re completely mis cible w ith w ater (such a s

methanol, e thanol), t he w ater-to-organic pa rtition pr ocess i s h ypothetical and only one l og P

correlation is presented. In the case of organic solvents that are almost completely immiscible

with w ater ( such a s a lkanes, c hloroform, c arbon t etrachloride, di chloromethane, 1,2 -

dichloroethane and most nonpolar aromatic solvents) there will be only a single Abraham model

correlation as the practical water-to-organic solvent partition coefficient will be nearly identical

to th e c alculated mo lar solubility r atio. It is o nly f or p artially mis cible o rganic s olvents th at

dissolve an appreciable amount of water that one will have two log P correlation equations, one

equation for describing the practical “wet” partition process and one equation for describing the

hypothetical “dry” partition process.

In addition t o de scribing t he pa rtitioning of or ganic s olutes i nto organic solvents f rom

water and t he gas ph ase, t he A braham m odel ha s be en us ed t o de scribe t he s olubilizing

characteristics of room temperature ionic liquids (RTILs). Sprunger et al.33,34 modified the basic

Abraham solvation parameter model

Log P = cation + canion + (ecation + eanion) · E + (scation + sanion) · S + (acation + aanion) · A

+ (bcation + banion) · B + (vcation + vanion) · V (2.12)

and

Log K = cation + canion + (ecation + eanion) · E + (scation + sanion) · S + (acation + aanion) · A

+ (bcation + banion) · B + (lcation + lanion) · L (2.13)

15

by s plitting th e v arious s olute-RTIL in teractions in to a c ation-specific an d an ion-specific

contribution. The major advantage with splitting the interactions in this fashion is that one will

be able to describe far more RTILs with fewer experimental measurements. Normally 40 to 50

experimental log P or log K values are needed to develop each log P or log K correlation. The

authors r eported e quation c oefficients f or 8 cations a nd f or 4 anions ba sed on a t otal of 598

experimental lo g K and 584 e xperimental l og P v alues. The ex perimental v alues w ere

determined b y i nverse-chromatography f rom t he m easured retention t imes of s olutes on t he

RTIL stationary phase. Only 16 RTILs were contained in the databases used to calculate the ion-

specific eq uation co efficients, an d f or each R TIL t here was b etween 2 8 t o 6 0 ex perimental

values for RTIL. For several of the RTILs there was insufficient experimental data to develop

the Abraham model correlations; however, by combining all of the data for a given cation and/or

anion, the authors were able to calculate equation coefficients for 8 cat ions and 4 anions. T he

authors’ calculated equation coefficients can be combined to give 32 ( 8 x 4) cation-anion pairs,

in other words, using experimental data for 16 RTILs the authors were able to develop predictive

equations f or 32 R TILs. A ll of t he c alculated c ation-specific a nd a nion-specific equation

coefficients pertain to 298.15 K. Room temperature ionic liquids are used as stationary phases in

gas-liquid chromatographic separations. The new generation room temperature ionic liquids are

stable at h igh t emperatures, and in many practical gas chromatographic separations with RTIL

stationary phases the column is maintained at a temperature of 100 oC or higher. T here is need

to develop a computational methodology that can be used to extrapolate predicted a solute’s log

K value at 298 K on a given RTIL to the much higher temperatures that are commonly employed

in gas chromatographic separations and chemical analysis.

16

Abraham, Ibrahim and others have used Eqs. 2.1 and 2.2 to correlate the partitioning of

organic solutes and drugs into body tissues and fluids, both from the gas phase and from blood.

Tissues and f luids that were s tudied i nclude blood,35 brain,36,37 liver,38 lung,39 fat,36 muscle,40

skin.41 Published correlations described the experimental partition coefficient data to within a

standard d eviation of approximately 0.3 l og uni ts, which i s qui te good for biological systems.

Experimental biological data generally have larger experimental uncertainties/errors, due in part

to differences in metabolic rate, gender, age and other genetic differences. Even though one may

be correlating partition coefficient blood-to-muscle partition coefficient data for a single animal

species, s uch as rats, ea ch individual rat does h ave a unique ge netic m akeup. The a uthors’

studies were directed mainly on human and rat tissues. For blood, the authors were able to find

sufficient experimental gas-to-blood partition coefficient data to develop a correlation for human

blood and a second correlation for rat blood. T he derived equation coefficients for the human

blood and rat blood correlations were nearly identical. As part of the human and rat blood study,

the authors calculated the difference log Khuman blood – log Krat b lood for 86 compounds for which

both l og K human b lood and l og K rat b lood data w ere av ailable. T he calculated av erage ab solute

difference of 0.124 l og uni ts be tween l og K human b lood and l og K rat b lood was co mparable i n

magnitude to the inter-laboratory variation of log K human b lood for 2 -propanone (SD = 0.34) , for

chloroform (SD = 0.09) and for trichloroethene (SD = 0.06). Based largely on this comparison,

the authors combined the all log Khuman b lood and log Krat b lood values into a s ingle database, and

developed one correlation equation capable of describing the combined data sets. Sprunger et

al.32 later r evisited t he assumption t hat hum an a nd r at d ata c ould be c ombined i nto a s ingle

correlation m odel, a nd i ntroduced a nimal s pecies i ndicator va riables into t he predictive

expression that allowed for species differences in log K values for each given solute.

17

The basic Abraham model has also been used to correlate b iological properties that are

directly r elated t o s olute pa rtitioning. O ne s uch a pplication concerns the t oxicity of or ganic

compounds to aquatic organisms. Aquatic organisms are exposed to toxicants dissolved in lakes,

rivers, and na tural w aterways. Once th e to xicant ma kes its w ay in to th e o rganism, it c an

partition i nto t he c ells a nd di srupt t he c ell f unction. T he or ganism t hen di es ( or experiences

decreased mobility) as a direct result of the toxicant’s presence in the cell. This particular mode

of toxic action is referred to as narcosis (both nonpolar and polar narcosis). Hoover et al .,42-45

Abraham and coworkers46,47 and Poole et al.48,49 have developed Abraham model correlations for

describing t he nons pecific t oxicity of or ganic c ompounds t o s everal s pecies of f ish ( guppy,

fathead minnow, Golden orfe, bluegill, goldfish, and high-eyes Medaka), water f leas (Daphnia

magna, Ceriodaphnia dubia, and Daphnia pulex), pr otozoas ( Tetrahymena pyriformis,

Spirostomum ambiguum, Entosiphon sulcantum, Uronema parduczi and Chilomonas

paramecium), b acterium (Pseudomonas putida) and t adpoles (Rana temporaria, Rana pipiens,

Rana japonica, Xenopus laevis and Rana brevipoda porosa). The aquatic toxicity correlations

will be discussed at greater length in a later chapter.

The aforementioned studies represent just a few of the many published papers that have

used t he A braham general s olvation m odel to mathematically d escribe p roperties o f ch emical,

biological, and pharmaceutical importance. T he advantage of using a s ingle mathematical form

and a s ingle set of common solute descriptors is that one can compare equation coefficients to

determine which p rocesses ar e chemically s imilar. Once a given p rocess h as b een f ully

characterized, that is once the equation coefficients have been calculated, one can use the derived

mathematical correlation to make predictions for all other solutes with known solute descriptors.

18

CHAPTER 3

STATISTICAL ANALYSIS

3.1. Multiple Linear Regression Analysis

Abraham’s general s olvation m odel pr ovides a us eful a pproach f or t he pr ediction of

many partitioning processes in chemical and biochemical systems. The method relies on linear

free energy relationships, and the predicted values of the Abraham model are obtained through

multiple linear regression.

Regression models are among the most useful and most used statistical method because

they allow relatively simple analyses of complicated situations. Multiple linear regressions give

the relationship between two or more independent variables and a dependent variable by fitting a

linear e quation t o t he obs erved da ta. S PSS software50 is u sed to p erform a ll r egression

calculations i n my publications ( see C hapters 4 -6). T he de scriptive s tatistics f ound f rom t he

regression that a re r eported a re s tandard d eviation, t he coefficient of de termination, t he F isher

statistic, average error, and absolute average error.

3.1.1. Standard Deviation

Standard deviation (SD) is a s tatistical measure of the spread or uncertainty around the

mean. It is defined by the equation:

SD =yi − y ∑( )2

n − p −1( ) (3.1)

19

Where, yi is each individual da ta point, y is t he m ean o f t he dataset, n is the number of da ta

points, and p is the number of independent variables.

If many data points are clustered tightly around the mean, then the standard deviation is

small. However, if data points are scattered widely around the mean, then the standard deviation

is l arge. A useful property o f s tandard deviation i s t hat, unl ike va riance, i t i s expressed in t he

same units as the data.

3.1.2. Correlation Coefficient and the Coefficient of Determination

The linear co rrelation c oefficient measures t he strength an d t he d irection o f a l inear

relationship between two variables and can be determined by the mathematical formula:

r = i∑ (yi − y)(yi − y)[ ]

(yi − y)2

i∑ (yi − y)2

i∑

(3.2)

where y is the mean observed value, and yi represents the predicted values. The value of r is such

that -1 < r < +1. The + an d – signs are used for positive linear correlations and negative linear

correlations, respectively. If the predicted and observed values have a strong linear correlation r

is close to 1, however if there is no linear correlation or a weak linear correlation r is close to 0.

The value of the correlation coefficient can be strongly influenced by one outlying point.

The coefficient of determination (R2) is found by squaring the correlation coefficient and is

used as a more precise way to interpret the correlation coefficient. It is useful because it gives the

proportion of the variance in one variable that is “explained” by the other variable. It represents

20

the percent of the data that is the closest to the line of best fit.51 The coefficient of determination

is such that 0 < R2 < 1, and the stronger the correlation (R is closer to 1) the more variance can

be explained (see Figure 3.1).

Figure 3.1. Interpretation of the correlation coefficient and the coefficient of determination.

3.1.3. Average Error and Absolute Average Error

The av erage error ( AE) an d t he av erage absolute er ror (AAE) are r eported i n my

publications when comparing the variance between the t raining-set and t he t est-set regressions

(see Chapters 4-6). The average error can be less than, equal to, or greater than 0. In this way it

measures a ccuracy or goodness of fit a nd i ndicates w hether t he r egression e quation i s

systematically over or u nder predicting the dependent va riable. T he smaller t he average er ror

(i.e. closer to 0), the more unbiased the regression equation. A verage error is calculated using

the equation:

(3.3)

AE =y^

i− yi

n

21

where, iy^

is the predicted value, and iy is the observed value.

The average absolute error (AAE) is an important descriptive statistic in that it is also a

measure of bias and is the average absolute deviation of the observed values from the predicted

values. It is defined as

(3.4)

where, iy^

is the predicted value, and iy is the observed value.

3.1.4. Fischer Statistic

The F-statistic is used to test the s tatistical s ignificance of the regression.52 Hence, the

larger the F value is above the critical value, the better the regression. As can be seen from the

equation below the F-statistic increases as the number of data points increase and the coefficient

of determination increases.

F =R2 n − v −1( )

1− R2( )v (3.5)

In the above equation R2 is the coefficient of determination, n is the number of data points, and v

represents the degrees of freedom. T he degrees of freedom can be determined by subtracting one

from the number of va riables i n t he r egression equation.11 The formula compares t he amount of

variablity between datasets to the amount of variability within datasets.

AAE =y^

i− yi∑

n

22

3.2. Validation Statistics

3.2.1. Test and Training Sets

In order to evaluate the predictive ability and test the generality of the Abraham model

the original dataset of solutes can be randomly split into training and test sets and the regression

repeated (see Chapters 4-6). In this validation method the property being measured is predicted

for the solutes in the training set and a new regression equation is obtained. The new regression

equation and the test set’s solutes are then used to determine standard deviation, average error,

and a verage absolute e rror. P roviding t hat t he t est a nd t raining s ets are not bi ased, good

agreement to experimental values indicates that the model is l ikely to be general and has good

predictive ability. This method is an ideal way to test predictive ability of a model, but requires a

large dataset.

3.2.2. The Bootstrap Method

Multiple linear regression is based on m ajor assumptions from which my data came, such

as l inearity a nd nor mality of t he p redicted m inus obs erved va lues (i.e., residuals) a bout t he

population. The F-test is robust with regard to v iolations o f normality, h owever it is always a

good idea to inspect the distributions of the major variables of interest by producing histograms

of the residuals, probability plots, or to perform a bootstrap analysis of the data.

The bootstrap method is a general approach to statistical modeling based upon building a

sampling distribution for a statistic by resampling many times from the dataset. For example, for

a set of n solutes, n samplings with replacement of the dataset are made up to 1000 times and the

regression is repeated with each sampling. In this method, some solutes will be randomly left

out of the analysis, and other solutes will be included two or more times. The multiple bootstrap

23

analyses o f t hese r epeated s amplings can t hen b e av eraged t ogether an d co mpared t o t he f ull

dataset. These repeated samplings can give a sense of the bias in a statistic, e.g. R-squared. It is a

useful pr ocedure f or h andling da ta w hen I am not w illing t o m ake a ssumptions a bout t he

parameters of the populations from which I sampled. T he most that i s assumed in a bootstrap

analysis i s t hat t he d ata I have i s a r easonable r epresentation of t he pop ulation f rom w hich i t

came.53

It is also useful as a validation statistic to use in place of test and training sets (see Chapter

5). While in many situations a simple random split into training and test sets might be adequate,

there a re a num ber of problems w ith t he pr ocedure i ncluding c hance splits, i nefficiency o f

estimates among different possible splits, and decreased power.54

Bootstrap procedures in Chapter 5 of this dissertation were performed using the statistical

program R with the simpleboot package installed.55

24

CHAPTER 4

CORRELATION OF MINIMUM INHIBITORY CONCENTRATIONS TOWARD ORAL

BACTERIAL GROWTH BASED ON THE ABRAHAM MODEL

4.1. Introduction

Dental and oral diseases are among the most prevalent afflictions of mankind. The human

oral cavity contains more than 500 ba cterial strains that interact with each other, and with their

host tissue. Such interactions result in microbial biofilm formation, such as subgingival plaque,

dental plaque, and tongue surface debris, which lead to periodontal diseases, dental caries, and

oral malador, etc.

Quantitative s tructure–activity r elationships ha ve be en reported for ba cterial growth

inhibition b y or ganic compounds. P ublished s tudies ha ve f or t he m ost pa rt pe rtained t o

environmental ba cteria. A not able e xception i s t he t wo s tudies of Shapiro a nd G uggenheim56,

which e xamined growth inhibition of Porphyromonas gingivalis, Selenomonas artemidis, a nd

Streptococcus sorbrinius by phenolic compounds. The authors choose phenolic compounds for

study due to the fact that phenolic disinfectants have been widely used in medicine and dentistry

dating ba ck t o a ncient E gyptian t imes. Listed below i s t he be st c orrelation obt ained f or e ach

bacterium from the authors’ first paper.

S. sobrinus

-log MIC (mM) = -1.497 + 0.661 1χv - 0.165 S(O) (4.1)

(N = 111, SD = 0.334, R2adj = 0.877, F = 431.04)

25

S. artemidis

-log MIC (mM) = -2.335 + 0.609 1χv - 0.285 5χv (4.2)

(N = 110, SD = 0.361, R2adj = 0.708, F = 133.44)

P. gingivalis

-log MIC (mM) = -1.321 + 0.670 1χv + 2.999 ∆6χ - 0.172 T(C) (4.3)

N = 124, SD = 0.395, R2adj = 0.850, F = 223

where N denotes the number of data points, R2adj is the squared adjusted correlation coefficient,

SD refers to the regression standard deviation, and F is the Fisher F-statistic. In Eqs. 4.1-4.3 the

independent pr operty i s t he ne gative l ogarithm of th e m inimum inhibitory millimo lar

concentrations, -log M IC. T he bol d te rms in th e c orrelations p ertain to t he va rious m olecular

connectivity descriptors, which are defined in greater detail elsewhere56.

In the second paper of the series, the authors57 considered the classical Hansch approach

using the water to octanol partition coefficient as one of the independent variables, along with

TLSER and WHIM descriptors. The statistics for the second series of correlations were similar

to those in the first paper, with the standard deviations generally ranging from 0.30 t o 0.50 l og

units. T he s tatistics of t he d esired correlations a re good; how ever, t he us e of di fferent

indices/descriptors i n e ach de rived e quation doe s not pe rmit a m eaningful c omparison t o be

made between the different bacterial strains, or between the bacterial strains and other biological

systems.

The aim of the present work was to construct a Linear Free Energy Relation (LFER) for

the -log MIC data for the above-mentioned bacterial strains based on the Abraham model, and to

26

compare e ach de rived c orrelation t o pr evious LFERs t hat ha ve be en o btained f or w ater t o

organic s olvent p artitions, a nd f or t he t oxicities of o rganic compounds t o di fferent a quatic

organisms. A ll c orrelations w ill b e b ased on a common s et of de scriptors. A c omparison of

coefficients i n t he de rived LFERs will i ndicate how near one s ystem i s t o another i n t erms of

chemical interactions, and hence, whether one system can be used as a model for another.

4.2. Methods

Our method of correlation is based on the general LFER1,2,44,46

SP = c + e·E + s·S + a·A + b·B + v·V (4.4)

where SP is the dependent variable such as the logarithm of the water to organic solvent partition

coefficient o r, as in th e p resent c ase, th e n egative lo garithm o f th e min imum in hibitory

millimolar c oncentration of t he o rganic c ompounds t oward b acterial growth. T he i ndependent

variables, o r d escriptors, ar e s olute p roperties as f ollows: E and S r efer t o t he excess m olar

refraction a nd di polarity/polarizability of t he s olute, r espectively, A a nd B de note t he ove rall

solute h ydrogen-bond a cidity and ba sicity, a nd V i s t he M cGowan vol ume of t he s olute. T he

remaining qua ntities ( c, e , s , a , b, a nd v ) r epresent pr ocess or equation co efficients. T he

numerical values of the equation coefficients will be different for each oral bacterium. Molecular

descriptors for all of the compounds considered in the present study are tabulated in Table S4.1

(Supplemental Material). The numerical values i n Table S 4.1 cam e from our solute descriptor

database, which now contains va lues for more t han 3500 di fferent or ganic and or ganometallic

compounds. F or c ompounds not i n our da tabase, t he de scriptor va lues w ere obt ained f rom

experimental s olute p roperties, s upplemented b y calculations of de scriptors us ing a l iterature

procedure58 and commercial software59 , as described in detail by Abraham et al.2

27

4.3. Results and Discussion

The P. gingivalis is the largest of the three databases, and contains minimum inhibitory

concentrations f or 134 organic c ompounds. T he e xperimental da ta a re t abulated a s -log M IC

(mM) in Table 4.1.

Table 4.1. Experimental minimal inhibitory concentrations of organic compounds, -log MIC (millimolar) to Porphyromonas gingivalis, Streptococcus sobrinus and Selenomonas artemidis oral bacteria.

-log MIC (mM) Solute P. gingivalis Str. sobrinus S. artemidis Phenol -1.45 -1.55 -1.33 2-Methylphenol -1.18 -1.33 -0.89 3-Methylphenol -1.27 -1.17 -0.89 4-Methylphenol -1.27 -1.33 -0.87 2-Ethylphenol -0.61 -0.87 -0.52 3-Ethylphenol -0.69 -0.87 -0.55 4-Ethylphenol -0.64 -0.85 -0.48 2-Propylphenol -0.34 -0.73 -0.17 3-Propylphenol -0.29 -0.71 -0.34 4-Propylphenol -0.30 -0.57 -0.17 2-Allylphenol -0.44 -0.81 -0.86 2-Isopropylphenol -0.34 -0.59 -0.30 3-Isopropylphenol -0.44 -0.79 -0.30 4-Isopropylphenol -0.47 -0.69 -0.30 2-Butylphenol -0.05 -0.30 -0.02 3-Butylphenol -0.12 -0.49 -0.03 4-Butylphenol -0.05 -0.12 0.33 2-Isobutylphenol 0.33 -0.19 0.21 3-Isobutylphenol 0.31 -0.12 0.06 4-Isobutylphenol 0.35 -0.12 0.28 (±)-2-sec-Butylphenol -0.12 -0.52 -0.26 (±)-3-sec-Butylphenol -0.25 -0.58 -0.19 (±)-4-sec-Butylphenol -0.12 -0.43 -0.12 2-tert-Butylphenol 0.28 -0.12 0.33 3-tert-Butylphenol -0.34 -0.74 -0.12 4-tert-Butylphenol -0.39 -0.60 -0.30 2-Pentylphenol 0.75 0.36 0.59 *Not included in the regression analysis. (table continues)

28

Table 4.1 (continued). -log MIC (mM) Solute P. gingivalis Str. sobrinus S. artemidis 4-Pentylphenol 0.85 0.52 0.80 4-tert-Pentylphenol 0.52 0.26 0.46 2-Hexylphenol 0.89 0.62 0.75 4-Heptylphenol 1.52 1.22 1.40 4-Octylphenol 1.00 1.00 0.620* 4-tert-Octylphenyl 1.52 1.00 0.89 2-Cyclohexylphenol 0.77 0.55 0.68 3-Cyclohexylphenol 0.82 0.52 0.57 4-Cyclohexylphenol 0.82 0.55 0.62 2-Cyclohexylmethylphenol 1.16 0.85 0.85 3-Cyclohexylmethylphenol 1.10 0.85 0.82 4-Cyclohexylmethylphenol 1.40 0.92 0.92 4-(1-Adamantyl)phenol 1.89 1.66 NA 2,4-Dimethylphenol -0.58 -0.91 -0.52 2,6-Dimethylphenol -0.78 -1.28 -0.76 3,5-Dimethylphenol -0.58 -1.02 -0.58 2-tert-Butyl-4-methylphenol 0.54 -0.08 0.42 2-tert-Butyl-6-methylphenol -0.48 -0.67 -0.51 2,6-Diisopropylphenol -0.27 -0.69 -0.32 Thymol -0.19 -0.43 -0.12 Carvarol -0.34 -0.67 -0.19 2,4-Di-tert-butylphenol 0.68 0.40 -0.111* 2,6-Di-tert-butylphenol -0.250* NA NA 3,5-Di-tert-butylphenol 0.96 0.68 0.46 2-tert-Butyl-4-cyclohexylphenol 1.96 1.85 NA 2-tert-Octyl-4-cyclohexylphenol 2.22 1.89 NA 2-Cyclohexyl-4-tert-octylphenol 2.22 2.30 -0.238* 2-tert-Butyl-5-cyclohexylphenol 2.00 1.77 0.658* 2-tert-Octyl-5-cyclohexylphenol 2.52 1.80 NA 2-(1-Adamantyl)-4-methylphenol 2.10 1.85 0.96 α-Tetralol -0.13 -0.31 0.222* β-Tetralol -0.13 -0.31 0.056* 2-Phenylphenol 0.35 -0.14 0.33 4-Phenylphenol 0.66 NA 0.60 2-tert-Butyl-5-phenylphenol 2.05 1.75 0.99 *Not included in the regression analysis. (table continues)

29

Table 4.1 (continued). -log MIC (mM) Solute P. gingivalis Str. sobrinus S. artemidis 2-Benzylphenol 0.66 0.31 0.66 4-Benzylphenol -0.04 -0.21 0.04 α-Naphthol -0.07 -0.32 0.26 β-Naphthol -0.14 -0.36 -0.07 2-Methoxyphenol -1.38 -1.63 -1.27 3-Methoxyphenol -1.27 -1.43 -1.27 4-Methoxyphenol -1.33 -1.54 -1.27 Eugenol -0.35 -1.09 -0.35 2-Ethoxyphenol -1.08 -1.34 -1.16 3-Ethoxyphenol -0.43 -0.78 -0.50 4-Ethoxyphenol -0.83 -1.23 -0.83 4-Propoxyphenol -0.34 -0.93 -0.42 2-Isopropoxyphenol -1.24 -1.42 -1.12 3-Butoxyphenol 0.00 -0.26 0.11 4-Butoxyphenol -0.35 -0.41 -0.21 4-Pentoxyphenol 0.59 -0.05 0.50 4-Hexyloxyphenol 0.77 0.54 0.62 4-Heptyloxyphenol 1.00 0.85 0.68 2-Cyclohexylmethoxyphenol 0.59 -0.41 -0.11 3-Cyclohexylmethoxyphenol 0.82 0.64 0.72 4-Cyclohexylmethoxyphenol 0.89 0.72 0.62 4-Phenoxyphenol 0.64 0.15 0.42 2-Benzyloxyphenol 0.10 -0.22 0.00 3-Benzyloxyphenol 0.47 NA 0.43 4-Benzyloxyphenol 0.46 0.00 0.34 2-Acetylphenol -1.57 NA -1.57 3-Acetylphenol -1.23 -1.50 -1.17 4-Acetylphenol -1.23 -1.43 -1.23 2-Propionylphenol -0.65 NA -0.67 4-Propionylphenol -0.58 NA -0.60 2-Benzoylphenol -0.427* NA -0.53 3-Benzoylphenol 0.00 -0.31 0.00 4-Benzoylphenol 0.00 -0.31 0.00 2-Fluorophenol -1.38 -1.55 -1.32 3-Fluorophenol -1.25 -1.25 -0.92 *Not included in the regression analysis. (table continues)

30

Table 4.1 (continued). -log MIC (mM) Solute P. gingivalis Str. sobrinus S. artemidis 4-Fluorophenol -1.25 -1.25 -1.17 2-Bromophenol -0.70 -1.06 -0.63 3-Bromophenol -0.36 -0.52 -0.19 4-Bromophenol -0.36 -0.52 -0.24 2,6-Difluorophenol -1.31 -1.49 -1.25 2,6-Dichlorophenol -0.39 -0.67 -0.39 2,6-Dibromophenol -0.27 -0.58 -0.16 2-Cyanophenol -0.92 -1.23 -0.79 3-Cyanophenol -0.92 -1.23 -0.79 4-Cyaophenol -0.81 -1.29 -0.60 2-Hydroxyacetanilide -0.64 -0.90 -0.76 3-Hydroxyacetanilide -1.42 NA -1.46 4-Hydroxyacetanilide -1.52 NA -1.57 3-Nitro-2-methylphenol -0.38 -0.12 -0.04 3-Nitro-4-methylphenol -0.29 -0.59 -0.18 6-Nitro-3-methylphenol -0.51 NA -0.57 4-Nitro-3-methylphenol 0.658* -0.42 0.41 2’-Nitro-4-hydroxybiphenyl 0.54 0.03 0.43 4’-Nitro-4-hydroxybiphenyl 0.77 NA 0.72 5-Hydroxyindole -0.68 -0.90 -0.68 6-Hydroxyquinoline -0.59 -0.72 -0.68 8-Hydroxyjulolidine -0.09 NA NA (+)-Totarol 2.52 2.16 NA (+)-Ferruginol 2.16 1.96 NA Triclosan 2.16 1.39 2.00 Indole -0.80 -1.23 -0.66 Quinoline -0.67 -0.94 -0.75 2-Nitrotoluene -1.29 NA -1.29 3-Nitrotoluene -1.47 NA -1.47 2-Nitrobiphenyl -1.069* NA -1.127* 3-Nitrobiphenyl -1.002* NA -1.002* 4-Nitrobiphenyl 0.30 NA NA 4-Propylanisole -1.346* NA -1.387* (2S,5R)-(-)menthone -1.51 NA -1.48 (1S,2R,5S)-(+)-menthol -1.329* -1.533* -1.37 *Not included in the regression analysis. (table continues)

31

Table 4.1 (continued). -log MIC (mM) Solute P. gingivalis Str. sobrinus S. artemidis (1R,2S,5R)-(-)-menthol -1.329* -1.505* -1.37 (1S,2R,5R)-(+)-isomenthol -0.92 NA -0.78

*Not included in the regression analysis.

The initial a nalysis in dicated that 2,6 -di-tert-butylphenol, 2 -benzoylphenol, 4 -nitro-3-

methylphenol, 2 -nitrophenyl, 3 -nitrobiphenyl, 4 -propylanisole, (1S,2R,5S)-(+)-menthol, a nd

(1R,2S,5R)-(-)-menthol are outliers. I note t hat t he e xperimental va lue f or 4 -nitro-3-

methylphenol (-log MIC = 0.658) is out of line with the values for the other three nitrocresols (-

log M IC = -0.380 f or 3 -nitro-2-methylphenol; -log M IC = -0.292 for 3 -nitro-4-methylphenol;

and -log MIC = -0.513 for 6-nitro-3-methylphenol), suggesting that the value may be in error or

that perhaps steric recognition plays an important role in the growth inhibition for this particular

compound. Examination of t he num erical va lues i n Table 4.1 further r eveals that th e

experimental da ta f or bot h 2 -nitrobiphenyl and 3 -nitrobiphenyl di ffers from t he va lue f or 4 -

nitrobiphenyl by more t han 1 l og uni t. T he s light s tructural di fferences between t he t hree

nitrobiphenyl i somers s hould not lead t o s uch a l arge d ifference i n t he o bserved m inimum

inhibitory concentration. The e ight compounds were r emoved from the da tabase, and the f inal

regression analysis was performed to yield

-log MIC = -3.320 + 1.111E - 0.605S + 0.727A - 1.904B + 2.423V (4.5)

N = 126, s = 0.313, R2 = 0.906, R2adj = 0.902, F = 232.3.

Minitab s oftware60 was u sed f or al l r egression a nalyses. The s tatistics ar e q uite g ood

32

given the nature of the experimental data. Generally, biological data have greater experimental

uncertainties associated with the reported values than do chemical properties such as the water to

octanol pa rtition c oefficient or s aturation s olubility. A graphical co mparison o f t he cal culated

values based on Eq. 4.5 versus the experimental -log MIC values is given in Table 4.1.

Figure 4.1. A pl ot o f cal culated values b ased o n Eq. 4.5 versus observed values for Porphyromonas gingivalis.

The 126 compounds w ere di vided i nto a t raining s et a nd t est s et b y or dering t he

compounds i n t erms o f increasing v alue o f -log M IC. E very s econd compound w as removed

from th e lis t to form t he t est s et. T he r emaining 63 c ompounds that w ere l eft s erved as t he

training set. This procedure ensures that the training and test sets cover the same range of values.

Analysis of the experimental data in the training set gave

-log MIC = -3.343 + 1.099E - 0.678S + 0.862A - 1.547B + 2.337V (4.6)

N = 63, s = 0.309, R2 = 0.912, R2adj = 0.905, F = 118.5.

33

The coefficients in Eq. 4.6 are close to those in Eq. 4.5 suggesting that the training set is

representative of the total set. The training set was then used to predict -log MIC values for the

remaining 63 values in the test set, to assess the correlation’s predictive ability. For the predicted

and ex perimental v alues, I find t hat s = 0.328, Average A bsolute E rror ( AAE) = 0.261, a nd

Average Error (AE) = 0.01. There is therefore virtually no bi as in the predictions using Eq. 4.5

with AE equal to 0.01 log units.

The S. artemidis dataset is the second largest of the three oral bacterial strains considered

in the dissertation research. It contains -log M IC values for 125 c ompounds. Initial analysis of

the e xperimental da ta showed t hat ni ne c ompounds w ere out liers. These c ompounds a re

indicated in Table 4.1 by an asterisk “*”. In the case of both 2-cyclohexyl-4-tert-octylphenol and

2-tert-butyl-5-cyclohexylphenol, I believe that the observed minimum inhibitory concentrations

are much larger than what would be expected based on t he compound’s molecular s ize. While

one does not expect that the minimum inhibitory concentration of a given compound would be

the same for al l three bacterial s trains, i t seems highly unlikely that the difference would be as

large as two log units, as is the case with 2-cyclohexyl-4-tert-butylphenol (-log MIC = -0.238 for

S. artemidis vs. -log MIC = 2.222 f or P. gingivalis and -log MIC = 2.301 for S. sobrinus). The

nine c ompounds w ere eliminated f rom t he da taset, a nd t he f inal r egression a nalysis w as

performed to yield

-log MIC = -3.008 + 0.982E – 0.496S + 0.972A - 2.643B + 2.312V (4.7)

N = 116, s = 0.268, R2 = 0.871, R2adj = 0.866, F = 149.1.

The c orrelation f or S. artemidis is n ot quite a s g ood a s t he one obt ained f or P. gingivalis;

34

however, it has a much lower standard deviation and much higher squared correlation coefficient

than t he publ ished c orrelation of S hapiro a nd G uggenheim56 based on m olecular c onnectivity

indices (see Eq. 4.2). Figure 4.2 compares the experimental -log MIC data to calculated values

based on Eq. 4.7.

Figure 4.2. A plot of calculated values based on Eq. 4.7 versus observed values for Selenomonas artemidis.

As be fore, the S. artemidis database was di vided i nto a 58 c ompound t raining s et a nd a 58

compound test set based on -log MIC numerical values. Analyses of the experimental data in the

training set gave

-log MIC = -2.791 + 1.124E - 0.659S + 0.680A - 2.655B + 2.315V (4.8)

with N = 58, s = 0.250, R2 = 0.892, R2adj = 0.882, and F = 86.18.

Eq. 4.8 was then used to predict -log MIC values for the remaining 58 compounds in the test set.

35

For the predicted and experimental values, I find that s = 0.311, AAE = 0.242, and AE =

-0.056. There is therefore virtually no bias in the predictions using Eq. 4.7 with AE equal to

-0.056 log units.

Experimental growth data for S. sobrinus were analyzed in similar fashion. Compounds

that were identified as outliers in the preliminary regression analysis have been denoted b y an

asterisk in Table 4.1. Regression analysis yielded the following correlation:

-log MIC = -3.465 + 0.855E - 0.465S + 0.735A - 1.671B + 2.330V (4.9)

with N = 112, sd = 0.309, R2 = 0.902, R2adj = 0.898, and F = 195.8.

Again, t he s tatistics a re qui te good. Eq. 4.9 provides a reasonably accurate m athematical

description of the experimental data as shown in Figure 4.3.

Figure 4.3. A plot of calculated values based on Eq. 4.9 versus observed values for Streptococcus sobrinus.

36

The compounds were further divided into a training and test set. Experimental data in the

training set gave

-log MIC = -3.432 + 0.982E - 0.717S + 0.879A - 1.587B + 2.320V (4.10)

where N = 56, sd = 0.329, R2 = 0.894, R2adj = 0.883, and F = 84.02.

The full equation and the training equation are reasonably similar. The test statistics show that

the predictive ability is 0.241 (AE) or 0.298 (sd), and the latter is almost exactly the same as the

standard deviation for the full equation (sd = 0.309) or the training set (sd = 0.329).

There is little difference between the three equations, Eqs. 4.5, 4.7, and 4.9, although the

b-coefficient for S. artemidis, Eq. 4.7, is rather more negative than the b-coefficient in Eqs. 4.5

and 4.9. I can conclude that the factors that influence the three inhibitory concentrations toward

oral bacterial growth are qualitatively and semi-quantitatively the same. The two main factors are

solute hydrogen bond basicity that increases the minimum inhibitory concentration (decreases -

log MIC) and solute volume that decreases the minimum inhibitory concentration (increases -log

MIC). Other factors play a part but are not so important. One of the aims of the present work was

to compare the equations (Eqs. 4.5, 4.7, and 4.9) I have obtained for inhibitory concentrations

toward or al ba cterial growth, w ith e quations f or t oxicity t oward va rious or ganisms, a nd

equations for various water-to-solvent partition coefficients that might be used as model systems.

This can only be achieved if the same general equation is used for all correlations; in the present

case this is Eq. 4.4.

In Table 3 are listed the coefficients in Eq. 4.4 for a large number of water to wet solvent

partition systems No. 1 – 19, and for some partitions from water to “dry” organic solvents44 for

37

aqueous toxicity toward a number of fish species44 No. 25 – 30 and for aqueous toxicity toward

protozoa45 No. 31 and 36 the water flea45 No. 32 – 35 , the bacterium Pseudomonas putida45 No.

37 and toward Uronema parduczi61 No. 38, Chilomonas paramecium61 No. 39, and Entosiphon

sulcan61 No. 40. T he c oefficients obt ained i n t his w ork a re l isted a s P. gingivalis No. 41, S.

artemidis No. 42, and S. sobrinus No. 43. Inspection of Table 4.2 shows that in all 43 cases, the

two m ain f actors a re s olute h ydrogen bond ba sicity a nd s olute vol ume. H owever, i t i s ve ry

difficult t o r each a ny d efinite c onclusions b y s uch a n i nspection. A very us eful m ethod o f

comparing coefficients is that of Principal Component Analysis, PCA. The five coefficients e, s,

a, b, a nd v, a re t ransformed i nto f ive p rincipal c omponents t hat r etain a ll t he or iginal

information, but which are all mutually orthogonal. The first two principal components PC1 and

PC2 account for 84% of the total information in the present case, and so a plot of the scores of

PC2 against the scores of PC1 for all the 43 cases will give a visual indication of how close are

the coefficients in the various equations. A score plot is shown as Figure 4.4, where the points

(corresponding to the equations) are separately indicated as No. 1-19 for the water to wet solvent

equations, No. 20-24 for the water to dry solvent equations, No. 25-40 for the toxicity equations,

and No. 41-43 for the three equations Eqs. 4.5, 4.7, and 4.9.

38

Figure 4.4. A plot of the scores of PC2 against the scores of PC1 for the principal component analysis: ■ water to wet solvent partitions No 1-19; □ water to dry solvent partitions No 20-24; ∆ aqueous toxicity No 25-40; ▲ equations found in this work No 41-43.

Table 4.2. Comparison of coefficients in Eq. 4.4 for water to solvent partitions, and for aqueous toxicity towards various organisms.

System a No e s a b v Octanol 1 0.56 -1.05 0.03 -3.46 3.81 Isobutanol 2 0.51 -0.69 0.02 -2.26 2.78 Pentanol 3 0.58 -0.79 0.02 -2.84 3.25 Oleyl alcohol 4 -0.27 -0.53 -0.04 -4.04 4.20 Dichloromethane 5 0.00 0.02 -3.24 -4.14 4.26 Trichloromethane 6 0.16 -0.39 -3.19 -3.44 4.19 Tetrachloromethane 7 0.57 -1.25 -3.56 -4.59 4.59 Diethyl ether 8 0.56 -1.02 -0.23 -4.55 4.08 Dibutyl ether 9 0.68 -1.51 -0.81 -5.25 4.82 NPOE b 10 0.60 -0.46 -2.25 -3.88 3.57 Ethyl acetate 11 1.16 -1.40 -0.05 -3.76 3.73 PGDP c 12 0.50 -0.83 -1.02 -4.64 4.03 Olive oil 13 0.57 -0.80 -1.42 -4.98 4.21 aWater to solvent partition systems No 1-24, aqueous toxicity towards various organisms No 25-40, and toxicity equations found in this work No 41-43. bNPOE is o-nitrophenyl octyl ether. cPGDP is propylene glycol dipelarginate.43 (table continues)

39

Table 4.2 (continued). System a No e s a b v Benzene 14 0.46 -0.59 -3.10 -4.63 4.49 Nitrobenzene 15 0.58 0.00 -2.36 -4.42 4.26 Hexane 16 0.58 -1.72 -3.60 -4.76 4.34 Hexadecane 17 0.67 -1.62 -3.59 -4.87 4.43 Cyclohexane 18 0.78 -1.68 -3.74 -4.93 4.58 Carbon disulfide 19 0.69 -0.94 -3.60 -5.82 4.92 Ethylene glycol, dry 20 0.70 -0.67 0.73 -2.40 2.67 Isopropanol, dry 21 0.32 -1.02 0.45 -3.82 4.07 Ethanol, dry 22 0.41 -0.96 0.19 -3.65 3.93 DMF, dry 23 0.32 0.46 1.15 -4.84 3.76 DMSO, dry 24 0.23 0.88 1.31 -4.60 3.40 Fathead minnow 25 0.42 -0.18 0.42 -3.57 3.38 Guppy 26 0.78 -0.23 0.34 -3.05 3.25 Bluegill 27 0.58 -0.13 1.24 -3.92 3.31 Golden orfe 28 0.93 0.38 0.95 -2.39 3.24 Medaka (48 hr) 29 1.10 -0.41 0.81 -2.31 2.79 Medaka (96 hr) 30 1.05 0.27 0.93 -2.18 3.16 Tetrahymena pyriformis 31 0.45 -0.06 0.34 -2.67 2.94 Daphnia magna (24 hr) 32 0.35 0.17 0.42 -3.94 3.52 Daphnia magna (48 hr) 33 0.53 -0.03 0.22 -3.70 3.59 Ceriodaphnia dubia 34 0.37 -0.04 -0.44 -3.28 2.76 Daphnia pulex 35 0.39 0.30 0.66 -3.59 3.57 Spirostomum ambiguum 36 0.11 0.29 0.69 -3.30 3.14 Psedomonas putida 37 0.96 0.09 -0.08 -2.09 2.95 Uronema parduczi 38 1.43 0.43 0.94 -1.03 2.60 Chilomonas param. 39 1.13 0.16 0.44 -1.83 2.45 Entosiphon sulcan. 40 0.89 0.36 1.11 -2.50 2.85 Porphyromonas gingivalis 41 1.11 -0.61 0.73 -1.90 2.42 Selenomonas artemidis 42 0.98 -0.50 0.97 -2.64 2.31 Streptococcus sobrinus 43 0.86 -0.47 0.74 -1.67 2.33 aWater to solvent partition systems No 1-24, aqueous toxicity towards various organisms No 25-40, and toxicity equations found in this work No 41-43. bNPOE is o-nitrophenyl octyl ether. cPGDP is propylene glycol dipelarginate.43

It is immediately clear from Figure 4.4 that nearly all of the water to wet solvent systems

are far away from all the biological systems, in terms of chemistry, except for the water to wet

isobutanol a nd w ater t o wet pe ntanol s ystems. It i s no c oincidence t hat in t hese s ystems t he

40

solvent i ncludes a l arge p ercentage o f w ater, b ecause t his influences t he co efficients

considerably. However, some of the water to dry solvent systems are chemically quite close to

the bi ological s ystems, e specially w ater t o dr y e thylene g lycol ( No. 20) but a lso dr y

dimethylformamide ( DMF, N o. 23 ) a nd d ry di methylsulfoxide ( DMSO, N o. 24) . T hese t hree

systems all h ave p ositive a -coeffficients, ju st lik e th e b iological s ystems. T he th ree s ystems

considered in this work are themselves close to only some of the other biological systems shown

in Table 4.2, namely No. 28 – 30, and 37 – 40. Since the main terms in all equations are the b.B

and v.V t erms, f urther i nformation m ight b e obt ained f rom a pl ot o f b -coefficients against v -

coefficients, a s s hown i n Figure 4.5. N ow it i s v ery clear th at th e e quations f or i nhibitory

concentrations toward oral bacterial growth are characterized by more positive b-coefficients and

more negative v coefficients. S ince the water to solvent equations are l argely characterized b y

more negative b-coefficients and more positive v-coefficients, few of them are suitable models

for inhibitory concentrations toward oral bacterial growth. The latter systems behave as though

the s olute i s t ransferred f rom a n a queous environment t o a n e nvironment t hat i s e ven m ore

water-like than water saturated isobutanol. The latter contains no less than 0.46 mol fraction of

water. I conclude that no water to wet solvent system I have examined will be a suitable model

for i nhibitory concentrations t oward or al b acterial gr owth. T his i ncludes t he w ater t o o ctanol

system, widely used as a model for biological systems. As can be seen from Figures 4.4 and 4.5,

the coefficients for the water to 1-octanol system, No. 1, are quite far away from the coefficients

in the equations for inhibitory concentrations toward oral bacterial growth.

41

Figure 4.5. A plot of b-coefficients against v-coefficients for the systems in Table 3: ■ water to wet solvent partitions No. 1-19; □ water to dry solvent partitions No. 20-24; ∆ aqueous toxicity No. 25-40; ▲ equations found in this work No. 41-43.

Figure 4.5 shows a lso t hat t he poi nts f or dr y e thylene glycol ( No. 20) , as w ell a s w et

isobutanol (No. 2) and wet pentanol (No. 3) lie well within the range of those for the biological

systems. This, together with the fact that Figure 4.5 can accommodate the partition systems and

the b iological s ystems all o n mo re o r le ss th e s ame lin e, s uggests th at the ma in me chanistic

feature of the biological systems is simple transfer from one phase to another, as is the case for

the w ater t o w et s olvents a nd w ater t o dr y s olvents. T he t hree s ystems I have s tudied i n t he

present work behave as though t ransfer was taking place from an aqueous environment to one

that is c haracterized b y high d ipolarity/polarizability ( positive s -coefficient), s trong h ydrogen

bond ba sicity ( large a coefficient), m oderate h ydrogen bond a cidity ( negative but not ve ry

negative b -coefficient), an d m oderate hydrophobicity (positive but not ve ry pos itive v

coefficient). Again, the fact that the equations for minimum inhibitory concentration of organic

42

compounds f or growth i nhibition toward P. gingivalis, S. artemidis, a nd S. sorbrinius can b e

analyzed in the same way as equations for partition of organic compounds from water to wet and

dry s olvents, s uggests t hat t he f actors i nfluencing m inimum i nhibitory c oncentration a re

qualitatively the same as those that influence partition. In other words, the minimum inhibitory

concentrations lead to equations that are of the same qualitative form, and are semi-quantitatively

similar, to equations for passive partition of compounds from water to organic solvents.

Comparison of equation coefficients through PCA can also provide valuable information

that can be used in experimental design. S uppose that one wished to assess the toxicity that a

series of halogenated hydrocarbons had towards aquatic organisms. It would be quite expensive

and time-consuming to measure the toxicity that each halogenated hydrocarbon had towards each

fish s pecies, each t ype of w ater f lea, ea ch p rotozoa, an d ea ch b acterium. A m ore r ational

experimental design would be to cover the entire PCA space and study only a limited number of

the closely clustered aquatic organisms. F or example, in Figure 4.4 fathead minnow (No. 20)

and bluegill (No. 22) are chemically s imilar. O ne should be able to get a very good idea of a

compound’s toxicity towards bluegill through experimental measurements on fathead minnows.

43

CHAPTER 5

ENTHALPY OF SOLVATION CORRELATIONS FOR GASEOUS SOLUTES DISSOLVED

IN WATER AND VARIOUS ORGANIC SOLVENTS

5.1. Introduction

Accurate p rediction o f s olution-phase p roperties i s i mportant i n m any industrial

applications, r anging f rom t he de sign of c hemical s eparation pr ocesses, t o t he selection of

reaction media for opt imizing product yields, to the synthesis of potential new drug molecules

that r equire d elivery t o a s pecific b ody organ o r t arget s ite. The t hermodynamic pr operties of

molecules i n v arious ch emical an d b iological p rocesses a re greatly i nfluenced b y m olecular

interactions between the molecule and its solubilizing media. S uch in teractions may be either

non-specific o r s pecific i n n ature. N on-specific i nteractions ar e d escribed b y a random

distribution of molecules throughout the entire solution. Specific interactions, on the other hand,

are generally much stronger and often result in a specific geometric orientation of one molecule

with respect to an adjacent molecule. E ven in systems known to contain specific interactions,

the need to properly account for non-specific interactions has been long recognized.

The partition coefficient is the ratio of the concentration of a chemical species adsorbed

or di ssolved by one phase to the concentration o f the species in the other phase. Historically,

many of t he ve ry e arly s tudies de termining p artition c oefficients f ocused on m easuring and

developing predictive correlations for the 1-octanol and water system. This system is thought to

mimic s everal imp ortant b iological p rocesses. The a ir-to-water an d ai r-to-octanol pa rtition

coefficients, Kw and KOTOH, as well as their temperature dependence, are used in predicting the

fate a nd t ransport of vo latile or ganic c ompounds ( VOCs) i n t he e nvironment. O f pa rticular

interest are the processes involving the partition of VOCs from the gas phase into natural water

44

systems and water droplets, and into systems containing natural organic matter. Measured air-to-

octanol partition c oefficient da ta ha ve be en us ed w ith s uccess t o de scribe t he pa rtitioning

behavior of organic compounds between the gas phase and soils,62,63 plants,64-68 aerosols,69-72 and

human f aeces.73 Temperature d ependence o f K w and K OTOH is n eeded t o p redict t he e ffect o f

ambient temperature changes on environmental phase distribution, to explain the accumulation

of VOCs in remote mountainous regions and cold arctic climates, and to describe the release of

organic contaminants f rom me lting ic e a nd s now. A s additional e xperimental d ata b ecame

available, researchers expanded their studies to include more organic solvents.

During the last ten years Acree et al. have reported partition coefficient correlations (both

water-to o rganic s olvent a nd gas-to-organic s olvent) f or m ore t han fifty common or ganic

solvents. As part of my dissertation research I developed mathematical correlation equations for

predicting the enthalpies of solvation of gaseous solutes in water and in several organic solvents

based on t he A braham s olvation pa rameter m odel. The or ganic s olvents s tudied w ere carbon

tetrachloride, t oluene, d imethyl s ulfoxide, pr opylene c arbonate, di butyl e ther, e thyl a cetate,

chloroform, 1,2-dichloroethane, benzene, several alkane solvents (hexane, heptanes, hexadecane,

cyclohexane), a lcohol solvents ( methanol, e thanol, 1-butanol, 1 -octanol a nd tert-butanol),

“generic” linear a lkanes, N ,N-dimethylformamide, acet one, an d ac etonitrile. E ach derived

correlation was based on experimental data for a minimum of 100 organic and inorganic solutes.

Published c orrelations have f or t he m ost p art pe rtained t o 298.15 K. H owever, m anufacturing

and biological processes are not restricted to 298.15 K, and there is a growing need to estimate

partitioning properties of organic solvents at other temperatures.

45

From a thermodynamic s tandpoint, t he gas-to-condensed phase p artition coefficient, K,

and water-to-organic solvent partition coefficient, P, can be estimated by

log10 K(at T ) − log10 K(at 298.15 K) = −∆HSolv2.303R(1/T −1/298.15) (5.1)

and

log10 P(at T) − log10 P(at 298.15 K) = −∆Htrans2.303R(1/T − 1/298.15) (5.2)

at ot her t emperatures from m easured pa rtition c oefficient da ta at 298.15 K a nd t he s olute’s

enthalpy of solvation, ∆HSolv, or enthalpy of transfer, ∆Htrans, between the two condensed phases.

The enthalpy of transfer needed in Eq. 5.2 is defined as

∆Htrans = ∆HSolv,Org − ∆HSolv,W (5.3)

the difference is the enthalpy of solvation of the solute in the specified organic solvent minus its

enthalpy of solvation in water. All of the above equations assume zero heat capacity changes.

5.2. Experimental Methods

An ex tensive s earch w as co nducted o f t he ch emical l iterature i n o rder t o co mpile

experimental enthalpy o f s olvation da ta. A l arge num ber of pa pers also r eported e xperimental

partial molar enthalpies of solution of liquid and crystalline organic compounds. The latter data

was d etermined b y ei ther d irect c alorimetric m ethods o r cal culated b ased o n t he t emperature

dependence of measured infinite dilution activity coefficient data, and the published values were

converted to gas-to-organic solvent enthalpies of transfer as follows

46

Liquid solutes: ∆HSolv = ∆HSoln − ∆HVap,298K (5.4)

Crystalline solutes: ∆HSolv = ∆HSoln − ∆HSub,298K (5.5)

by s ubtracting t he s olute’s s tandard m olar e nthalpy of v aporization,74 ∆HVap,298K, or s tandard

molar e nthalpy o f s ublimation,75 ∆HSub,298K, a t 298.15 K . F or pur poses of my studies I

considered enthalpies of solvation, ∆HSolv, and what will be called “inner energies”, ∆USolv, to be

equivalent. G oss76 discusses t he d ifference b etween t he ∆HSolv and ∆USolv in te rms o f th e

concentration units used in expressing the gas-phase concentrations of the Henry’s law constant.

At 298.15 K the difference between the quantities amounts to about 2.5 kJ·mol−1 that is less than

the ex perimental u ncertainty associated w ith m any o f t he o bserved v alues.76 Given t he s light

numerical di fference be tween t he t wo va lues un der nor mal e nvironmental c onditions, I have

combined both sets of numerical values into a single database, as has been done in the past by

research groups that have developed predictive methods for enthalpies of solvation. Most of my

tabulated values are enthalpies of solvation; however, there may be a few “inner energies” listed

in the Supplemental Tables that were mislabeled as enthalpies in the original data source.

Based o n an i nitial as sessment o f t he av ailable ex perimental d ata, I eliminated f rom

consideration a ll e xperimental d ata th at p ertained to te mperatures o utside o f th e te mperature

range of 283 to 318 K. Enthalpies of solvation are temperature dependent, and I did not want to

introduce large errors in the database by including experimental data far removed from 298 K. A

recent p aper77 addressed th e mis interpretations t hat can r esult w henever t he t emperature

dependence i s not t aken i nto a ccount. A lso e xcluded w ere va lues ba sed on s olubility

measurements where the equilibrium solid phase might be a solvated form of the solid solute.

47

For s everal s olutes t here w ere m ultiple, i ndependently d etermined v alues. In s uch c ases, I

selected d irect cal orimetric d ata o ver i ndirect v alues b ased o n t he t emperature d ependence o f

measured solubilities or infinite dilution activity coefficients. Using the forementioned criteria,

experimental molar enthalpies of solvation were selected for regression analysis.

For the analysis of the data, I use the two linear free energy equations of Abraham et al.

1,2 In Eq. 5.7, the descriptor V is the McGowan volume

SP = c + e·E + s·S + a·A + b·B + l·L (5.6)

SP = c + e·E + s·S + a·A + b·B + v·V. (5.7)

Most published studies using t he A braham m odel have dealt w ith p artition p rocesses

related to the Gibbs energy of transfer, where the dependent solute property, SP, would be either

the logarithm of the gas-to-liquid (Eq. 5.6) or the logarithm of the water-to-organic solvent (Eq.

5.7) partition coefficient. The basic model can be used to correlate enthalpies of solvation and

enthalpies of solute transfer from one condensed phase to a second condensed phase. Regression

equations us ing E q. 5.6 solving f or ∆H solv correspond t o t he t emperature d erivative of t he

respective g as-to-liquid p artition c oefficient c orrelation, i.e., ΔHSolv = R∂lnK/∂(1/T). F rom a

thermodynamic s tandpoint, the temperature derivative o f the logarithm of the water-to-organic

solvent partition coefficient would be related to enthalpy of t ransfer f rom water to the organic

solvent, i.e., ΔHSolv = R∂lnP/∂(1/T). ∆ HSolv correlations ba sed on E q. 5.7, w hich us es t he

McGowan volume, V-descriptor, which is more readily available than the L-descriptor. The V-

descriptor is easily calculable from the individual atomic sizes and numbers of bonds in the.78

Molecular de scriptors f or a ll of t he c ompounds c onsidered a re a lso t abulated. T he

48

tabulated values came from our solute descriptor database, which now contains values for more

than 4,000 di fferent or ganic a nd or ganometallic c ompounds. T he de scriptors w ere obt ained

exactly as described before, using various types of experimental data, including water to solvent

partitions, gas to solvent partitions, and solubility and chromatographic data.2 Solute descriptors

used ar e all b ased o n experimental d ata. T here i s al so co mmercial s oftware79 and s everal

published e stimation s chemes58,80-82 available f or cal culating the num erical va lues o f s olute

descriptors from molecular structural information if one is unable to find the necessary partition,

solubility and/or chromatographic data.

5.3. Results and Discussion

5.3.1. 1-Octanol and Water*

Results and Discussion

From th e p ublished c hemical lite rature, I assembled i n T able S 5.1 ( Supplementary

Material) en thalpy of s olvation da ta f or 372 s olutes di ssolved i n w ater a t 298 K with da ta

covering a reasonable wide range of compound type and descriptor values. Preliminary analysis

of th is e xperimental d ata yielded s everal o utliers, which i ncluded t he c ompounds 4 -

chlorophenol, N -methylpyrrolidine, te trachloroethylene, a nd 1 -octylamine. In t he cas e o f 1 -

octylamine, t he publ ished e xperimental va lue w as -52.3 kJ /mol. T he r eported va lue doe s not

follow the observed trend of alkylamines, which become more exothermic with increasing alkyl

chain l ength. For example, t he enthalpy of solvation f or t he a lkylamines – methylamine

(∆Hsolv,w = -45.3 kJ/mol), ethylamine ((∆H solv,w

= -53.7 kJ/mol), 1-propylamine ((∆Hsolv,w = -56.0

kJ/mol), 1-butylamine (∆Hsolv,w = -59.0 kJ/mol), 1-pentylamine (∆H solv,w

= -62.1 kJ/mol), and 1- * Reproduced in part with permission from C. Mintz, M. Clark, W. E. Acree, Jr., and M. H. Abraham, J. Chem. Inf. Model. 47 (1), 115 (2007). Copyright 200 American Chemical Society.

49

hexylamine (∆H solv,w = -65.9 kJ /mol).71 A s imilar s ituation was f ound w ith 4 -chlorophenol i n

which t he reported v alue (∆H solv,w = -35.9 kJ /mol)57 was f ar out o f l ine w ith t he va lue f or 3 -

chlorophenol (∆Hsolv,w = -50.3 kJ/mol). O nce the four outliers were removed from the data set,

the final regression analysis using SPSS statistical software30 yielded

∆HSolv,w (kJ/mol) = -13.310(0.457) + 9.910(0.814)E + 2.836(0.807)S -

32.010(1.102)A -41.816(0.781)B - 6.354(0.200)L (5.8)

(N = 368, SD = 3.68, R2 = 0.964, R2adj = 0.964, F = 1950.5).

Here an d el sewhere, N co rresponds t o t he num ber of s olutes, R de notes t he c orrelation

coefficient, S D i s t he s tandard de viation, a nd F corresponds t o t he F isher F statistic. A fter

adding the additional compound erythritol a new regression equation was produced.

∆HSolv,w (kJ/mol) = -6.952(0.651) + 1.415(0.770)E - 2.859(0.855)S -

34.086(1.225)A - 42.686(0.850)B - 22.720(0.800)V (5.9)

(N = 369, SD = 4.04, R2 = 0.959, R2adj = 0.958, F = 1688.2).

I did not include erythritol in Eq. 5.8 regression analysis because its L descriptor was unknown.

However, I wanted t o i nclude i t i n de veloping a r egression e quation be cause i t ha s a l arge

negative enthalpy o f solvation, and i t he lps to demonstrate the range of data that our model i s

able t o ac curately predict. T he d ata s et u sed i n this r egression a nalysis spans a r ange of 150

kJ/mol. Both Eqs. 5.8 and 5.9 are statistically very good, with standard deviations of 3.7 kJ/mol

and 4. 0 kJ/mol, respectively. From a t hermodynamic s tandpoint, Eq. 5.8 is s lightly b etter

50

statistically, however, Eq. 5.9 is useful when the L descriptor is unknown. The V descriptor can

be c alculated f rom t he i ndividual a tomic s izes a nd num bers of bonds i n t he m olecule.83 See

Figure 5.1 and Figure 5.2 for a plot of the calculated values of ∆ HSolv,w based on Eqs. 5.8 and 5.9

against t he obs erved va lues. It i s i nteresting t o note t hat t he r are gases, i norganic gases, a nd

polyaromatic h ydrocarbons al l f it Eqs. 5.8 and 5.9, but t hey do not f it t he corresponding

equations in the gas-to-water partition coefficient.84

Figure 5.1. Plot of the calculated values of ∆HSolv,W on Eq. 5.8 against the observed values.

51

Figure 5.2. Plot of the calculated values of ∆HSolv,W on Eq. 5.9 against the observed values.

In or der t o a ccess t he predictive a bility o f Eq. 5.8 the 368 c ompounds w ere di vided i nto a

training s et a nd te st s et b y allowing S PSS to s oftware50 to r andomly select ha lf of t he

experimental data points. T he selected compounds served as the training set and the remaining

compounds became the test set. Regression analysis of the training set experimental values gave

the equation

∆HSolv,W (kJ/mol) = -13.572(0.635) + 9.211(1.174)E + 1.748(1.003)S -

31.460(1.561)A -41.665(1.103)B - 6.008(0.280)L (5.10)

(N = 184, SD = 3.58, R2 = 0.967, R2adj = 0.966, and F = 1029.4).

The equation coefficients of the training set are very similar to the coefficients for the full data

set showing that the training data set is a representative sample of the total data set. The training

set equation was then used to predict ∆HSolv,W values for the 184 compounds in the test set. For

the pr edicted a nd e xperimental v alues, I find t hat S D = 3.83, a verage a bsolute e rror ( AAE) =

3.19, and average error (AE) = -0.16. There is therefore very little bias in the predictions using

52

Eq. 5.8 with AE equal to -0.16 kJ/mol. The test and training set analyses were performed three

times. This is the first time that any predictive assessment of an equation for ∆HSolv,W has been

made.

My literature s earch for 1 -octanol f ound 138 enthalpies of s olvation va lues (see T able

S5.2 in Supplemental Materials). Applying the general solvation equations to these values using

Minitab software yields

∆HSolv,OTOH = -6.49(0.57) - 1.04(1.13)E + 5.89(1.39)S - 53.99(2.39)A -

8.99(1.36)B - 9.18(0.18)L (5.11)

(N = 138, SD = 2.66, R2 =0.988, F = 2242.0)

∆HSolv,OTOH = 1.57(1.19) - 13.34(1.75)E +0.32(2.37)S - 58.76(4.10)A -

7.63(2.33)B - 34.05(1.20)V (5.12)

(N = 138, SD = 4.53, R2 = 0.966, F = 752.0).

Equation 5.11 covers a r ange of va lues s panning 97 kJ /mol a nd i s r ecommended f or t he

prediction of ∆HSolv,OTOH over Eq. 5.12. The standard deviation of Eq. 5.11 is better and its gas-

to-solvent p artition c oefficients r epresent the r are gases, i norganic g ases, p olyaromatic

hydrocarbons, the polychorobiphenyls, and the polychloronaphthalenes. The descriptors for all

of the polychlorobiphenyls85 and a ll the polychloronaphthalenes86 were already known making

the prediction of ∆HSolv,OTOH trivial for these environmental pollutants.

To test the predictive ability of Eq. 5.11, I split the data set into a training and test set just

as I did for the water data set. The regression analysis of the 69 training set values resulted in the

equation

53

∆HSolv,OTOH = -6.48(0.83) - 1.24(1.54)E + 7.35(1.95)S - 54.81(3.11)A -

8.42(1.81)B - 9.38(0.24)L (5.13)

(N = 69, SD = 2.60, R2 = 0.989, F = 1180.1).

There is very little difference between the equation coefficients for the full dataset (Eq. 5.11) and

the tr aining d ata s et correlations ( Eq. 5.13) in dicating th at th e tr aining s et c overs a s imilar

chemical s pace t o t hat of t he t otal s et. T he t raining s et e quation w as t hen us ed t o pr edict

∆HSolv,OTOH for the remaining 69 compounds in the test set. For the predicted and experimental

values, I find that AE = 0.08, AAE = 2.07, SD = 2.79,and RMSE = 2.77 kJ/mol. There is almost

no bias in the predictions, and these statistics confirm that the full equation can be used to predict

further values of ∆HSolv,OTOH to within a SD of about 2.8 kJ/mol.

5.3.2. Carbon Tetrachloride and Toluene

Results and Discussion

I have as sembled i n Table S 5.3 (Supplemental M aterials) values of ∆HSolv,CT for 1 77

gaseous solutes dissolved in carbon tetrachloride covering a reasonably wide range of compound

type and d escriptor v alues. P reliminary analysis o f t he ex perimental data yielded a co rrelation

equation,

∆HSolv,CT (kJ/mol) = −6.402(0.377) + 3.583(0.708)E − 4.803(0.750)S −

0.877(1.078)A − 7.015(0.741)B − 8.898(0.130)L (5.14)

(N = 177, SD = 2.066, R2 = 0.984, R2adj = 0.984, F = 2141.4)

that had a relatively small numerical value for the A-coefficient. The A-coefficient was set equal

54

to zero for the Abraham model, and the final regression analyses were performed to give,

∆HSolv,CT (kJ/mol) = −6.441(0.374) + 3.517(0.703)E − 4.824(0.749)S −

7.045(0.740)B − 8.886(0.129)L (5.15)

(N = 177, SD = 2.070, R2 = 0.984, R2adj = 0.984, F = 2681.8)

∆HSolv,CT (kJ/mol) = 3.281(0.671) − 6.024(0.893)E − 14.130(1.078)S −

3.383(1.563)A − 4.729(1.049)B − 34.154(0.698)V (5.16)

(N = 177, SD = 2.84, R2 = 0.970, R2adj = 0.969, F = 1133.6).

There was very little decrease in descriptive ability resulting from setting the a-coefficient equal

to zero. The standard deviation increased very slightly from SD = 2.066 (Eq. 5.14) to 2.070 (Eq.

5.15). I did c onsider t he pos sibility of s etting t he b-coefficient e qual t o z ero; how ever, t his

caused the standard deviation to increase significantly to SD = 2.55.

55

Figure 5.3. A plot of the calculated values of ∆HSolv,CT in Eq. 5.15 against the observed values

All regression analyses were performed using SPSS statistical software. Both Eqs. 5.15

and 5.16 are s tatistically v ery good w ith s tandard d eviations of 2. 070 a nd 2.84 kJ/mol,

respectively, for a data set that covers a range o f 105 kJ/mol. See Figure 5.3 for a plot of the

calculated values of ∆HSolv,CT based on E q. 5.15 against the observed values. Equation 5.15 is

slightly th e b etter equation s tatistically, and f rom a th ermodynamic s tandpoint Eq. 5.15 is th e

enthalpic t emperature d erivative o f t he A braham m odel’s g as-to c ondensed pha se t ransfer

equation. Eq. 5.16 might be more useful in some predictive applications, in instances where the

L-descriptor i s not know n. Eq. 5.16 uses t he McGowan volume, V-descriptor, which i s easily

calculable from t he i ndividual a tomic s izes a nd num bers of bonds i n t he m olecule83. N o

noticeable pattern w as observed r egarding t he m odel’s ab ility t o describe m ore accu rately any

particular class of compound. The l argest deviation be tween the observed and ba ck-calculated

values for Eq. 5.15 is for 1-nitronaphthalene (∆HSolv,CT = −64.4 kJ·mol−1 (obs.) versus ∆HSolv,CT

= −73 .2 kJ·mol−1 (calc.)), followed by diiodomethane (∆HSolv,CT = −41 .9 kJ ·mol−1 (obs.) versus

56

∆HSolv,CT = −33 .4 kJ ·mol−1 (calc.)), 1 5-crown-5 ( ∆HSolv,CT = −83 .4 k J·mol−1 (obs.) ve rsus

∆HSolv,CT = −76 .9 kJ ·mol−1 (calc.)), a nd 2,2,4, 4-tetramethyl-3-pentanone ( ∆HSolv,CT = −44 .9

kJ·mol−1 (obs.) versus ∆HSolv,CT = −54.3 kJ·mol−1 (calc.)).

The enthalpy of solution for solutes dissolved in carbon tetrachloride has been considered

in s everal e arlier publ ications. Carbon t etrachloride, as w ell as cyclohexane t etrachloride, h as

been used as an inert solvent in the “pure base” model of Arnett et al.87,88 and in the “E and C”

model of Drago et al.89,90 for obtaining enthalpies of complex formation. Neither approach was

capable of pr edicting enthalpies of s olvation i n c arbon t etrachloride. S olomonov a nd

coworkers91 proposed a simple method for extracting specific solute–solvent i nteractions f rom

measured enthalpies of s olvation. T he m ethod a ssumed t hat t he di fference b etween t he

nonspecific i nteraction contribution i n t he s olvation e nthalpy f or t he s olute di ssolved i n t he

desired s olvent a nd di ssolved i n c arbon t etrachloride w as pr oportional t o t he di fference i n t he

nonspecific i nteractional s olvation e nthalpic c ontribution of t he solute i n s olvents c arbon

tetrachloride a nd c yclohexane. W hile t he a uthors di d e xamine s everal pos sible r elationships

between the calculated proportionality constant and different solvent properties, there was never

a mathematical expression given that allowed outright predictions of the enthalpies of solvation

(or solution) of solutes in carbon tetrachloride. To my knowledge, Eqs. 5.15 and 5.16 are the first

expressions t hat a llow s uch pr edictions. In o rder t o a ssess t he p redictive ability o f Eq. 5.15, I

divided the 177 da ta points into a t raining set and a t est set by a llowing the SPSS software to

randomly select h alf o f t he ex perimental d ata points. T he s elected d ata p oints b ecame t he

training set and the compounds that were left served as the test set. Analysis of the experimental

data in the training set gave

∆HSolv,CT (kJ/mol)= − 6.808(0.500) + 3.795(0.948)E − 5.109(1.037)S −

57

5.248(1.082)B − 8.900(0.159)L (5.17)

(with N = 89, SD = 2.04, R2 = 0.986, R2adj = 0.985 and F = 1452.5).

Again, t he A-coefficient w as s et eq ual t o zero. T here i s v ery l ittle difference i n t he

equation co efficients for t he f ull d ataset an d t raining d ataset correlations. T he t raining s et

equation was then used to predict ∆HSolv,CT values for the 88 c ompounds in the test set. For the

predicted and experimental values, I find that SD = 2.23, AAE (average absolute error) = 1.52,

and AE (average error) = − 0 .1810. There is therefore very little bias in the predictions using Eq.

5.17 with AE equal to − 0.1810 kJ/mol.

Figure 5.4. A plot of the calculated values of ∆HSolv,Tol in Eq. 5.18 against the observed values

In Table S5.4 (Supplemental Material) are collected values of the enthalpies of solvation

of 108 g aseous s olutes i n t oluene, w hich i s an a romatic h ydrocarbon s olvent. R egression

analyses of the experimental ∆HSolv,Tol data in accordance with the Abraham model yielded

∆HSolv,Tol = −5.291(0.425) + 3.511(1.169)E − 12.943(1.170)S − 6.317(1.685)A −

58

4.434(1.008)B − 8.382(0.156)L (5.18)

(N = 108, SD = 2.19, R2 = 0.987, R2adj = 0.986, F = 1558.7)

∆HSolv,Tol = 4.199(0.756) − 7.143(1.534)E − 20.440(1.629)S − 10.006(2.353)A −

3.439(1.407)B − 32.235(0.843)V (5.19)

(N = 108, SD = 3.03, R2 = 0.975, R2adj = 0.974, F = 804.7).

Both E qs. 5.18 a nd 5.19 are s tatistically very good w ith s tandard de viations of 2.19 and 3.03

kJ/mol for a data set that covers a range of 116 kJ/mol. Figure 5.4 compares the calculated values

of ∆HSolv,Tol based on E q. 5.18 against the observed values. I did consider setting the A- and/or

B-coefficients in Eq. 5.18 equal to zero; however, this led to a much poorer correlation (SD =

2.33 with A = 0; SD = 2.39 with B = 0; SD = 2.61 w ith both A = 0 a nd B = 0). No noticeable

pattern w as obs erved regarding t he m odel’s a bility t o d escribe m ore a ccurately an y p articular

class of compound. The largest deviation between the observed and back-calculated values for

Eq. 5.18 is fo r 18-crown-6 (∆HSolv,Tol = −106 .0 kJ /mol (obs.) ve rsus ∆HSolv,Tol = −97 .1 kJ /mol

(calc.)), f ollowed b y 2, 2,4,4-tetramethyl-3-pentanone ( ∆HSolv,Tol = −43 .0 kJ /mol (obs.) ve rsus

∆HSolv,Tol = −51.1 kJ/mol (calc.)) and 1-nitronaphthalene (∆HSolv,Tol = −69.5 kJ/mol (obs.) versus

∆HSolv,Tol = −62 .4 kJ /mol (calc.)). 1 -Nitronaphthalene a nd 2,2,4,4 -tetramethyl-3-pentanone

exhibited the larger of the deviations noted for the carbon tetrachloride correlation. Two possible

explanations for the large deviations for 1-nitronaphthalene and 2,2,4,4-tetramethyl-3-pentanone

would be e rrors i n t he e nthalpy of s ublimation a nd e nthalpy of va porization da ta us ed i n

calculating the enthalpies of solvation from the measured enthalpies of solution, or perhaps the

solute descriptors need to be recalculated. To my knowledge there has been no previous attempt

59

to correlate ∆HSolv,Tol data.

In order to assess the predictive ability of Eq. 5.18, I divided the 108 da ta points into a

training s et a nd a te st set b y allowing th e S PSS s oftware to r andomly s elect h alf o f th e

experimental data points. The s elected data points became the t raining set and the compounds

that were left served as the test set. Analysis of the experimental data in the training set gave

∆HSolv,Tol = −5.107(0.525) + 0.226(1.583)E − 11.339(1.510)S − 2.250(2.385)A

− 6.984(1.324)B − 8.272(0.186)L (5.20)

with N = 54, SD = 2.00, R2 = 0.991, R2adj = 0.990 and F = 1085.4. There is very little difference

in the equation coefficients for the full dataset and training dataset correlations. The training set

equation was then used to predict ∆HSolv,Tol values for the 54 compounds in the test set. For the

predicted and experimental values, I find that SD = 2.66, AAE (average absolute error) = 1.919,

and AE (average error) = 0.478. T here is therefore very l ittle bias in the predictions using Eq.

5.20 with A E e qual t o 0.478 kJ /mol. A n unc ertainty/error of ± 2 kJ /mol in t he e nthalpy of

solvation results in an error of s lightly less than 0.04 log uni ts in extrapolating a log10K value

measured at 298.15 to 313.15 K. This level of error will be sufficient for most practical chemical

and e ngineering a pplications. T he c orrelations pr esented i n t his s tudy further doc ument t he

applicability of t he A braham s olvation pa rameter m odel t o di fferent s olute t ransfer pr operties.

Past s tudies have shown that the basic model describes a wide range of equilibrium properties

that are governed by the Gibbs energy for solute transfer between two condensed phases. In the

present s tudy I find t hat t he m odel a lso pr ovides a n a ccurate m athematical de scription of t he

enthalpic c ontributions t o t he G ibbs e nergy, a nd b y i nference, one can assume t hat t he m odel

60

describes t he e ntropic c ontributions a s w ell. T he de rived c orrelations for t he enthalpies of

solvation pr ovide one a dditional m ethod f or c alculating a num erical va lue of t he Abraham L-

descriptor in the absence of accurate gas chromatographic retention data.

5.3.3. DMSO and Propylene Carbonate

Results and Discussion

Assembled i n T able S 5.5 (Supplemental M aterial) are values o f ∆HSolv,DMSO for 150

gaseous solutes di ssolved in dimethyl sulfoxide (DMSO) covering a r easonably w ide r ange o f

compound type and descriptor values.

Analysis of the experimental data yielded the following correlation equations:

∆HSolv,DMSO (kJ/mol) = −2.546(0.703) − 0.329(0.952)E − 18.448(1.139)S

−47.419(1.653)A − 5.861(1.004)B − 6.380(0.197)L (5.21)

(with N = 150, SD = 2.80, R2 = 0.967, R2adj = 0.966, F = 850.6)

∆HSolv,DMSO (kJ/mol) = 2.184(0.845) − 7.233(0.951)E − 24.071(1.175)S −

50.992(1.744)A − 5.182(1.051)B − 22.301(0.723)V (5.22)

(with N = 150, SD = 2.92, R2 = 0.965, R2adj = 0.963, F = 779.8).

All regression analyses were performed using SPSS statistical software. Both Eqs. 5.21 and 5.22

are s tatistically very good with s tandard deviations of 2.80 a nd 2.92 kJ/mol for a da ta set that

covers a range of 91.76 kJ /mol. See Figure 5.5 for a plot of the calculated values of ∆HSolv,DMSO

based on E q. 5.21 against t he obs erved v alues. E q. 5.21 is s lightly the b etter eq uation

statistically, a nd f rom a th ermodynamic s tandpoint E q. 5.21 is th e enthalpic te mperature

61

derivative of the Abraham model’s gas-to-condensed phase transfer equation. Eq. 5.22 might be

more useful i n some pr edictive applications i n i nstances where t he L-descriptor i s not known.

Eq. 5.22 uses the McGowan volume, V descriptor, which is easily calculable from the individual

atomic sizes and numbers of bonds in the molecule.83 To my knowledge, Eqs. 5.21 and 5.22 are

the f irst expressions t hat a llow one t o pr edict t he e nthalpy of s olvation of gaseous s olutes i n

DMSO.

Figure 5.5. A plot of the calculated values of ∆HSolv,DMSO on Eq. 5.21 against the observed values.

Each o f t he eq uation c oefficients i n t he A braham m odel en codes ch emical i nformation. F or

example t he l arge a-coefficient in E q. 5.21 indicates th at DMSO exhibits s trong h ydrogen-

bonding ba sicity c haracter, w hich is c onsistent w ith the mo lecule’s mo lecular s tructure,

CH3S(O)CH3. T he t wo lone e lectron pa irs on t he ox ygen a tom s erve as a cceptor s ites f or

hydrogen-bond formation. The small, nonzero b-coefficient suggests a very weak hydrogen-bond

acidity c haracter. W hile di methyl s ulfoxide i s not nor mally c onsidered to pos sess a ny a cidic

62

hydrogen(s), s everal pu blished s tudies ha ve m entioned t he pos sibility t hat one o f t he C –H

hydrogens m ay e ngage in h ydrogen bondi ng. F ujimoto et al .92 rationalized t he pr oton N MR

spectra of s olutions of di methyl s ulfoxide, 2 -propanol a nd/or a cetone w ith t etrasulfonated

derivatives of calix[4]resorcarene dissolved in D2O in terms of well-defined complexes resulting

from C H–π interactions b etween t he el ectron r ich b enzene r ings o n t he cal ix[4]resorcarene

derivatives and the polarized C–H bonds on the three guest molecules.

The authors presented a very compelling argument for why CH– π interactions should be

regarded as C–H· · ·π hydrogen bonding. Leggett93 had earlier estimated acidity parameters for

solvents l ike di methyl s ulfoxide, pr opylene c arbonate, N,N-dimethylformamide a nd

butyrolactone t hat w ere believed t o not pos sess hydrogen donor ability. At t his t ime I do not

place too much significance on the nonzero b-coefficient in Eq. 5.21 as it possible to still obtain

a very good correlation:

∆HSolv,DMSO (kJ/mol)= −2.767(0.778) + 2.477(0.911)E − 22.053(1.062)S −

50.701(1.724)A − 6.563(0.216)L (5.23)

(N = 150, SD = 3.11, R2 = 0.969, R2adj = 0.967, F = 539.1)

by setting the b-coefficient equal to zero. The s tandard deviation increased s lightly f rom SD =

2.80 ( Eq. 5.21) t o S D = 3.11 (Eq. 5.23). G iven t he l ikely experimental u ncertainty i n t he

measured enthalpy of solvation data there is virtually no difference in the two correlations.

In order to assess the predictive ability of Eq. 5.21, the 150 data points were divided into

a t raining s et an d a t est s et b y allowing t he S PSS s oftware t o randomly s elect h alf o f t he

experimental da ta points. The selected da ta points became the t raining set and the compounds

that were left served as the test set. Analysis of the experimental data in the training set gave

63

∆HSolv,DMSO (kJ/mol) = −4.505(0.928) + 1.003(1.406)E − 21.371(1.565)S

−47.478(2.190)A − 1.793(1.492)B − 5.816(0.272)L (5.24)

(with N = 75, SD = 2.49 ,R2 = 0.969, R2adj = 0.967, F = 434.3).

There is very little difference in the equation coefficients for the full dataset and training dataset

correlations, thus showing that the t raining set of compounds i s a representative sample of the

total da ta set. The t raining set equation was then used to predict ∆HSolv,DMSO values for the 75

compounds in the test set. For the predicted and experimental values, I find that SD = 3.57, AAE

(average absolute error) = 2.288, and AE (average error) = −0.797. There is therefore very little

bias in the predictions using Eq. 5.24 with AE equal to −0.797 kJ/mol.

In Table S5.6 (Supplemental Material) are collected values of the enthalpies of solvation

of 107 gaseous solutes in propylene carbonate. Regression analyses of the experimental ∆HSolv,PC

data in accordance with the Abraham model yielded:

∆HSolv,PC (kJ/mol) = −4.377(0.791) + 0.478(1.510)E − 13.370(1.526)S −

17.898(2.185)A − 12.596(1.362)B − 6.685(0.299)L (5.25)

(N = 107, SD = 2.61 ,R2 = 0.967, R2adj = 0.965, F = 584.5)

∆HSolv,PC (kJ/mol) = 1.409(0.987)−7.886(1.336)E − 18.776(1.535)S −

20.632(2.205)A − 11.636(1.413)B − 24.199(1.056)V (5.26)

(N = 107, S.D. = 2.55, R2 = 0.964, R2adj = 0.962, F = 564.9) .

Both E qs. 5.25 and 5.26 are s tatistically very good w ith s tandard de viations of 2.61 and 2.55

64

kJ/mol for a data set that covers a range of 103.13 kJ /mol. Figure 5.6 compares the calculated

values of ∆HSolv,PC based on E q. 5.25 against t he observed values. I did not f ind any previous

attempt to correlate ∆HSolv,PC data in my search of the published chemical literature.

Figure 5.6. A plot of the calculated values of ∆HSolv,PC on Eq. 5.25 against the observed values.

I assessed the predictive ability of Eq. 5.25 by dividing the 107 data points into a training

set and a test set as before. Analysis of the experimental data in the training set gave

∆HSolv,PC (kJ/mol) = −1.618(0.924) + 2.630(1.953)E − 17.421(1.873)S −

21.095(2.464)A − 10.426(1.606)B − 7.420(0.373)L (5.27)

with N = 54, SD = 2.03, R2 = 0.985, R2adj = 0.983 and F = 629.8. There is very little difference in

the equation coefficients for the full dataset and training dataset correlations.

The training set equation was then used to predict ∆HSolv,PC values for the 53 compounds

in th e te st s et. For th e p redicted and ex perimental v alues, I find t hat S D = 3.50 k J/mol, A AE

(average absolute error) = 3.46, and AE (average error) = 0.793. There is therefore very little bias

65

in t he pr edictions us ing Eq. 5.27 with A E equal to 0.793 kJ /mol. A n unc ertainty/error of ± 2

kJ/mol i n t he e nthalpy of s olvation r esults i n a n e rror of s lightly l ess t han 0.04 l og uni ts i n

extrapolating a log K value measured at 298.15–313.15 K. This level of error will be sufficient

for most practical chemical and engineering applications. The correlations presented in this study

further document the applicability of the Abraham solvation parameter model to different solute

transfer pr operties. P ast s tudies ha ve s hown t hat the b asic m odel d escribes a w ide r ange of

equilibrium pr operties that ar e governed b y t he Gibbs en ergy for s olute t ransfer b etween two

condensed phases or between a gas and condensed phase.

In t his study, it is f ound that t he m odel al so p rovides an a ccurate m athematical

description of the enthalpic contributions to the Gibbs energy, and by inference, one can assume

that the model describes the entropic contributions as well.

5.3.4. Dibutyl Ether and Ethyl Acetate

Results and Discussion

I have assembled i n Table S5.7 (Supplemental M aterial) values of ∆ HSolv,BE for 68 gaseous

solutes di ssolved in di butyl e ther c overing a r easonably w ide r ange of c ompound t ype a nd

descriptor values. Preliminary analysis of the experimental data yielded a correlation equation

∆HSolv,BE = −7.205(0.787) + 6.190(1.386)E − 7.583(1.179)S − 36.482(1.595)A +

4.093(1.108)B − 9.263(0.198)L (5.28)

(N= 68, SD = 1.564, R2 = 0.976, R2adj = 0.974 F = 495.9)

66

that had relatively small numerical value for the b-coefficient. The coefficient for the B solute

descriptor was set equal to zero as would be expected for the transfer of a gaseous solute into an

ether solvent having no a cidic H-bond character, and the final regression analyses performed to

give

∆HSolv,BE (kJ/mol) = − 6.366(0.826) + 3.943(1.365)E − 5.105(1.062)S −

33.970(1.581)A − 9.325(0.217)L (5.29)

(N= 68, SD = 1.882, R2 = 0.970,R2adj = 0.968, F = 513.5)

∆HSolv,BE (kJ/mol) = 0.324(1.199) − 6.480(1.748)E − 14.644(1.534)S −

37.094(2.047)A + 4.354(1.418)B − 32.989(0.913)V (5.30)

(N= 68, SD = 2.003, R2 = 0.960, R2adj = 0.957, F = 298.0).

There was very little decrease in descriptive ability resulting from setting the coefficient equal to

zero. The s tandard deviation increased very s lightly from SD = 1.564 ( Eq. 5.28) to 1.882 ( Eq.

5.29), w hich is l ess th an th e e stimated uncertainty associated w ith t he experimental d ata. T he

intercorrelation matrices, in R2, between the descriptors used in Eqs. 5.29 and 5.30 are given in

Table 5.1 and Table 5.2, r espectively. Inter-correlations be tween m ost of t he de scriptors a re

negligible, and even the largest inter-correlation between E and S, 0.466 (Eq. 5.29) and 0.546

(Eq. 5.30), is not too significant. The inter-correlation between the E and S solute descriptors has

been n oted i n e arlier p apers.37,42,44,94. A ll r egression an alyses w ere p erformed u sing S PSS

statistical software.50

67

Table 5.1. Inter-correlation matrix, in R2, for solute descriptors in Eq. 5.29

E S A L

E 1.000

S 0.466 1.000

A 0.091 0.007 1.000

L 0.054 0.018 0.110 1.000

Table 5.2. Inter-correlation matrix, in R2, for solute descriptors in Eq. 5.30

E S A B V

E 1.000

S 0.546 1.000

A 0.148 0.113 1.000

B 0.213 0.303 0.181 1.000

V 0.000 0.035 0.075 0.006 1.000

Both Eqs. 5.29 and 5.30 are statistically very good with standard deviations of 1.882 and

2.003 kJ/mol for a data set that covers a range of about 53 kJ/mol. See Figure 5.7 for a plot of the

calculated values of ∆HSolv,BE based on Eq. 5.29 against the observed values. Eq. 5.29 is slightly

the better equation statistically, and from a thermodynamic standpoint Eq. 5.29 is the enthalpic

temperature derivative o f t he Abraham m odel’s gas-to-condensed phase transfer equation. The

Abraham solute descriptors are taken to be independent of temperature.95,96.

68

Figure 5.7. A plot of the calculated values of ∆HSolv,BE based on Eq. 5.29 against the observed values.

Equation 5.30 might be more useful in some predictive applications in instances where

the L-descriptor i s not known. Equation 5.30 uses the McGowan volume, V-descriptor, that is

easily calculable from the individual atomic sizes and numbers of bonds in the molecule.83

I am aware of one group method and an earlier application of the Abraham model for estimating

enthalpies of solvation in dibutyl ether. Bernazzani et al .97 predicted the ∆HSolv,BE values of 59

compounds i n di butyl ether t o w ithin a s tandard de viation of 1.59 kJ /mol us ing 22 s tructural

fragment v alues d educed b y a multiple least-squares regression an alysis o f t he en tire d ata s et.

The authors’ second method, in which the CH2 group value was preassigned an average of the

increments of t he e nthalpies of s olvation i n ho mologous s eries of a lkanes, e thers, 1 -alkanols,

ketones, amines and chloroalkanes, gave a slightly larger deviation of 3.78 kJ /mol. The method

of Eq. 5.29 is quite comparable and predicts the enthalpies of solvation in dibutyl ether to within

a s tandard d eviation of 1.882 kJ /mol. B ernazzani et al .98 described t he ∆HSolv,BE values of 28

compounds in dibutyl ether using the Abraham equation and molecular descriptors. The authors

69

obtained a standard deviation of 0.97 kJ/mol for their correlation equation for the 28 compounds

that spanned at most a range of 50 kJ/mol. The enthalpy of solvation database for dibutyl ether

contains only 68 solutes. It would be difficult to obtain a good training set correlation by using

only half of the experimental values. To assess the predictive ability of Eq. 5.29, the parent data

points were divided into three subsets (A, B, and C) as follows: the 1st, 4th, 7th, etc. data points

comprise the first subset (A); the 2nd, 5th, 8th, etc. data points comprise the second subset (B);

and t he 3r d, 6t h, 9t h, etc. da ta poi nts c omprise the t hird s ubset ( C). T hree t raining s ets w ere

prepared as combinations of two subsets (A and B), (A and C), and (B and C). For each training

set, a correlation was derived:

Training Set (A and B)

∆HSolv,BE (kJ/mol) = −6.270(0.780) + 4.044(1.351)E − 4.377(1.044)S −

34.356(1.525)A − 9.414(0.201)L (5.31)

(N= 46, SD = 1.394, R2 = 0.984, R2adj = 0.983, F = 633.3)

Training Set (A and C)

∆HSolv,BE (kJ/mol) = −6.374(1.094) + 4.079(1.761)E − 5.982(1.418)S −

33.789(1.982)A − 9.275(0.310)L (5.32)

(N= 45, SD = 1.748, R2 = 0.966, R2adj = 0.963, F = 286.4)

Training Set (B and C)

∆HSolv,BE (kJ/mol) = −6.571(1.290) + 3.729(1.952)E − 5.201(1.488)S −

33.328(2.562)A − 9.241(0.315)L (5.33)

(N= 45, SD = 1.975, R2 = 0.956, R2adj = 0.952, F = 218.5).

70

Each validation computation gave a training set correlation equation having coefficients

not t oo di fferent from t hat obt ained f rom t he p arent 68 compound da tabase. T he t raining s et

equations were then used to predict ∆HSolv,BE values for the compounds in the respective test sets

(A, B, and C). Computations on t he three test sets yielded: s tandard deviations of SD = 1.680

(Test set C), SD = 1.734 (Test set B) and S.D. = 1.155 (Test set A); Average Absolute Errors of

AAE = 1.618 (Test set C), AAE = 1.323 (Test set B) and AAE = 0.706 (Test set A); and Average

Errors of AE = −0.302 (Test set C), AE = 0.462 (Test set B) and AE = −0.108 (Test set A). There

is therefore very little bias in the predictions based on Eqs. 5.31 – 5.33.

In Table S5.8 (Supplemental M aterial) are co llected v alues o f t he m olar en thalpies o f

solvation of 79 c ompounds i n e thyl a cetate. R egression a nalysis of t he e xperimental ∆HSolv,EA

data in accordance with the Abraham model yielded

∆HSolv,EA (kJ/mol) = −7.063(0.705) + 4.671(0.963)E − 15.141(1.084)S −

28.763(1.423)A − 7.691(0.169)L (5.34)

(N= 79, SD = 2.156, R2 = 0.977, R2adj = 0.976, F = 797.7)

∆HSolv,EA (kJ/mol) = 0.679(0.909) − 4.403(1.146)E − 20.424(1.504)S −

32.125(1.543)A − 1.299(1.256)B − 28.598(0.670)V (5.35)

(N = 79, SD = 2.279, R2 = 0.975, R2adj = 0.973, F = 561.3).

Again, the b·B term is eliminated from Eq. 5.34 because ethyl acetate has no acidic hydrogen-

bonding capability. The b·B term was retained in Eqs. 5.30 and 5.35 as there i s no theoretical

reason that I know of for setting the term equal to zero. There is little intercorrelation between

the descriptors in Eqs. 5.34 and 5.35; the maximum intercorrelation is R2 = 0.524 (Eq. 5.34) and

71

R2 = 0.664 (Eq. 5.35) between E and S.

In t he or iginal A braham m odel f or g as-to-condensed pha se t ransfer t he e quation

coefficients encode chemical i nformation about t he condensed solubilizing solvent media.99,100

For the water-to-organic solvent transfer expression the coefficients represent differences in the

properties of t he or ganic s olvent r elative t o t hose of w ater. W hile I have us ed t he A braham

expression f or w ater-to-organic s olvent t ransfer to c orrelate e nthalpies o f s olvation f or s olutes

dissolved in dibutyl e ther (Eq. 5.30) and i n et hyl acet ate (Eq. 5.35) I realize t hat t he equation

coefficients have lost their original significance. Eqs. 5.30 and 5.35 are not the 1/T derivative of

the A braham m odel w ater-to-organic s olvent l og P correlation. B oth E qs. 5.34 and 5.35 are

statistically ve ry good with s tandard de viations of 2.1 56 a nd 2.279 kJ /mol f or a da ta s et t hat

covers a range of about 76 kJ/mol. Figure 5.8 compares the calculated values of ∆HSolv,EA based

on E q. 5.34 against t he observed va lues. I know of no previous at tempt to co rrelate ∆HSolv,EA

data.

Figure 5.8. A plot of the calculated values of ∆HSolv,EA based on Eq. 5.34 against the observed values.

To a ssess t he pr edictive a bility of E q. 5.34, t he 79 da ta poi nts w ere di vided i nto t hree

subsets (A, B, C) as before: the 1st, 4th, 7th, etc. data points comprise the first subset (A); the

2nd, 5th, 8th, e tc. da ta points comprise t he second subset (B); and. the 3r d, 6th, 9th, e tc. da ta

points comprise the third subset (C).

72

Three training sets were prepared as combinations of two subsets (A and B), (A and C),

and (B and C). For each training set, a correlation was derived:

Training Set (A and B)

∆HSolv,EA (kJ/mol) = −7.893(0.747) + 5.262(1.233)E − 15.641(1.240)S −

26.597(1.567)A − 7.481(0.188)L (5.36)

(N= 53, SD = 1.914, R2 = 0.980, R2adj = 0.979, F = 596.5)

Training Set (A and C)

∆HSolv,EA = −5.967(1.013) + 5.638(1.196)E − 16.147(1.431)S − 31.228(1.842)A −

7.919(0.227)L (5.37)

(N= 53, SD = 2.211, R2 = 0.974, R2adj = 0.972, F = 445.5)

Training Set (B and C)

∆HSolv,EA (kJ/mol) = −6.945(0.858) + 3.826(1.154)E −14.322(1.330)S −

28.692(1.812)A − 7.714(0.207)L (5.38)

(N= 52, SD = 2.201, R2 = 0.980, R2adj = 0.978, F = 574.0)

Each validation computation gave a training set correlation equation having coefficients not too

different from that obtained from the parent 79 compound database. The training set equations

were then used to predict ∆HSolv,EA values for the compounds in the respective test sets (A, B and

C). Computations on the three test sets yielded: standard deviations of S.D. = 2.757 (Test set C),

S.D. = 2.309 ( Test s et B) a nd S .D. = 2.121 ( Test s et A ); A verage A bsolute E rrors of A AE =

73

2.189 (Test set C), AAE = 1.508 (Test set B) and AAE = 1.623 (Test set A); and Average Errors

of AE = − 0.360 (Test set C), AE = 0.445 (Test set B) and AE = − 0.427 (Test set A). There is

therefore very little bias in the predictions based on Eqs. 5.36 – 5.38.

More t han 40 di fferent water-to-organic s olvent, g as-to-organic s olvent, g as-to-humic

acid and/or gas-to-folvic acid partition systems have been reported in the published chemical and

environmental l iterature ba sed on t he A braham m odel a s m odified by G oss.101-105 While I

personally prefer to use the Abraham model for the reasons discussed previously106; however, I

do r ecognize t hat t he Goss m odification i s now be ing u sed to correlate experimental p artition

coefficient and sorption data (See Eq. 5.39)

∆HSolv(kJ/mol) = c + s·S + a·A + b·B + l·L + v·V (5.39)

where the lower case letters c, s, a, b, l and v r epresent the properties of the solvent. The latter

model us es the f ive A braham solute d escriptors S, A, B, V and L. T he A braham E solute

descriptor i n equations are replaced b y the M cGowan vol ume ( Abraham V solute de scriptor),

which is easily calculable from the individual atomic sizes and number of bonds in the molecule.

In the Abraham model, the V descriptor generally appears in the expression for solute t ransfer

between two condensed phases

SP = c + e·E + s·S + a·A + b·B + v·V (5.40)

where SP is some property of a series of solutes in a fixed phase. Equation 5.40 has been used on

few o ccasions t o describe gas-to-condensed phase t ransfer processes in p redictive applications

where the L-descriptors were not known.

Past computations106,107 have shown that there is very little difference in the descriptive

74

ability of t he A braham model a nd G oss m odified A braham m odel w hen a pplied t o pa rtition

coefficient data. The descriptive abilities of the two models have not been compared using other

solute pr operties. T he s ingle comparison involving ∆HSolv,W data us ed di fferent m ethodologies

and datasets.

Goss76 proposed an indirect method for estimating ∆HSolv,W on the basis of the Eq. 5.39.

The au thor u sed t he experimental gas-to-water p artition c oefficients a t 2 98 K reported b y

Abraham et al.84, along with the enthalpies of solvation compiled by Kühne et al.108 in order to

calculate the gas-to-water partition coefficients at several temperatures between 273 and 318 K.

A separate log Kw (where Kw is the gas-to-water partition coefficient) was developed for each

temperature s tudied ba sed on Eq. 5.39. The de rived l og Kw correlations w ere t hen u sed t o

generate p redicted l og Kw values at each t emperature, w hich w ere t hen plotted ve rsus 1/ T.

Enthalpies of solvation were back-calculated from the slopes of the resulting log Kw versus 1/T

curves for each of the 217 compounds studied. No statistical information was given in the paper

comparing the back-calculated and observed ∆HSolv,W values; however, the graphical comparison

the author presented showed deviations as large as 10–15 kJ/mol for many of the 217 compounds

studied. The ∆HSolv,W equation (Eq. 5.8) derived by Mintz et al .100 in Section 5.2.1 provided a

more ac curate p rediction o f ∆HSolv,W than di d t he i ndirect m ethod of G oss. T he e xperimental

∆HSolv,W database used in generating the equation derived by Mintz et al.100 was not the same as

the da tabase used b y Goss. Mintz et al .100 constructed their ∆HSolv,W database f rom publ ished

experimental d ata in t he t emperature r ange of 2 83–318 K . E xperimental da ta out side of t his

temperature w ere e xcluded f rom c onsideration. E nthalpies of s olvation a re t emperature

dependent a nd t he a uthors di d not w ant t o i ntroduce l arge e rrors i n t he da tabase b y i ncluding

experimental data far removed from 298 K. The Kühne et al.108 database used by Goss covered a

75

temperature range of from 0 to 100 ◦C. An assessment of the descriptive ability of the Abraham

model versus the Goss modified Abraham model needs to be performed using identical ∆HSolv,W

databases. As pa rt of t he c urrent s tudy m athematical c orrelations w ere de veloped f or bot h

dibutyl ether

∆HSolv,BE (kJ/mol) = − 4.350(1.111) − 8.983(1.551)S − 35.970(1.604)A +

3.530(1.095)B − 5.997(0.798)L − 11.730(2.913)V (5.41)

(N= 68, SD = 1.602, R2 = 0.974, R2adj = 0.972, F = 472.9)

and ethyl acetate

∆HSolv,EA (kJ/mol) = − 3.476(1.087) − 16.482(1.660)S − 30.388(1.399)A −

1.551(1.082)B − 4.330(0.732)L − 12.601(2.786)V (5.42)

(N = 79, SD = 2.055, R2 = 0.979, R2adj = 0.978, F = 694.0)

based on t he Goss modified Abraham model. Both equations provide very good descriptions of

the observed enthalpy o f solvation data, and are comparable in descriptive ability to Eqs. 5.29

and 5.34 based on the Abraham model. The slightly lower standard deviations for Eqs. 5.41 and

5.42 were likely t he r esult of t he one a dditional c urve-fit co efficient. The F-test t akes i nto

account the number of descriptors and hence the F-statistics for Eqs. 5.41 and 5.42 (472.9 and

694.0) are not quite as good as those for Eqs. 5.29 and 5.34 (513.5 and 797.7). The b·B term was

retained in Eqs. 5.41 and 5.42 as there is no theoretical reason that I know of for setting the term

equal t o z ero. W hen t he A braham m odel w as d eveloped each of the five t erms r epresented a

76

different type of molecular interaction as discussed above. The existing numerical values of the

Abraham solute d escriptors w ere determined ba sed on t he de fined five-term s eparation of

molecular in teractions. Goss e liminated the e· E term t hat i nvolved s olute–solvent i nteractions

arising through the presence of pol arizable e lectrons i n t he solute i n favor of adding a s econd

cavity effect. The l·L and v·V terms are both cavity “size” terms measuring the endoergic effect

of disrupting s olvent–solvent in teractions. S olute v olume/size is well c orrelated w ith mo lar

refraction and with polarizability, and the v·V and l ·L terms will also include exoergic solute–

solvent effects that arise through solute polarizability. There is no guarantee though that once the

e·E term is removed that all of its mathematical contribution will end up in the v·V and l·L terms.

Some of the r emoved polarizable effect may be mathematically distributed to the a ·A and b·B

terms. This is not expected to be a problem h ere as both t he a- and b-coefficients o f t he four

alkane solvents (hexane, heptane, hexadecane and cyclohexane) and two aromatic hydrocarbon

solvents (benzene and toluene) have fairly small numerical values. The correlation matrix, in R2,

between t he de scriptors us ed in E qs. 5.41 and 5.42 are g iven i n Table 5.3 and Table 5.4,

respectively. Examination of the numerical entries in Table 5.3 and Table 5.4 reveals that in the

Goss m odified ve rsion of t he A braham m odel t he solute descriptors ar e m ore highly i nter-

correlated, with R2 values as large as R2 = 0.937 (Eq. 5.41) and R2 = 0.953 (Eq. 5.42) between

the L and V solute descriptors. High inter-correlations were also noted between the L and S (V

and S) solute descriptors.

Table 5.3. Inter-correlation matrix, in R2, for solute descriptors in Eq. 5.41

S A B L V

S 1.000

A 0.106 1.000

77

B 0.256 0.156 1.000

L 0.716 0.113 0.157 1.000

V 0.740 0.158 0.133 0.937 1.000

Table 5.4. Inter-correlation matrix, in R2, for solute descriptors in Eq. 5.42

S A B L V

S 1.000

A 0.001 1.000

B 0.317 0.008 1.000

L 0.776 0.021 0.166 1.000

V 0.757 0.049 0.157 0.953 1.000

As not ed b y t wo of t he reviewers at th e time th is particular s tudy was s ubmitted f or

publication, i nter-correlations of t his magnitude be tween s olute de scriptors a re hi ghly

undesirable i n the development of QSPR correlations. If i nter-correlated s olute parameters a re

used, there could be many different sets of solvent parameters that fit the experimental data. If

this w ere t o ha ppen, then t he n umerical v alues o f s olvent p arameters obtained from in ter-

correlation lose their physical meaning. This is one of the reasons that the Abraham model uses

only L or V (and not both) in a derived correlation equation. While the Goss modified form of

the Abraham model has been used to mathematically correlate water-to-organic solvent, gas-to-

humic aci d and/or ga s-to-folvic a cid p artition s ystems n o o ne h as cr itically evaluated t he

equation co efficients t o determine i f t he cal culated values ar e r easonable g iven t he t ypes o f

molecular interactions that are believed to be present in the various partition systems studied by

78

the Goss modified Abraham model. Such a determination will require Goss modified Abraham

model e quation coefficients f or s everal t ypes o f p rocess, an d for a s everal d ifferent organic

solvents. Equation coefficients and the associated statistical information are given in Table 5.5

for t he G oss m odified Abraham model f or or ganic a nd gaseous s olutes di ssolved i n he xane,

heptane, he xadecane, cyclohexane, be nzene, t oluene, c arbon tetrachloride, c hloroform, 1,2 -

dichloroethane, methanol, ethanol, 1-butanol, 1-octanol, propylene carbonate, dimethyl sulfoxide

and w ater. T he ∆HSolv databases us ed i n d eriving t he correlations a re given i n earlier

publications12,94,99,100,109-111. Examination of the numerical entries reveals that the Goss modified

version of the Abraham model correlated the ∆HSolv data to within an overall average standard

deviation of 2.29 kJ /mol for water and the 17 or ganic solvents studied. The standard deviations

are comparable to those noted previously for the Abraham model correlations that were derived

from t he s ame ∆HSolv data sets. I defer di scussion of t he num erical va lues of t he e quation

coefficients until such time that ∆HSolv correlations become available for more of the other polar

organic solvents such as N,N-dimethylformamide and acetonitrile.

79

Table 5.5. Equation coefficients for ∆HSolv correlations based on the Goss modified Abraham model.

Solvent c s A b l v N SD R2

Hexane −3.164(0.680) −2.191(1.039) 0.755(1.270) 0.692(0.749) −6.746(0.425) −10.808(1.751) 118 1.663 0.989

Heptane −3.783(0.697) −2.312(1.037) −1.224(1.508) 1.179(0.840) −6.341(0.437) −11.276(1.780) 134 1.687 0.987

Hexadecane −2.968(0.710) −3.204(1.049) −1.505(1.126) 2.579(0.834) −6.786(0.467) −10.856(1.908) 102 1.601 0.988

Cyclohexane −5.059(0.538) 0.974(0.830) −0.510(0.939) −2.007(0.690) −7.631(0.352) −5.284(1.386) 201 1.828 0.985

Benzene −2.880(0.740) −11.713(1.206) −8.224(1.721) −5.085(0.898) −6.880(0.498) −5.892(1.963) 174 2.212 0.985

Toluene −3.660(0.923) −12.984(1.411) −6.298(1.769) −5.119(0.968) −6.877(0.612) −5.623(2.524) 108 2.229 0.986

Carbon tetrachloride -3.714(0.708) −6.522(0.985) −1.553(1.093) −6.982(0.730) −6.451(0.408) −9.325(1.763) 177 2.054 0.984

Chloroform −2.043(0.990) −17.802(1.516) −4.536(1.734) −17.429(0.956) −1.996(0.685) −23.780(2.594) 100 2.108 0.982

1,2-Dichloroethane −0.163(1.018) −19.040(1.488) −9.828(1.944) −8.196(1.035) −4.556(0.628) −12.097(2.400) 88 1.844 0.979

Methanol −7.172(0.806) −2.449(1.214) −37.225(1.199) −14.370(0.867) −8.646(0.522) 3.292(2.040) 188 2.739 0.982

Ethanol −6.300(1.080) −1.327(1.490) −11.042(1.236) −48.528(1.755) −8.113(0.600) −0.517(2.554) 111 2.531 0.982

1-Butanol −5.557(1.068) −2.183(1.712) −52.603(2.039) −3.689(1.180) −7.091(0.716) −6.087(2.919) 103 2.274 0.986

1-Octanol −6.672(0.741) 6.044(1.104) −53.656(2.373) −9.190(1.120) −9.663(0.336) 1.566(1.397) 138 2.591 0.989

Propylene carbonate −2.267(1.252) −16.484(1.830) −20.377(2.216) −10.693(1.316) −4.823(0.811) −7.524(3.250) 107 2.543 0.964

Dimethyl sulfoxide −2.390(0.958) −19.041(1.510) −47.799(1.781) −5.521(1.000) −6.189(0.706) −0.746(2.609) 150 2.791 0.968

Water −8.414(1.007) 0.732(1.285) −33.558(1.470) −43.462(0.958) −1.403(0.579) −17.313(2.466) 368 4.739 0.941

80

5.3.5. Chloroform and 1,2 Dichloroethane

Results and Discussion

I have assembled i n Table S 5.9 (Supplemental M aterial) values of ∆HSolv,CFM for 100

gaseous solutes dissolved in chloroform covering a reasonably wide range of compound type and

descriptor values. Analysis of the experimental data yielded the following correlation equations

∆HSolv,CFM (kJ/mol) = − 6.516(0.701) + 8.628(0.936)E − 13.956(1.160)S

−2.712(1.666)A − 17.334(0.958)B − 8.739(0.158)L (5.43)

(N = 100, S.D. = 2.10, R2 = 0.982, R2adj = 0.981, F = 1049.5)

∆HSolv,CFM (kJ/mol) = − 0.425(0.829) − 0.844(0.916)E − 20.735(1.251)S

−5.817(1.753)A − 16.434(1.003)B − 31.039(0.587)V (5.44)

(N = 100, SD = 2.19, R2 = 0.981, R2adj = 0.980, F = 964.5).

All regression analyses were performed using SPSS statistical software. Both Eqs. 5.43

and 5.44 are statistically very good with standard deviations of 2.10 and 2.19 k J/mol for a data

set t hat covers a r ange o f 106.89 kJ /mol. See Figure 5.9 for a p lot o f t he cal culated values o f

∆HSolv,CFM based on E q. 5.43 against t he obs erved va lues. E quation 5.44 is s lightly th e b etter

equation statistically, and from a thermodynamic standpoint Eq. 5.43 is the enthalpic temperature

derivative o f t he A braham m odel’s gas-to-condensed p hase t ransfer e quation. E quation 5.44

might be more useful in some predictive applications in instances where the L-descriptor is not

known. Equation 5.44 uses the McGowan volume, V-descriptor, that is easily calculable from the

individual a tomic s izes and numbers of bonds in the molecule78. To my knowledge, Eqs. 5.43

81

and 5.44 represent the f irst e xpressions t hat a llow one t o pr edict t he e nthalpy of s olvation of

gaseous solutes in chloroform.

Figure 5.9. A plot of the calculated values of ∆HSolv,CFM on Eq. 5.43 against the observed values.

In order to assess the predictive ability of Eq. 5.43, I divided the 100 da ta points into a

training s et a nd a te st set b y allowing th e S PSS s oftware to r andomly s elect h alf o f th e

experimental data points. The selected da ta points became the t raining set and the compounds

that were left served as the test set. Analysis of the experimental data in the training set gave

∆HSolv,CFM (kJ/mol) = −6.291(0.775) + 7.456(1.008)E − 13.902(1.237)S −

4.694(2.179)A − 15.674(1.082)B − 8.734(0.168)L (5.45)

(N = 50, SD = 1.66, R2 = 0.988, R2adj = 0.987, F = 746.1).

The t raining s et e quation, E q. 5.45, w as then us ed t o pr edict ∆HSolv,CFM for t he 50

compounds i n t he t est s et. C omparison of t he p redicted a nd obs erved va lues gave S D = 2.24,

average absolute error (AAE) = 1.60 and an average error (AE) = −0.3705. There is therefore

82

very little b ias in th e p redictions using E q. 5.45 with A E e qual to −0.3705 kJ/mol. I a m not

aware of any attempts to correlate ∆HSolv,CFM data.

In Table S 5.10 (Supplemental M aterial) are collected v alues o f t he en thalpies o f

solvation of 88 gaseous solutes in 1,2-dichloroethane. Regression analyses of the experimental

∆HSolv,DCE data in accordance with the Abraham model yielded

∆HSolv,DCE (kJ/mol) = −2.345 (0.672) + 5.555(0.861)E − 18.328(1.122)S −

9.599(1.794)A − 7.101(1.013)B − 8.045(0.144)L (5.46)

(N = 88, SD = 1.72, R2 = 0.982, R2adj = 0.980, F = 875.3)

∆HSolv,DCE (kJ/mol) = 3.623(1.002) − 3.208(1.050)E − 24.665(1.520)S −

11.165(2.348)A − 6.589(1.322)B − 28.520(0.671)V (5.47)

(N = 88, SD = 2.24, R2 = 0.969, R2adj = 0.967, F = 509.1).

Both Eqs. 5.46 and 5.47 are statistically very good with standard deviations of 1.72 a nd

2.24 kJ/mol for a data set that covers a range of 71.7 kJ/mol. Figure 5.10 compares the calculated

values of ∆HSolv,DCE based on Eq. 5.46 against the observed values. To my knowledge there has

been no previous attempt to correlate ∆HSolv,DCE data.

83

Figure 5.10. A plot of the calculated values of ∆HSolv,DCE on Eq. 5.46 against the observed values.

In order to assess the predictive ability of Eq. 5.46 the 88 data points were divided into a

training s et a nd a te st set b y allowing t he S PSS s oftware t o r andomly s elect ha lf o f t he

experimental d ata p oints. T he s elected d ata p oints b ecame t he t raining s et an d t he r emaining

compounds that were left served as the test set. Analysis of the experimental data in the training

set gave

∆HSolv,DCE (kJ/mol) = −2.972(0.943) + 4.717(1.443)E − 17.267(1.804)S −

5.233(2.530)A − 8.317(1.984)B − 7.886(0.181)L (5.48)

(N = 44, SD = 1.48, R2 = 0.983, R2adj = 0.980, F = 432.7).

The t raining s et e quation, E q. 5.48, w as t hen us ed t o pr edict ∆HSolv,DCE for t he 44

compounds i n t he t est s et. C omparison of t he p redicted a nd obs erved va lues gave S D = 2.07,

average absolute error (AAE) = 1 .54 and an average er ror (AE) = −0.0764. There is therefore

very l ittle bi as i n t he predictions us ing E q. 5.48 with A E e qual t o −0.0764 kJ/mol. An

84

uncertainty/error of ±2 kJ/mol in the enthalpy of solvation results in an error of slightly less than

0.04 log units in extrapolating a log K value measured at 298.15-313.15 K. This level of error

will b e s ufficient f or mo st p ractical ch emical an d en gineering ap plications. To my knowledge

there has been no previous attempt to correlate ∆HSolv,DCE data to date.

As not ed pr eviously, correlations f or pr edicting e nthalpies of s olvation i n t he va rious

organic solvents can be combined with the ∆HSolv,W equation (Eq. 5.8) derived by Mintz et al.100

in S ection 5.2.1 to g ive enthalpies of s olute t ransfer f rom w ater t o t he given or ganic s olvent.

Enthalpies of solute t ransfer are particularly useful in that knowledge of ∆Htrans enables one to

predict h ow water-to-organic s olvent pa rtition c oefficients va ry with t emperature. T here i s

considerable pu blished partition c oefficient da ta f or s olutes di stributed be tween water a nd

chloroform,6,112 and be tween w ater and 1,2 -dichloroethane.112-114 Solutes s tudied i nclude

nonionic molecules as well as ionizable drugs. Most of the published data pertain to 298 K, and

the c orrelations p resented in th e p resent s tudy w ill a llow o ne to e stimate lo g P values at

temperatures not too far removed from 298 K.

5.3.6. Benzene and Alkane Solvents

Results and Discussion

Tabulated in Table S5.11 (Supplemental Material) are values of ∆HSolv,Hp for 134 gaseous

solutes dissolved in heptane covering a reasonably wide range of compound type and descriptor

values. P reliminary analysis o f t he experimental d ata yielded a co rrelation eq uation t hat h ad

relatively s mall n umerical va lues f or t he s -, a -, a nd b -coefficients, a s one w ould e xpect f or a

saturated hydrocarbon. Heptane possesses no acidic or basic hydrogen-bonding character, nor is

a s aturated h ydrocarbon e xpected t o exhibit m uch i n t he way o f di polarity/polarizability t ype

85

molecular i nteractions. T he s -, a -, a nd b -coefficients w ere s et eq ual t o z ero f or the general

Abraham e quation f or processes i nvolving gas-to-condensed pha se t ransfer (Eq. 5.6) of t he

Abraham model, and the final regression analyses performed to give

∆HSolv,Hp (kJ/mol) = -7.018(0.344) + 4.036(0.647) E - 9.209(0.109) L (5.49)

(N = 134, SD = 1.85, R2 = 0.984, R2adj = 0.984, F = 4106.4)

∆HSolv,Hp (kJ/mol) = 3.368(0.604) - 8.941(1.146)E - 7.065(1.260)S -

2.836(1.730)A + 0.657(1.052)B - 35.595(0.568)V (5.50)

(N = 134, SD = 2.32, R2 = 0.975, R2adj = 0.974, F = 1002.8).

There was very little decrease in descriptive ability resulting from setting the s-, a-, and

b-coefficients equal to zero. The standard deviation increased very s lightly f rom SD = 1.81 to

1.85, when the three coefficients were set to zero. All the regression analyses were performed

using th e S PSS s tatistical software. B oth Eqs. 5.49 a nd 5.50 are statistically v ery g ood with

standard deviations of 1.85 and 2.32 kJ /mol for a data set that covers a range of 89 kJ /mol. See

Figure 5.11 for a plot of the calculated values of ∆HSolv,Hp based on Eq. 5.49 against the observed

values. Equation 5.49 is s lightly th e b etter e quation statistically, a nd from a th ermodynamic

standpoint Eq. 5.49 is t he en thalpic t emperature d erivative o f t he A braham model’s ga s-to-

condensed pha se t ransfer e quation. Equation 5.50 might be m ore us eful i n s ome pr edictive

applications in i nstances w here t he L-descriptor i s not know n. Eq. 5. 50 uses t he M cGowan

volume, V-descriptor, which is easily calculable from the individual atomic sizes and numbers of

86

bonds in the molecule.115 To the best of my knowledge, there has been no previous attempt to

correlate ∆HSolv,Hp data.

Figure 5.11. A plot of the calculated values of ∆HSolv,Hp in Eq. 5.49 against the observed values.

In order to assess the predictive ability of Eq. 5.49, I divided the 134 da ta points into a

training s et a nd a te st set b y allowing th e S PSS s oftware to r andomly s elect h alf o f th e

experimental data points. The s elected data points became the t raining set and the compounds

that were left served as the test set. Analysis of the experimental data in the training set gave

∆HSolv,Hp (kJ/mol) = -7.014(0.582) + 3.932(1.077)E - 9.270(0.191)L (5.51)

(N = 67, SD = 2.05, R2 = 0.977, R2adj = 0.976, F = 1345.5).

Again, the s-, a-, and b-coefficients were set equal to zero. There is very little difference in the

equation coefficients between the full dataset and training dataset correlations. The training set

was then used to predict ∆H Solv,Hp values for the 67 compounds in the test set. For the predicted

and ex perimental v alues, I find t hat S D = 1.61, A verage A bsolute E rror ( AAE) = 1.308, a nd

87

Average Error (AE) = 0.409. There is therefore very little bias in the predictions using Eq. 5.49

with AE equal to 0.409 kJ /mol. An uncertainty/error of ±2 kJ /mol in the enthalpy of solvation

results in an error of slightly less than 0.04 log units in extrapolating a log L value measured at

298.15 – 313.15 K. This level of error will be sufficient for most practical applications.

In Table S5.12 (Supplemental Material) are collected values of the enthalpies of solvation

in hexadecane for 102 compounds. Application of the general Abraham equations leads to Eqs.

5.52 and 5.53, respectively.

∆HSolv,Hxd (kJ/mol) = -6.097(0.377) + 2.305(0.680)E - 9.364(0.133)L (5.52)

(N = 102, SD = 1.84, R2 = 0.985, R2adj = 0.984, F = 3194.7)

∆HSolv,Hxd (kJ/mol) = 4.696(0.619) - 9.621(1.131)E - 7.902(1.224)S -

2.933(1.536)A + 1.102(1.189)B - 36.610(0.674)V (5.53)

(N = 102, SD = 2.16, R2 = 0.979, R2adj = 0.978, F = 890.6)

Although bot h E qs. 5.52 a nd 5.53 are s tatistically r easonable, E q. 5.52 is s lightly b etter

statistically th an E q. 5.53, a nd i t is E q. 5.52 that I would r ecommend for a ny pr edictions of

values of ∆HSolv,Hxd if the L-descriptors are known.

In order to assess the predictive ability of Eq. 5.52, I divided the 102 da ta points into a

training s et a nd a te st set b y allowing th e S PSS s oftware to r andomly s elect h alf o f th e

experimental da ta points. The selected da ta points became the t raining set and the compounds

that were left served as the test set. Analysis of the experimental data in the training set gave

88

∆HSolv,Hxd (kJ/mol) = -5.847(0.636) + 1.869(1.044)E - 9.384(0.224)L (5.54)

(N = 51, SD = 1.95, R2 = 0.979, R2adj = 0.978, F = 1132.1)

There is very little difference in the equation coefficients for the full dataset and training

dataset co rrelations. T he t raining s et w as t hen u sed t o p redict ∆H Solv,Hxd values f or t he 51

compounds in the test set. For the predicted and experimental values, I find that SD = 1.75, AAE

= 1.186, a nd AE = -0.119. There i s t herefore v ery l ittle bi as i n t he predictions us ing Eq. 5.52

with AE equal to -0.119 kJ/mol. This seems to be the first time that any predictive assessment

of a n e quation f or ∆H Solv,Hxd has b een m ade. A braham an d co workers116 previously co rrelated

enthalpies of t ransfer f rom w ater-to-hexadecane us ing a n earlier ve rsion of t he A braham

solvation parameter model; however, the authors did not correlate the enthalpies of solvation.

Cyclohexane is the last saturated hydrocarbon solvent that is considered in this section. In

Table S5.13 (Supplemental Material) are collected values of the enthalpies of solvation of 201

gaseous s olutes i n cyclohexane. R egression analyses o f t he experimental ∆H Solv,Cy data i n

accordance with the Abraham model yielded

∆HSolv,Cy (kJ/mol) = -6.507(0.250) + 3.375(0.352)E - 9.078(0.079)L (5.55)

(N = 201, SD = 1.66, R2 = 0.988, R2adj = 0.988, F = 8045.5)

∆HSolv,Cy (kJ/mol) = 3.046(0.540) - 8.735(0.804)E - 6.353(1.016)S -

1.264(2.015)A - 2.449(1.156)B - 33.550(0.486)V (5.56)

(N = 201, SD = 2.63, R2 = 0.969, R2adj = 0.969, F = 1238.3).

89

One additional solute, 2,2-dimethylhexane, was used in developing Eq. 5.56. I could not include

2,2-dimethylhexane in the Eq. 5.55 regression a nalyses because i ts L-descriptor i s not known.

Both E qs. 5.55 a nd 5.56 are s tatistically very good w ith s tandard de viations of 1.66 and 2.63

kJ/mol for a data set that covers a range of 88 kJ/mol. See Figure 5.12 for a plot of the calculated

values of ∆H Solv,Cy based on E q. 5.55 against t he obs erved va lues. E quation 5.55 is a slightly

better equation s tatistically, and it is E q. 5.55 that I would r ecommend f or a ny predictions o f

values of ∆HSolv,Hxd, if the L-descriptors are known.

Figure 5.12. A plot of the calculated values of ∆HSolv,Cy in Eq. 5.55 against the observed values.

The e nthalpy of s olution f or s olutes di ssolved i n c yclohexane has be en c onsidered i n

several earlier publications. C yclohexane, as well as carbon tetrachloride, has been used as the

inert solvent in the “pure base” model of Arnett et al.87,88 and in the “E and C” model of Drago

and coworkers89,90 for obtaining enthalpies of complex formation. Neither approach was capable

of pr edicting e nthalpies of s olvation in c yclohexane. Solomonov et al .91 proposed a s imple

90

method for extracting specific solute–solvent interactions from measured enthalpies of solvation.

The method assumed that the difference between the nonspecific interaction contribution in the

solvation enthalpy for the solute dissolved in the desired solvent and dissolved in cyclohexane

was pr oportional t o t he di fference i n t he nonspecific i nteractional s olvation e nthalpic

contribution of t he s olute i n s olvents c arbon t etrachloride a nd c yclohexane. W hile t he a uthors

examined s everal pos sible r elationships be tween t he c alculated pr oportionality c onstant a nd

different s olvent p roperties, t here w as n ever a m athematical expression g iven t hat allowed

outright predictions of the enthalpies of solvation (or solution) of solutes in cyclohexane. To the

best of my knowledge, Eqs. 5.55 and 5.56 are the first expressions that allow such predictions.

In order to assess the predictive ability of Eq. 5.55, I divided the 201 da ta points into a

training s et a nd a te st set b y allowing th e S PSS s oftware to r andomly s elect h alf o f th e

experimental da ta points. The selected da ta points became the t raining set and the compounds

that were left served as the test set. Analysis of the experimental data in the training set gave

∆HSolv,Cy (kJ/mol) = -6.144(0.376) + 3.560(0.537)E - 9.162(0.120)L (5.57)

(N = 101, SD = 1.76, R2 = 0.987, R2adj = 0.987, F = 3757.0).

There is very little difference in the equation coefficients for the full dataset and training dataset

correlations. The training set was then used to predict ∆H Solv,Cy values for the 100 compounds in

the test set. For the predicted and experimental values, I find that SD = 1.56, A AE = 1.12, a nd

AE = -0.308. There is therefore very little bias in the predictions using Eq. 5.55 with AE equal to

-0.308 kJ/mol.

The correlations that have been derived thus far pertain to gaseous solutes in anhydrous

91

heptane, a nhydrous he xadecane, a nd a nhydrous c yclohexane. In t he c ase of c yclohexane, i t i s

possible t o en large t he d atabase s lightly b y including d ata d etermined f rom tw o-phase

partitioning ex periments. W ater an d c yclohexane ar e n early co mpletely i mmiscible w ith each

other, a nd t o a f irst a pproximation one w ould not e xpect t he s mall a mount of w ater i n t he

cyclohexane rich phase (cyclohexane saturated with water) of a partitioning experiment to have

an appreciable effect on ∆H Solv,Cy. Giraldo and Moreno117 reported calorimetrically determined

enthalpies of t ransfer of a liphatic l inear a nd br anched a lcohols f rom a ctual pa rtitioning

experiments. Dearden and Bresnen118 published enthalpy data of 45 simple aromatic compounds

(substituted phe nols, s ubstituted be nzoic a cids, a nd s ubstituted a cetanilides) f rom w ater t o

cyclohexane. T he l atter d ata w ere calculated f rom t he t emperature de pendence of t he

cyclohexane–water partition coefficients measured a t 293.15 t o 318.15 K. I have assembled in

Table 5.6 the necessary information for calculating the enthalpy of solvation in water, ∆H Solv,Cy,

from measured ∆Htrans and ∆HSolv,W values. The partitioning data allows one to add an additional

nine s olutes t o our c yclohexane da tabase. The ∆H Solv,W values w ere t aken f rom an e arlier

compilation.100 I was not able t o i nclude a ll o f t he publ ished p artitioning da ta be cause t he

∆HSolv,Cy computation requires knowledge of the solute’s enthalpy of solvation in water (see Eq.

5.3). T he required ∆H Solv,W values a re s imply n ot a vailable f or ma ny o f the a romatic s olutes

studied b y D earden and Bresnen. The ∆H Solv,Cy values were c ombined an d r egression analyses

yielded the following correlations:

∆HSolv,Cy (kJ/mol) = -6.599(0.274) + 3.307(0.383)E - 9.060(0. 088)L (5.58)

(N = 215, SD = 1.86, R2 = 0.984, R2adj = 0.984, F = 6638.6)

92

∆HSolv,Cy (kJ/mol) = 3.131(0.544) – 8.503(0.801)E – 6.829(0.955)S –

4.246(1.323)A – 1.831(1.056) B – 33.608(0.489)V (5.59)

(N = 215, SD = 2.69, R2 = 0.967, R2adj = 0.966, F = 1226.4).

Table 5.6. Enthalpies of solvation of gaseous solutes in cyclohexane, ∆HSolv,Cy (kJ/mol) calculated from published water-to-cyclohexane enthalpy of transfer data.

Solute ∆Htrans ∆HSolv,W ∆HSolv,Cy Reference

Ethanol 34.64 -50.60 -15.96 [117]

1-Propanol 33.04 -59.90 -26.86 [117]

2-Propanol 33.00 -58.20 -25.20 [117]

1-Butanol 31.42 -61.90 -30.48 [117]

2-Butanol 32.52 -62.72 -30.20 [117]

2-Methyl-1-propanol 31.10 -60.20 -29.10 [117]

1-Pentanol 29.11 -61.90 -32.79 [117]

Phenol 15.30 -57.70 -42.40 [118]

3-Chlorophenol 10.20 -50.30 -40.20 [118]

2-Methylphenol 15.60 -64.80 -49.20 [118]

3-Methylphenol 19.20 -58.70 -39.50 [118]

4-Methylphenol 15.30 -61.30 -46.00 [118]

2-Nitrophenol 5.70 -49.80 -44.10 [118]

3-Nitrophenol 11.50 -67.70 -56.70 [118]

The number of data points is slightly larger than the number solutes because ethanol, 1-

propanol, 2 -propanol, 1 -butanol, a nd 1 -pentanol a re i ncluded t wice, onc e f or t ransfer i nto

93

anhydrous cyclohexane and once for transfer into the water-saturated cyclohexane solvent. Again

the s tatistics f or bot h c orrelations a re qui te good. T he c orrelations f or t he dr y anhydrous

cyclohexane are slightly better than the correlations obtained by combining the dry and wet data

sets. This is to be expected as the presence of water in cyclohexane may have some affect on the

enthalpies of solvation of t he more acidic phenolic solutes. Moreover, t here i s l ikely a greater

experimental u ncertainty associated w ith the ∆H Solv,Cy values de rived f rom t he pa rtitioning

measurements. T he l atter ∆H Solv,Cy values ha ve unc ertainties i n bot h t he m easured ∆H trans and

∆HSolv,W values used in their calculation.

In Table S5.14 (Supplemental Material) are collected values of the enthalpies of solvation

of 174 gaseous solutes in benzene, which is an aromatic hydrocarbon solvent. Unlike saturated

hydrocarbons, b enzene does ha ve a pol arizable π-electron s ystem, an d as a r esult, t here i s a

greater oppor tunity f or slightly s tronger m olecular in teractions w ith p olar s olute mo lecules.

Regression analyses of the experimental ∆H Solv,Ben data in accordance with the Abraham model

yielded

∆HSolv,Ben (kJ/mol) = -4.637(0.335) + 4.446(0.783)E - 12.599(0.851)S -

9.775(1.393) A - 4.023(0.828)B - 8.488(0.106)L (5.60)

(N = 174, SD = 2.08, R2 = 0.987, R2adj = 0.986, F = 2470.9)

∆HSolv,Ben (kJ/mol) = 4.391( 0.621) - 5.422(1.099)E - 21.268(1.280)S -

11.797(2.043)A - 3.118(1.220) B - 31.674(0.586)V (5.61)

(N = 174, SD = 3.05, R2 = 0.971, R2adj = 0.970, F = 1135.7)

94

Both E qs. 5.60 a nd 5.61 are s tatistically very good w ith s tandard de viations of 2.08 and 3.05

kJ/mol for a da ta set that covers a range of 111 kJ /mol. I did consider setting the a- and/or b-

coefficients in the Eq. 5.60 equal to zero; however, this led to a m uch poorer correlation (SD =

2.37 with a = 0; SD = 2.23 with b = 0; and SD = 2.57 with both a = 0 and b = 0). To the best of

my knowledge there has been no previous attempt to correlate ∆HSolv,Ben data.

In order to assess the predictive ability of Eq. 5.60, the 174 data points were divided into

a t raining s et an d a t est s et b y allowing t he S PSS s oftware t o randomly s elect h alf o f t he

experimental data points. The s elected data points became the t raining set and the compounds

that were left served as the test set. Analysis of the experimental data in the training set gave

∆HSolv,Ben (kJ/mol) = -4.142(0.370) + 6.236(0.966)E - 13.339(0.982)S - 8.944(1.592)A -

5.430(0.935)B - 8.583(0.124)L (5.62)

(N = 87, SD = 1.70, R2 = 0.992, R2adj = 0.991, F = 1947.4).

There is very little difference in the equation coefficients for the full dataset and training dataset

correlations. The training set was then used to predict ∆H Solv,Ben values for the 87 compounds in

the test set. For the predicted and experimental values, I find that SD = 2.63, AAE = 1.662, and

AE = -0.110. There is therefore very little bias in the predictions using Eq. 5.60 with AE equal to

-0.110 kJ/mol.

As an informational note, Herbst et al.119 reported a value of ∆HSoln = -0.50 kJ/mol for the

enthalpy of solution of buckminsterfullerene, C 60, in benzene. The enthalpy of solution can be

combined w ith publ ished e nthalpy o f s ublimation da ta, ∆H Sub,298 K = 1 99 k J/mol75, t o gi ve a

value of ∆H Solv,Ben = -199.5 kJ /mol. I elected not t o i nclude buc kminsterfullerene i n t he

95

regression analysis because it is much larger than all other solutes considered, and its calculated

descriptors ( E = 1.873, S = 1.477, A = 0.000, B = 0.540, L = 19.84, a nd V = 3.906) 120 were

calculated b ased on an estimated a queous m olar s olubility. E ven s o, E q. 5.60 can be us ed t o

make a n out right p rediction f or t he enthalpy of solvation of buc kminsterfullerene i n be nzene.

The predicted value of ∆HSolv,Ben = -185.38 kJ/mol, obtained by substituting the solute descriptors

directly into Eq. 5.60, i s in reasonably good agreement with the experimental value, given the

fact that the molecule’s L-solute descriptor f alls considerably outside of t he r ange o f L-values

used in deriving the enthalpy of solvation correlation.

The derived correlations, when combined with the correlation equations for enthalpies of

solvation in water (Eqs. 5.8 and 5.9), can be used to estimate the enthalpies of transfer of solutes

from water t o t he r espective organic solvent. Enthalpies of t ransfer a re needed to describe t he

temperature d ependence o f t he w ater-to-organic s olvent partition c oefficients. In pa rtitioning

processes, t he s olute i s distributed b etween t he water (saturated w ith t he o rganic s olvent) and

organic s olvent ( saturated w ith w ater). T he e nthalpies of t ransfer b ased on Eq. 5.3 and t he

derived ∆HSolv correlations pertain to the neat solvents. The mutual miscibility of water and the

organic s olvent mig ht affect th e s olute’s e nthalpy o f s olution in th e e quilibrated immis cible

phases d uring a p ractical ex traction p rocess. T here h ave b een v ery f ew cal orimetric s tudies

performed und er a ctual pa rtitioning c onditions. G iraldo a nd M oreno117 reported e nthalpies f or

direct transfer of several aliphatic linear and branched alcohols between water and cyclohexane.

The measured transfer enthalpies (

∆Htransdirect ) are given in column 2 of Table 5.7, a long with the

∆Htransindirect values cal culated from th e e xperimental e nthalpies o f s olution of t he a lcohol solutes

that were used in deriving Eqs. 5.8 and 5.55.

96

Table 5.7. Comparison of direct vs. indirect enthalpies of transfer for alcohol solutes between water and cyclohexane.

Alcohol solute

∆Htransdirect a

∆Htransindirect b

∆Htransc

Methanol 27.67±2.01 35.1 24.77

Ethanol 34.64±0.11 33.1 33.08

1-Propanol 33.04±0.89 36.5 34.62

2-Propanol 33.00±2.29 37.4 34.46

1-Butanol 31.42±0.78 34.2 36.65

2-Butanol 32.52±0.73

2-Methyl-1-propanol 31.10±0.24 35.46

1-Pentanol 29.11±0.17 30.1 37.04

1-Hexanol 25.56±0.57 31.0

1-Octanol -10.58±0.60

2-Octanol -9.36±0.86 a Experimental values (in kJ/mol) are from Giraldo and Moreno.68 b Values are calculated based on Eq. 5.3 and the enthalpy of solvation data used in deriving the cyclohexane and water ∆HSolv correlations. Calculated values are expressed in units of kJ/mol. c Experimental values (in kJ/mol) are from Torres72 as reported in Giraldo and Moreno.68

I have also included the prior literature values of Torres121 that Giraldo and Moreno cited in their

study. The authors expressed concern about the anomalous transfer enthalpies of both 1-octanol

and 2 -octanol, a nd m entioned that th eir experimental r esults ma y b e in e rror d ue to th e s low

dissolution of the two larger alcohols into water. The indirectly calculated enthalpies of transfer

are in reasonably good agreement with the measured values of Giraldo and Moreno. While the

number of values compared was not large, the comparison does suggest that indirect enthalpies

of transfer c an b e u sed t o es timate p artition co efficients at other t emperatures. An

97

uncertainty/error of ±2 kJ/mol in the enthalpy of transfer results in an error of slightly less than

0.04 log units in extrapolating a log P value measured at 298.15 – 313.15 K. This level of error

will be sufficient for most of the practical applications. The experimental ∆H Solv,Hp, ∆H Solv,Hxd,

∆HSolv,Cy, a nd ∆H Solv,Benz values ar e l isted in T ables S 5.11 – S5.14 ( Supplemental M aterials),

respectively.

5.3.7. Alcohol Solvents

Results and Discussion

Assembled i n T able S 5.15 (Supplementary M aterial) are values of ∆ Hsolv,MeOH for 1 88

gaseous solutes dissolved in methanol covering a reasonably wide range of compound type and

descriptor values. Analysis of the experimental data yielded the following correlation equations:

ΔHSolv,MeOH (kJ/mole) = - 6.366(0.454) – 2.506(0.898)E – 1.807(0.907)S –

37.692(1.163)A – 15.466(0.904)B – 7.674(0.140)L (5.63)

(N = 188, SD = 2.749, R2 = 0.982, R2adj = 0.982, F = 2039.7)

ΔHSolv,MeOH (kJ/mole) = 1.636(0.737) – 11.797(1.103)E – 9.336(1.161)S –

41.378(1.504)A – 15.984(1.165)B – 27.891(0.668)V (5.64)

(N = 188, SD = 3.549, R2 = 0.971, R2adj = 0.970, F = 1211.9)

All regression analyses were performed using SPSS statistical software50. The correlation

matrix, in R2, between the descriptors for Eqs. 5.63 and 5.64 are given in Table 5.8 and Table

5.9, respectively. Inter-correlations between most of the descriptors is negligible, and even the

98

largest in ter-correlation be tween E a nd S , 0.534 ( Eq. 5.63) a nd 0.584 ( Eq. 5.64), i s no t t oo

significant. The inter-correlation between the E and S solute descriptors has been noted in earlier

papers.37,42,44,94

Table 5.8. Inter-correlation matrix, in R2, for solute descriptors for Eq. 5.63.

E S A B L

E 1.000

S 0.534 1.000

A 0.000 0.065 1.000

B 0.208 0.349 0.002 1.000

L 0.122 0.003 0.008 0.024 1.000

Table 5.9. Inter-correlation matrix, in R2, for solute descriptors for Eq. 5.64.

E S A B V

E 1.000

S 0.584 1.000

A 0.000 0.049 1.000

B 0.212 0.375 0.004 1.000

V 0.029 0.008 0.024 0.021 1.000

Both Eqs. 5.63 and 5.64 are statistically very good with SDs of 2.749 a nd 3.549 kJ/mol

for a data set that covers a range of about 105 kJ/mol. See Figure 5.13 for a plot of the calculated

values of ∆H solv.MeOH based on Eq. 5.63 against the observed values. Eq. 5.63 is a slightly better

equation statistically, and from a thermodynamic standpoint Eq. 5.63 is the enthalpic temperature

99

derivative o f t he A braham m odel's gas-to-condensed pha se t ransfer e quation. Equation 5.64

might be more useful in some predictive applications in instances where the L-descriptor is not

known.

Figure 5.13. A plot of the calculated values of ΔH Solv,MeOH on Eq. 5.63 against the observed values.

In order to assess the predictive ability of Eq. 5.63, I divided the 188 da ta points into a

training s et a nd a te st set b y allowing th e S PSS s oftware to r andomly s elect h alf o f th e

experimental da ta points. The selected da ta points became the t raining set and the compounds

that were left served as the test set. Analysis of the experimental data in the training set gave

ΔHSolv,MeOH (kJ/mole) = -6.880(0.721) – 2.431(1.351)E – 1.768(1.216)S –

38.875(1.858)A – 16.053(1.218) B – 7.512(0.236) L (5.65)

(N = 94, SD = 2.565, R2 = 0.980, R2adj = 0.979, F = 888.5).

100

The training set equation (Eq. 5.65) was then used to predict ∆Hsolv,MeOH for the 94 compounds in

the t est s et. C omparison of t he pr edicted a nd obs erved va lues gave SD = 2.565, A verage

Absolute Error (AAE) = 2.016, and an Average Error (AE) = 0.297. There is therefore very little

bias i n t he pr edictions using Eq. 5.65 with A E e qual t o 0.297 kJ/mol. T o t he be st of my

knowledge, only the COSMO-RS method of Klamt and coworkers (e.g., see Klamt )122 allows

one to predict the enthalpy of solvation of gaseous solutes in methanol.

Collected values of the enthalpies of solvation of 111 gaseous solutes in ethanol are listed

in Table S 5.16 (Supplementary Material). Regression analyses o f t he experimental ∆H solv, E tOH

data in accordance with the Abraham model yielded

ΔHSolv,EtOH (kJ/mole) = -6.558(0.472) - 48.600(1.699)A – 11.899(1.045)B –

8.298(0.153)L (5.66)

(N = 111, SD = 2.558, R2 = 0.981, R2adj = 0.981, F = 1865.3)

ΔHSolv,EtOH (kJ/mole) = 4.411(0.817) – 11.175(1.388)E – 9.123(1.540)S –

52.352(2.425)A – 12.074(1.714)B – 32.384(0.934)V (5.67)

(N = 111, SD = 3.017, R2 = 0.970, R2adj = 0.969, F = 589.7)

The e·E and s ·S te rms w ere eliminated f rom Eq. 5.66 because t he s tandard e rrors i n t he

coefficients were larger than the coefficients themselves. Both Eqs. 5.66 and 5.67 are statistically

very good with SDs of 2.558 and 3.017 kJ/mol for a d ata set th at covers a r ange of about 89

kJ/mol . Figure 5.14 compares the calculated values of ∆H solv,EtOH based on Eq. 5.66 against the

observed values.

101

Figure 5.14. A plot of the calculated values of ∆Hsolv,EtOH based on Eq. 5.66 against the observed values.

In order to assess the predictive ability of Eq. 5.66, I divided the 111 da ta points into a

training s et a nd a te st set b y allowing th e S PSS s oftware to r andomly s elect h alf o f th e

experimental d ata p oints. T he s elected d ata p oints b ecame t he t raining s et an d the r emaining

compounds that were left served as the test set. Analysis of the experimental data in the training

set gave

ΔHSolv,EtOH (kJ/mole) = -6.086(0.583) – 48.481(2.083)A – 10.213(1.320)B –

8.447(0.173)L (5.68)

(N = 56, SD = 2.155, R2 = 0.988, R2adj = 0.987, F = 1350.2)

The t raining s et e quation ( Eq. 5.68) w as t hen used t o pr edict ∆Hsolv,EtOH for t he 55

compounds in the test set. Comparison of the predicted and observed values gave SD = 2.995,

102

AAE=2.337, and an AE = 0.232. T here is therefore very little bias in the predictions using Eq.

5.68 with AE equal to 0.232 kJ/mol. To the best of my knowledge, there has been no previous

attempt t o co rrelate ∆HSolv,EtOH data. Search of t he chemical l iterature al so found ex perimental

enthalpy of s olvation d ata f or 103 s olutes di ssolved i n 1 -butanol ( see T able S 5.17 of t he

Supplementary Material f or v alues o f ∆HSolv,BtOH). Regression analyses of t he e xperimental

∆Hsolv,BtOH data in accordance with the Abraham model yielded

ΔHSolv,BtOH (kJ/mole) = -7.629(0.421) – 50.806(1.945)A – 4.261(0.841)B –

8.507(0.140)L (5.69)

(N = 103, SD = 2.365, R2 = 0.984, R2adj = 0.984, F = 2059.8)

ΔHSolv,BtOH (kJ/mole) = 3.210(0.742) – 8.481(1.487)E – 11.902(1.201)S –

60.017(2.930)A – 33.882(0.819)V (5.70)

(N = 103, SD = 3.012, R2 = 0.972, R2adj = 0.971, F = 760.0).

The e·E and s·S terms were eliminated from Eq. 5.69 because the standard errors in the

coefficients were larger than the coefficients themselves. The b·B term was similarly eliminated

from Eq. 5.70 because of a l arge s tandard error. Both Eqs. 5.69 and 5.70 are s tatistically very

good with SDs of 2.365 and 3.012 kJ/mol for a d ata set that covers a range of about 88 kJ/mol.

Figure 5.15 compares the calculated values of ∆Hsolv.BtOH based on Eq. 5.69 against the observed

values.

103

Figure 5.15. A plot of the calculated values of ΔHSolv,BtOH on Eq. 5.69 against the observed values.

In order to assess the predictive ability o f Eq. 5.69, 103 data experimental values were

divided into a training set and a test set by allowing the SPSS software to randomly select half of

the experimental data points. The selected data points became the training set and the remaining

compounds that were left served as the test set. Analysis of the experimental data in the training

set gave

ΔHSolv,BtOH (kJ/mole) = -7.738(0.680) – 50.705(2.783)A – 7.173(1.564)B –

8.067(0.283)L (5.71)

(N = 52, SD = 2.639, R2 = 0.979, R2adj = 0.978, F = 756.7).

The training set equation (Eq. 5.71) was then used to predict ∆Hsolv,EtOH for the 51 compounds in

the test set. Comparison of the predicted and observed values gave SD = 2.441, AAE = 1.897,

104

and an AE = -0.606. There is therefore very little bias in the predictions using Eq. 5.71 with AE

equal to -0.606 kJ/mol.

The 1 -butanol d ata s et h as th e s mallest number of e xperimental da ta poi nts. I also

employed the bootstrap method53,55 as part of the validation process. The model was fit to 100

bootstrapped samples, and the results from the bootstrapped samples applied to the original data

to determine fit. Averaging over these repeated occasions can give one a sense of the optimism,

or b ias, in a s tatistic, e.g., R2 For m ore regarding t he p rocedure s ee E fron a nd T ibshirani,53

Davidson a nd H inckley,123 or H arrell.54 There w as f ound to b e lit tle o ptimism in R2 and

coefficients with a co rrected R2 of 0.98059. I am not aware of any previous attempt to correlate

∆Hsolv,BtOH data.

I have elected t o c orrelate t he e nthalpies of s olvation of i norganic gases a nd or ganic

solutes in methanol, ethanol, and 1-butanol using the Abraham solvation parameter model. Each

term i n t he b asic m odel r epresents a t ype o f s olute-solvent i nteraction. F or e xample, A i s t he

solute's h ydrogen-bond a cidity a nd the a-coefficient i s t he complementary s olvent h ydrogen-

bond basicity. The a·A term in the general Abraham equations (Eqs 5.6 a nd 5.7) describes the

enthalpic contribution that the solute (acid)-solvent (base) interaction has in regards to the gas-

to-condensed pha se t ransfer p rocess. E xamination of t he equation c oefficients and t heir

associated SDs for the three alcohol solvents reveals that the last three terms are more important

than the others, particularly in the case of dissolved acidic and/or basic solute molecules. Both

hydrogen bondi ng t erms (a·A a nd b·B) a re i mportant, as w ould b e ex pected i n t he cas e o f an

alcoholic solvent. Numerical values of a and b coefficients for the general Abraham equation for

gas-to-condensed pha se t ransfer ( Eq. 5.6 ) form of t he A braham m odel do f ollow t rends i n

regards t o a lcohol s ize. In t he c ase of t he a-coefficient, t he n umerical v alues b ecome m ore

105

negative with increasing alcohol size, without exception, from -37.7 for methanol to -48.60 for

ethanol to -50.8 for 1-butanol to -54.0 for 1-octanol. The numerical values of the b coefficient

become less negative with increasing alkyl chain length on the whole; however, the numerical

value of 1 -butanol s eems a bi t out of l ine compared to t he other t hree a lcohols. The V and L

solute descriptors were set up as measures of the endoergic effect of disrupting solvent-solvent

bonds t o c reate a s olvent c avity i n w hich t he solute r esides. S olute v olume i s a lways w ell

correlated w ith pol arizability, how ever, and t he v·V a nd l·L terms w ill in clude n ot o nly a n

endoergic cav ity effect but a lso e xoergic s olute-solvent e ffects th at a rise th rough s olute

polarizability. T he v·V a nd l·L terms m ake t he l argest c ontribution. G aseous s olutes a re qui te

energetic, and upon dissolution into a condensed phase, the solute releases enthalpy as it returns

to a more confined, less energetic state.

5.3.8. Linear Alkanes

Introduction

This s tudy c oncerns t he de velopment of a ∆H Solv correlation f or h exane as w ell as an

expression for a generic linear alkane solvent that could be used to predict enthalpies of solvation

in the linear alkane solvents from pentane through hexadecane. Among the remaining 11 l inear

alkane solvents, except for heptane and hexadecane for which ∆HSolv correlations were recently

published,12 there w ere n ot s ufficient ex perimental d ata i n any given a lkane s olvent f or us t o

develop a solvent-specific correlation. There were sufficient experimental ∆HSolv data, however,

for us to examine the possibility of a single, generic equation for all liquid linear alkane solvents.

The entire set of ∆HSolv data is tabulated in Table S5.18 (Supplemental Material) according to the

alkane solvent, along with the literature references.

106

Results and Discussion

I have tabulated in T able S5.18 (Supplemental M aterial) values of ∆HSolv,Hx for 118

gaseous s olutes di ssolved i n he xane c overing a reasonably w ide r ange of c ompound t ype a nd

descriptor v alues. P reliminary analysis o f t he ex perimental d ata yielded a co rrelation eq uation

that had relatively small numerical values for the s-, a-, and b-coefficients, as one would expect

for a saturated h ydrocarbon. Hexane possesses no acidic or basic h ydrogen-bonding character,

nor is a s aturated hydrocarbon expected to exhibit much in the way of dipolarity/polarizability

type m olecular i nteractions. T he s -, a -, and b -coefficients were s et equal t o 0 f or t he general

Abraham g as-to-condensed pha se e quation ( Eq. 5.6 ) and a f inal r egression a nalysis w as

performed to give

∆HSolv,Hx (kJ/mol) = -6.458(0.327) + 3.610(0.565)E - 9.399(0.113)L (5.72)

(N = 118, SD = 1.819, R2 = 0.987, R2adj = 0.986, F = 4269.3)

and

∆HSolv,Hx (kJ/mol) = 4.894(0.580) - 8.916(1.014)E - 8.463(1.163)S -

1.168(1.762)A + 0.773(1.090)B - 36.769(0.620)V (5.73)

(N = 118, SD = 2.306, R2 = 0.979, R2adj = 0.978, F = 1025.9).

There was very little decrease in the descriptive ability resulting from setting the s-, a-,

and b -coefficients e qual t o 0. T he s tandard de viation increased s lightly f rom S D = 1.794 t o

1.819, w hen t he t hree coefficients were s et e qual t o 0. A ll o f t he r egressions w ere pe rformed

107

using the SPSS s tatistical software. Eq. 5.72 is s lightly the b etter equation s tatistically, with a

standard deviation of 1.810 compared to a standard deviation of 2.306 kJ /mol for Eq. 5.73. It is

Eq. 5.72 that I would recommend for any predictions of values of ∆HSolv,Hx, if the L-descriptors

are known. See Figure 5.16 for a plot of the calculated values of ∆HSolv,Hx values based on Eq.

5.72 against the observed values for a dataset that spans a range of 89 kJ/mol.

Figure 5.16. A plot of the calculated values of ΔHSolv,Hx from Eq. 5.72 against the observed values.

In order to assess the predictive ability of Eq. 5.72, I divided the 118 da ta points into a

training s et a nd a te st set b y allowing th e S PSS s oftware to r andomly s elect h alf o f the

experimental data points. The s elected data points became the t raining set and the compounds

that were left served as the test set. Analysis of the experimental data in the training set gave

∆HSolv,Hx (kJ/mol) = -6.285(0.487) + 4.017(0.884)E - 9.437(0.153)L (5.74)

(N = 59, SD = 1.966, R2 = 0.987, R2adj = 0.986, F = 2109.0).

108

Again, t he s -, a -, and b -coefficients were s et equal t o 0 . The t raining s et equation, Eq.

5.74, was then used to predict ∆HSolvHx for the 59 compounds in the test set. Comparison of the

predicted and observed values gave SD = 1.667, average absolute error (AAE) = 1.147 and an

average error (AE) = -0.350. There is therefore very little bias in the predictions using Eq. 5.74

with AE equal to -0.350 kJ/ mol. An uncertainty/error of ±2kJ/mol in the enthalpy of solvation

results in an error of slightly less than 0.04 log units in extrapolating a log K value measured at

298.15-313.15 K . T his l evel of e rror will be s ufficient f or most o f t he p ractical ch emical an d

engineering applications. There has been no previous at tempt to correlate ∆HSolv,Hx data to the

best of my knowledge.

During my search o f t he l iterature, I found ∆HSolv data for solutes di ssolved in s everal

other l inear alkane solvents. The correlation equations for gaseous solutes in both heptane and

hexadecane were recently reported. For the remaining nine linear alkane solvents, I did not feel

that th e c hemical d iversity o f th e d issolved s olutes a nd th e range o f d escriptors co vered i n a

given solvent was sufficient for us to develop a meaningful correlation a t this time. There is a

need for being able to predict ∆HSolv in other linear alkane solvents, and one way to address this

need would be to explore the possibility of developing a single, generic linear alkane correlation

that would be applicable to the linear alkanes from pentane to hexadecane. The similarity in the

equation coefficients for the ∆HSolv,Hx (Eq. 5.72), ∆HSolv,Hp (Eq. 5.49), and ∆HSolv,Hxd (Eq. 5.52)

solvent specific correlations suggest that this may, indeed, be possible.

The ex perimental ∆HSolv,Hx, ∆HSolv,Hp, a nd ∆HSolv,Hxd values were an alyzed as a s ingle

dataset. I used the descriptors in the Abraham gas-to-condensed phase equation (Eq. 5.6) plus

the i ndicator va riables IHx and I Hxd; I Hx takes t he va lue 1.0 f or t he e nthalpy o f s olvation da ta

109

pertaining to hexane and 0.0 f or heptane and hexadecane solvent values. The indicator variable

IHxd is used in similar fashion to identify the experimental data for the hexadecane solvent. The

resulting equation is

∆HSolv (kJ/mol) = -6.697(0.250) + 3.957(0.502)E - 0.676(0.533)S +

0.680(0.734)A + 1.358(0.487)B - 9.394(0.071)L - 0.044(0.231)IHx -

0.001(0.241)IHxd (5.75)

(N = 362, SD = 1.81, R2 = 0.986, R2adj = 0.985, F = 3439.4).

The s -, a -, a nd b -coefficients w ere again s et e qual t o 0 as be fore. T he ve ry small

coefficients for both the IHx and IHxd indicator descriptors suggest that the ∆HSolv,Hx, ∆HSolvHp, and

∆HSolv,Hxd values can be combined into a s ingle dataset. There is a very little difference between

the equation coefficients of Eq. 5.75 and the three solvent-specific correlations for Eq. 5.72 and

for ∆HSolv,Hx (Eq. 5.49), ∆HSolvHp (Eq. 5.52).

Finally, I performed a regression analysis on all of the 521 experimental ∆HSolv values in

Table S5.18 (Supplemental Material) to give the following generic linear alkane correlation.

∆HSolv,Alk (kJ/mol) = -6.708(0.144) + 2.999(0.285)E - 9.279(0.049)L (5.76)

(N = 521, SD = 1.82, R2 = 0.988, R2adj = 0.988, F = 21622.6).

Equation 5.76 is statistically very good, and the number of experimental data points for a s ingle

solvent r anges f rom 1 ∆HSolv value for t ridecane to 141 ∆HSolv values f or h eptane. S everal

additional ∆HSolv,Hp values for heptane were found as the result of an expanded literature search.

Figure 5.17 depicts a plot of the experimental ∆HSolv,Alk data versus the calculated values based

110

on E q. 5.76. T he g eneric l inear al kane co rrelation p redicts that t he e nthalpy of s olvation of a

given solute will be the same in all linear alkane solvents from pentane through hexadecane. The

experimental ∆HSolv data in T able S5.18 (Supplemental M aterial) support t his pr ediction. In

addition, D uce et al .124 recently r eported t he enthalpies of s olvation of pe rfluorohexane in

pentane, h exane, he ptane, a nd oc tane. I have not i ncluded t hese v alues i n T able S 5.18

(Supplemental Material) because solute descriptors are not known for perfluorohexane; however,

the experimental values do show that the enthalpy of solvation of perfluorohexane is essentially

the same in the four alkane solvents: ∆HSolv = -19.55 kJ/mol in pentane, ∆HSolv = -19.04 kJ/mol

in heptane, and ∆HSolv = -19.54 kJ/mol in octane, in accordance with the expectations based on

Eq. 5.76.

Figure 5.17. A plot of the calculated values of ∆HSolv,Alk from Eq. 5.76 against the observed values.

As a p art of our data analyses, I estimated how much predictive ability was likely to be

lost as a result o f u sing t he generic l inear alkane correlation r ather t han a n alkane-specific

correlation t o pr edict e nthalpies of s olvation in the di fferent l inear a lkane s olvents. A braham

111

model c orrelations ha ve be en de veloped f or he xane, he ptane, a nd h exadecane. T he results of

these computations are summarized in Table 5.10.

Table 5.10. Summarized comparison of the descriptive ability of the solvent-specific Abraham model correlations for enthalpies of solvation in hexane, heptane, and hexadecane vs. the generic alkane correlation equation.

Alkane solvent Standard deviation (SD)a

Solvent specific Generic alkane

Hexane 1.82 1.85

Heptane 1.85 1.86

Hexadecane 1.84 1.90

a

SD = (∆HSolvCalc∑ − ∆HSolv

Exp )2 /N − 3)

Examination of the numerical entries reveals that there is only a very s light loss in the

predictive ability when one uses Eq. 5.76 to predict the enthalpies of gaseous solutes in hexane,

heptane, and hexadecane. S imilar results would be expected for the other nine a lkane solvents

considered i n t he pr esent s tudy. The generic l inear a lkane s olvent correlation t hat ha s be en

developed for ∆HSolv more than doubles the number of organic solvents for which I could make

enthalpy of solvation predictions.

It is therefore suggested that predictions of enthalpies of solvation of gaseous solutes in

the solvents hexane, heptane, and hexadecane (Eqs. 5.72, 5.49, 5.52, respectively) be made using

the al kane-specific correlations, and for enthalpies of solvation of gaseous solutes i n t he other

linear alkanes from pentane through hexadecane predictions be made using the generic Eq. 5.76.

112

5.3.9. N,N-Dimethylformamide and tert-Butanol

Results and Discussion

I have assembled in Table S5.19 values of ΔHSolv,DMF for 159 gaseous solutes dissolved in

N,N-dimethylformamide c overing a r easonably wide r ange of c ompound t ype a nd de scriptor

values. Preliminary analysis of the experimental data yielded a correlation equation

ΔHSolv,DMF (kJ/mole) = -4.329(0.711) – 0.052(1.1.090)E – 15.122(1.236)S –

42.212(1.466)A – 8.253(1.244)B – 7.118(0.192)L (5.77)

(with N = 159, SD = 3.084, R2 = 0.977, R2adj = 0.977 F = 1329.1),

that had relatively small numerical value for the e -coefficient. T he e·E term was eliminated,

and the final regression analyses performed to give

ΔHSolv,DMF (kJ/mole) = - 4.324(0.700) – 15.168(0.762) S – 42.211(1.461) A –

8.223(1.609) B –7.121(0.181) L (5.78)

(with N = 159, SD = 3.084, R2 = 0.977, R2adj = 0.977, F = 1672.2)

ΔHSolv,DMF (kJ/mole) = 2.301(0.907) – 7.377(1.095) E - 23.129(1.302) S -

45.258(1.557)A – 6.463(1.309) B - 25.733(0.731) V (5.79)

(with N = 159, SD = 3.239, R2 = 0.975, R2adj = 0.974, F = 1202.6) .

There was no decrease in descriptive ability resulting from setting the coefficient equal to

zero, SD = 3.084 f or both Eqs. 5.77 and 5.78. The intercorrelation matrices, in R2, between the

descriptors us ed i n Eqs. 5.78 and 5.79 are given i n Table 5.11 and Table 5.12, respectively.

113

Inter-correlations between most of the descriptors are negligible. The largest inter-correlation of

0.736 i s be tween E and S in Eq. 5.79 . T he inter-correlation be tween t he E and S solute

descriptors h as b een n oted i n ear lier p apers.37,42,44,94 All r egression an alyses w ere performed

using SPSS statistical software.50

Table 5.11. Inter-correlation Matrix, in R2, for Solute Descriptors in Eq. 5.78.

S A B L

S 1.000

A 0.138 1.000

B 0.151 0.002 1.000

L 0.306 0.034 0.024 1.000

Table 5.12. Inter-correlation Matrix, in R2, for Solute Descriptors in Eq. 5.79.

E S A B V

E 1.000

S 0.736 1.000

A 0.002 0.042 1.000

B 0.277 0.375 0.001 1.000

V 0.023 0.011 0.050 0.006 1.000

Both Eqs. 5.78 and 5.79 are statistically very good with standard deviations of 3.084 and

3.239 kJ/mole for a data set that covers a range of about 108 kJ/mole. See Figure 5.18 for a plot

of the calculated values of ΔHSolv,DMF based on Eq. 5.78 against the observed values. Eq. 5.78 is

slightly th e b etter equation s tatistically, and f rom a th ermodynamic s tandpoint Eq. 5.78 is th e

114

enthalpic t emperature d erivative o f t he A braham m odel’s gas-to-condensed p hase t ransfer

equation. Eq. 5.79 might be more useful in some predictive applications in instances where the

L-descriptor is not known. Eq. 5.79 uses the McGowan volume, V-descriptor, which is easily

calculable from the individual atomic sizes and numbers of bonds in the molecule.83

Figure 5.18. A plot of the calculated values of ∆HSolv,DMF based on Eq. 5.78 against the observed values

In order to assess the predictive ability of Eq. 5.78, I divided the 159 da ta points into a

training s et a nd a te st set b y allowing th e S PSS s oftware to r andomly s elect h alf o f th e

experimental data points. T he selected data points became the training set and the compounds

that were left served as the test set. Analysis of the experimental data in the training set gave

ΔHSolv,DMF (kJ/mole) = - 5.235(0.911) – 14.966(0.855) S – 43.585(1.805) A –

4.677(1.610) B - 7.081(0.207) L (5.80)

(with N = 80, SD = 2.586, R2 = 0.983, R2adj = 0.982, F = 1103.6).

115

The training set equation was then used to predict ΔHSolv,DMF values for the 79 compounds in the

test set. C omparison of the predicted and observed values gave SD = 3.772, A verage Absolute

Error (AAE) = 2.319 and an Average Error (AE) = -0.364 kJ/mole. There is therefore very little

bias in the predictions using Eq. 5.80 with AE equal to -0.364 kJ/mole. I am not aware of any

previous attempt to correlate ΔHSolv,DMF data.

In Table S5.20 (Supplemental M aterial) are compiled values of t he e nthalpies of

solvation of 84 or ganic s olutes a nd gases i n tert-butanol. R egression a nalyses of t he

experimental ΔHSolv,t-BTOH data in accordance with the Abraham model yielded:

ΔHSolv,t-BTOH (kJ/mole) = - 3.179(1.032) + 4.379(1.292) E + 2.563(1.468) S –

57.447(1.750) A - 12.008(1.478) B - 8.881(0.258) L (5.81)

(with N = 84, SD = 2.484, R2 = 0.977, R2adj = 0.976, F = 677.2)

ΔHSolv,t-BTOH (kJ/mole) = 3.637(1.514) – 6.914(1.548) E - 3.098(1.856) S -

60.220(2.165) A - 14.133(1.846) B - 30.934(1.140) V (5.82)

(with N = 84, SD = 3.088, R2 = 0.965, R2adj = 0.963, F = 432.8).

Both Eqs. 5.81 and 5.82 are statistically very good with standard deviations of 2.484 a nd 3.088

kJ/mole for a d ata s et t hat covers a r ange o f about 71 kJ/mole. T here i s l ittle i ntercorrelation

between the descriptors in Eqs. 5.81 and 5.82; the maximum intercorrelation is R2 = 0.446 (Eq.

5.81) and R2 = 0.436 (Eq. 5.82) between E and S. Figure 5.19 compares the calculated values of

ΔHSolv,EA based on Eq. 5.81 against the observed values.

116

Figure 5.19. A plot of the calculated values of ∆HSolv,t-BTOH based on Eq. 5.81 against the observed values

The enthalpy of solvation database for tert-butanol contains only 84 solutes. It would be

difficult to obtain a good training set correlation by using only half of the experimental values.

To assess the predictive ability of Eq. 5.81 the parent data points were divided into three subsets

(A, B, C) as follows: the 1st, 4th, 7th, etc. data points comprise the first subset (A); the 2nd, 5th, 8th,

etc. data points comprise the second subset (B); and the 3rd, 6th, 9th, etc. data points comprise the

third subset (C). Three training sets were prepared as combinations of two subsets (A and B), (A

and C), and (B and C). For each training set, a correlation was derived:

Training Set (A and B)

ΔHSolv,t-BTOH (kJ/mole) = -2.573(1.333) + 3.879(1.648) E + 2.879(1.887) S -

56.003(2.721) A – 13.712(1.814) B - 8.947(0.348) L (5.83)

(with N = 56, SD = 2.476, R2 = 0.973, R2adj = 0.971, F = 363.8)

117

Training Set (A and C)

ΔHSolv,t-BTOH (kJ/mole) = -4.211(1.029) + 5.354(1.384) E + 1.275(1.643) S -

58.962(1.697) A – 8.885(1.988) B - 8.768(0.262) L (5.84)

(with N = 56, SD = 2.046, R2 = 0.985, R2adj = 0.984, F = 656.8)

Training Set (B and C)

ΔHSolv,t-BTOH (kJ/mole) = -2.838(1.471) + 4.439(1.804) E + 2.711(1.897) S -

57.282(2.304) A – 12.076(1.833) B - 8.938(0.347) L (5.85)

(with N = 56, SD = 2.803, R2 = 0.975, R2adj = 0.973, F = 393.6).

Each validation computation gave a training set correlation equation having coefficients not too

different from that obtained from the parent 84 c ompound database. T he training set equations

were then used to predict ΔHSolv,t-BTOH values for the compounds in the respective test sets (A, B,

and C ). T he s tatistical i nformation f or th e th ree te st s et p redictions a re s ummarized in Table

5.13. For the three test sets the average values of SD = 2.548, AAE = 1.763, and AE = -0.096. I

conclude that there is very little bias in the predictions based on Eqs. 5.83 – 5.85, and that Eq.

5.81 can be used to predict further values with an SD of about 2.55 kJ/mol.

Table 5.13. Summary of test set computations for tert-butanol

Training Set

Test Set Predictions (kJ/mol)

SD AAE AE A + B C 2.618 1.832 0.216 A + C B 3.398 2.226 0.186 B + C A 1.629 1.230 -0.691

118

Goss proposed101-105 a modified version of the Abraham model

SP = c + s · S + a · A + b · B + l · L + v · V (5.86)

that can also be used to describe transfer properties of a series of solutes between phases. More

than 40 different water-to-organic solvent, gas-to-organic solvent, gas-to-humic acid, and gas-to-

folvic a cid pa rtition s ystems ha ve be en r eported i n t he pub lished c hemical a nd e nvironmental

literature based on the Abraham model as modified by Goss.101-105 In the forementioned studies,

the solute property, SP, was the logarithm of the respective water-to-organic partition coefficient,

logarithm o f th e gas-to-organic s olvent p artition c oefficient, or l ogarithm of t he gas-to-humic

acid ( or f olvic a cid) pa rtition c oefficient. As part of t he p resent s tudy I also an alyzed t he

ΔHSolv,DMF and ΔHSolv,t-BTOH data in accordance with the Goss modified version of the Abraham

model

ΔHSolv,DMF (kJ/mole) = -3.279(1.113) – 17.088(1.765) S – 42.624(1.499) A –

7.427(1.255) B – 6.234(0.757) L – 3.468(2.877) V (5.87)

(with N = 159, SD = 3.070, R2 = 0.978, R2adj = 0.977, F = 1342.0)

ΔHSolv,t-BTOH (kJ/mole) = -1.430(1.383) + 2.394(1.787) S – 57.896(1.833) A -

13.375(1.413) B – 6.665(0.829) L – 7.672(3.052) V (5.88)

(with N = 84, SD = 2.559, R2 = 0.976, R2adj = 0.975, F = 637.3).

119

Both equations provide very good descriptions of the observed enthalpy of solvation data (see

Figure 5.20 for a plot of ΔHSolv,DMF based on Eq. 5.87 versus ex perimental v alues), and ar e

comparable in descriptive ability to Eqs. 5.78 and 5.81 based on the Abraham model.

Figure 5.20. A plot of the calculated values of ∆HSolv,DMF based on Eq. 5.87 against the observed values

The Abraham model and Goss modified version of the Abraham model both provide very

good mathematical descriptions of published enthalpy of solvation data for organic solutes and

gases di ssolved i n bot h N ,N-dimethylformamide a nd tert-butanol. O ne c an us e c orrelations

based on e ither m odel to pr edict of ΔHSolv values f or additional s olutes. F rom a p ersonal

standpoint the Abraham model is preferred because there is very little inter-correlation between

the five descriptors used in the two Abraham LFERs. There is however considerable correlation

between t he L and V solute de scriptors (see Table 5.14 and Table 5.15 for i nter-correlation

matrices).

120

Table 5.14. Inter-correlation Matrix, in R2, for Solute Descriptors in Eq. 5.87

Table 5.15. Inter-correlation Matrix, in R2, for Solute Descriptors in Eq. 5.88

S A B L V

S 1.000

A 0.004 1.000

B 0.160 0.196 1.000

L 0.582 0.054 0.069 1.000

V 0.604 0.038 0.042 0.904 1.000

Moreover, predictions using the Goss form of the Abraham model require that the L descriptor

be know n. F or hi ghly nonvolatile s olutes, and f or c arboxylic a cids, t he e xperimental

determination of t he L descriptor is q uite d ifficult a nd e stimation methods are not always

reliable. The Abraham model allows one to estimate ΔHSolv values using the E, S, A, B, and V

solute descriptors (see Eqs. 5.79 and 5.82) which are more easily determined.

S A B L V

S 1.000

A 0.003 1.000

B 0.381 0.024 1.000

L 0.870 0.032 0.294 1.000

V 0.814 0.052 0.277 0.943 1.000

121

5.3.10. Acetonitrile and Acetone

Results and Discussion

Listed in Table S5.21 (Supplemental Material) are experimental values of ΔHSolv,ACN for

74 or ganic v apors and gases di ssolved i n a cetonitrile c overing a r easonably wide r ange o f

compound type and descriptor va lue. A nalysis of the experimental da ta yielded the following

two Abraham model correlation equations:

ΔHSolv,ACN (kJ/mole) = -4.148(0.657) + 3.304(1.215) E – 18.430(1.239) S –

26.104(1.385) A – 7.535(1.050) B – 6.727(0.254) L (5.89)

(with N = 74, SD = 2.171, R2 = 0.985, F = 900.39)

ΔHSolv,ACN (kJ/mole) = 2.650(1.109) – 3.000(1.410) E – 25.559(1.644) S –

30.397(1.801) A – 6.741(1.363) B – 24.961(1.247) V (5.90)

(with N = 74, SD = 2.781, R2 = 0.976, F = 543.5).

All regression analyses were performed using SPSS statistical software. Both Eqs. 5.89 and 5.90

provide a good s tatistical f it of the observed data with s tandard deviations of 2.171 and 2.781

kJ/mole for a da ta set that covers a r ange of 89.73 kJ /mole. S ee Figure 5.23 for a plot of the

calculated values ΔHSolv,ACN based on Eq. 5.89 against the observed values. Eq. 5.89 is slightly

the better equation statistically, and from a thermodynamic standpoint Eq. 5.89 is the enthalpic

derivative of the Abraham model’s gas-to-condensed phase transfer equation. Eq. 5.90 might be

more useful i n some pr edictive applications i n i nstances where t he L-descriptor i s not known.

Eq. 5.90 uses the McGowan volume, V-descriptor, which is easily calculable from the individual

122

atomic sizes and numbers of bonds in the molecule. T o my knowledge, Eqs. 5.89 and 5.90 are

the f irst expressions t hat a llow one t o pr edict t he e nthalpy of s olvation of gaseous s olutes i n

acetonitrile.

Figure 5.21. A plot of the calculated values of ΔHSolv,ACN (kJ/mole) based on Eq. 5.89 against the observed values.

In order to assess the predictive ability of Eq. 5.89, I divided the 74 data points into a

training s et a nd a te st set b y allowing th e S PSS s oftware to r andomly s elect h alf o f th e

experimental points. T he selected data points became the t raining set and the compounds that

were left served as the test set. Analysis of the experimental data in the training set gave

ΔHSolv,ACN (kJ/mole) = -4.608(1.105) + 2.996(1.906) E – 18.110(2.039) S –

25.396(2.296) A– 7.161(1.683) B – 6.715(0.393) L (5.91)

(with N = 37, SD = 2.237, R2 = 0.981, F = 325.5)

There is v ery little d ifference in th e e quation coefficients for th e f ull d ataset a nd th e tr aining

dataset correlations, thus showing that the training set of compounds is a representative sample

123

of the total data set. The training set equation was then used to predict ΔHSolv,ACN values for the

37 c ompounds i n the t est s et. F or t he pr edicted a nd e xperimental va lues, I find S D = 2.144,

AAE ( average a bsolute e rror) = 1.665 and A E ( average error) = 0.4 04 kJ /mole. T here i s

therefore very little bias in using Eq. 5.91 with AE equal to 0.404 kJ/mole. The training set and

test s et a nalyses were performed tw o mo re time s w ith s imilar r esults. T raining and t est

validations were also performed for Eq. 5.91. To conserve journal space, I give only the test set

results. T he de rived t raining s et correlation for E q. 5.91 predicted t he 3 7 experimental

ΔHSolv,ACN values in the test set to within a SD = 3.223, AAE = 2.416 and AE = 0.640. Again,

there is very little bias in the predictions using Eq. 5.91 with AE equal to 0.640 k J/mole. This

level of pr edictive e rror w ill be sufficient f or mo st p ractical c hemical a nd e ngineering

applications.

In Table S5.22 (Supplemental Material) are collected values of the enthalpies of solvation

of 81 gaseous solutes in acetone. Regression analyses of the experimental ΔHSolv,ACE data i n

accordance with the Abraham model yielded:

ΔHSolv,ACE (kJ/mole) = -4.811(0.568) + 4.397(1.295) E – 17.017(1.406) S –

36.105(1.748) A – 4.581(1.184) B – 7.326(0.226) L (5.92)

(with N = 81, SD = 2.645, R2 = 0.986, F = 1073.3)

ΔHSolv,ACE (kJ/mole) = 3.411(1.028) – 3.436(1.697) E – 25.312(1.969) S –

39.209(2.486) A – 4.076(1.679) B – 27.314(1.228) V (5.93)

(with N = 81, SD = 3.719, R2 = 0.973, F = 535.4).

124

There is little intercorrelation between the descriptors in Eqs. 5.92 and 5.93. The maximum inter-

correlation is R2 = 0.41 3 ( Eq. 5.92) an d R2 = 0.594 ( Eq. 5.93) b etween t he E and S solute

descriptors. Both Eqs. 5.92 and 5.93 are statistically very good with standard deviations of 2.715

and 3.719 kJ /mole f or a da taset t hat c overs a r ange of 117.31 kJ/mole. B oth e quations were

validated through t raining and test set analyses. Figure 5.24 compares the calculated values o f

HSolv,ACE based on E q. 5.92 against t he obs erved da ta. T o my knowledge t here has b een n o

previous attempt to correlate enthalpies of solvation for gaseous solutes in acetone.

Figure 5.22. A plot of the calculated values of ΔHSolv,ACE (kJ/mole) based on Eq. 5.92 against the observed values.

As part of the current study mathematical correlations were also developed equations for

acetonitrile

ΔHSolv,ACN (kJ/mole) = -2.794(1.255) - 18.737(1.657) S – 26.884(1.555) A –

8.128(1.039) B– 5.007(0.750) L – 5.818(3.170) V (5.94)

(with N = 74, SD = 2.232, R2 = 0.984, R2adj = 0.983, F = 851.5)

125

and for acetone

ΔHSolv,ACE (kJ/mole) = -3.778(1.212) – 15.512(1.885) S – 36.989(1.894) A –

6.272(1.182) B – 6.184(0.782) L – 3.403(3.243) V (5.95)

(with N = 81, SD =2.820, R2 = 0.984, R2adj = 0.983, F = 942.1)

based on the Goss Modified Abraham model.

There is considerable inter-correlation between the L and V solute descriptors, R2 = 0.919

(Eq. 5.94) and R2 = 0.925 (Eq. 5.95). Strong inter-correlations between the L and V descriptors

gave r ise t o t he l arge s tandard errors t hat are n oted i n t he v -coefficients. T he v ·V term w as

eliminated from the model, and the experimental enthalpy of solvation data was re-analyzed to

give

ΔHSolv,ACN(kJ/mole) = −4.784(0.642) − 16.289(1.000)S − 25.706(1.440)A −

8.961(0.951)B − 6.326(0.216)L (5.96)

(with N = 74, SD = 2.286, R2 = 0.984, R2adj = 0.983, F = 1028.3)

and

ΔHSolv,ACE(kJ/mole) = −4.879(0.605) − 13.943(1.148)S − 36.520(1.861)A−

6.860(1.041)B − 6.973(0.214)L (5.97)

(with N = 81, S.D.= 2.841, R2 = 0.984, R2adj = 0.983, F = 1175.8)

126

to predict the ΔHSolv for additional solutes dissolved in acetonitrile and in acetone. The calculated

ΔHSolv values can be used in conjunction with our existing correlation equations for predicting

gas-to-acetonitrile an d gas-to-acetone p artition coefficients. Published A braham m odel

correlation e xpressions pertain t o 298.15 K . T he c orrelations pr esented he re a llow one to

extrapolate predicted log K values to slightly higher and lower temperatures.

127

CHAPTER 6

CHARACTERIZATION OF THE PARTITIONING OF GASEOUS SOLUTES INTO HUMIC

ACID WITH THE ABRAHAM MODEL AND TEMPERATURE-INDEPENDENT

EQUATION COEFFICIENTS

6.1. Introduction

While I w as able to find sufficient experimental ΔHSolv data f or de riving pr edictive

expressions f or w ater and f or 21 organic s olvents ( see C hapter 5 ), one needs to de velop a n

alternative strategy that can be used in instances where there are too few measured ΔHSolv values

to obt ain a m eaningful c orrelation. In t his s tudy, t he i dea of i ncorporating a t emperature

dependence di rectly i nto t he e quation c oefficients i s e xplored. T he a pplicability o f t his ne w

form of the basic Abraham model will be assessed using published gas-to-humic acid partition

coefficient data Niederer et al.125 determined the Leonardite humic acid/air partition coefficients

of 188 nonpol ar a nd pol ar or ganic c ompounds at t emperatures be tween 5 a nd 75 ºC us ing a

dynamic f low-through t echnique. F or f our of the e ight t emperatures s tudied, t he a uthors103

tabulated the equation coefficients with a modified version of the Abraham model. At 288.15 K

and 98 % relative humidity, the derived correlation was103

Log KLHA (L/kgHA) = - 0.65(0.15) + 1.14(0.17) S + 3.62(0.13) A + 1.88(0.15)

+ 0.81(0.07) L + 0.08(0.27) V (6.1)

(with N = 158, R2 = 0.96, rmse = 0.32).

Thirty of t he c ompounds were excluded f rom t he r egression an alyses b ecause t he s olute

descriptors were not available. The statistics of Eq. 6.1, both in terms of the squared correlation

128

coefficient and root mean square e rror ( rmse), a re qui te good g iven the n ature of t he property

measured an d t hat t he ex perimental l og K LHA data s panned m ore t han a 7 l og uni t r ange.

Generally, b iological data have greater ex perimental uncertainties associated w ith t he r eported

values than do chemical p roperties such as the octanol/water partition coefficient o r saturation

solubilities. T he estimated uncertainty in the log KLHA values is believed to be about 0.17 log

units ba sed on t he a uthors’ obs ervation t hat di fferences be tween s eparately pr epared c olumns

and c olumn pa ckings t ypically a mounted to a n average s tandard d eviation of 0.17 l og uni ts.

Equation coefficients for the other three temperatures (298.15 K, 308.15 K, and 318.15 K) each

had a d ifferent s et o f numerical va lues, a nd while t he a uthors di d not pr ovide t he s tatistical

information of each correlation, I speculate that the statistics were comparable to those given for

Eq. 6.8.

The proposed m ethod of a nalyzing t he e xperimental l og K LHA data d iffers fro m o f

Niederer et al.103 in that the general Abraham equation for gas-to-condensed phase transfer (Eq.

2.2) has be en m odified so t hat ex perimental d ata m easured at d ifferent t emperatures can b e

included into a single correlation expression. T he proposed modification contains temperature-

independent e quation c oefficients. If s uccessful, t he m odification w ill a llow one t o de rive

Abraham correlations for many more processes than is possible with the existing computational

methodology that requires all regressed data be at the same temperature.

6.2. Experimental Methods

Past studies have shown that the basic Abraham model can describe both Gibbs energies3-

8,20,27,29,35,36,38,41,126,127

ΔGSolv = - 2.303 RT log K = cg + eg·E + sg·S + ag·A + bg·B + lg·L (6.2)

129

and enthalpies of solute transfer from the gas phase to a condensed phase12,99,100,109,111

ΔHSolv = ch + eh·E + sh·S + ah·A + bh·B + lh·L (6.3)

using a common set of five solute descriptors. T he subscripts “g” and “h” have been added to

the equation coefficients t o i ndicate t he numerical values ar e specific for t he r espective Gibbs

energy of s olvation a nd e nthalpy of s olvation i nto t he g iven s olvent. G iven t he doc umented

success of Eqs. 6.2 and 6.3 it would not be unreasonable to assume that the basic model would

be capable of describing the gas-to-liquid entropy of transfer, ΔSSolv,

ΔSSolv = cs + es·E + ss·S + as·A + bs·B + ls·L (6.4)

where the “s” subscript indicates the entropic component of the transfer process. Substituting the

individual Abraham correlations for ΔHSolv and ΔSSolv into ΔGSolv = ΔHSolv - T ΔSSolv yields

ΔGsolv = - 2.303 RT log K = ch + eh ·E + sh ·S + ah ·A + bh ·B + lh ·L - T (cs

+ es ·E + ss ·S + as ·A + bs ·B + ls ·L) (6.5)

and

LRT

lR

lBRT

bR

bART

aR

a

SRT

sR

sERT

eR

eRT

cR

cK

hshshs

hshshs

)303.2303.2

()303.2303.2

()303.2303.2

(

)303.2303.2

()303.2303.2

(303.2303.2

log

−+−+−

+−+−+−=

(6.6)

a r elatively simple m athematical expression. Over a s mall t emperature i nterval o ne w ould

expect bot h t he enthalpy and entropy o f s olvation t o be i ndependent of t emperature. If t his

assumption hol ds, t he t welve e quation c oefficients i n Eq. 6.6 are t emperature-independent

numerical values. Eq. 6.6 suggests a method for combining log K values measured at different

temperatures into a single correlation.

130

The N iederer et al .125 database o f experimental Leonardite h umic a cid/air p artition

coefficients contains numerical values for 188 nonpolar and polar organic compounds measured

at t emperatures b etween 5 a nd 75 ºC . For each s olute t he authors measured t he pa rtition

coefficient a t t hree o r f our di fferent t emperatures. N o compound w as s tudied a t all e ight

temperatures; however, the authors did give a value of KLHA for every compound at 288.15 K .

Thirty-six of the authors’ tabulated K LHA values at 288.15 K were ex trapolated from measured

values o btained at h igher t emperatures. V ery f ew m easurements w ere p erformed at t he t hree

higher temperatures (328.15, 338.15 a nd 348.15 K). I have converted the experimental humic

acid/gas partition coefficient data of Niederer et al .125 into log KHLA values, and have listed the

664 num erical va lues i n Table S 6.1 ( Supplementary M aterial) by t emperature. T he 36

extrapolated data points are given in bold font type.

Molecular descriptors for all of the compounds considered in the present study are also

tabulated i n Table S6.1 (Supplemental Materials). T he numerical va lues i n Table S6.1 came

from our s olute de scriptor da tabase, w hich no w contains va lues f or m ore t han 4,000 di fferent

organic a nd or ganometallic c ompounds. T he de scriptors w ere obt ained e xactly as de scribed

before, us ing v arious t ypes of e xperimental da ta, i ncluding w ater t o s olvent pa rtitions, g as t o

solvent partitions, solubility and chromatographic data2. S olute descriptors used in the present

study ar e al l b ased o n experimental d ata. T here i s al so co mmercial s oftware128 and s everal

published e stimation s chemes58,80,81,129 available f or cal culating t he n umerical v alues o f s olute

descriptors from molecular structural information if one is unable to find the necessary partition,

solubility and/or chromatographic data.

131

6.3. Results and Discussion

There is sufficient experimental log KLHA data at 278.15 K, 288.15 K, 298.15 K, 308.15

K and 318.15 K to develop a separate Abraham model correlation for each temperature. T hese

temperature-specific correlations provide a benchmark to use in assessing how much predictive

accuracy i s l ost w henever l og K LHA measured a t d ifferent temperatures ar e co mbined into a

single correlation. T he log KLHA values at 288.15 K in Table S6.1 were analyzed according to

the gas-to-condensed phase linear free energy relationship of the Abraham model to give

Log KLHA (L/kgHA) = - 0.766(0.112) – 0.177(0.106) E + 1.363(0.122) S +

3.659(0.124) A + 1.848(0.148) B + 0.808(0.025) L (6.7)

(with N = 162, R2 = 0.956, R2adj = 0.955, SD = 0.326, F = 684.44)

The regression analysis was performed using SPSS statistical software.50 Figure 6.1 compares

the observed log KLHA data at 288.15 K to calculated values based on Eq. 6.7. The statistics of

Eq. 6.7 are qui te g ood, a nd ar e co mparable t o t hose o f Eq. 6.1 published pr eviously. T his

observation i s i n a ccord w ith t he e arlier f indings of Flanagan et al .106 who c oncluded, a fter

comparing t he pr edictions of w ater-to-organic s olvent a nd g as-to-organic s olvent pa rtition

coefficients from Eqs. 2.1 and 2.2 of the Abraham model and the predictions from the modified

version of t he A braham m odel upon w hich Eq. 6.1 is ba sed, t hat the t wo m odels w ere

comparable in terms of their descriptive abilities.

132

Figure 6.1. A plot of the calculated values log KLHA on Eq. 6.7 against the observed values.

From a p ersonal s tandpoint, I prefer t he or iginal A braham m odel, Eqs. 2.1 a nd 2.2,

because it is easier for us to estimate E than it is for us to experimentally measure the solute’s

Ostwald coefficient in hexadecane. For liquid solutes, the excess molar refraction descriptor, E,

is obtained from the liquid refractive index. In the case of solid solutes, one either estimates a

hypothetical liquid r efractive i ndex us ing o ne o f s everal available m odels, o r can calculate E

directly through addition of fragments or substructures. I have had much less experience using

estimation s chemes f or L, a nd ha ve not h ad t he oppor tunity t o pr operly a ssess how good t he

methods are for multi-functional organic solutes. D espite my personal preferences I recognize

that Eq. 6.1 may h ave advances o ver Eq. 6.7 in c ertain a pplications. G oss101 noted t hat t he

generalized of Eq. 6.1 gave better results for predicting the gas-to-organic solvent and water-to-

organic solvent p artition coefficients of hi ghly f luorinated compounds. Superiority w as l ikely

due to the extreme E values (-0.5 to –1.5) that highly fluorinated compounds possess. The large

negative E values fall well out side of t he calibration c ompounds i n deriving my existing

correlations. However, I have recently shown130 that E values for highly fluorinated compounds

133

can be estimated quite easily well, and so there is now little reason to avoid Eq. 2.2 when dealing

with f luorinated c ompounds. For t he pr esent s tudy none of t he a fore-mentioned a dvantages

come i nto pl ay. T here a re onl y t wo hi ghly f luorinated c ompounds, 2,2,2 -trifluoroethanol a nd

1,1,1,3,3,3-hexafluoropropan-2-ol, in the data set and the L descriptors of all of the compounds

are kno wn. T he r eal a dvantage i n us ing Eq. 2.2 t o de scribe t he gas-to-humic a cid p artition

coefficient d ata i s t hat I can u se p rincipal co mponent an alysis ( PCA) t o co mpare t he d erived

KLHA correlation t o t he other gas-to-organic s olvent pa rtition e quations that I have d eveloped

previously. T he PCA that shortly follows compares the similarity of properties of the hydrated

humic acid phase to the properties of the different organic solvents studied previously.

In order to assess the predictive ability of Eq. 6.7, I divided the 162 data points into a

training set and a test set by allowing the SPSS software to randomly select half of experimental

values. The selected data points became the training set and the compounds that were left served

as the test set. Analysis of the 288 K experimental data in the training set gave

Log KLHA (L/kgHA) = - 0.718(0.168) – 0.220(0.152) E + 1.472(0.170) S +

3.563(0.190) A + 1.663(0.211) B + 0.805(0.036) L (6.8)

(with N = 81, R2 = 0.953, R2adj = 0.950, SD = 0.332, F = 302.69).

There is very little difference in the equation coefficients for the full dataset and training dataset

correlations. T he t raining set correlation was t hen used to pr edict l og KLHA values for t he 81

compounds in the test set. F or the predicted and experimental va lues, I find that SD = 0.328,

AAE (average absolute error) = 0.255 a nd the AE (average error) = -0.027. T here is therefore

very little bias in the predictions using Eq. 6.8 with AE equal to -0.027.

134

The ex perimental g as-to-humic a cid pa rtition c oefficient da ta a t 278.15 K , 298.15 K ,

308.15 K, and 318.15 K were analyzed in similar fashion. C oefficients for all five correlations

are tabulated in Table 6.1 along with the associated statistical information, where the values in

parenthesis indicate the standard errors in the coefficients. There were insufficient experimental

data to perform regression analyses at the three higher temperatures. Numerical values of all six

equation coefficients do change with temperature. In general the values decrease with increasing

temperature; however, there are a f ew exceptions as noted in Table 6.1. I did perform a quick

calculation with the coefficients to determine whether o r not the p roduct of temperature times

equation c oefficient(s) was c onstant ov er t his t emperature a s would be t he c ase i f t he Gibbs

energy of solvation was independent of temperature. My calculations did not find this to be the

case.

135

Table 6.1. Equation Coefficients for the Abraham Model Correlations for Describing the Gas-to-Humic Acid Partition Coefficient Data at Different Temperatures

c e s a b l N R2 R2adj SD F

Temperature = 278.15 K

-0.925 -0.329 1.419 4.114 2.061 0.902 102 0.886 0.88 0.335 146.156

(0.203) (0.174) (0.206) (0.259) (0.217) (0.041)

Temperature = 288.15 K

-0.766 -0.177 1.363 3.659 1.848 0.808 162 0.956 0.955 0.326 684.442

(0.112) (0.106) (0.122) (0.124) (0.148) (0.025)

Temperature = 298.15

-0.755 -0.257 1.397 3.319 1.712 0.768 118 0.907 0.903 0.313 217.772

(0.171) (0.135) (0.165) (0.169) (0.178) (0.034)

Temperature = 308.15 K

-0.551 -0.106 1.217 3.184 1.693 0.657 125 0.919 0.916 0.332 270.638

(0.156) (0.120) (0.139) (0.150) (0.168) (0.032)

Temperature = 318.15 K

-0.475 -0.09 1.251 2.944 1.572 0.587 107 0.916 0.912 0.323 219.743

(0.169) (0.124) (0.141) (0.142) (0.175) (0.034)

136

There a re 664 e xperimental l og K LHA values i n Table S 6.1 de termined at 8 d ifferent

temperatures. T he en tire s et o f n umerical v alues w ere an alyzed co llectively b y regression

analysis to yield the following correlation

logKLHA (L /kgL HA ) = cs −ch

T+ (es −

eh

T)E + (ss −

sh

T)S + (as −

ah

T)A + (bs −

bh

T)B + (ls −

lh

T)L (6.9)

(with N = 664, R2 = 0.930, R2adj = 0.929, SD = 0.327, F = 788.575) .

The c alculated eq uation co efficients are l isted i n Table 6.2. E xamination of t he num erical

entries in Table 6.2 reveals that the coefficients do have a fairly large uncertainty, which I think

may be due to either the quality of the experimental data used in the regression analysis or the

coefficients may have a slight temperature dependence that was not incorporated into the model.

I also note that the extraction of the separate enthalpic and entropic contributions to the transfer

process is further complicated because these two effects tend to compensate each other. A large

exothermic e nthalpic s olute-solvent i nteraction of ten r esults i n “ molecular or dering” and

decreased system entropy. T he net effect is a r educed Gibbs energy of transfer, which one can

model fairly accurately. However, to back out the much larger individual enthalpic and entropic

effects is not an easy task, particularly in the case of biological data that typically has a sizeable

experimental uncertainty in the measured values.

137

Table 6.2. Temperature-Independent Equation Coefficients for Eq. 6.9 of the Abraham Model for Correlating the Gas-to-Humic Acid Partition Coefficients

Coefficient Numerical Value Coefficient Numerical Value Coefficient Numerical Value

Entire Database of 664 Observed Values Training Set (Method A)a Training Set (Method B)b

cs 1.589(1.019) cs 1.627(1.608) cs 1.491(1.587)

ch 676.4(304.0) ch 702.29(482.00) ch 649.62(473.063)

es 1.145(0.887) es 1.355(1.308) es 0.200(1.334)

eh 394.5(268.7) eh 440.17(395.82) eh 114.34(404.25)

ss 0.419(1.060) ss -0.363(1.691) ss 0.982(1.568)

sh -268.3(320.4) sh -478.96(508.58) sh -103.61(475.50)

as -5.120(1.060) as -3.729(1.680) as -4.710(1.623)

ah -2541.4(322.5) ah -2127.54(506.91) ah -2414.53(494.76)

bs -0.264(1.349) bs 0.889(2.000) bs 0.281(2.048)

bh -613.7(404.9) bh -309.75(600.05) bh -459.13(616.23)

ls -1.449(0.219) ls -1.521(0.349) ls -1.499(0.332)

lh -651.4(65.63) lh -676.19(104.43) lh -666.65(99.65) a Method A: N = 332, R2 = 0.925, R2

adj = 0.922, SD = 0.334, F = 356.946.

b Method B: N = 333, R2 = 0.930, R2adj = 0.928, SD = 0.324, F = 388.151.

138

The intended application of Eq. 6.9 is to a llow one to estimate gas-to-condensed phase

partition co efficients as a f unction o f t emperature w henever t here i s i nsufficient ex perimental

data to develop a predictive expression for the desired temperature. I will continue to develop

temperature-specific c orrelations a nd e nthalpy of s olvation c orrelations w henever t here i s

sufficient experimental data to d o s o. In in stances o f limited experimental d ata a t a common

temperature, Eq. 6.9 can b e u sed t o de velop a s trictly predictive expression b y c ombining

experimental data measured at different temperatures. Given the intended application, Eq. 6.9 is

statistically very good and describes an experimental database that covers a 7.5 log unit range to

within a s tandard de viation of 0.327 l og uni ts ( see Figure 6.2 for a graphical c omparison of

observed log KLHA data versus calculated values based on Eq. 6.9). S tandard deviations for the

temperature-specific equations (see Table 6.1) were also in the 0.32 log unit range.

Figure 6.2. A plot of the calculated values log KLHA on Eq. 6.9 against the observed values.

139

As part of my data analyses I estimated how much predictive ability was likely to be lost

as a r esult of using Eq. 6.9 and the coefficients in Table 6.2 to predict log K LHA values rather

than us ing t he t emperature-specific c orrelations t hat w ere de veloped f or 278.15 K, 288.15 K ,

298.15 K , 308.15 K a nd 318.15 K . T o ha ve a common ba sis f or c omparison, t he di fference

between observed and calculated values based on Eq. 6.9 were expressed as

6)log(log 2

−−

=N

KKSD obscalc (6.10)

for each of the f ive temperatures that I had a t emperature-specific Abraham model correlation.

The r esults of my computations a re s ummarized i n Table 6.3. For the f ive t emperatures

considered, the standard deviations of Eq. 6.9 and the temperature-specific correlations differ by

approximately 0.01 log units. There is no loss in predictive ability due to my proposed method

of combining experimental data measured at different temperatures into a single correlation.

Table 6.3. Summarized Comparison of the Descriptive Ability of Eq. 6.9 Versus the Temperature-Specific Abraham Model Correlation Equations

Standard Deviation (SD)a Temperature Equation 6.9 Temperature-Specific Equations 278.15 K 0.347 0.335 288.15 K 0.334 0.326 298.15 K 0.325 0.313 308.15 K 0.341 0.332 318.15 K 0.332 0.323

140

The advantage that Eq. 6.9 has over the temperature-specific Abraham model correlation

is that one is able to utilize more of the available experimental data. For example, let’s assume

that o ne w as ab le t o f ind l og K LHA data f or 20 compounds a t 278.15 K , l og K LHA data f or a

different set of 20 compounds at 298.15 K and log KLHA data for a third set of 20 compounds at

328.15 K . T here w ould be i nsufficient e xperimental da ta t o de velop a n A braham m odel

correlation. G enerally one ne eds a m inimum of 30 t o 40 d ata poi nts ( preferably more) t o

develop a meaningful correlation equation, and the compounds need to span as wide of a range

of solute descriptors as possible. B y combining the 60 l og K LHA values into a s ingle database

one could develop a predictive expression based on Eq. 6.9. T he calculated coefficients would

likely have a fairly large standard deviation; however, the regression equation would allow one

to estimate log KLHA values for additional compounds. Such predictions would otherwise not be

possible w ith my existing r egression m odel t hat requires all ex perimental d ata b e at t he s ame

temperature.

To f urther as sess t he p redictive ab ility o f Eq. 6.7 I divided t he 664 da ta poi nts i nto a

training set and a test set by allowing the SPSS software to randomly select half of experimental

values. T wo r andom s election pr ocedures w ere e mployed: M ethod A i nvolved ha ving S PSS

select 332 data points from the entire database; Method B involved dividing the large database

into temperature subsets and letting SPSS select ha lf of the data points f rom each of the e ight

individual temperature subsets. The latter method insured that there was equal representation of

data points by temperature in the training set and test set. The selected data points became the

training set and the compounds that were left served as the test set. Analysis of the experimental

data in the training set gave the equation coefficients that are lis ted in the last two columns of

numerical entries in Table 6.2. T he s tatistical i nformation for e ach tr aining s et correlation is

141

listed in the Table 6.2 footnote. Each training set correlation had a squared correlation of R2 >

0.925 and a standard deviation of SD < 0.334. The training set correlations were then used to

predict the log KLHA values in the respective test sets. For the predicted and experimental values,

I find that SD = 0.330 for Method A and SD = 0.328 for Method B, AAE = 0.260 for Method A

and AAE = 0.253 for Method B, and the AE = -0.042 for Method A and AE = -0.046 for Method

B. There is therefore very little bias in the predictions using two training set equations with AE

equal to –0.042 (Method A) and –0.046 (Method B).

At the suggestion of a reviewer several of the terms in Eq. 6.9 were successively zeroed

out to d etermine i f a b etter m athematical co rrelation co uld b e o btained. It w as found t hat t he

following ten-parameter equation

LogKLHA =1.693(0.833) −708.088(247.738)

T+ 1.389(0.633) −

468.365(191.788)T

E

+394.699(18.176)

TS + −5.074(1.052) +

2528.05(320.15)T

A +

534.19(21.981)T

B

+ −1.456(0.217) +653.881(64.916)

T

L

(6.11)

(with N = 664, R2 = 0.930, R2adj = 0.929, SD = 0.327, F = 966.52)

also provided a very good mathematical description of the 664 experimental gas-to-humic acid

partition coefficients. T he standard deviation and squared correlation coefficient is comparable

to th at o f Eq. 6.9 , a nd t he t en-parameter equation doe s ha ve s maller s tandard e rrors for t he

derived equation coefficients. Substitution of T = 288.15 K into Eq. 6.11 yielded

log KLHA(L/kgHA) = -0.764 – 0.236E + 1.369S + 3.699A + 1.854B + 0.813L (6.12)

142

which is in good agreement with the temperature-specific correlation determined using only the

288.15 K partition coefficient data. Equation 6.11 was validated by dividing the 664 data points

into a training set and a test set.

As pointed out above, the coefficients e to l in Eq. 2.2 reflect the properties of the solvent

phase in terms of solute– solvent phase interactions. Since exactly the same form of Eq. 2.2 has

been used to correlate gas to solvent partition coefficients for a wide variety of solvents, one is

now in a position to compare the properties of humic acid with those of solvents that have been

previously characterized. V alues o f t he co efficients i n E q. 2 .2 for a n umber o f g as-to-solvent

partitions are given in Table 6.4; these include two room temperature ionic l iquids.131 It is not

easy to compare coefficients in such a table, but a useful visual method is through PCA. The five

columns of coefficients are transformed into five orthogonal columns or PCs. The advantage of

this procedure is that the first two PCs contain, in the present case, 79% of the total information.

Hence, a p lot o f t he s cores o f P C2 ag ainst P C1 w ill g ive a r easonable t wo-dimensional

visualization of t he f ive-dimensional s pace of t he e t o l coefficients. S uch a pl ot i s s hown i n

Figure 6.3; the point for water is so far away from the other points and has been left off the plot.

143

Figure 6.3. A plot of the scores of PC2 against the scores of PC1; points numbered as in Table 6.4. The point for water, no. 25, is off-scale as shown by the arrow.

In the PCA plot, the nearer the points, the closer are the coefficients and hence the closer

are the solvents chemically, i.e. in terms of solute – solvent interactions. It can be seen that the

points for humic acid at various temperatures (Nos. 1 – 5) are closer to solvents that are generally

“polar” than to “nonpolar” solvents, with solvents methanol (No. 6), wet octanol (No. 11), and

N-methylformamide ( No. 1 2) b eing especially close. T hese are al l s olvents t hat ar e d ipolar,

strong hydrogen bond ba ses and, for methanol and wet octanol, strong hydrogen bond a cids. In

the P CA pl ot, poi nts f or s olvents t hat are di polar, s trong h ydrogen b ond acids and s trong

hydrogen bond b ases t end t o l ie t owards t he t op r ight ha nd corner, a nd poi nts f or nonpol ar

solvents such as hexadecane (No. 21) and cyclohexane (No. 22) lie towards the bottom left hand

corner. Over the wide range of solvents listed in Table 6.4, humic acid can be considered to be in

the class of highly dipolar and strong hydrogenbond solvent phases.

144

Table 6.4. Coefficients in Eq. 2.2 for Gas-to-Solvent Phase Partitions

Phase N e s a b l

Humic acid, 278 1 - 0.329 1.419 4.114 2.061 0.902

Humic acid, 288 2 - 0.177 1.363 3.659 1.848 0.808

Humic acid, 298 3 -0.257 1.397 3.319 1.712 0.768

Humic acid, 308 4 -0.106 1.217 3.184 1.693 0.657

Humic acid, 318 5 -0.090 1.251 2.944 1.572 0.587

Methanol 6 -0.215 1.173 3.701 1.432 0.769

Ethanol 7 -0.206 0.789 3.635 1.311 0.853

1-Butanol 8 - 0.276 0.539 3.781 0.995 0.934

1-Octanol 9 - 0.203 0.560 2.560 0.702 0.939

Ethylene glycol 10 0.217 1.427 4.474 2.687 0.568

1-Octanol (wet) 11 0.002 0.709 3.519 1.429 0.858

N-methylformamide 12 - 0.259 2.003 4.559 0.430 0.706

Ethyl acetate 13 - 0.335 1.251 2.949 0.000 0.917

Acetone 14 -0.277 1.522 3.258 0.000 0.863

aAn ionic liquid, see Abraham and Acree.131

(table continues)

145

Table 6.4 (continued).

Phase N e s a b l

Ether 15 -0.169 0.873 3.402 0.000 0.882

Acetonitrile 16 - 0.595 2.461 2.085 0.418 0.738

Chloroform 17 - 0.467 1.203 0.138 1.432 0.994

Chlorobenzene 18 - 0.053 1.254 0.364 0.000 1.041

Nitrobenzene 19 0.121 1.682 1.247 0.370 0.915

Toluene 20 - 0.222 0.938 0.467 0.099 1.012

Hexadecane 21 0.000 0.000 0.000 0.000 1.000

Cyclohexane 22 - 0.110 0.000 0.000 0.000 1.013

[MEIM]+ [Tf 2N]- a 23 0.150 2.280 2.170 1.040 0.629

[M2EIM]+[Tf 2N]- a 24 0.210 2.350 2.080 0.900 0.655

Water 25 0.822 2.743 3.904 4.814 . 0.213

aAn ionic liquid, see Abraham and Acree.131

146

CHAPTER 7

SUMMARY

The Abraham general solvation model is a linear free energy relationship that can be used

to understand the types and relative strengths of chemical interactions controlling gas-to liquid or

solvent-to-liquid pa rtitioning, a nd c an a lso be u sed t o pr edict p artitioning p rocesses. In t his

dissertation, s everal a pplications of t he Abraham ge neral s olvation m odel are presented t o

illustrate the usefulness of using the model to describe partitioning processes in various chemical

and biological systems.

The s tudy pr esented i n Chapter 4 , s pecifically lo oks at u sing th e mo del to p redict

Minimum Inhibitory Concentrations of organic compounds for growth inhibition towards three

bacteria Porphyromonas gingivalis, Selenomonas artemidis, a nd Streptococcus sobrinus. T he

derived mathematical co rrelations describe the observed publ ished inhibitory data to within an

overall average s tandard de viation of a pproximately 0.30 l og uni ts. A principal c omponent

analysis, shows that the derived equations for the three growth inhibitions are close to each other,

are near to some, but not to all, equations for aqueous toxicity toward various organisms, and are

quite far from most equations for water to solvent partition. F urther analysis suggests that the

three g rowth inhibition s ystems behave as t hough a solute i s t ransferred f rom w ater t o an

environment that is still quite water-like.

In Chapter 5, I e xpanded t he us e of t he A braham m odel t o t emperature c onsiderations

other than 298.15 K through several studies predicting enthalpies of solvation of gaseous solutes.

Mathematical co rrelations are derived f or t he enthalpies of s olvation of ga seous s olutes of

various c ompounds di ssolved i n w ater, 1 -octanol, h exane, h eptane, h exadecane, c yclohexane,

benzene, t oluene, c arbon t etrachloride, c hloroform, m ethanol, ethanol, 1 -butanol, pr opylene

147

carbonate, dimethyl sulfoxide, 1,2-dichloroethane, N,N-dimethylformamide, tert-butanol, dibutyl

ether,ethyl acetate, acetonitrile, and acetone.

In chapter 5 I am able to find sufficient experimental ∆Hsolv data for deriving predictive

expressions for water and for the 21 organic solvents, however, there is still a need to develop an

alternative strategy that can be used in instances where there are too few measured ∆Hsolv values

to obt ain a m eaning f ull c orrelation. In C hapter 6, t he i dea of i ncorporating t emperature

dependence directly into the equation coefficients is explored. The Abraham model is modified

so t hat ex perimental d ata m easured at d ifferent t emperatures c an be i ncluded i nto a s ingle

correlation e xpression, a nd t he a pplicability of t his ne w f orm of t he ba sic A braham m odel is

assessed us ing publ ished e xperimental g as-to-humic a cid pa rtition coefficient da ta. T he

successful modification of the equation now gives the ability to derive Abraham correlations for

many mo re pr ocesses t han w as pr eviously a vailable w ith t he e xisting c omputational

methodology that required all regressed data to be at the same temperature.

148

APPENDIX

SUPPLEMENTAL MATERIAL

149

CHAPTER 4

Table S4.1. Molecular solute descriptors of organic compounds considered in the Minimum Inhibitory Concentration study.

Solute E S A B V

Phenol 0.81 0.89 0.60 0.30 0.78

2-Methylphenol 0.84 0.86 0.52 0.30 0.92

3-Methylphenol 0.82 0.88 0.57 0.34 0.92

4-Methylphenol 0.82 0.87 0.57 0.31 0.92

2-Ethylphenol 0.83 0.84 0.52 0.37 1.06

3-Ethylphenol 0.83 0.84 0.52 0.37 1.06

4-Ethylphenol 0.80 0.90 0.55 0.36 1.06

2-Propylphenol 0.82 0.86 0.52 0.37 1.20

3-Propylphenol 0.79 0.90 0.55 0.37 1.20

4-Propylphenol 0.79 0.88 0.55 0.37 1.20

2-Allylphenol 0.92 0.92 0.52 0.41 1.16

2-Isopropylphenol 0.84 0.88 0.52 0.38 1.20

3-Isopropylphenol 0.81 0.92 0.55 0.38 1.20

4-Isopropylphenol 0.79 0.89 0.55 0.38 1.20

2-Butylphenol 0.81 0.84 0.52 0.37 1.34

3-Butylphenol 0.80 0.91 0.55 0.37 1.34

4-Butylphenol 0.80 0.88 0.55 0.37 1.34

2-Isobutylphenol 0.82 0.88 0.52 0.38 1.34

3-Isobutylphenol 0.80 0.87 0.52 0.38 1.34

4-Isobutylphenol 0.80 0.87 0.52 0.38 1.34

150

Solute E S A B V

(±)-2-sec-Butylphenol 0.82 0.91 0.52 0.41 1.34

(±)-3-sec-Butylphenol 0.80 0.90 0.55 0.40 1.34

(±)-4-sec-Butylphenol 0.80 0.89 0.55 0.41 1.34

2-tert-Butylphenol 0.82 0.92 0.52 0.40 1.34

3-tert-Butylphenol 0.80 0.91 0.55 0.42 1.34

4-tert-Butylphenol 0.81 0.89 0.56 0.39 1.34

2-Pentylphenol 0.81 0.86 0.52 0.35 1.48

3-Pentylphenol 0.80 0.86 0.55 0.35 1.48

4-Pentylphenol 0.79 0.88 0.55 0.36 1.48

4-tert-Pentylphenol 0.81 0.89 0.56 0.41 1.48

2-Hexylphenol 0.80 0.86 0.52 0.35 1.62

4-Heptylphenol 0.79 0.88 0.55 0.35 1.76

4-Octylphenol 0.77 0.88 0.55 0.36 1.90

4-tert-Octylphenyl 0.79 0.91 0.55 0.41 1.90

2-Cyclohexylphenol 1.07 1.00 0.52 0.44 1.51

3-Cyclohexylphenol 1.07 0.98 0.55 0.39 1.51

4-Cyclohexylphenol 1.07 0.98 0.55 0.39 1.51

2-Cyclohexylmethylphenol 1.14 0.99 0.52 0.40 1.65

3-Cyclohexylmethylphenol 1.14 0.99 0.52 0.40 1.65

4-Cyclohexylmethylphenol 1.14 0.99 0.52 0.40 1.65

4-(1-Adamantyl)phenol 1.46 1.56 0.52 0.44 1.86

2,4-Dimethylphenol 0.84 0.80 0.53 0.39 1.06

2,6-Dimethylphenol 0.86 0.79 0.39 0.39 1.06

3,5-Dimethylphenol 0.82 0.84 0.57 0.36 1.06

151

Solute E S A B V

2-tert-Butyl-4-methylphenol 0.82 0.91 0.49 0.42 1.48

2-tert-Butyl-6-methylphenol 0.83 0.88 0.37 0.56 1.48

2,6-Diisopropylphenol 0.82 0.88 0.32 0.51 1.62

Thymol 0.82 0.79 0.52 0.44 1.34

Carvarol 0.82 0.81 0.54 0.36 1.34

2,4-Di-tert-butylphenol 0.83 0.92 0.44 0.50 1.90

2,6-Di-tert-butylphenol 0.84 0.90 0.23 0.54 1.90

3,5-Di-tert-butylphenol 0.81 0.93 0.51 0.50 1.90

2-tert-Butyl-4-cyclohexylphenol 1.02 0.93 0.41 0.55 2.08

2-tert-Octyl-4-cyclohexylphenol 1.00 0.94 0.41 0.55 2.64

2-Cyclohexyl-4-tert-octylphenol 1.00 0.94 0.41 0.55 2.64

2-tert-Butyl-5-cyclohexylphenol 1.02 0.93 0.41 0.55 2.08

2-tert-Octyl-5-cyclohexylphenol 1.00 0.94 0.41 0.55 2.64

2-(1-Adamantyl)-4-methylphenol 1.47 1.58 0.52 0.46 2.00

α-Tetralol 1.04 0.90 0.34 0.68 1.23

β-Tetralol 1.04 0.90 0.34 0.75 1.23

2-Phenylphenol 1.55 1.40 0.56 0.49 1.38

4-Phenylphenol 1.56 1.41 0.59 0.45 1.38

2-tert-Butyl-5-phenylphenol 1.42 1.43 0.55 0.55 1.95

2-Benzylphenol 1.44 1.38 0.52 0.50 1.52

152

Solute E S A B V

4-Benzylphenol 1.44 1.38 0.55 0.50 1.52

α-Naphthol 1.52 1.05 0.60 0.37 1.14

β-Naphthol 1.52 1.08 0.61 0.40 1.14

2-Methoxyphenol 0.84 0.91 0.22 0.52 0.98

3-Methoxyphenol 0.88 1.17 0.59 0.38 0.98

4-Methoxyphenol 0.90 1.17 0.57 0.48 0.98

Eugenol 0.95 0.99 0.22 0.51 1.35

2-Ethoxyphenol 0.81 0.90 0.20 0.58 1.12

3-Ethoxyphenol 0.85 1.16 0.56 0.45 1.12

4-Ethoxyphenol 0.87 1.17 0.57 0.52 1.12

4-Propoxyphenol 0.84 1.17 0.57 0.52 1.26

2-Isopropoxyphenol 0.80 0.90 0.20 0.67 1.26

3-Butoxyphenol 0.81 1.17 0.54 0.47 1.40

4-Butoxyphenol 0.84 1.16 0.57 0.52 1.40

4-Pentoxyphenol 0.85 1.14 0.57 0.49 1.44

4-Hexyloxyphenol 0.85 1.12 0.57 0.46 1.68

4-Heptyloxyphenol 0.84 1.12 0.57 0.46 1.82

2-Cyclohexylmethoxyphenol 1.00 1.08 0.30 0.60 1.71

3-Cyclohexylmethoxyphenol 1.00 1.27 0.55 0.47 1.71

4-Cyclohexylmethoxyphenol 1.00 1.27 0.57 0.47 1.71

4-Phenoxyphenol 1.41 1.36 0.57 0.47 1.44

2-Benzyloxyphenol 1.39 1.20 0.20 0.74 1.58

3-Benzyloxyphenol 1.41 1.41 0.55 0.61 1.58

4-Benzyloxyphenol 1.41 1.41 0.57 0.61 1.58

153

Solute E S A B V

2-Acetylphenol 0.95 1.14 0.00 0.42 1.07

3-Acetylphenol 0.98 1.35 0.72 0.55 1.07

4-Acetylphenol 1.01 1.15 0.76 0.54 1.07

2-Propionylphenol 0.94 1.18 0.00 0.42 1.21

4-Propionylphenol 1.00 1.30 0.77 0.55 1.21

2-Benzoylphenol 1.65 1.49 0.00 0.55 1.54

3-Benzoylphenol 1.65 1.68 0.70 0.65 1.54

4-Benzoylphenol 1.65 1.68 0.70 0.65 1.54

2-Fluorophenol 0.66 0.69 0.61 0.28 0.79

3-Fluorophenol 0.67 0.98 0.68 0.17 0.79

4-Fluorophenol 0.67 0.97 0.63 0.23 0.79

2-Bromophenol 1.04 0.90 0.35 0.31 0.95

3-Bromophenol 1.06 1.15 0.70 0.16 0.95

4-Bromophenol 1.08 1.17 0.67 0.20 0.95

2,6-Difluorophenol 0.59 0.69 0.63 0.23 0.81

2,6-Dichlorophenol 0.90 0.90 0.38 0.24 1.02

2,6-Dibromophenol 1.27 0.93 0.47 0.22 1.13

2-Cyanophenol 0.92 1.33 0.78 0.34 0.93

3-Cyanophenol 0.93 1.55 0.84 0.25 0.93

4-Cyanophenol 0.94 1.63 0.80 0.29 0.93

2-Hydroxyacetanilide 1.05 1.56 1.09 0.79 1.17

3-Hydroxyacetanilide 1.05 1.70 1.09 0.78 1.17

4-Hydroxyacetanilide 1.06 1.63 1.04 0.86 1.17

3-Nitro-2-methylphenol 1.08 1.52 0.75 0.26 1.09

154

Solute E S A B V

3-Nitro-4-methylphenol 1.07 1.57 0.77 0.25 1.09

6-Nitro-3-methylphenol 1.03 1.05 0.05 0.41 1.09

4-Nitro-3-methylphenol 1.10 1.65 0.83 0.25 1.09

2’-Nitro-4-hydroxybiphenyl 1.74 1.86 0.57 0.53 1.56

4’-Nitro-4-hydroxybiphenyl 1.75 1.84 0.57 0.54 1.56

5-Hydroxyindole 1.45 1.32 0.60 0.60 1.01

6-Hydroxyquinoline 1.62 1.25 0.60 0.61 1.10

8-Hydroxyjulolidine 1.48 1.28 0.52 0.75 1.50

(+)-Totarol 1.16 1.10 0.50 0.48 2.53

(+)-Ferruginol 1.16 1.15 0.40 0.47 2.53

Triclosan 1.85 1.70 0.40 0.31 1.81

Indole 1.20 1.12 0.44 0.22 0.95

Quinoline 1.27 0.97 0.00 0.54 1.04

2-Nitrotoluene 0.87 1.11 0.00 0.27 1.03

3-Nitrotoluene 0.87 1.10 0.00 0.25 1.03

2-Nitrobiphenyl 1.63 1.51 0.00 0.39 1.50

3-Nitrobiphenyl 1.66 1.48 0.00 0.38 1.50

4-Nitrobiphenyl 1.66 1.49 0.00 0.39 1.50

4-Propylanisole 0.73 0.80 0.00 0.33 1.34

(2S,5R)-(-)menthone 0.32 0.61 0.00 0.62 1.43

(1S,2R,5S)-(+)-menthol 0.40 0.50 0.23 0.58 1.47

(1R,2S,5R)-(-)-menthol 0.40 0.50 0.23 0.58 1.47

(1S,2R,5R)-(+)-isomenthol 0.40 0.50 0.23 0.58 1.47

155

CHAPTER 5

Table S5.1. Values of the gas to water solvation enthalpy in kJ/mol at 298K for 370 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Chlorine gas 0.36 0.32 0.10 0.00 1.19 0.34 -23.40 1

Hydrogen sulfide 0.35 0.31 0.10 0.07 0.72 0.27 -18.00 1

Hydrogen selenide 0.50 0.30 0.03 0.09 1.06 0.32 -15.70 1

Chlorine dioxide 0.10 0.46 0.00 0.30 0.55 0.33 -27.80 1

Sulphur hexafluoride -0.60 -0.20 0.00 0.00 -0.12 0.46 -20.70 2

Ammonia 0.14 0.39 0.16 0.56 0.32 0.30 -35.40 1

Methane 0.00 0.00 0.00 0.00 -0.32 0.25 -12.00 2

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -17.90 2

Propane 0.00 0.00 0.00 0.00 1.05 0.53 -20.40 2

Butane 0.00 0.00 0.00 0.00 1.62 0.67 -24.80 2

2-Methylpropane 0.00 0.00 0.00 0.00 1.41 0.67 -21.70 2

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -28.30 3

2,2-Dimethylpropane 0.00 0.00 0.00 0.00 1.82 0.81 -23.40 2

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -31.90 2

2-Methylpentane 0.00 0.00 0.00 0.00 2.50 0.95 -30.50 2

3-Methylpentane 0.00 0.00 0.00 0.00 2.58 0.95 -36.80 2

2,3-Dimethylbutane 0.00 0.00 0.00 0.00 2.50 0.95 -32.40 2

Heptane 0.00 0.00 0.00 0.00 3.17 1.10 -34.00 3

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -36.00 3

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -31.00 2

2,3,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.48 1.24 -38.50 2

156

Solute E S A B L V Exp Ref

Cyclopropane 0.41 0.23 0.00 0.00 1.31 0.42 -15.40 2

Cyclopentane 0.26 0.10 0.00 0.00 2.48 0.71 -30.33 3

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -30.00 2

cis-1,2-Dimethylcyclohexane 0.28 0.24 0.00 0.00 3.85 1.13 -38.30 2

trans-1,2-Dimethylcyclohexane 0.23 0.20 0.00 0.00 3.73 1.13 -36.10 2

Ethylcyclohexane 0.26 0.10 0.00 0.00 3.88 1.13 -36.80 2

Cyclooctane 0.41 0.10 0.00 0.00 4.33 1.13 -39.00 2

Ethene 0.11 0.10 0.00 0.07 0.29 0.35 -13.70 2

Propene 0.10 0.08 0.00 0.07 0.95 0.49 -21.60 3

1-Butene 0.10 0.08 0.00 0.07 1.49 0.63 -24.10 3

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -30.40 2

1-Octene 0.09 0.08 0.00 0.07 3.57 1.19 -39.20 1

2-Methylpropene 0.12 0.08 0.00 0.08 1.58 0.63 -22.70 2

2-Methyl-2-butene 0.06 0.06 0.00 0.05 1.93 0.77 -26.61 4

1,3-Butadiene 0.32 0.23 0.00 0.10 1.54 0.59 -31.40 2

Cyclohexene 0.40 0.20 0.00 0.10 3.02 0.80 -27.30 2

Cyclooctene 0.46 0.24 0.00 0.10 4.12 1.08 -45.50 2

Propyne 0.18 0.25 0.12 0.10 1.03 0.45 -15.60 2

1-Butyne 0.18 0.25 0.12 0.10 1.03 0.59 -13.50 2

Fluoromethane 0.07 0.35 0.00 0.09 0.06 0.27 -16.10 2

Difluoromethane -0.32 0.49 0.06 0.05 0.04 0.30 -17.20 2

Tetrafluoromethane -0.58 -0.26 0.00 0.00 -0.82 0.32 -13.50 2

157

Solute E S A B L V Exp Ref

1,1-Difluoroethane -0.25 0.47 0.04 0.07 0.57 0.43 -20.70 2

Trifluoromethane -0.43 0.18 0.11 0.03 -0.27 0.30 -22.60 2

1,1,1,2-Tetrafluoroethane -0.39 0.16 0.16 0.05 0.40 0.46 -22.20 2

Pentafluoroethane -0.51 -0.02 0.11 0.06 0.10 0.48 -21.50 2

1,1,1,2,3,3,3-Heptafluoropropane -0.69 0.05 0.06 0.03 0.65 0.66 -24.80 2

Chloromethane 0.25 0.43 0.00 0.08 1.16 0.37 -20.20 2

Dichloromethane 0.39 0.57 0.10 0.05 2.02 0.49 -30.30 2

Trichloromethane 0.43 0.49 0.15 0.02 2.48 0.62 -33.50 2

Tetrachloromethane 0.46 0.38 0.00 0.00 2.82 0.74 -30.50 5

Chloroethane 0.23 0.40 0.00 0.10 1.68 0.51 -22.00 2

1,1-Dichloroethane 0.32 0.49 0.10 0.10 2.32 0.64 -30.30 2

1,2-Dichloroethane 0.42 0.64 0.10 0.11 2.57 0.64 -27.90 2

1,1,1-Trichloroethane 0.37 0.41 0.00 0.09 2.73 0.76 -28.70 2

1,1,2-Trichloroethane 0.50 0.68 0.13 0.13 3.29 0.76 -32.50 2

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 0.88 -34.80 2

1,1,1,2-Tetrachloroethane 0.54 0.63 0.10 0.08 3.64 0.88 -36.20 2

1-Chloropropane 0.22 0.40 0.00 0.10 2.20 0.65 -27.00 2

1,2-Dichloropropane 0.37 0.63 0.00 0.17 2.84 0.78 -31.10 2

1,3-Dichloropropane 0.41 0.74 0.00 0.17 3.10 0.78 -29.70 2

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.80 -28.20 2

2-Chlorobutane 0.19 0.35 0.00 0.12 2.54 0.80 -34.60 2

1-Chloropentane 0.21 0.38 0.00 0.09 3.22 0.94 -34.10 2

1-Chlorohexane 0.20 0.40 0.00 0.10 3.78 1.08 -34.50 2

158

Solute E S A B L V Exp Ref

Tetrafluoroethene -0.31 -0.10 0.00 0.00 -0.05 0.42 -15.10 2

Hexafluoropropene -0.50 -0.10 0.00 0.10 0.34 0.60 -17.40 2

1,1-Dichloroethylene 0.36 0.34 0.00 0.05 2.11 0.59 -28.50 2

cis-1,2-Dichloroethylene 0.44 0.61 0.11 0.05 2.44 0.59 -26.90 6

trans-1,2-Dichloroethylene 0.43 0.41 0.09 0.05 2.28 0.59 -29.30 6

Trichloroethylene 0.52 0.37 0.08 0.03 3.00 0.72 -32.20 2

Tetrachloroethylene 0.64 0.44 0.00 0.00 3.58 0.84 -41.50* 1

Bromomethane 0.40 0.43 0.00 0.10 1.63 0.42 -23.80 2

Dibromomethane 0.71 0.69 0.11 0.07 2.89 0.60 -33.00 2

Tribromomethane 0.97 0.68 0.15 0.06 3.78 0.78 -35.80 1

Bromoethane 0.37 0.40 0.00 0.12 2.12 0.57 -29.50 2

2-Methyl-2-bromopropane 0.31 0.29 0.00 0.07 2.61 0.85 -25.40 3

Iodomethane 0.68 0.43 0.00 0.12 2.11 0.51 -28.20 2

Diiodomethane 1.20 0.69 0.05 0.17 3.86 0.77 -41.60 1

Iodoethane 0.64 0.40 0.00 0.15 2.57 0.65 -31.70 2

1-Iodopropane 0.63 0.40 0.00 0.14 3.13 0.79 -35.30 2

2-Iodopropane 0.62 0.35 0.00 0.17 2.90 0.79 -36.60 2

Fluorochloromethane 0.04 0.61 0.07 0.04 0.98 0.39 -21.70 1

Difluorochloromethane 0.00 0.25 0.20 0.00 0.69 0.41 -22.80 2

Bromodichloromethane 0.59 0.69 0.10 0.04 2.89 0.67 -28.90 2

Chlorodibromomethane 0.78 0.68 0.12 0.10 3.30 0.72 -33.30 1

Fluorotrichloromethane 0.21 0.24 0.00 0.07 1.95 0.63 -19.80 1

159

Solute E S A B L V Exp Ref

Difluorodichloromethane 0.04 0.13 0.00 0.00 1.12 0.53 -26.00 1

1,1,2-Trichlorotrifluoroethane 0.01 0.13 0.00 0.00 2.21 0.81 -28.80 2

1,2-Dichlorotetrafluoroethane -0.19 0.05 0.00 0.00 1.43 0.71 -20.20 2

Dimethylether 0.00 0.27 0.00 0.41 1.29 0.45 -34.00 7

Diethylether 0.04 0.25 0.00 0.45 2.02 0.73 -45.30 2

Di-n-propylether 0.01 0.25 0.00 0.45 2.95 1.01 -49.90 7

Di-isopropylether -0.06 0.16 0.00 0.58 2.53 1.01 -51.70 7

Dibutylether 0.00 0.25 0.00 0.45 3.92 1.30 -55.80 2

Methylpropylether 0.06 0.25 0.00 0.45 2.09 0.73 -38.00 7

Ethylbutylether 0.01 0.25 0.00 0.45 2.99 1.02 -48.40 7

Methyltert-butylether 0.02 0.21 0.00 0.59 2.38 0.87 -48.70 7

Ethyltert-butylether -0.02 0.16 0.00 0.60 2.72 1.01 -53.40 7

Methyltert-pentylether 0.05 0.21 0.00 0.60 2.92 1.01 -52.50 7

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -47.30 7

2,5-Dimethyltetrahydrofuran 0.20 0.38 0.00 0.58 2.98 0.90 -56.30 8

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 0.76 -51.40 8

Tetrahydropyran 0.28 0.47 0.00 0.55 3.06 0.77 -48.90 8

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -48.40 2

1,2-Dimethoxyethane 0.12 0.67 0.00 0.68 2.65 0.79 -59.30 8

1,2-Diethoxyethane 0.01 0.73 0.00 0.79 3.31 1.07 -71.90 8

1-Methoxy-2-ethoxyethane 0.06 0.70 0.00 0.74 2.98 0.93 -66.10 7

160

Solute E S A B L V Exp Ref

1-Methoxy-2-propoxyethane 0.01 0.73 0.00 0.79 3.31 1.07 -69.10 7

1,2-Dipropoxyethane 0.00 0.64 0.00 0.78 4.39 1.35 -76.80 7

3,6,9-Trioxoundecane 0.04 0.87 0.00 1.20 4.82 1.41 -96.20 7

2,5,8,11-Tetraoxododecane 0.00 0.98 0.00 1.44 5.16 1.47 -102.40 7

2,5,8,11,14-Pentaoxopentadecane -0.02 1.11 0.00 1.79 6.50 1.81 -125.80 7

Methoxyflurane 0.11 0.67 0.07 0.14 2.86 0.87 -30.40 2

Isoflurane -0.24 0.50 0.10 0.10 1.90 0.80 -35.30 2

Propanone 0.18 0.70 0.04 0.49 1.70 0.55 -39.70 2

Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -41.90 2

Pentan-2-one 0.14 0.68 0.00 0.51 2.76 0.83 -45.31 9

Pentan-3-one 0.15 0.66 0.00 0.51 2.81 0.83 -49.45 10

Hexan-2-one 0.14 0.68 0.00 0.51 3.29 0.97 -48.90 2

4-Methylpentan-2-one 0.11 0.65 0.00 0.51 3.09 0.97 -44.60 2

Methylisopropylketone 0.13 0.65 0.00 0.51 2.69 0.83 -57.60 2

3,3-Dimethyl-2-butanone 0.11 0.62 0.00 0.51 2.93 0.97 -47.50 11

Diisopropylketone 0.07 0.60 0.00 0.51 3.40 1.11 -54.00 11

Heptan-2-one 0.12 0.68 0.00 0.51 3.76 1.11 -54.90 2

Heptan-4-one 0.11 0.66 0.00 0.51 3.71 1.11 -58.10 11

Octan-2-one 0.11 0.68 0.00 0.51 4.26 1.25 -58.30 2

Nonan-5-one 0.10 0.66 0.00 0.51 4.70 1.39 -62.80 2

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 0.72 -44.30 2

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -49.80 2

161

Solute E S A B L V Exp Ref

Acetophenone 0.82 1.01 0.00 0.48 4.50 1.01 -53.30 2

Propiophenone 0.80 0.95 0.00 0.51 4.97 1.16 -61.90 2

Methylacetate 0.14 0.64 0.00 0.45 1.91 0.61 -38.10 2

Ethylacetate 0.11 0.62 0.00 0.45 2.31 0.75 -40.80 2

Propylacetate 0.09 0.60 0.00 0.45 2.82 0.89 -48.70 10

Isopropylacetate 0.06 0.57 0.00 0.47 2.55 0.89 -46.80 10

Butylacetate 0.07 0.60 0.00 0.45 3.35 1.03 -52.70 10,12

Isobutylacetate 0.05 0.57 0.00 0.47 3.16 1.03 -51.80 10

sec-Butylacetate 0.04 0.57 0.00 0.47 3.05 1.03 -47.99 12

tert-Butylacetate 0.03 0.54 0.00 0.47 2.80 1.03 -42.60 10

Pentylacetate 0.07 0.60 0.00 0.45 3.84 1.17 -55.34 10

Isopentylacetate 0.05 0.57 0.00 0.47 3.74 1.17 -53.80 10

Hexylacetate 0.06 0.60 0.00 0.45 4.35 1.31 -60.80 10

Methylformate 0.19 0.68 0.00 0.38 1.29 0.47 -32.70 10

Ethylformate 0.15 0.66 0.00 0.38 1.85 0.61 -38.10 10

Propylformate 0.13 0.63 0.00 0.38 2.43 0.75 -40.51 10

Isopropylformate 0.09 0.60 0.00 0.40 2.23 0.75 -43.00 10

Isobutylformate 0.10 0.60 0.00 0.40 2.79 0.89 -43.00 10

Pentylformate 0.10 0.63 0.00 0.38 3.49 1.03 -48.10 10

3-Methylbutylformate 0.09 0.60 0.00 0.40 3.31 1.03 -47.70 10

Methylpropanoate 0.13 0.60 0.00 0.45 2.43 0.75 -44.50 10

Ethylpropanoate 0.09 0.58 0.00 0.45 2.81 0.89 -49.50 10

Propylpropanoate 0.07 0.56 0.00 0.45 3.34 1.03 -51.20 10

Butylpropanoate 0.06 0.56 0.00 0.47 3.83 1.17 -57.80 10

162

Solute E S A B L V Exp Ref

Isobutylpropanoate 0.03 0.53 0.00 0.47 3.64 1.17 -54.70 10

Methylbutanoate 0.11 0.60 0.00 0.45 2.89 0.89 -47.50 10

Ethylbutanoate 0.07 0.58 0.00 0.45 3.27 1.03 -52.70 10

Propylbutanoate 0.05 0.56 0.00 0.45 3.78 1.17 -54.90 10

Butylbutanoate 0.04 0.56 0.00 0.45 4.28 1.31 -63.50 10

Methyl2-methylpropanoate 0.09 0.57 0.00 0.47 2.64 0.89 -46.00 10

Ethyl2-methylpropanoate 0.03 0.55 0.00 0.47 3.07 1.03 -51.30 10

Isobutyl2-methylpropanoate 0.00 0.50 0.00 0.47 3.89 1.31 -55.30 10

Methylpentanoate 0.11 0.60 0.00 0.45 3.39 1.03 -50.40 10

Ethylpentanoate 0.05 0.58 0.00 0.45 3.77 1.17 -56.50 10

Methyl2,2-dimethylpropanoate 0.05 0.54 0.00 0.45 2.93 1.03 -46.20 10

Ethyl2,2-dimethylpropanoate -0.01 0.52 0.00 0.45 3.48 1.17 -50.30 10

Ethyl3-methylbutanoate 0.03 0.55 0.00 0.47 3.58 1.17 -56.00 10

Ethyl2-methylbutanoate 0.03 0.55 0.00 0.47 3.57 1.17 -55.40 10

Methylhexanoate 0.08 0.60 0.00 0.45 3.87 1.17 -54.70 10

Ethylhexanoate 0.04 0.58 0.00 0.45 4.25 1.31 -60.20 10

Methylbenzoate 0.73 0.85 0.00 0.46 4.70 1.07 -50.25 3

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -35.70 3

Nitroethane 0.27 0.95 0.02 0.33 2.41 0.57 -32.50 2

1-Nitropropane 0.24 0.95 0.00 0.31 2.89 0.71 -34.40 2

2-Nitropropane 0.22 0.92 0.00 0.33 2.55 0.71 -34.10 2

163

Solute E S A B L V Exp Ref

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -52.00 13

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -50.60 2

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 0.59 -59.90 2

Propan-2-ol 0.21 0.36 0.33 0.56 1.76 0.59 -58.20 14

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 0.73 -61.90 2

2-Butanol 0.22 0.36 0.33 0.56 2.34 0.73 -62.72 15

2-Methylpropan-1-ol 0.22 0.39 0.37 0.48 2.41 0.73 -60.20 8, 3

tert-Butanol 0.18 0.30 0.31 0.60 1.96 0.73 -62.90 15

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 0.87 -61.90 2

3-Methyl-1-butanol 0.19 0.39 0.37 0.48 3.01 0.87 -66.00 8

2-Pentanol 0.20 0.36 0.33 0.56 2.84 0.87 -63.30 2

3-Pentanol 0.20 0.36 0.33 0.56 2.86 0.87 -59.60 2

Hexan-1-ol 0.21 0.42 0.37 0.48 3.61 1.02 -67.40 2

Hexan-3-ol 0.20 0.36 0.33 0.56 3.44 1.02 -69.60 8

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -68.44 16

4-Methyl-2-pentanol 0.17 0.33 0.33 0.56 3.18 1.01 -69.90 2

Heptan-1-ol 0.21 0.42 0.37 0.48 4.12 1.15 -72.13 3

Heptane-2-ol 0.19 0.36 0.33 0.56 3.84 1.15 -72.60 17

Heptan-4-ol 0.18 0.36 0.33 0.56 3.85 1.15 -75.30 8

Octan-1-ol 0.20 0.42 0.37 0.48 4.62 1.30 -74.14 3

Dodecan-1-ol 0.18 0.42 0.37 0.48 6.64 1.86 -81.90 18

Cyclopentanol 0.43 0.54 0.32 0.56 3.24 0.76 -58.50 2

Cyclohexanol 0.46 0.54 0.32 0.57 3.76 0.90 -70.70 19

Cycloheptanol 0.51 0.54 0.32 0.58 4.41 1.05 -74.60 3

164

Solute E S A B L V Exp Ref

Ethan-1,2-diol 0.40 0.90 0.58 0.78 2.66 0.51 -77.30 8

Propan-1,3-diol 0.40 0.91 0.77 0.85 3.26 0.65 -81.10 20

Butan-1,4-diol 0.40 0.93 0.72 0.90 3.80 0.79 -89.60 20

Glycerol 0.51 0.76 0.47 1.43 3.97 0.71 -103.50 8

2-Methoxyethanol 0.27 0.50 0.30 0.84 2.49 0.65 -60.40 8

2-Ethoxyethanol 0.24 0.52 0.31 0.81 2.79 0.79 -66.40 8

2-Propoxyethanol 0.21 0.50 0.30 0.83 3.31 0.93 -69.60 8

2-Butoxyethanol 0.20 0.50 0.30 0.83 3.81 1.07 -73.60 8

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -28.10 2

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -32.40 2

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -39.40 2

o-Xylene 0.66 0.56 0.00 0.16 3.94 1.00 -37.70 3

m-Xylene 0.62 0.52 0.00 0.16 3.84 1.00 -38.60 2

p-Xylene 0.61 0.52 0.00 0.16 3.84 1.00 -34.80 2

Propylbenzene 0.60 0.50 0.00 0.15 4.23 1.14 -36.40 2

Isopropylbenzene 0.60 0.49 0.00 0.16 4.08 1.14 -33.70 2

1,2,3-Trimethylbenzene 0.73 0.61 0.00 0.19 4.57 1.14 -37.36 3

1,2,4-Trimethylbenzene 0.68 0.56 0.00 0.19 4.44 1.14 -36.60 2

1,3,5-Trimethylbenzene 0.65 0.52 0.00 0.19 4.34 1.14 -39.12 3

4-Isopropyltoluene 0.61 0.49 0.00 0.19 4.59 1.28 -34.60 2

Butylbenzene 0.60 0.51 0.00 0.15 4.73 1.28 -38.50 2

Pentylbenzene 0.59 0.51 0.00 0.15 5.23 1.42 -49.45 3

Hexylbenzene 0.59 0.50 0.00 0.15 5.72 1.56 -52.72 3

1,4-Diethylbenzene 0.65 0.50 0.00 0.18 4.73 1.28 -46.40 2

165

Solute E S A B L V Exp Ref

Styrene 0.85 0.65 0.00 0.16 3.86 0.96 -28.40 2

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 0.73 -29.30 2

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -30.60 2

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 0.96 -37.30 2

1,3-Dichlorobenzene 0.85 0.73 0.00 0.02 4.41 0.96 -35.30 2

1,4-Dichlorobenzene 0.83 0.75 0.00 0.02 4.44 0.96 -28.40 2

1,2,3-Trichlorobenzene 1.03 0.86 0.00 0.00 5.42 1.08 -32.60 2

1,3,5-Trichlorobenzene 0.98 0.73 0.00 0.00 5.05 1.08 -34.20 2

1,2,3,4-Tetrachlorobenzene 1.18 0.92 0.00 0.00 6.17 1.21 -35.00 2

Pentachlorobenzene 1.33 0.96 0.00 0.00 6.72 1.33 -39.90 2

2-Chlorotoluene 0.76 0.65 0.00 0.07 4.17 0.98 -38.30 2

3-Chlorotoluene 0.74 0.67 0.00 0.07 4.18 0.98 -37.00 2

4-Chlorotoluene 0.71 0.74 0.00 0.05 4.21 0.98 -33.30 2

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -33.50 2

Phenylmethylether 0.71 0.75 0.00 0.29 3.89 0.92 -41.42 3

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -56.50 2

2-Ethylaniline 0.96 0.85 0.23 0.45 4.83 1.10 -59.70 2

4-Ethylaniline 0.94 0.91 0.23 0.45 4.90 1.10 -65.00 2

2,4-Dimethylaniline 0.95 0.95 0.20 0.49 4.98 1.10 -58.70 2

2,5-Dimethylaniline 0.96 0.93 0.20 0.48 4.97 1.10 -61.50 2

2,6-Dimethylaniline 0.97 0.90 0.05 0.59 5.03 1.10 -60.50 2

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 1.10 -49.60 2

N,N-Diethylaniline 0.95 0.80 0.00 0.41 5.29 1.10 -45.70 2

166

Solute E S A B L V Exp Ref

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -43.80 2

2-Nitrotoluene 0.87 1.11 0.00 0.27 4.88 1.03 -46.40 2

3-Nitrotoluene 0.87 1.10 0.00 0.25 5.10 1.03 -38.50 2

Phenol 0.81 0.89 0.60 0.30 3.77 0.78 -57.70 21

2-Methylphenol 0.84 0.86 0.52 0.30 4.22 0.92 -64.80 2

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 0.92 -58.70 8

4-Methylphenol 0.82 0.87 0.57 0.31 4.31 0.92 -61.30 8

4-tert-Butylphenol 0.81 0.89 0.56 0.41 5.26 1.34 -63.80 8

3-Chlorophenol 0.91 1.06 0.69 0.15 4.77 0.90 -50.30 8

3-Cyanophenol 0.93 1.55 0.77 0.28 5.18 0.93 -70.70 8

4-Cyanophenol 0.93 1.55 0.77 0.28 5.18 0.93 -70.30 8

2-Nitrophenol 1.02 1.05 0.05 0.37 4.76 0.95 -49.80 2

3-Nitrophenol 1.05 1.57 0.79 0.23 5.69 0.95 -67.70 8

4-Nitrophenol 1.07 1.72 0.82 0.26 5.88 0.95 -68.60 8

Biphenyl(approx) 1.36 0.99 0.00 0.26 6.01 1.32 -47.20 2

Naphthalene(approx) 1.34 0.92 0.00 0.20 5.16 1.09 -42.80 2

1-Methylnaphthalene 1.34 0.94 0.00 0.22 5.80 1.23 -45.00 2

2-Methylnaphthalene 1.30 0.81 0.00 0.25 5.62 1.23 -44.90 2

Acenaphthene 1.60 1.05 0.00 0.22 6.47 1.26 -52.10 2

Fluorene 1.59 1.06 0.00 0.25 6.92 1.36 -42.70 2

Propanal 0.20 0.65 0.00 0.45 1.82 0.55 -39.40 2

Pentanal 0.16 0.65 0.00 0.45 2.77 0.83 -42.90 2

Hexanal 0.15 0.65 0.00 0.45 3.37 0.97 -55.20 2

Heptanal 0.14 0.65 0.00 0.45 3.86 1.11 -56.60 2

167

Solute E S A B L V Exp Ref

Octanal 0.16 0.65 0.00 0.45 4.38 1.25 -48.80 2

Isobutylaldehyde 0.14 0.62 0.00 0.45 2.12 0.69 -40.00 2

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 0.87 -42.10 2

3-Hydroxybenzaldehyde 0.99 1.38 0.73 0.40 5.06 0.93 -70.70 8

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -34.80 22

Propionitrile 0.16 0.90 0.02 0.36 2.08 0.55 -39.52 22

Butyronitrile 0.18 0.90 0.00 0.36 2.55 0.69 -42.10 22

Pentanenitrile 0.18 0.90 0.00 0.36 3.11 0.83 -45.60 22

2-Cyanopropane 0.14 0.87 0.00 0.40 2.47 0.69 -40.00 22

1,2-Dicyanoethane 0.35 2.10 0.00 0.50 3.92 0.70 -58.20 22

1,3-Dicyanopropane 0.33 2.05 0.00 0.59 4.34 0.84 -63.50 22

1,4-Dicyanobutane 0.32 2.08 0.00 0.62 4.85 0.98 -66.60 22

Benzonitrile 0.74 1.11 0.00 0.33 4.04 0.87 -48.50 3

2,2,2-Trifluoroethanol 0.02 0.60 0.57 0.25 1.22 0.50 -50.20 3

1,1,1-Trifluoropropan-2-ol 0.11 0.47 0.37 0.36 1.96 0.64 -53.50 8

2,2,3,3-Tetrafluoropropan-1-ol 0.01 0.44 0.77 0.18 1.95 0.66 -57.90 8

2,2,3,3,3-Pentafluoropropan-1-ol -0.17 0.33 0.62 0.17 1.60 0.68 -51.90 8

1,1,1,3,3,3-Hexafluoropropan-2-ol -0.24 0.55 0.77 0.10 1.39 0.70 -57.10 8

Methylamine 0.25 0.35 0.16 0.58 1.30 0.35 -45.27 3

Ethylamine 0.24 0.35 0.16 0.61 1.68 0.49 -53.68 3

Propylamine 0.23 0.35 0.16 0.61 2.14 0.63 -55.98 3

168

Solute E S A B L V Exp Ref

Isopropylamine 0.18 0.32 0.16 0.61 1.91 0.63 -55.00 8

Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -59.20 3

sec-Butylamine 0.17 0.32 0.16 0.63 2.41 0.77 -57.10 8

tert-Butylamine 0.12 0.29 0.16 0.71 2.49 0.77 -59.00 8

Pentylamine 0.21 0.35 0.16 0.61 3.14 0.91 -62.13 3, 8

Hexylamine 0.20 0.35 0.16 0.61 3.66 1.05 -65.93 3, 8

Octylamine 0.19 0.35 0.16 0.61 4.52 1.34 **-52.3 2

Dimethylamine 0.19 0.30 0.08 0.66 1.60 0.49 -53.09 3

Diethylamine 0.15 0.30 0.08 0.69 2.40 0.77 -64.30 3

Dipropylamine 0.12 0.30 0.08 0.69 3.35 1.05 -65.20 2

Dibutylamine 0.11 0.30 0.08 0.69 4.35 1.34 -59.30 2

Trimethylamine 0.14 0.20 0.00 0.67 1.62 0.63 -52.71 3

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -69.70 8

1,2-Diaminoethane 0.46 0.17 0.04 1.29 1.88 0.59 -76.10 8

1,3-Diaminopropane 0.45 0.61 0.43 1.14 2.85 0.73 -85.60 8

1,4-Diaminobutane 0.43 0.62 0.42 1.14 3.37 0.87 -91.60 8

1,5-Diaminopentane 0.42 0.63 0.39 1.15 3.90 1.01 -95.10 8

Piperidine 0.42 0.46 0.10 0.69 3.30 0.80 -65.41 8

N-Methylpiperidine 0.32 0.34 0.00 0.72 3.33 0.95 -65.77 8

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -42.10 2

2-Methylpyridine 0.60 0.75 0.00 0.58 3.42 0.82 -50.30 2

3-Methylpyridine 0.63 0.81 0.00 0.54 3.63 0.82 -50.30 2

4-Methylpyridine 0.63 0.82 0.00 0.54 3.64 0.82 -51.80 2

2-Ethylpyridine 0.61 0.71 0.00 0.59 3.84 0.96 -55.70 8

169

Solute E S A B L V Exp Ref

3-Ethylpyridine 0.64 0.79 0.00 0.57 4.09 0.96 -53.50 8

4-Ethylpyridine 0.63 0.80 0.00 0.57 4.12 0.96 -52.20 8

2,3-Dimethylpyridine 0.66 0.77 0.00 0.62 4.05 0.96 -57.70 8

2,4-Dimethylpyridine 0.63 0.76 0.00 0.63 4.01 0.96 -60.70 8

2,5-Dimethylpyridine 0.63 0.74 0.00 0.62 3.99 0.96 -54.90 8

2,6-Dimethylpyridine 0.61 0.70 0.00 0.63 3.76 0.96 -52.30 2

3,4-Dimethylpyridine 0.68 0.85 0.00 0.62 4.32 0.96 -50.50 2

3,5-Dimethylpyridine 0.66 0.79 0.00 0.60 4.21 0.96 -51.30 2

2-Chloropyridine 0.74 1.03 0.00 0.37 3.88 0.80 -42.56 23

3-Chloropyridine 0.73 0.83 0.00 0.40 3.78 0.80 -46.20 8

Quinoline 1.27 0.97 0.00 0.54 5.46 1.04 -58.20 2

Methanethiol 0.40 0.60 0.00 0.12 1.64 0.41 -25.80 3, 2

Ethanethiol 0.39 0.35 0.00 0.24 2.17 0.55 -28.30 2

1-Propanethiol 0.39 0.35 0.00 0.24 2.69 0.70 -30.20 24

1-Butanethiol 0.38 0.35 0.00 0.24 3.24 0.84 -36.29 24

Dimethylsulfide 0.40 0.43 0.00 0.27 2.04 0.55 -31.50 24

Diethylsulfide 0.37 0.38 0.00 0.33 3.02 0.84 -40.20 24

Dipropylsulfide 0.36 0.38 0.00 0.34 4.01 1.12 -47.60 24

Thiophene 0.69 0.56 0.00 0.15 2.82 0.64 -29.90 3

Aceticacid 0.27 0.65 0.61 0.44 1.75 0.47 -52.80 1

Propanoicacid 0.23 0.65 0.61 0.44 2.28 0.61 -56.50 1

Butanoicacid 0.21 0.64 0.61 0.45 2.75 0.75 -59.50 8

2-Methoxyphenol 0.84 0.91 0.22 0.52 4.45 0.98 -62.60 2

Helium 0.00 0.00 0.00 0.00 -1.74 0.07 -0.67 3

170

Solute E S A B L V Exp Ref

Neon 0.00 0.00 0.00 0.00 -1.58 0.09 -3.90 3

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 -12.20 3

Krypton 0.00 0.00 0.00 0.00 -0.21 0.25 -15.60 3

Xenon 0.00 0.00 0.00 0.00 0.38 0.33 -19.40 3

Radon 0.00 0.00 0.00 0.00 0.88 0.38 -24.00 3

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 -0.40 25

Oxygen 0.00 0.00 0.00 0.00 -0.72 0.18 -1.21 25

Nitrogen 0.00 0.00 0.00 0.00 -0.98 0.22 -1.04 25

NitrousOxide 0.07 0.35 0.00 0.10 0.16 0.28 -19.80 1

NitricOxide 0.37 0.02 0.00 0.09 -0.59 0.20 -11.90 1

CarbonMonoxide 0.00 0.00 0.00 0.04 -0.84 0.22 -11.13 3

CarbonDioxide 0.00 0.28 0.05 0.10 0.06 0.28 -17.90 2

Benzylalcohol 0.80 0.87 0.33 0.56 4.22 0.92 -66.94 3

2-Chlorobiphenyl 1.48 1.07 0.00 0.20 6.34 1.45 -42.80 2

2,3-Dichlorobiphenyl 1.63 1.20 0.00 0.18 7.17 1.57 -45.60 2

2,4-Dichlorobiphenyl 1.62 1.20 0.00 0.18 7.04 1.57 -43.00 2

2,4'-Dichlorobiphenyl 1.62 1.20 0.00 0.18 7.20 1.57 -44.20 2

2,5-Dichlorobiphenyl 1.63 1.20 0.00 0.18 7.00 1.57 -45.60 2

1,2-Dimethoxyethane 0.12 0.67 0.00 0.68 2.65 0.79 -5.93 8

Isophorone 0.51 1.12 0.00 0.53 4.74 1.24 -59.10 2

Morpholine 0.43 0.79 0.06 0.91 3.29 0.72 -69.50 8

N-Methylmorpholine 0.33 0.74 0.00 0.90 3.27 0.86 -68.70 8

Propanamide 0.44 1.30 0.55 0.66 3.51 0.65 -73.40 1

N,N-Dimethylformamide 0.37 1.31 0.00 0.74 3.17 0.65 -62.90 8

171

Solute E S A B L V Exp Ref

Dimethylsulfoxide 0.52 1.72 0.00 0.97 3.46 0.61 -71.90 8

N-Methylpyrrolidine 0.30 0.98 0.00 0.40 3.13 0.80 **-63.4 8

Hexan-3-one 0.14 0.66 0.00 0.51 3.31 0.97 -46.00 2

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -65.30 2

cis1,2-Cyclohexanediol 0.60 0.86 0.50 0.86 4.20 0.96 -82.40 19

12-Crown-4 0.42 0.99 0.00 1.39 5.14 1.36 -94.65 26

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -119.28 26

18-Crown-6 0.40 1.34 0.00 2.13 7.92 2.04 -149.51 26

Erithritol 0.62 1.60 0.48 1.39 0.91 -114.00 27

Table S5.2. Values o f t he gas t o 1 -octanol s olvation enthalpy i n kJ /mol a t 298K for 138 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Sulphurhexafluoride -0.60 -0.20 0.00 0.00 -0.12 0.46 -6.56 3

Methane 0.00 0.00 0.00 0.00 -0.32 0.25 -3.90 3

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -25.52 28

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -30.33 28

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -35.31 28

3-Ethylpentane 0.00 0.00 0.00 0.00 3.09 1.09 -34.23 29

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -40.08 28

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -44.89 28

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -49.71 28

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -59.12 28

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -78.20 28

172

Solute E S A B L V Exp Ref

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -35.50 30

Methylcyclohexane 0.24 0.06 0.00 0.00 3.32 0.99 -34.33 29

Ethene 0.11 0.10 0.00 0.07 0.29 0.35 -6.25 31

1-Pentene 0.09 0.08 0.00 0.07 2.05 0.77 -22.40 32

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -26.56 32

Cyclohexene 0.40 0.20 0.00 0.10 3.02 0.80 -38.14 32

Tetrafluoromethane -0.58 -0.26 0.00 0.00 -0.82 0.32 0.92 3

Dichloromethane 0.39 0.57 0.10 0.05 2.02 0.49 -27.86 33

Trichloromethane 0.43 0.49 0.15 0.02 2.48 0.62 -32.69 33

Tetrachloromethane 0.46 0.38 0.00 0.00 2.82 0.74 -28.76 33

1,1-Dichloroethane 0.32 0.49 0.10 0.10 2.32 0.64 -28.68 33

1,2-Dichloroethane 0.42 0.64 0.10 0.11 2.57 0.64 -29.58 33

1,1,1-Trichloroethane 0.37 0.41 0.00 0.09 2.73 0.76 -26.45 33

1,1,2-Trichloroethane 0.50 0.68 0.13 0.13 3.29 0.76 -36.73 33

1,1,1,2-Tetrachloroethane 0.54 0.63 0.10 0.08 3.64 0.88 -42.27 33

1-Chloropropane 0.22 0.40 0.00 0.10 2.20 0.65 -26.02 29

1,2-Dichloropropane 0.37 0.63 0.00 0.17 2.84 0.78 -32.69 33

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.79 -31.00 29

2-Chlorobutane 0.19 0.35 0.00 0.12 2.54 0.80 -28.87 29

1-Chloropentane 0.21 0.38 0.00 0.09 3.22 0.94 -35.92 29

1-Chlorohexane 0.20 0.40 0.00 0.10 3.78 1.08 -40.43 29

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 1.36 -49.97 29

Dibromomethane 0.71 0.69 0.11 0.07 2.89 0.60 -38.08 33

173

Solute E S A B L V Exp Ref

Trichloroethylene 0.52 0.37 0.08 0.03 3.00 0.71 -34.43 34

Diethylether 0.04 0.25 0.00 0.45 2.02 0.73 -24.86 30

Di-n-propylether 0.01 0.25 0.00 0.45 2.95 1.01 -33.19 30

Di-isopropylether -0.06 0.16 0.00 0.58 2.53 1.01 -31.04 29

Dibutylether 0.00 0.25 0.00 0.45 3.92 1.30 -42.58 30

Methyltert-butylether 0.02 0.21 0.00 0.59 2.38 0.87 -28.03 30

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -28.32 30

Tetrahydropyran 0.28 0.47 0.00 0.55 3.06 0.77 -30.66 30

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -28.73 35

Propanone 0.18 0.70 0.04 0.49 1.70 0.55 -22.37 30

Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -27.36 30

Pentan-2-one 0.14 0.68 0.00 0.51 2.76 0.83 -31.03 30

Pentan-3-one 0.15 0.66 0.00 0.51 2.81 0.83 -32.86 30

Hexan-2-one 0.14 0.68 0.00 0.51 3.29 0.97 -36.12 30

Heptan-4-one 0.11 0.66 0.00 0.51 3.71 1.11 -40.47 30

Nona-2-one 0.12 0.68 0.00 0.51 4.73 1.39 -50.29 29

Nonan-5-one 0.10 0.66 0.00 0.51 4.70 1.39 -47.19 29

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 0.72 -34.34 30

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -37.27 29

Acetophenone 0.82 1.01 0.00 0.48 4.50 1.01 -50.23 29

Methyl acetate 0.14 0.64 0.00 0.45 1.91 0.61 -24.62 29

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -27.78 29

Propyl acetate 0.09 0.60 0.00 0.45 2.82 0.89 -33.00 29

Butyl acetate 0.07 0.60 0.00 0.45 3.35 1.03 -37.13 29

174

Solute E S A B L V Exp Ref

Pentyl acetate 0.07 0.60 0.00 0.45 3.84 1.17 -41.31 29

Methyl formate 0.19 0.68 0.00 0.38 1.29 0.46 -21.40 29

Propyl formate 0.13 0.63 0.00 0.38 2.43 0.75 -30.39 29

Methyl propionate 0.13 0.60 0.00 0.45 2.43 0.75 -26.67 29

Ethyl propionate 0.09 0.58 0.00 0.45 2.81 0.89 -32.54 29

Methylbutanoate 0.11 0.60 0.00 0.45 2.94 0.89 -33.04 29

Methylpentanoate 0.11 0.60 0.00 0.45 3.44 1.03 -37.02 29

Ethylbenzoate 0.69 0.85 0.00 0.46 5.08 1.21 -54.52 29

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -37.08 29

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -41.79 29

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 0.59 -46.96 29

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 0.73 -51.84 30

2-Butanol 0.22 0.36 0.33 0.56 2.34 0.73 -49.40 30

tert-Butanol 0.18 0.30 0.31 0.60 1.96 0.73 -46.99 30

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 0.87 -56.74 29

2,2-Dimethyl-1-propanol 0.22 0.36 0.37 0.53 2.65 0.87 -53.64 29

Hexan-1-ol 0.21 0.42 0.37 0.48 3.61 1.02 -61.49 29

Octan-1-ol 0.20 0.42 0.37 0.48 4.62 1.30 -70.98 29

Decan-1-ol 0.19 0.42 0.37 0.48 5.63 1.58 -81.40 29

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -30.98 29

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -35.99 29

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -39.91 29

o-Xylene 0.66 0.56 0.00 0.16 3.94 1.00 -41.53 29

175

Solute E S A B L V Exp Ref

m-Xylene 0.62 0.52 0.00 0.16 3.84 1.00 -41.00 29

p-Xylene 0.61 0.52 0.00 0.16 3.84 1.00 -40.59 29

1,3,5-Trimethylbenzene 0.65 0.52 0.00 0.19 4.34 1.14 -45.88 29

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 0.96 -49.30 36

1,2,3-Trichlorobenzene 1.03 0.86 0.00 0.00 5.42 1.08 -55.70 36

1,2,3,4-Tetrachlorobenzene 1.18 0.92 0.00 0.00 6.17 1.21 -62.30 36

1,2,4,5-Tetrachlorobenzene 1.16 0.86 0.00 0.00 5.93 1.21 -60.80 36

Hexachlorobenzene 1.49 0.99 0.00 0.00 7.62 1.45 -75.20 36

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -51.19 29

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -47.14 29

Phenanthrene 2.06 1.29 0.00 0.29 7.63 1.45 -75.50 37

Pyrene 2.81 1.71 0.00 0.28 8.83 1.58 -76.30 37

Butyronitrile 0.18 0.90 0.00 0.36 2.55 0.69 -31.39 37

Propylamine 0.23 0.35 0.16 0.61 2.14 0.63 -40.90 30

Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -45.11 30

Pentylamine 0.21 0.35 0.16 0.61 3.14 0.91 -50.03 30

Diethylamine 0.15 0.30 0.08 0.69 2.40 0.77 -42.52 30

Dipropylamine 0.12 0.30 0.08 0.69 3.35 1.05 -50.82 30

Dibutylamine 0.11 0.30 0.08 0.69 4.35 1.34 -60.07 30

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -43.58 30

Piperidine 0.42 0.46 0.10 0.69 3.30 0.80 -48.99 30

N-Methylpiperidine 0.32 0.34 0.00 0.72 3.33 0.95 -43.24 30

176

Solute E S A B L V Exp Ref

Helium 0.00 0.00 0.00 0.00 -1.74 0.07 3.93 3

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 -0.67 3

Xenon 0.00 0.00 0.00 0.00 0.38 0.33 -9.64 38

Oxygen 0.00 0.00 0.00 0.00 -0.72 0.18 -1.17 3

Nitrogen 0.00 0.00 0.00 0.00 -0.98 0.22 2.51 3

CarbonMonoxide 0.00 0.00 0.00 0.04 -0.84 0.22 0.21 3

CarbonDioxide 0.00 0.28 0.05 0.10 0.06 0.28 -9.13 39

3-Chlorobiphenyl 1.51 1.05 0.00 0.18 6.67 1.45 -66.44 40

2,2',4,5'-Tetrachlorobiphenyl 1.89 1.48 0.00 0.15 8.19 1.81 -76.23 40

2,2',5,6'-Tetrachlorobiphenyl 1.87 1.48 0.00 0.15 7.95 1.81 -75.92 40

2,3,3',4,4'-Pentachlorobiphenyl 2.04 1.59 0.00 0.11 9.59 1.04 -89.57 40

2,3',4,4',5-Pentachlorobiphenyl 2.06 1.59 0.00 0.11 9.40 1.04 -89.86 40

3,3',4,4',5-Pentachlorobiphenyl 2.11 1.57 0.00 0.09 9.88 1.04 -93.25 40

2,2',3,4,4',5'-Hexachlorobiphenyl 2.18 1.74 0.00 0.11 9.77 2.06 -89.90 40

2,2',4,4',5,5'-Hexachlorobiphenyl 2.18 1.74 0.00 0.11 9.59 2.06 -87.77 40

2,2',3,3',4,4',6-Heptachlorobiphenyl 2.30 1.87 0.00 0.09 10.03 2.18 -91.08 40

2,2',3,4,4',5,6-Heptachlorobiphenyl 2.30 1.87 0.00 0.09 9.97 2.18 -86.83 40

1,4-Dichloronaphthalene 1.57 1.06 0.00 0.09 6.76 1.33 -62.19 37

177

Solute E S A B L V Exp Ref

1,3,5-Trichloronaphthalene 1.69 1.12 0.00 0.00 7.59 1.45 -72.49 37

1,4,5-Trichloronaphthlalene 1.69 1.12 0.00 0.00 8.07 1.45 -74.60 37

1,2,4,5-Tetrachloronaphthalene 1.81 1.24 0.00 0.00 8.67 1.58 -81.62 37

1,2,4,8-Tetrachloronaphthalene 1.81 1.24 0.00 0.00 8.74 1.58 -80.53 37

1,2,5,8-Tetrachloronaphthalene 1.81 1.24 0.00 0.00 8.82 1.58 -80.05 37

1,4,5,8-Tetrachloronaphthalene 1.81 1.18 0.00 0.00 9.14 1.58 -80.53 37

1,2,4,5,7-Pentachloronaphthalene 1.93 1.30 0.00 0.00 9.23 1.70 -84.32 37

1,2,4,6,8-Pentachloronaphthalene 1.93 1.30 0.00 0.00 9.28 1.70 -84.57 37

1,2,3,4,6-Pentachloronaphthalene 1.93 1.36 0.00 0.00 9.20 1.70 -88.63 37

1,2,4,7,8-Pentachloronaphthalene 1.93 1.36 0.00 0.00 9.46 1.70 -85.24 37

1,2,3,5,8-Pentachloronaphthalene 1.93 1.36 0.00 0.00 9.50 1.70 -89.69 37

1,2,4,5,8-Pentachloronaphthalene 1.93 1.36 0.00 0.00 9.59 1.70 -92.12 37

1,2,3,5,7,8-Hexachloronaphthalene 2.05 1.42 0.00 0.00 10.24 1.82 -93.99 37

1,2,3,4,5,6-Hexachloronaphthalene 2.05 1.42 0.00 0.00 10.54 1.82 -89.34 37

1,2,3,4,5,8-Hexachloronaphthalene 2.05 1.42 0.00 0.00 10.66 1.82 -96.50 37

N-Methylpyrrolidine 0.30 0.50 0.00 0.71 2.81 0.80 -40.33 30

178

Solute E S A B L V Exp Ref

Pyrrolidine 0.41 0.67 0.12 0.63 2.89 0.66 -47.85 30

Table S5.3. Values of t he gas t o c arbon t etrachloride s olvation e nthalpy i n kJ/mol at 298 K for 177 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 0.29 -3.01 25

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -9.20 25

Propane 0.00 0.00 0.00 0.00 1.05 0.53 -14.40 25

Butane 0.00 0.00 0.00 0.00 1.62 0.67 -18.49 25

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -25.19 28

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -29.75 28

Heptane 0.00 0.00 0.00 0.00 3.17 0.95 -34.48 28

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -39.13 28

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -43.18 28

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -48.37 28

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -57.70 28

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -76.30 28

2-Methylpropane 0.00 0.00 0.00 0.00 1.41 0.67 -16.15 25

2-Methylbutane 0.00 0.00 0.00 0.00 2.01 0.81 -23.93 41

2,2-Dimethylbutane 0.00 0.00 0.00 0.00 2.35 0.95 -25.90 41

3-Ethylpentane 0.00 0.00 0.00 0.00 3.09 0.95 -33.89 41

2,2,4,4 -Tetramethylpentane 0.00 0.00 0.00 0.00 3.51 1.38 -36.23 41

Cyclopentane 0.26 0.10 0.00 0.00 2.48 0.70 -28.47 42

179

Solute E S A B L V Exp Ref

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -32.34 41

Cycloheptane 0.35 0.10 0.00 0.00 3.70 0.99 -37.91 43

Cyclooctane 0.41 0.10 0.00 0.00 4.33 1.13 -42.95 43

Cyclodecane 0.47 0.10 0.00 0.00 5.34 1.41 -52.00 43

Methylcyclopentane 0.23 0.10 0.00 0.00 2.82 0.85 -30.95 43

Methylcyclohexane 0.24 0.10 0.00 0.00 3.32 0.99 -34.65 43

cis Decalin 0.55 0.25 0.00 0.00 5.16 1.30 -50.78 43

trans Decalin 0.47 0.23 0.00 0.00 4.98 1.30 -49.22 43

Bicyclohexyl 0.53 0.33 0.00 0.07 5.92 1.58 -57.16 43

Tetralin 0.89 0.65 0.00 0.17 5.20 1.17 -55.50 43

Adamantane 0.67 0.66 0.00 0.02 5.10 1.19 -48.40 44

Ethene 0.11 0.10 0.00 0.07 0.29 0.35 -9.58 45

1-Heptene 0.09 0.08 0.00 0.07 3.06 1.05 -35.21 46

1-Octene 0.09 0.08 0.00 0.07 3.57 1.19 -39.58 41

Norbornadiene 0.50 0.32 0.00 0.11 3.11 0.79 -35.52 47

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -28.14 41

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -33.13 41

2-Pentanone 0.14 0.68 0.00 0.51 2.76 0.83 -37.07 41

3-Pentanone 0.15 0.66 0.00 0.51 2.81 0.83 -37.73 48

2-Hexanone 0.14 0.68 0.00 0.51 3.29 0.97 -41.84 41

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -46.40 41

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -45.64 41

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -50.65 41

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -55.19 41

180

Solute E S A B L V Exp Ref

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -54.77 41

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 0.72 -41.38 41

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -44.68 41

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 1.39 -44.89 41

2,4-Pentanedione 0.41 0.78 0.00 0.63 3.33 0.84 -39.88 41

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.87 -28.96 49

Dipropyl ether 0.01 0.25 0.00 0.45 2.95 1.02 -36.69 50

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.30 -46.46 51

Methyl tert-butyl ether 0.02 0.11 0.00 0.63 2.38 0.87 -28.79 41

1,2-Dimethoxyethane 0.12 0.67 0.00 0.68 2.65 0.79 -37.50 52

1,2-Diethoxyethane 0.01 0.73 0.00 0.79 3.31 1.07 -45.50 52

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -37.90 52

Tetrahdropyran 0.28 0.47 0.00 0.55 3.06 0.77 -37.20 52

Butyl Methyl Ether 0.05 0.25 0.00 0.44 2.66 0.87 -34.50 52

Dimethoxymethane 0.10 0.46 0.00 0.52 1.89 0.65 -30.40 52

2,5,8,11 - Tetraoxadodecane 0.00 0.98 0.00 1.44 5.16 1.47 -71.30 52

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -34.60 42

12-Crown-4 0.42 0.99 0.00 1.39 5.14 1.36 -63.90 52

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -76.90 52

18-Crown-6 0.40 1.34 0.00 2.13 7.92 2.04 -100.80 53

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -30.13 50

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 0.74 -32.43 41

181

Solute E S A B L V Exp Ref

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.79 -33.18 41

1-Chlorooctane 0.19 0.40 0.00 0.10 4.77 1.36 -53.59 41

cis-1,2 - Dichloroethylene 0.44 0.61 0.11 0.05 2.44 0.59 -27.61 51

trans-1,2 - Dichloroethylene 0.43 0.41 0.09 0.05 2.28 0.59 -28.03 51

Tetrachloroethylene 0.64 0.44 0.00 0.00 3.58 0.84 -39.33 51

Iodomethane 0.68 0.43 0.00 0.12 2.11 0.51 -27.12 54

1-Iodobutane 0.63 0.40 0.00 0.15 3.63 0.93 -40.39 54

2-Iodo-2-methylpropane 0.59 0.35 0.00 0.19 3.44 0.93 -35.57 54

Diiodomethane 0.71 0.69 0.11 0.07 2.89 0.77 -41.88 55

Chlorotrifluoromethane -0.25 -0.05 0.00 0.00 0.21 0.63 -10.63 45

Propanal 0.20 0.65 0.00 0.45 1.82 0.55 -28.79 56

Butanal 0.19 0.65 0.00 0.45 2.27 0.69 -32.90 56

Pentanal 0.16 0.65 0.00 0.45 2.77 0.83 -38.15 56

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -28.37 57

Nitroethane 0.27 0.95 0.02 0.33 2.41 0.56 -32.90 58

1-Nitropropane 0.24 0.95 0.00 0.31 2.89 0.71 -38.23 59

2-Nitropropane 0.22 0.92 0.00 0.33 2.55 0.71 -35.84 59

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -25.36 41

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -19.80 60

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -24.28 60

1-Propanol 0.24 0.42 0.37 0.48 2.03 0.59 -27.90 61

2-Propanol 0.21 0.36 0.33 0.56 1.76 0.59 -26.40 61

182

Solute E S A B L V Exp Ref

1-Butanol 0.22 0.42 0.37 0.48 2.60 0.73 -34.53 49

1-Pentanol 0.22 0.42 0.37 0.48 3.11 0.87 -37.82 62

1-Hexanol 0.21 0.42 0.37 0.48 3.61 1.02 -42.20 61

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -52.20 63

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -30.71 62

Propyl formate 0.13 0.63 0.00 0.38 2.43 0.75 -35.14 64

Butyl formate 0.12 0.63 0.00 0.38 2.96 0.89 -39.97 65

Methyl acetate 0.14 0.64 0.00 0.45 1.91 0.61 -30.94 66

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -34.97 41

Butyl acetate 0.07 0.60 0.00 0.45 3.35 1.03 -44.23 64

Methyl propionate 0.13 0.60 0.00 0.45 2.43 1.03 -35.77 67

Ethyl propionate 0.09 0.58 0.00 0.45 2.81 0.89 -39.78 64

Propyl propionate 0.07 0.56 0.00 0.45 3.34 1.03 -44.45 64

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -33.31 41

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -38.12 41

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -41.83 41

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -46.74 41

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -63.06 41

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -54.14 41

Anthracene 2.29 1.34 0.00 0.28 7.57 1.45 -77.18 41

Acetophenone 0.82 1.01 0.00 0.48 4.50 1.01 -50.08 41

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -45.27 41

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 0.87 -46.86 41

Benzonitrile 0.74 1.11 0.00 0.33 4.04 0.87 -48.10 41

183

Solute E S A B L V Exp Ref

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -42.97 41

1,3,5-Tribromobenzene 1.45 1.02 0.00 0.00 6.31 1.24 -60.67 51

1,3,4,5-Tetrabromobenzene 1.83 1.19 0.00 0.00 7.43 1.42 -68.20 51

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -40.33 41

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 0.96 -46.15 41

1,4-Dichlorobenzene 0.83 0.75 0.00 0.02 4.44 0.96 -46.70 41

1,2,4,5-Tetrachlorobenzene 1.16 0.86 0.00 0.00 5.93 1.21 -58.09 51

Hexachlorobenzene 1.49 0.99 0.00 0.00 7.62 1.45 -71.48 51

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 0.73 -34.43 41

Iodobenzene 1.19 0.82 0.00 0.12 4.50 0.97 -48.01 41

Trifluoromethylbenzene 0.23 0.48 0.00 0.10 2.89 0.91 -34.35 41

N,N-Dimethylformamide 0.37 1.31 0.00 0.74 3.17 0.65 -44.52 41

Dimethyl Sulfoxide 0.52 1.74 0.00 0.88 3.46 0.61 -44.98 41

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -50.21 41

4-Chloro-1-nitrobenzene 0.98 1.18 0.00 0.24 5.22 1.01 -56.08 41,68

Pyrrole 0.61 0.73 0.41 0.29 2.87 0.58 -33.21 69

N-Methylpyrrole 0.56 0.79 0.00 0.31 2.92 0.72 -38.99 41

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -46.47 69

N-Methylaniline 0.95 0.90 0.17 0.43 4.48 0.96 -49.59 69

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 1.10 -51.99 41

N-Ethylaniline 0.95 0.85 0.17 0.43 4.81 1.10 -54.37 69

184

Solute E S A B L V Exp Ref

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -38.31 50

2-Methylpyridine 0.60 0.75 0.00 0.58 3.42 0.82 -43.01 70

2,4-Dimethylpyridine 0.63 0.76 0.00 0.63 4.01 0.96 -48.88 70

2,6-Dimethylpyridine 0.61 0.70 0.00 0.63 3.76 0.96 -46.68 70

2-Bromopyridine 0.92 1.21 0.00 0.36 4.39 0.85 -50.38 71

3-Bromopyridine 0.91 0.90 0.00 0.38 4.19 0.85 -51.14 71

2-Chloropyridine 0.74 1.03 0.00 0.37 3.88 0.80 -45.20 70

3-Chloropyridine 0.73 0.83 0.00 0.40 3.78 0.80 -48.60 70

3-Cyanopyridine 0.75 1.26 0.00 0.62 4.16 0.83 -49.40 70

4-Cyanopyridine 0.75 1.21 0.00 0.59 4.03 0.83 -49.10 70

Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -35.53 72

Diethylamine 0.15 0.30 0.08 0.69 2.40 0.77 -33.22 72

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -38.04 72

Tributylamine 0.05 0.15 0.00 0.79 6.05 1.90 -68.72 41

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 -0.42 25

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 5.78 25

Nitrogen 0.00 0.00 0.00 0.00 -0.98 0.22 2.34 25

Carbon monoxide 0.00 0.00 0.00 0.04 -0.84 0.22 1.25 73

Carbon dioxide 0.00 0.28 0.05 0.10 0.06 0.28 -9.42 74

Oxygen 0.00 0.00 0.00 0.00 -0.72 0.18 0.04 25

Carbon tetrafluoride -0.58 -0.26 0.00 0.00 -0.82 0.32 0.59 25

Sulfur hexafluoride -0.60 -0.20 0.00 0.00 -0.12 0.46 -6.99 25

Nitric oxide 0.37 0.02 0.00 0.09 -0.59 0.28 -1.42 75

Tetrahydrothiophene 0.62 0.66 0.00 0.26 3.66 0.73 -41.31 76

185

Solute E S A B L V Exp Ref

Dimethyl sulfide 0.40 0.43 0.00 0.27 2.04 0.55 -23.38 51

Diethyl sulfide 0.37 0.38 0.00 0.33 3.02 0.84 -38.73 76

Dibutyl sulfide 0.35 0.38 0.00 0.32 4.95 1.40 -54.72 71

N,N-Dimethylacetamide 0.36 1.33 0.00 0.78 3.72 0.79 -47.56 77

Phenol 0.81 0.89 0.60 0.30 3.77 0.78 -43.40 42

2-Chlorophenol 0.85 0.88 0.32 0.31 4.18 0.90 -46.10 78

4-Bromophenol 1.08 1.17 0.67 0.20 5.14 0.95 -59.70 78

Pentafluorophenol 0.36 0.83 0.79 0.09 3.57 0.86 -42.00 79

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 0.92 -46.06 80

2-Methoxyphenol 0.84 0.91 0.22 0.52 4.45 0.97 -54.40 78,81

3-Methoxyphenol 0.88 1.17 0.59 0.38 4.80 0.97 -59.50 78, 81

4-Methoxyphenol 0.90 1.17 0.57 0.48 4.77 0.97 -57.60 78, 81

γ-Butyrolactone 0.39 1.38 0.00 0.59 3.33 0.64 -48.63 82

1-Naphthol 1.52 1.05 0.60 0.37 6.13 1.14 -60.70 83

Diethyl carbonate 0.06 0.58 0.00 0.53 3.41 0.95 -42.81 71

Phenyl methyl sulfide 1.06 0.68 0.00 0.32 4.66 1.03 -52.79 71

Acrylonitrile 0.30 0.83 0.03 0.30 2.00 0.50 -27.20 51

1,4-Difluorobenzene 0.38 0.60 0.00 0.06 2.77 0.75 -33.89 51

Benzophenone 1.45 1.50 0.00 0.50 1.48 -74.48 51

trans-Stilbene 1.45 1.05 0.00 0.34 7.52 1.56 -78.24 51

Quinoline 1.27 0.97 0.00 0.54 5.46 1.04 -55.40 84

1-Chloronaphthalene 1.42 1.00 0.00 0.14 5.86 1.21 -62.37 84

186

Solute E S A B L V Exp Ref

1-Nitronaphthalene 1.60 1.59 0.00 0.29 7.06 1.26 -64.39 84

Table S5.4. Values of the gas to toluene solvation enthalpy in kJ/mol at 298 K for 108 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 0.25 -5.06 25

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -8.91 25

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -24.91 85

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -26.65 28

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -31.00 28

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -35.48 28

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -39.66 28

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -43.85 28

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -70.08 28

Cyclopentane 0.26 0.10 0.00 0.00 2.48 0.70 -27.33 42

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -30.54 86

Cycloheptane 0.35 0.10 0.00 0.00 3.70 0.99 -36.50 87

Cyclooctane 0.41 0.10 0.00 0.00 4.33 1.13 -41.19 87

cis Decalin 0.55 0.25 0.00 0.00 5.16 1.30 -47.92 88

Methylcyclohexane 0.24 0.06 0.00 0.00 3.32 0.99 -33.22 89

Ethene 0.11 0.10 0.00 0.07 0.29 0.35 -8.79 45

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -29.43 90

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -30.08 91

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -34.58 92

187

Solute E S A B L V Exp Ref

2-Pentanone 0.14 0.68 0.00 0.51 2.76 0.83 -38.55 86

3-Pentanone 0.15 0.66 0.00 0.51 2.81 0.83 -38.77 93

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -47.86 91

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -46.82 91

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -51.91 86

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -54.98 91

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -53.35 91

2-Undecanone 0.10 0.68 0.00 0.51 5.73 1.67 -65.52 86

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 1.39 -43.01 91

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -46.15 91

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -27.57 62

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.30 -42.17 94

Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -32.55 95

Methyl heptyl ether 0.05 0.25 0.00 0.45 4.09 1.30 -44.81 94

Methyl tert butyl ether 0.02 0.11 0.00 0.63 2.38 0.87 -27.78 62

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 1.02 -35.74 96

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -33.76 42

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -38.31 73

Tetrahydropyran 0.28 0.47 0.00 0.55 3.06 0.77 -35.96 73

Oxirane 0.25 0.74 0.07 0.32 1.37 0.34 -32.80 97

Tetraglyme -0.02 1.11 0.00 1.79 6.50 1.81 -79.60 98

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -79.57 99

18-Crown-6 0.40 1.34 0.00 2.13 7.92 2.04 -53

188

Solute E S A B L V Exp Ref

106.00

1-Fluorooctane -0.02 0.35 0.00 0.10 3.85 1.25 -47.61 94

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 1.36 -50.38 94

γ-Butyrolactone 0.39 1.38 0.00 0.59 3.33 0.64 -53.02 82

Propylamine 0.23 0.35 0.16 0.61 2.14 0.63 -28.85 100

Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -33.64 100

Pentylamine 0.21 0.35 0.16 0.61 3.14 0.91 -37.98 100

Octylamine 0.19 0.35 0.16 0.61 4.52 1.34 -52.83 100

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -34.60 101

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -23.20 102

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -27.90 102

1-Propanol 0.24 0.42 0.37 0.48 2.03 0.59 -31.20 102

1-Butanol 0.22 0.42 0.37 0.48 2.60 0.73 -37.10 102

1-Pentanol 0.22 0.42 0.37 0.48 3.11 0.87 -41.90 102

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -52.76 94

2-Propanol 0.21 0.36 0.33 0.56 1.76 0.59 -31.96 103

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -33.68 62

Helium 0.00 0.00 0.00 0.00 -1.74 0.07 10.13 25

Neon 0.00 0.00 0.00 0.00 -1.58 0.09 8.24 25

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 0.96 25

Krypton 0.00 0.00 0.00 0.00 -0.21 0.25 -3.72 25

Xenon 0.00 0.00 0.00 0.00 0.38 0.33 -8.28 25

Radon 0.00 0.00 0.00 0.00 0.88 0.38 -12.68 25

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 5.10 25

189

Solute E S A B L V Exp Ref

Nitrogen 0.00 0.00 0.00 0.00 -0.98 0.22 6.19 25

Carbon monoxide 0.00 0.00 0.00 0.04 -0.84 0.22 1.88 25

Carbon dioxide 0.00 0.28 0.05 0.10 0.06 0.28 -10.54 45

Oxygen 0.00 0.00 0.00 0.00 -0.72 0.18 -0.59 25

Tetrafluoromethane -0.58 -0.26 0.00 0.00 -0.82 0.32 5.98 25

Sulfur Hexafluoride -0.60 -0.20 0.00 0.00 -0.12 0.46 -5.31 25

Chlorine gas 0.36 0.32 0.10 0.00 1.19 0.34 -23.97 104

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -33.60 42

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -37.99 95

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -42.44 105

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -46.78 95

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -46.46 106

Methyl methacrylate 0.25 0.51 0.00 0.44 2.88 0.84 -38.62 107

Phenol 0.81 0.89 0.60 0.30 3.77 0.78 -50.30 42

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 0.92 -51.25 62

2,6-Dimethylphenol 0.85 0.82 0.51 0.37 4.50 1.06 -53.87 108

Ttrifluoromethylbenzene 0.23 0.48 0.00 0.10 2.89 0.91 -37.20 95

Acetophenone 0.82 1.01 0.00 0.48 4.50 1.01 -52.54 109

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -31.20 110

Propyl formate 0.13 0.63 0.00 0.38 2.43 0.75 -36.44 111

Butyl formate 0.12 0.63 0.00 0.38 2.96 0.89 -40.63 111

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -34.88 111

Propyl acetate 0.09 0.60 0.00 0.45 2.82 0.89 -39.28 111

Butyl acetate 0.07 0.60 0.00 0.45 3.35 1.03 -44.23 111

190

Solute E S A B L V Exp Ref

Methyl propanoate 0.13 0.60 0.00 0.45 2.43 0.75 -35.40 111

Ethyl propanoate 0.09 0.58 0.00 0.45 2.81 0.89 -39.57 111

Propyl propanoate 0.07 0.56 0.00 0.45 3.34 1.03 -43.96 111

Cyclohexyl acetate 0.28 0.69 0.00 0.47 4.14 1.20 -52.50 112

Ethyl benzoate 0.69 0.85 0.00 0.46 5.08 1.21 -58.66 113

1-Butanethiol 0.38 0.35 0.00 0.24 3.24 0.84 -36.84 114

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -44.30 115

2-Chlorotoluene 0.76 0.65 0.00 0.07 4.17 0.98 -46.28 116

1,3-Dichlorobenzene 0.85 0.73 0.00 0.02 4.41 0.96 -48.44 117

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -41.47 118

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 0.73 -34.71 89

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 0.87 -48.95 51

1-Nitronaphthalene 1.34 0.94 0.00 0.22 5.80 1.26 -69.45 51

4-Chloronitrobenzene 0.98 1.18 0.00 0.24 5.22 1.01 -56.48 51,68

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 0.88 -49.23 119

Pyrrole 0.61 0.73 0.41 0.29 2.87 0.58 -41.49 120

N-Methylpyrrole 0.56 0.79 0.00 0.31 2.92 0.72 -39.79 120

N,N-Dimethylformamide 0.37 1.31 0.00 0.74 3.17 0.65 -49.60 121

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -57.25 122

191

Table S5.5. Values of t he gas t o d imethyl s ulfoxide s olvation e nthalpy in kJ/mol at 298K for 150 solutes, together with the solute descriptors.

Solute E S A B L V Exp. Ref.

Butane 0.00 0.00 0.00 0.00 1.62 0.67 -12.10 123

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -15.23 124

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -17.61 125

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -21.13 125

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -24.10 125

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -27.66 125

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -30.79 125

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -21.60 126

1-Butene 0.10 0.08 0.00 0.07 1.49 0.63 -15.50 123

1-Pentene 0.09 0.08 0.00 0.07 2.05 0.77 -20.31 127

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -21.51 127

1-Octene 0.09 0.08 0.00 0.07 3.57 1.19 -31.78 127

1,3-Butadiene 0.32 0.23 0.00 0.10 1.54 0.59 -17.00 123

1-Octyne 0.16 0.22 0.09 0.10 3.52 1.15 -37.15 128

2-Octyne 0.23 0.30 0.00 0.10 3.85 1.15 -37.36 128

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -30.71 16, 129

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -34.40 130

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -37.32 130

1,3-Dimethylbenzene 0.62 0.52 0.00 0.16 3.84 1.00 -41.75 16

Propylbenzene 0.60 0.50 0.00 0.15 4.23 1.14 -39.86 130

Isopropylbenzene 0.60 0.49 0.00 0.16 4.08 1.14 -39.66 131

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -39.37 95

192

Solute E S A B L V Exp. Ref.

Butylbenzene 0.60 0.51 0.00 0.15 4.73 1.28 -42.66 130

Pentylbenzene 0.59 0.51 0.00 0.15 5.23 1.42 -45.44 130

Hexylbenzene 0.59 0.50 0.00 0.15 5.72 1.56 -48.72 130

Heptylbenzene 0.58 0.48 0.00 0.15 6.22 1.70 -52.16 130

Octylbenzene 0.58 0.48 0.00 0.15 6.71 1.84 -53.12 130

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -53.19 132

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -60.96 16

Anthracene 2.29 1.34 0.00 0.28 7.57 1.45 -76.60 133

Methylamine 0.25 0.35 0.16 0.58 1.30 0.35 -26.80 133

n-Propylamine 0.23 0.35 0.16 0.61 2.14 0.63 -30.23 130

n-Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -33.59 130

n-Pentylamine 0.21 0.35 0.16 0.61 3.14 0.91 -36.48 130

n-Hexylamine 0.20 0.35 0.16 0.61 3.66 1.05 -40.40 130

n-Heptylamine 0.20 0.35 0.16 0.61 4.15 1.19 -43.15 130

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -29.87 91

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -32.47 91

2-Pentanone 0.14 0.68 0.00 0.51 2.76 0.83 -35.49 127

2-Hexanone 0.14 0.68 0.00 0.51 3.29 0.97 -39.80 133

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -41.00 91

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -39.83 91

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -43.90 133

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -47.20 91

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -44.81 91

193

Solute E S A B L V Exp. Ref.

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 1.39 -35.15 91

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 1.00 -41.84 91

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -21.59 62

Dipropyl ether 0.01 0.25 0.00 0.45 2.95 1.01 -29.59 134

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.29 -32.01 94

Ethyl propyl ether 0.00 0.25 0.00 0.45 2.49 0.87 -25.25 134

n-Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -25.36 95

Methyl heptyl ether 0.05 0.25 0.00 0.45 4.09 1.29 -36.38 94

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 0.87 -24.23 62

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -27.34 135

Tetrahydropyran 0.28 0.47 0.00 0.55 3.06 0.77 -30.16 135

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -36.63 135

1,2-Dimethoxyethane 0.12 0.67 0.00 0.68 2.65 0.79 -34.73 135

1,2-Diethoxyethane 0.01 0.73 0.00 0.79 3.31 1.07 -39.15 135

Furan 0.37 0.51 0.00 0.13 1.91 0.54 -29.99 136

12-Crown-4 0.42 0.99 0.00 1.39 5.14 1.36 -65.98 26

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -78.85 26

18-Crown-6 0.40 1.34 0.00 2.13 7.92 2.04 -103.86 137

1-Fluorooctane -0.02 0.35 0.00 0.10 3.85 1.25 -37.49 94

Dichloromethane 0.39 0.57 0.10 0.05 2.02 0.49 -34.27 138

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -36.78 139

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 0.74 -32.40 131

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.79 -27.68 54

194

Solute E S A B L V Exp. Ref.

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 1.36 -39.79 94

2-Chloro-2-methylpropane 0.14 0.30 0.00 0.03 2.27 0.79 -22.72 54

1,1,1-Trichloroethane 0.37 0.41 0.00 0.09 2.73 0.76 -30.03 140

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 0.88 -56.82 141

Dibromomethane 0.71 0.69 0.11 0.07 2.89 0.60 -39.22 142

Methyl iodide 0.68 0.43 0.00 0.12 2.11 0.51 -26.39 54

1-Iodobutane 0.63 0.40 0.00 0.15 3.63 0.93 -33.49 54

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 0.73 -34.45 143

1,2-Difluorobenzene 0.39 0.63 0.00 0.06 2.84 0.75 -34.93 144

1,3-Difluorobenzene 0.37 0.58 0.00 0.06 2.78 0.75 -34.41 144

4-Fluorotoluene 0.49 0.55 0.00 0.14 3.37 0.68 -36.99 143

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -39.23 143

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 0.96 -48.31 144

1,3-Dichlorobenzene 0.85 0.73 0.00 0.02 4.41 0.96 -51.20 144

1,4-Dichlorobenzene 0.83 0.75 0.00 0.02 4.44 0.96 -43.90 133

4-Chlorotoluene 0.71 0.74 0.00 0.05 4.21 0.98 -43.13 143

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -42.32 143

Iodobenzene 1.19 0.82 0.00 0.12 4.50 0.97 -48.30 124

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -33.24 145

Propanenitrile 0.16 0.90 0.02 0.36 2.08 0.55 -34.57 145

1-Butanenitrile 0.19 0.90 0.00 0.36 2.55 0.69 -36.87 145

1-Pentanenitrile 0.18 0.90 0.00 0.36 3.11 0.83 -41.04 145

1-Hexanenitrile 0.17 0.90 0.00 0.36 3.61 0.97 -43.54 145

195

Solute E S A B L V Exp. Ref.

1-Heptanenitrile 0.16 0.90 0.00 0.36 4.09 1.11 -46.30 145

1-Octanenitrile 0.16 0.90 0.00 0.36 4.59 1.25 -49.87 145

1-Nonanenitrile 0.16 0.90 0.00 0.36 4.97 1.39 -53.36 145

1-Decanenitrile 0.16 0.90 0.00 0.36 5.46 1.53 -56.98 145

1-Undecanenitrile 0.15 0.90 0.00 0.36 5.94 1.67 -59.66 145

1-Dodecanenitrile 0.15 0.90 0.00 0.36 6.46 1.81 -63.30 145

1-Tridecanenitrile 0.15 0.90 0.00 0.36 6.92 1.95 -66.13 145

1-Tetradecanitrile 0.15 0.90 0.00 0.36 7.40 2.10 -68.94 145

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -39.17 145

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -41.13 145

1-Propanol 0.24 0.42 0.37 0.48 2.03 0.59 -43.76 145

2-Propanol 0.21 0.36 0.33 0.56 1.76 0.59 -41.56 16

1-Butanol 0.22 0.42 0.37 0.48 2.60 0.73 -48.16 145

1-Pentanol 0.22 0.42 0.37 0.48 3.11 0.87 -51.45 145

1-Hexanol 0.21 0.42 0.37 0.48 3.61 1.02 -53.97 145

1-Heptanol 0.21 0.42 0.37 0.48 4.12 1.15 -58.29 145

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -60.25 94

1-Nonanol 0.19 0.42 0.37 0.48 5.12 1.44 -66.92 145

1-Decanol 0.19 0.42 0.37 0.48 5.63 1.58 -68.42 145

1-Undecanol 0.18 0.42 0.37 0.48 6.13 1.72 -70.85 145

2-Methyl-2-propanol 0.18 0.30 0.31 0.60 1.96 0.73 -40.34 131

2-methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -44.52 62

Cyclohexanol 0.46 0.54 0.32 0.57 3.76 0.90 -54.14 146

cis 1,2-Cyclohexanediol 0.60 0.86 0.50 0.86 4.20 0.96 -69.70 126

196

Solute E S A B L V Exp. Ref.

Ethylene glycol 0.40 0.90 0.58 0.78 2.66 0.51 -69.66 147

Propylene glycol 0.37 0.90 0.58 0.80 2.92 0.65 -66.70 147

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 0.92 -74.56 62

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -66.48 148

N-Methylaniline 0.95 0.94 0.17 0.47 4.49 0.96 -57.70 149

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 1.10 -49.29 150

Dimethyl carbonate 0.14 0.54 0.00 0.57 2.33 0.66 -34.65 151

Diethyl carbonate 0.06 0.58 0.00 0.53 3.41 0.95 -38.49 151

Benzyl alcohol 0.80 0.87 0.33 0.56 4.22 0.92 -70.30 152

2-Phenylethanol 0.81 0.91 0.30 0.64 4.63 1.06 -70.47 152

Methyl acetate 0.14 0.64 0.00 0.45 1.91 0.61 -30.38 153

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -32.80 154

tert-Butyl acetate 0.03 0.54 0.00 0.47 2.80 1.03 -33.46 154

N,N-Dimethyl formamide 0.37 1.31 0.00 0.74 3.17 0.65 -45.64 153

N,N-Dimethyl acetamide 0.36 1.33 0.00 0.78 3.72 0.79 -52.29 153

Acetophenone 0.82 1.01 0.00 0.48 4.50 1.01 -51.35 155

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -39.00 150

2,6-Dimethylpyridine 0.61 0.70 0.00 0.63 3.76 0.96 -42.60 156

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -52.88 16

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -38.96 157

(Trifluoromethy)lbenzene 0.23 0.48 0.00 0.10 2.89 0.91 -32.68 95

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -44.27 95

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -26.30 101

197

Solute E S A B L V Exp. Ref.

Pyrrole 0.61 0.73 0.41 0.29 2.87 0.58 -54.68 120

N-Methylpyrrole 0.56 0.79 0.00 0.31 2.92 0.72 -40.17 120

1,4-Dimethylbenzene 0.61 0.52 0.00 0.16 3.84 1.00 -37.67 158

Diisopropyl ether -0.06 0.16 0.00 0.58 2.53 1.01 -26.53 127

Ethyl tert-butyl ether -0.02 0.16 0.00 0.60 2.72 1.01 -27.50 127

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 1.01 -29.07 127

Acetaldehyde 0.21 0.67 0.00 0.45 1.23 0.41 -26.80 127

Vinyl acetate 0.22 0.64 0.00 0.43 2.15 0.70 -30.38 127

1-Naphthol 1.52 1.05 0.60 0.37 6.13 1.14 -90.60 159

1-Bromoadamantane 1.07 0.90 0.00 0.20 6.13 1.37 -50.90 160

1-Adamantanol 0.94 0.90 0.31 0.66 5.63 1.25 -66.00 160

Table S5.6. Values of t he g as t o pr opylene c arbonate s olvation e nthalpy i n kJ/mol at 298K for 106 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -5.73 25

Propane 0.00 0.00 0.00 0.00 1.05 0.53 -6.44 25

2-Methylpropane 0.00 0.00 0.00 0.00 1.41 0.67 -9.71 25

Butane 0.00 0.00 0.00 0.00 1.62 0.67 -10.83 25

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -17.57 25

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -21.00 25

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -24.66 25

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -31.41 127

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -37.97 127

198

Solute E S A B L V Exp Ref

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -24.18 16

Methylcyclopentane 0.23 0.10 0.00 0.00 2.82 0.85 -23.14 127

Methylcyclohexane 0.24 0.06 0.00 0.00 3.32 0.99 -26.22 127

1-Butene 0.10 0.08 0.00 0.07 1.49 0.63 -17.60 123

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -24.81 127

1-Octene 0.09 0.08 0.00 0.07 3.57 1.19 -30.56 127

Cyclohexene 0.40 0.20 0.00 0.10 3.02 0.80 -27.01 127

1,3-Butadiene 0.32 0.23 0.00 0.10 1.54 0.59 -19.30 123

Methyl acetate 0.14 0.64 0.00 0.45 1.91 0.61 -32.50 162

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -34.51 162

Propyl acetate 0.09 0.60 0.00 0.45 2.82 0.89 -38.46 162

Vinyl acetate 0.22 0.64 0.00 0.43 2.15 0.70 -34.28 162

Butyl acetate 0.07 0.60 0.00 0.45 3.35 1.03 -41.22 162

tert-butyl acetate 0.03 0.54 0.00 0.47 2.80 1.03 -35.42 162

Isobutyl acetate 0.05 0.57 0.00 0.47 3.16 1.03 -36.13 162

Pentyl acetate 0.07 0.60 0.00 0.45 3.84 1.17 -45.45 162

Hexyl acetate 0.06 0.60 0.00 0.45 4.35 1.31 -47.36 162

Methyl propanoate 0.13 0.60 0.00 0.45 2.43 0.75 -35.21 162

Ethyl propanoate 0.09 0.58 0.00 0.45 2.81 0.89 -37.79 162

Propyl propanoate 0.07 0.56 0.00 0.45 3.34 1.03 -40.40 162

Butyl propanoate 0.06 0.56 0.00 0.47 3.83 1.17 -46.95 162

Methyl butanoate 0.11 0.60 0.00 0.45 2.89 0.89 -38.08 162

Ethyl butanoate 0.07 0.58 0.00 0.45 3.27 1.03 -39.85 162

Propyl butanoate 0.05 0.56 0.00 0.45 3.78 1.17 -44.43 162

199

Solute E S A B L V Exp Ref

Methyl pentanoate 0.11 0.60 0.00 0.45 3.39 1.03 -40.89 162

Ethyl pentanoate 0.05 0.58 0.00 0.45 3.77 1.17 -43.63 162

Ethyl hexanoate 0.04 0.58 0.00 0.45 4.25 1.31 -48.30 162

Ethyl heptanoate 0.03 0.58 0.00 0.45 4.73 1.45 -47.61 162

Ethyl isobutyrate 0.03 0.55 0.00 0.47 3.07 1.03 -37.63 162

Dimethyl carbonate 0.14 0.54 0.00 0.57 2.33 0.66 -37.49 163

Diethyl carbonate 0.06 0.58 0.00 0.53 3.41 0.95 -42.47 163

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -30.79 164

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -34.27 164

2-Pentanone 0.14 0.68 0.00 0.51 2.76 0.83 -37.60 127

2-Hexanone 0.14 0.68 0.00 0.51 3.29 0.97 -40.78 164

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -47.43 164

2-Undecanone 0.10 0.68 0.00 0.51 5.73 1.67 -59.14 164

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -43.77 164

2-Methylcyclohexanone 0.37 0.83 0.00 0.56 4.05 1.00 -45.28 164

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -45.45 165

Phenetole 0.68 0.70 0.00 0.32 4.24 1.06 -47.61 165

Dimethyl sulfoxide 0.52 1.72 0.00 0.97 3.46 0.61 -51.44 166

Benzyl alcohol 0.80 0.87 0.33 0.56 4.22 0.92 -57.40 16

2-Phenylethanol 0.81 0.86 0.31 0.65 4.63 1.06 -62.37 167

3-Phenyl-1-propanol 0.82 0.94 0.31 0.65 5.31 1.20 -65.00 167

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -25.50 127

Diisopropyl ether -0.06 0.16 0.00 0.58 2.53 1.01 -28.95 127

200

Solute E S A B L V Exp Ref

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 0.87 -29.09 127

Ethyl tert-butyl ether -0.02 0.16 0.00 0.60 2.72 1.01 -30.73 127

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 1.01 -33.78 127

Tetrahydropyran 0.28 0.47 0.00 0.55 3.06 0.77 -34.33 168

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -31.72 168

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -39.01 168

1,3-Dioxolane 0.30 0.51 0.00 0.62 1.83 0.54 -36.10 168

12-Crown-4 0.42 0.99 0.00 1.39 5.14 1.36 -68.73 169

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -90.00 161,26

18-Crown-6 0.40 1.34 0.00 2.13 7.92 2.04 -108.86 170

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -31.52 16

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -33.85 16

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 0.59 -36.80 16

Propan-2-ol 0.21 0.36 0.33 0.56 1.76 0.59 -34.83 171

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 0.73 -41.31 16

2-Butanol 0.22 0.36 0.33 0.56 2.34 0.73 -38.36 171

tert-Butanol 0.18 0.30 0.31 0.60 1.96 0.73 -36.10 16

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 0.87 -45.31 16

2-Pentanol 0.20 0.36 0.33 0.56 2.84 0.87 -39.35 172

3-Pentanol 0.20 0.36 0.33 0.56 2.86 0.87 -39.68 172

2-Methyl-1-butanol 0.22 0.39 0.37 0.48 3.01 0.87 -39.90 16

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -38.87 172

201

Solute E S A B L V Exp Ref

3-Methyl-1-butanol 0.19 0.39 0.37 0.48 3.01 0.87 -39.95 172

3-Methyl-2-butanol 0.19 0.33 0.33 0.56 2.79 0.87 -38.84 172

Ethan-1,2-diol 0.40 0.90 0.58 0.78 2.66 0.51 -54.35 173

2-Methoxyethanol 0.27 0.50 0.30 0.84 2.49 0.65 -40.20 174

2-Ethoxyethanol 0.24 0.52 0.31 0.81 2.79 0.79 -42.42 174

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -32.30 16

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -35.65 16

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -39.19 16

Isopropylbenzene 0.60 0.49 0.00 0.16 4.08 1.14 -41.38 16

1,2-Dimethylbenzene 0.66 0.56 0.00 0.16 3.94 1.00 -39.90 127

1,3-Dimethylbenzene 0.62 0.52 0.00 0.16 3.84 1.00 -39.31 16

1,4-Dimethylbenzene 0.61 0.52 0.00 0.16 3.84 1.00 -38.88 127

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -62.65 16

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 0.73 -34.98 16

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -39.24 16

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -41.55 16

Iodobenzene 1.19 0.82 0.00 0.12 4.50 0.97 -46.17 16

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -53.89 16

Dichloromethane 0.39 0.57 0.10 0.05 2.02 0.49 -27.62 127

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -32.19 127

1,2-Dichloroethane 0.42 0.64 0.10 0.11 2.57 0.64 -32.47 127

trans-1,2-Dichloroethylene 0.43 0.41 0.09 0.05 2.28 0.59 -29.00 175

Trichloroethylene 0.52 0.37 0.08 0.03 3.00 0.71 -33.78 175

202

Solute E S A B L V Exp Ref

Tetrachloroethylene 0.64 0.44 0.00 0.00 3.58 0.84 -36.51 175

Carbon Dioxide 0.00 0.28 0.05 0.10 0.06 0.28 -15.70 176

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -38.64 157

Sulfur dioxide 0.37 0.66 0.28 0.10 0.78 0.35 -31.38 176

1-Bromoadamantane 1.07 0.90 0.00 0.20 6.13 1.37 -52.30 160

1-Adamantanol 0.94 0.90 0.31 0.66 5.63 1.25 -61.10 160

Table S5.7. Experimental values of the gas to dibutyl ether solvation enthalpy, ΔHSolv,BE in kJ/mol, for 68 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -26.28 28

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -31.12 28

Heptane 0.00 0.00 0.00 0.00 3.17 1.10 -36.07 28

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -40.96 28

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -45.73 28

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -50.64 177

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -60.12 28

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -79.57 28

3-Methylpentane 0.00 0.00 0.00 0.00 2.58 0.95 -29.99 178

3-Ethylpentane 0.00 0.00 0.00 0.00 3.09 1.10 -34.90 29

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -34.80 29

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -32.38 29

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -30.70 179

1-Octene 0.09 0.08 0.00 0.07 3.57 1.19 -40.40 29

203

Solute E S A B L V Exp Ref

1-Octyne 0.16 0.22 0.09 0.10 3.52 1.15 -43.22 29

2-Octyne 0.23 0.30 0.00 0.10 3.85 1.15 -44.85 29

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -33.06 29

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -37.85 29

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -42.02 29

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -43.38 29

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -31.24 29

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -35.32 29

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 0.59 -39.45 29

Propan-2-ol 0.21 0.36 0.33 0.56 1.76 0.59 -39.64 29

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 0.73 -44.94 29

2-Butanol 0.22 0.36 0.33 0.56 2.34 0.73 -40.65 29

2-Methylpropan-1-ol 0.22 0.39 0.37 0.48 2.41 0.73 -44.58 29

tert-Butanol 0.18 0.30 0.31 0.60 1.96 0.73 -37.13 29

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 0.87 -48.71 29

2,2-Dimethyl-1-propanol 0.22 0.36 0.37 0.53 2.65 0.87 -40.63 29

1-Heptanol 0.21 0.42 0.37 0.48 4.12 1.15 -59.02 29

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -38.79 62

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -26.69 62

Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -32.32 29

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 0.87 -29.00 62

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.30 -45.00 29

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -31.03 29

204

Solute E S A B L V Exp Ref

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -26.02 29

Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -30.74 29

Pentan-2-one 0.14 0.68 0.00 0.51 2.76 0.83 -35.12 29

Pentan-3-one 0.15 0.66 0.00 0.51 2.81 0.83 -35.87 29

Hexan-2-one 0.14 0.68 0.00 0.51 3.29 0.97 -40.01 29

Heptan-2-one 0.12 0.68 0.00 0.51 3.76 1.11 -44.31 29

Heptan-4-one 0.11 0.66 0.00 0.51 3.71 1.11 -44.44 29

Octan-2-one 0.11 0.68 0.00 0.51 4.26 1.25 -49.33 29

Nonan-2-one 0.12 0.68 0.00 0.51 4.73 1.39 -53.95 29

Nonan-5-one 0.10 0.66 0.00 0.51 4.70 1.39 -51.33 29

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 1.39 -44.31 29

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 0.72 -38.88 29

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -41.58 29

Propylamine 0.23 0.35 0.16 0.61 2.14 0.63 -28.23 29

Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -32.99 29

Diethylamine 0.15 0.30 0.08 0.69 2.40 0.77 -30.50 72

Dibutylamine 0.11 0.30 0.08 0.69 4.35 1.34 -49.24 29

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -35.55 29

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -26.78 29

1-Chloropentane 0.21 0.38 0.00 0.09 3.22 0.94 -38.14 29

1-Bromobutane 0.36 0.40 0.00 0.12 3.11 0.85 -36.36 29

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -50.95 29

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -44.53 29

205

Solute E S A B L V Exp Ref

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -52.90 29

Methyl methacrylate 0.25 0.51 0.00 0.44 2.88 0.85 -36.66 107

1,1,2,2-Tetrachloroethane 0.54 0.63 0.10 0.08 3.64 0.88 -50.12 141

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 0.92 -67.03 62

Ttrifluoromethylbenzene 0.23 0.48 0.00 0.10 2.89 0.91 -37.45 95

Hexafluorobenzene 0.09 0.56 0.00 0.01 2.35 0.82 -33.38 180

Benzyl alcohol 0.80 0.87 0.33 0.56 4.22 0.92 -58.10 181

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -37.80 182

Table S5.8. Experimental values of the gas to ethyl acetate solvation enthalpy, ΔHSolv,EA in kJ/mol, for 79 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -21.30 28

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -25.69 28

Heptane 0.00 0.00 0.00 0.00 3.17 1.10 -29.87 28

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -33.84 28

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -37.61 28

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -41.84 28

Undecane 0.00 0.00 0.00 0.00 5.19 1.66 -48.01 183

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -50.04 28

Tridecane 0.00 0.00 0.00 0.00 6.20 1.94 -56.61 183

Pentadecane 0.00 0.00 0.00 0.00 7.21 2.22 -63.65 183

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -66.86 28

Heptadecane 0.00 0.00 0.00 0.00 8.22 2.50 -73.75 183

206

Solute E S A B L V Exp Ref

2-Methylpentane 0.00 0.00 0.00 0.00 2.50 0.95 -23.83 184

3-Methylpentane 0.00 0.00 0.00 0.00 2.58 0.95 -24.63 184

3-Methylhexane 0.00 0.00 0.00 0.00 3.04 1.10 -29.19 184

3-Ethylpentane 0.00 0.00 0.00 0.00 3.09 1.10 -29.08 185

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.80 -27.36 95

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -30.79 91

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -34.27 91

2-Pentanone 0.14 0.68 0.00 0.51 2.76 0.83 -37.78 186

2-Hexanone 0.14 0.68 0.00 0.51 3.29 0.97 -41.55 186

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -45.94 91

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -44.39 91

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -49.24 186

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -54.02 91

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -51.71 91

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 1.39 -43.26 91

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -44.02 91

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -31.80 186

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -35.38 187

1-Propanol 0.24 0.42 0.37 0.48 2.03 0.59 -38.81 188

1-Butanol 0.22 0.42 0.37 0.48 2.60 0.73 -43.39 62

1-Pentanol 0.22 0.42 0.37 0.48 3.11 0.87 -47.45 62

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -59.67 94

2-Propanol 0.21 0.36 0.33 0.56 1.76 0.59 -37.14 188

207

Solute E S A B L V Exp Ref

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -41.30 62

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -25.98 62

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.30 -40.79 94

Butyl methyl 0.05 0.25 0.00 0.44 2.66 0.87 -30.79 95

Methyl tert-butyl ether 0.02 0.11 0.00 0.63 2.38 0.87 -29.37 62

Methyl heptyl ether 0.05 0.25 0.00 0.45 4.09 1.30 -43.35 94

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -79.32 99

1-Fluorooctane -0.02 0.35 0.00 0.10 3.85 1.25 -46.65 94

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -36.90 182

2-Chloro-2-methylpropane 0.14 0.30 0.00 0.03 2.27 0.80 -27.98 189

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 1.36 -49.00 94

2-Bromo-2-methylpropane 0.31 0.29 0.00 0.07 2.61 0.85 -30.73 189

1,2-Dibromoethane 0.75 0.76 0.10 0.17 3.38 0.74 -41.31 190

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -33.48 187

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -37.49 95

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -45.31 95

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -55.89 132

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -64.40 191

Anthracene 2.29 1.34 0.00 0.28 7.57 1.45 -76.60 191

2,2,2-Trifluoroethanol 0.02 0.60 0.57 0.25 1.22 0.50 -46.00 187

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -35.14 192

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 0.92 -67.28 62

208

Solute E S A B L V Exp Ref

Trifluoromethylbenzene 0.23 0.48 0.00 0.10 2.89 0.91 -37.70 95

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -56.02 95

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -47.11 95

Sulfur dioxide 0.37 0.66 0.28 0.10 0.78 0.35 -29.71 176

Nitric oxide 0.37 0.02 0.00 0.09 -0.59 0.20 -2.53 75

Pyrrole 0.61 0.73 0.41 0.29 2.87 0.58 -49.53 120

N-Methylpyrrole 0.56 0.79 0.00 0.31 2.92 0.72 -40.46 120

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -31.80 101

1-Bromoadamantane 1.07 0.90 0.00 0.20 6.13 1.37 -55.80 193

1-Adamantanol 0.94 0.90 0.31 0.66 5.63 1.25 -63.80 193

Salicylamide 1.16 1.65 0.63 0.48 5.91 1.03 -83.53 194,195

Phenol 0.81 0.89 0.60 0.30 3.77 0.78 -64.43 186

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 0.87 -50.63 186

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -39.87 185

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -59.29 185

2-Methylpyridine 0.60 0.75 0.00 0.58 3.42 0.82 -42.50 196

Piperidine 0.42 0.46 0.10 0.69 3.30 0.80 -39.50 196

1-Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -34.86 196

Acetic acid 0.27 0.64 0.63 0.44 1.82 0.47 -47.46 196

Formic acid 0.34 0.75 0.76 0.33 1.55 0.32 -48.55 196

Trichloroethene 0.52 0.37 0.08 0.03 3.00 0.72 -36.72 197

Tetrachloroethene 0.64 0.44 0.00 0.00 3.58 0.84 -38.05 197

209

Table S5.9. Values of the gas to chloroform solvation enthalpy, ∆H Solv,CFM, in kJ/mol at 298K for 100 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -24.21 198

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -28.25 198

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -32.95 198

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -37.57 198

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -41.95 198

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -46.12 198

Undecane 0.00 0.00 0.00 0.00 5.19 1.66 -51.27 198

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -55.83 198

Tridecane 0.00 0.00 0.00 0.00 6.20 1.94 -60.03 198

Tetradecane 0.00 0.00 0.00 0.00 6.71 2.08 -65.37 198

Pentadecane 0.00 0.00 0.00 0.00 7.21 2.22 -67.72 198

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -73.95 198

Heptadecane 0.00 0.00 0.00 0.00 8.22 2.50 -78.09 198

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -30.29 199

Cycloheptane 0.35 0.10 0.00 0.00 3.70 0.99 -35.97 200

Cyclooctane 0.41 0.10 0.00 0.00 4.33 1.13 -40.81 200

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -35.85 182

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -41.09 182

1,4-Dimethylbenzene 0.61 0.52 0.00 0.16 3.84 1.00 -46.20 182

1,3,5-Trimethylbenzene 0.65 0.52 0.00 0.19 4.34 1.14 -50.29 182

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -57.18 201

210

Solute E S A B L V Exp Ref

Phenanthrene 2.06 1.29 0.00 0.26 7.63 1.45 -77.17 201

Anthracene 2.29 1.34 0.00 0.28 7.57 1.45 -78.45 201

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -36.40 182

Dipropyl ether 0.01 0.25 0.00 0.45 2.95 1.01 -42.20 202

Diisopropyl ether -0.06 0.16 0.00 0.58 2.53 1.01 -41.28 202

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.29 -51.00 182

Dipentyl ether 0.00 0.25 0.00 0.45 4.88 1.58 -57.19 203

Ethoxypropane 0.00 0.25 0.00 0.45 2.49 0.87 -38.73 202

Ethoxybutane 0.01 0.25 0.00 0.45 2.99 1.01 -46.90 202

Methyl tert-butyl ether 0.02 0.11 0.00 0.63 2.38 0.87 -38.53 204

Furan 0.37 0.51 0.00 0.13 1.91 0.54 -29.14 205

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -42.60 182

Tetrahydropyran 0.28 0.47 0.00 0.55 3.06 0.77 -43.98 206

1,3-Dioxane 0.31 0.72 0.00 0.70 2.52 0.68 -48.20 206

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -49.70 182

Digylme 0.11 0.76 0.00 1.17 3.92 1.13 -72.40 182

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -105.58 161,26

18-Crown-6 0.40 1.34 0.00 2.13 7.92 2.04 -131.10 53

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -39.34 182

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -43.51 207

3-Pentanone 0.15 0.66 0.00 0.51 2.81 0.83 -47.76 203

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -56.07 203

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -63.26 203

211

Solute E S A B L V Exp Ref

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -55.90 208

N,N-Dimethylformamide 0.37 1.31 0.00 0.74 3.17 0.65 -60.00 182

Dimethyl sulfoxide 0.52 1.72 0.00 0.97 3.46 0.61 -66.69 182

Ethyl formate 0.15 0.66 0.00 0.38 1.85 0.61 -35.02 209

Propyl formate 0.13 0.63 0.00 0.38 2.43 0.75 -43.97 210

Methyl acetate 0.14 0.64 0.00 0.45 1.91 0.61 -39.68 211

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -43.84 182

Propyl acetate 0.09 0.60 0.00 0.45 2.82 0.89 -49.37 212

Ethyl propanoate 0.09 0.58 0.00 0.45 2.81 0.89 -48.91 213

Propyl propanoate 0.07 0.56 0.00 0.45 3.34 1.03 -53.24 214

Ethyl butanoate 0.07 0.58 0.00 0.45 3.27 1.03 -52.85 215

Propyl butanoate 0.05 0.56 0.00 0.45 3.78 1.17 -56.77 216

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -46.40 182

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -56.10 182

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 1.10 -58.23 182

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -48.40 182

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -36.93 182

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -37.70 182

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -28.70 182

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -32.80 182

1-Propanol 0.24 0.42 0.37 0.48 2.03 0.59 -35.20 61

2-Propanol 0.21 0.36 0.33 0.56 1.76 0.59 -35.10 182

212

Solute E S A B L V Exp Ref

1-Butanol 0.22 0.42 0.37 0.48 2.60 0.73 -42.00 182

1-Hexanol 0.21 0.42 0.37 0.48 3.61 1.02 -50.40 182

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -60.00 182

Dichloromethane 0.39 0.57 0.10 0.05 2.02 0.49 -30.32 200

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -31.31 217

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.79 -35.06 218

1,2-Dichloroethane 0.42 0.64 0.10 0.11 2.57 0.64 -35.65 218

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 0.88 -45.63 218

Phenol 0.81 0.89 0.60 0.30 3.77 0.78 -51.00 219

2-Methoxyphenol 0.84 0.91 0.22 0.52 4.45 0.92 -61.98 219

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -50.44 219

Pyrrole 0.61 0.73 0.41 0.29 2.87 0.58 -41.12 69

N-Methylpyrrole 0.56 0.79 0.00 0.31 2.92 0.72 -46.73 69

N-Methylaniline 0.95 0.90 0.17 0.43 4.49 0.96 -56.76 69

N-Ethylaniline 0.95 0.85 0.17 0.43 4.81 1.10 -60.81 69

Diethyl sulfide 0.37 0.38 0.00 0.32 3.10 0.84 -43.50 220

Piperidine 0.42 0.46 0.10 0.69 3.30 0.80 -49.51 221

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -59.20 222

Bromoethane 0.37 0.40 0.00 0.12 2.12 0.57 -27.90 223

1,2-Diamobenzene 1.26 1.40 0.24 0.73 4.85 0.91 -61.40 224

1-Chloropentane 0.21 0.38 0.00 0.09 3.22 0.94 -40.17 225

1-Chlorohexane 0.20 0.40 0.00 0.10 3.78 1.08 -44.44 225

1-Chloroheptane 0.19 0.40 0.00 0.10 4.28 1.22 -48.99 225

213

Solute E S A B L V Exp Ref

1-Chlorooctane 0.19 0.40 0.00 0.10 4.77 1.36 -53.47 225

Methyl propanoate 0.13 0.60 0.00 0.45 2.43 0.75 -45.05 226

Methyl butanoate 0.11 0.60 0.00 0.45 2.89 0.89 -50.40 226

Methyl pentanoate 0.11 0.60 0.00 0.45 3.39 1.03 -52.59 226

Methyl hexanoate 0.08 0.60 0.00 0.45 3.87 1.17 -57.93 226

Methyl octanoate 0.07 0.60 0.00 0.45 4.84 1.45 -67.35 226

Methyl nonanoate 0.06 0.60 0.00 0.45 5.32 1.59 -70.94 226

Methyl decanoate 0.05 0.60 0.00 0.45 5.80 1.73 -75.74 226

Table S5.10. Values of t he gas t o 1,2 -dichloroethane s olvation e nthalpy, ∆HSolv,DCE, in kJ/mol at 298K for 88 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -18.87 28

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -22.80 227

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -26.57 227

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -30.25 227

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -34.52 227

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -38.53 227

Undecane 0.00 0.00 0.00 0.00 5.19 1.66 -45.70 228

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -46.02 227

Tridecane 0.00 0.00 0.00 0.00 6.20 1.94 -54.15 229

Tetradecane 0.00 0.00 0.00 0.00 6.71 2.08 -57.35 230

Pentadecane 0.00 0.00 0.00 0.00 7.21 2.22 -61.54 231

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -61.55 227

214

Solute E S A B L V Exp Ref

Heptadecane 0.00 0.00 0.00 0.00 8.22 2.50 -71.71 232

3-Ethylpentane 0.00 0.00 0.00 0.00 3.09 0.95 -27.00 133

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -27.13 200

2,2,4,4-Tetramethylpentane 0.00 0.00 0.00 0.00 3.51 1.38 -28.70 133

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -25.60 133

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -32.89 91

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -36.36 91

2-Hexanone 0.14 0.68 0.00 0.51 3.29 0.97 -46.00 133

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -47.49 91

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -45.98 91

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -55.10 91

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -53.14 91

2,2,4,4-Tetramethyl-3-pentanone

0.10 0.56 0.00 0.52 4.37 1.39 -44.30 91

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -47.15 91

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -23.83 233

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -26.85 233

1-Propanol 0.24 0.42 0.37 0.48 2.03 0.59 -29.75 233

1-Butanol 0.22 0.42 0.37 0.48 2.60 0.73 -35.74 233

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -52.13 94

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -27.10 133

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.29 -40.08 94

215

Solute E S A B L V Exp Ref

Butyl Methyl Ether 0.05 0.25 0.00 0.44 2.66 0.87 -31.50 133

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 0.87 -30.80 133

Methyl heptyl ether 0.05 0.25 0.00 0.45 4.09 1.29 -43.60 94

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -33.90 133

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -39.30 133

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -90.57 99

1-Fluorooctane -0.02 0.35 0.00 0.10 3.85 1.25 -44.69 94

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 1.36 -48.07 94

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -54.79 132

Methyl formate 0.19 0.68 0.00 0.38 1.29 0.46 -28.22 234

Methyl acetate 0.14 0.64 0.00 0.45 1.91 0.61 -33.38 235

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -36.00 133

Propyl acetate 0.09 0.60 0.00 0.45 2.82 0.89 -39.79 235

Butyl acetate 0.07 0.60 0.00 0.45 3.35 1.03 -44.53 235

Pentyl acetate 0.07 0.60 0.00 0.45 3.84 1.17 -47.30 235

Methyl propanoate 0.13 0.60 0.00 0.45 2.43 0.75 -36.75 234

Ethyl propanoate 0.09 0.58 0.00 0.45 2.81 0.89 -37.94 235

Methyl butanoate 0.11 0.60 0.00 0.45 2.89 0.89 -40.29 234

Ethyl butanoate 0.07 0.58 0.00 0.45 3.27 1.03 -41.86 235

Methyl pentanoate 0.11 0.60 0.00 0.45 3.39 1.03 -43.97 234

Ethyl pentanoate 0.05 0.58 0.00 0.45 3.77 1.17 -47.81 236

Ethyl hexanoate 0.04 0.58 0.00 0.45 4.25 1.31 -50.46 235

Butyl formate 0.12 0.63 0.00 0.38 2.96 0.89 -41.21 237

216

Solute E S A B L V Exp Ref

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -33.10 133

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -33.20 133

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -33.50 133

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 0.73 -34.70 133

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -38.90 133

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -42.70 133

Iodobenzene 1.19 0.82 0.00 0.12 4.50 0.97 -47.70 133

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 0.96 -46.00 133

1,4-Dichlorobenzene 0.83 0.75 0.00 0.02 4.44 0.96 -45.20 133

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -64.00 133

Anthracene 2.29 1.34 0.00 0.28 7.57 1.45 -76.60 133

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -37.70 133

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -45.20 133

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -40.60 133

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -54.80 133

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -46.90 133

Acetophenone 0.82 1.01 0.00 0.48 4.50 1.01 -56.50 133

4-Methoxyphenol 0.90 1.17 0.57 0.48 4.77 0.97 -68.60 238

1,2-Dichloroethane 0.42 0.64 0.10 0.11 2.57 0.64 -35.10 217

Diethyl carbonate 0.06 0.58 0.00 0.53 3.41 0.95 -45.02 239,240

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 0.74 -31.87 241

Sulfur dioxide 0.37 0.66 0.28 0.10 0.78 0.35 -23.01 176

217

Solute E S A B L V Exp Ref

Dimethyl carbonate 0.14 0.54 0.00 0.57 2.33 0.66 -38.14 242

1-Chloronaphthalene 1.42 1.00 0.00 0.14 5.86 1.21 -62.25 239,240

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -34.84 223

Nitroethane 0.27 0.95 0.02 0.33 2.41 0.56 -38.15 223

Propionitrile 0.16 0.90 0.02 0.36 2.08 0.55 -35.03 223

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.79 -31.95 241

1,1,1-Trichloroethane 0.37 0.41 0.00 0.09 2.73 0.76 -31.28 243

trans 1,2-Dichloroethene 0.43 0.41 0.09 0.05 2.28 0.59 -28.91 244

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 0.88 -47.03 244

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 0.87 -50.60 133

Table S5.11. Values of the gas to heptane solvation enthalpy in kJ/mol at 298K for 134 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 0.25 -3.81 45

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -11.17 45

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -26.53 91

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -31.55 91

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -36.57 91

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -41.51 91

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -46.40 91

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -51.38 91

218

Solute E S A B L V Exp Ref

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -61.17 91

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -80.92 91

3-Ethylpentane 0.00 0.00 0.00 0.00 3.09 1.09 -35.19 199

2-Methylpentane 0.00 0.00 0.00 0.00 2.50 0.95 -30.05 43

3-Methylpentane 0.00 0.00 0.00 0.00 2.58 0.95 -30.43 43

2,2-Dimethylbutane 0.00 0.00 0.00 0.00 2.35 0.95 -27.85 43

2,3-Dimethylbutane 0.00 0.00 0.00 0.00 2.50 0.95 -29.30 43

2,4-Dimethylpentane 0.00 0.00 0.00 0.00 2.81 1.09 -32.92 199

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -35.06 245

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -32.29 199

Cycloheptane 0.35 0.10 0.00 0.00 3.70 0.99 -37.81 43

Cyclooctane 0.41 0.10 0.00 0.00 4.33 1.13 -42.66 43

Cyclodecane 0.47 0.10 0.00 0.00 5.34 1.41 -52.10 43

Methylcyclopentane 0.23 0.10 0.00 0.00 2.82 0.85 -31.39 43

Methylcyclohexane 0.24 0.10 0.00 0.00 3.32 0.99 -35.37 43

cis-1,2-Dimethylcyclohexane 0.28 0.24 0.00 0.00 3.85 1.13 -39.76 43

trans-1,2-Dimethylcyclohexane 0.23 0.20 0.00 0.00 3.72 1.13 -38.69 43

cis Decalin 0.55 0.25 0.00 0.00 5.16 1.30 -50.82 43

trans Decalin 0.47 0.23 0.00 0.00 4.98 1.30 -49.95 43

Bicyclohexyl 0.53 0.33 0.00 0.07 5.92 1.58 -57.84 43

Tetralin 0.89 0.65 0.00 0.17 5.20 1.17 -52.80 43

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -30.38 246

219

Solute E S A B L V Exp Ref

1-Octyne 0.16 0.22 0.09 0.10 3.52 1.15 -40.04 128

2-Octyne 0.23 0.30 0.00 0.10 3.85 1.15 -42.63 128

Propanal 0.20 0.65 0.00 0.45 1.82 0.55 -20.19 247

Butanal 0.19 0.65 0.00 0.45 2.27 0.69 -25.19 247

Pentanal 0.16 0.65 0.00 0.45 2.77 0.83 -31.15 247

Hexanal 0.15 0.65 0.00 0.45 3.37 0.97 -36.45 247

Heptanal 0.14 0.65 0.00 0.45 3.86 1.11 -41.59 247

Octanal 0.16 0.65 0.00 0.45 4.38 1.25 -45.76 247

Nonanal 0.15 0.65 0.00 0.45 4.86 1.39 -50.84 247

2-Methylpropanal 0.14 0.62 0.00 0.45 2.12 0.69 -26.30 247

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -21.59 91

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -26.53 91

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -41.09 91

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -41.51 91

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -50.12 91

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -50.08 91

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 1.39 -42.13 91

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -37.78 91

Butyl acetate 0.07 0.60 0.00 0.45 3.35 1.03 -38.72 248

Pentyl acetate 0.07 0.60 0.00 0.45 3.84 1.17 -44.52 249

Ethyl benzoate 0.69 0.85 0.00 0.46 5.08 1.21 -53.08 113

Methyl methacrylate 0.25 0.51 0.00 0.44 2.88 0.84 -33.11 250

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -24.31 62

220

Solute E S A B L V Exp Ref

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.30 -44.22 94

Dipentyl ether 0.00 0.25 0.00 0.45 4.88 1.58 -52.54 251

Diisopropyl ether -0.06 0.16 0.00 0.58 2.53 1.01 -30.96 199

Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -30.79 95

Methyl heptyl ether 0.05 0.25 0.00 0.45 4.09 1.29 -46.11 94

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 0.87 -24.81 62

Ethyl tert-butyl ether -0.02 0.16 0.00 0.60 2.72 1.01 -32.28 252

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 1.01 -34.61 253

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -29.32 254

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 0.76 -31.59 255

2,5,8,11,14-Pentaoxopentadecane -0.02 1.11 0.00 1.79 6.50 1.81 -68.10 256

2,5,8,11-Tetraoxododecane 0.00 0.98 0.00 1.44 5.16 1.47 -54.12 257

2,5,8-Trioxanonane 0.11 0.76 0.00 1.17 3.92 1.13 -39.94 258

Diethoxymethane 0.01 0.49 0.00 0.54 2.79 0.93 -33.14 259

1,2-Dimethoxyethane 0.12 0.67 0.00 0.68 2.65 0.79 -31.76 259

Dimethoxymethane 0.10 0.46 0.00 0.52 1.89 0.65 -26.06 259

1-Fluorooctane -0.02 0.35 0.00 0.10 3.85 1.25 -47.86 94

Tetrachloromethane 0.46 0.38 0.00 0.00 2.82 0.74 -31.21 55

1,2-Dichloroethane 0.42 0.64 0.10 0.11 2.57 0.64 -27.98 233

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 1.36 -50.88 94

Diiodomethane 0.71 0.69 0.11 0.07 2.89 0.77 -37.74 55

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -14.90 260

221

Solute E S A B L V Exp Ref

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -18.60 260

1-Propanol 0.24 0.42 0.37 0.48 2.03 0.59 -22.10 261

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 0.73 -27.87 62

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 0.87 -34.14 62

1-Hexanol 0.21 0.42 0.37 0.48 3.61 1.02 -38.32 261

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -47.57 94

1-Nonanol 0.19 0.42 0.37 0.48 5.12 1.44 -53.66 262

1-Undecanol 0.18 0.42 0.37 0.48 6.13 1.72 -61.83 262

2-Butanol 0.22 0.36 0.33 0.56 2.34 0.73 -26.70 263

2-Methyl-1-propanol 0.22 0.39 0.37 0.48 2.41 0.73 -26.60 263

2-Methyl-2-propanol 0.18 0.30 0.31 0.60 1.96 0.73 -22.60 263

3-Methyl-1-butanol 0.19 0.39 0.37 0.48 3.01 0.87 -35.63 264

2-Pentanol 0.20 0.36 0.33 0.56 2.84 0.87 -35.90 264

3-Methyl-2-butanol 0.19 0.33 0.33 0.56 2.79 0.87 -31.93 264

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -26.44 62

Cyclopentanol 0.43 0.54 0.32 0.56 3.24 0.76 -37.21 265

Cyclohexanol 0.46 0.54 0.32 0.57 3.76 0.90 -37.50 266

2-Methoxyethanol 0.27 0.50 0.30 0.84 2.49 0.65 -34.22 267

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -34.45 199

Propylamine 0.23 0.35 0.16 0.61 2.14 0.63 -25.14 266

Isopropylamine 0.18 0.32 0.16 0.61 1.91 0.63 -22.87 266

Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -29.97 266

sec-Butylamine 0.17 0.32 0.16 0.63 2.41 0.77 -27.89 266

iso-Butylamine 0.12 0.29 0.16 0.71 2.49 0.77 -28.11 266

222

Solute E S A B L V Exp Ref

tert-Butylamine 0.12 0.29 0.16 0.71 2.49 0.77 -24.98 266

Pentylamine 0.21 0.35 0.16 0.61 3.14 0.91 -34.12 266

Hexylamine 0.20 0.35 0.16 0.61 3.66 1.05 -39.47 266

Heptylamine 0.20 0.35 0.16 0.61 4.15 1.19 -44.97 266

Octylamine 0.19 0.35 0.16 0.61 4.52 1.34 -49.41 266

Nonylamine 0.19 0.35 0.16 0.61 5.10 1.48 -54.09 266

Decylamine 0.18 0.35 0.16 0.61 5.61 1.62 -58.69 266

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 0.92 -39.92 62

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -30.54 95

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -35.94 95

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -46.23 95

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -51.82 201

Trifluorotoluene 0.23 0.48 0.00 0.10 2.89 0.91 -33.35 95

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -44.73 95

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -41.21 95

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -40.75 185

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -17.56 268

Helium 0.00 0.00 0.00 0.00 -1.74 0.06 7.72 45

Neon 0.00 0.00 0.00 0.00 -1.58 0.09 5.56 45

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 -1.22 45

Krypton 0.00 0.00 0.00 0.00 -0.21 0.25 -5.51 45

Xenon 0.00 0.00 0.00 0.00 0.38 0.33 -10.08 269

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 3.78 45

Carbon dioxide 0.00 0.28 0.05 0.10 0.06 0.28 -9.66 45

223

Solute E S A B L V Exp Ref

Tetrafluoromethane -0.58 -0.26 0.00 0.00 -0.82 0.32 -1.59 45

Sulfur hexafluoride -0.60 -0.20 0.00 0.00 -0.12 0.46 -8.28 45

Sulfur dioxide 0.37 0.66 0.28 0.10 0.78 0.35 -15.90 176

Difluorodichloromethane 0.04 0.13 0.00 0.00 1.12 0.53 -18.91 45

Hexafluorobenzene 0.09 0.56 0.00 0.01 2.35 0.82 -31.62 270

Chlorotrifluoromethane -0.25 -0.05 0.00 0.00 0.21 0.43 -12.84 45

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -24.40 157

1-Methylnaphthalene 1.34 0.94 0.00 0.22 5.80 1.23 -54.06 271

1-Butanethiol 0.38 0.35 0.00 0.24 3.24 0.84 -33.81 114

1,2,4-Trimethylbenzene 0.68 0.56 0.00 0.19 4.44 1.14 -46.76 272

Table S5.12. Values of t he g as t o he xadecane s olvation e nthalpy i n kJ /mol a t 298K for 102 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 0.29 -3.97 3

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -11.51 3

Propane 0.00 0.00 0.00 0.00 1.05 0.53 -15.94 3

Butane 0.00 0.00 0.00 0.00 1.62 0.67 -20.79 3

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -25.94 3

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -31.04 3

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -36.15 3

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -41.13 3

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -81.38 3

2-Methylpropane 0.00 0.00 0.00 0.00 1.41 0.67 -18.74 3

224

Solute E S A B L V Exp Ref

2,2-Dimethylpropane 0.00 0.00 0.00 0.00 1.82 0.81 -21.14 273

Cyclopentane 0.26 0.10 0.00 0.00 2.48 0.70 -27.66 3

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -31.50 3

Ethene 0.11 0.10 0.00 0.07 0.29 0.35 -11.17 3

Propene 0.10 0.08 0.00 0.07 0.95 0.49 -13.35 3

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -21.42 3

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -26.48 3

2-Pentanone 0.14 0.68 0.00 0.51 2.76 0.83 -31.05 3

2-Hexanone 0.14 0.68 0.00 0.51 3.29 0.97 -35.77 3

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -40.46 3

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -44.89 3

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -44.89 3

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -49.37 3

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -36.48 3

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -25.19 3

Dipropyl ether 0.01 0.25 0.00 0.45 2.95 1.01 -34.15 274

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.30 -43.42 275

Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -30.53 276

Diisopropyl ether -0.06 0.16 0.00 0.58 2.53 1.02 -30.67 277

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 1.02 -34.12 278

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -28.53 3

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 0.76 -30.78 279

225

Solute E S A B L V Exp Ref

Dichloromethane 0.39 0.57 0.10 0.05 2.02 0.46 -23.18 3

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -28.07 3

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 0.74 -30.92 3

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.79 -30.88 3

Tetrachloroethene 0.64 0.44 0.00 0.00 3.58 0.84 -38.41 3

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -25.36 3

2-Nitropropane 0.22 0.92 0.00 0.33 2.55 0.71 -30.15 59

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -19.08 3

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -13.35 3

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -16.32 3

1-Propanol 0.24 0.42 0.37 0.48 2.03 0.59 -21.17 3

2-Propanol 0.21 0.36 0.33 0.56 1.76 0.59 -22.38 3

1-Butanol 0.22 0.42 0.37 0.48 2.60 0.73 -28.07 3

1-Pentanol 0.22 0.42 0.37 0.48 3.11 0.87 -31.34 3

431-Hexanol 0.21 0.42 0.37 0.48 3.61 1.02 -39.79 3

Heptan-1-ol 0.21 0.42 0.37 0.48 4.12 1.15 -44.43 3

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -49.07 3

1-Nonanol 0.19 0.42 0.37 0.48 5.12 1.44 -52.81 262

1-Undecanol 0.18 0.42 0.37 0.48 6.13 1.72 -61.39 262

tert-Butanol 0.18 0.30 0.31 0.60 1.96 0.73 -23.01 3

Cyclohexanol 0.46 0.54 0.32 0.57 3.76 0.90 -47.53 280

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -27.99 3

Butyl acetate 0.07 0.60 0.00 0.45 3.35 1.03 -38.49 3

Methyl benzoate 0.73 0.85 0.00 0.46 4.70 1.07 -48.37 3

226

Solute E S A B L V Exp Ref

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -30.38 3

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -35.90 3

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -40.12 3

Propylbenzene 0.60 0.50 0.00 0.15 4.23 1.14 -44.14 3

m-Xylene 0.62 0.52 0.00 0.16 3.84 1.00 -41.37 3

p-Xylene 0.61 0.52 0.00 0.16 3.84 1.00 -41.51 3

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -46.56 3

Acetophenone 0.82 1.01 0.00 0.48 4.50 1.01 -47.36 3

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -41.24 3

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 0.87 -41.17 3

Benzonitrile 0.74 1.11 0.00 0.33 4.04 0.87 -41.25 3

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -38.24 3

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 0.73 -31.05 3

1,4-Difluorobenzene 0.38 0.60 0.00 0.06 2.77 0.75 -32.19 270

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -41.80 3

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -45.65 3

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 1.10 -48.36 3

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -32.64 3

2-Methylpyridine 0.60 0.75 0.00 0.58 3.42 0.82 -35.90 3

3-Methylpyridine 0.63 0.81 0.00 0.54 3.63 0.82 -37.49 3

4-Methylpyridine 0.63 0.82 0.00 0.54 3.64 0.82 -36.78 3

Propylamine 0.23 0.35 0.16 0.61 2.14 0.63 -23.97 3

Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -29.41 3

Pentylamine 0.21 0.35 0.16 0.61 3.14 0.91 -34.81 281

227

Solute E S A B L V Exp Ref

Hexylamine 0.20 0.35 0.16 0.61 3.66 1.05 -39.46 3

Heptylamine 0.20 0.35 0.16 0.61 4.15 1.19 -45.27 281

Nonylamine 0.19 0.35 0.16 0.61 5.10 1.48 -55.03 281

Decylamine 0.18 0.35 0.16 0.61 5.61 1.62 -60.02 281

tert-Butylamine 0.12 0.29 0.16 0.71 2.49 0.77 -26.15 3

Diethylamine 0.15 0.30 0.08 0.69 2.40 0.77 -24.60 3

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -34.14 3

Helium 0.00 0.00 0.00 0.00 -1.74 0.07 8.24 3

Neon 0.00 0.00 0.00 0.00 -1.58 0.09 6.78 3

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 -0.79 3

Krypton 0.00 0.00 0.00 0.00 -0.21 0.25 -5.02 3

Xenon 0.00 0.00 0.00 0.00 0.38 0.33 -10.08 3

Radon 0.00 0.00 0.00 0.00 0.88 0.38 -14.18 3

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 4.56 25

Diiodomethane 0.71 0.69 0.11 0.07 2.89 0.77 -38.95 3

2,2,2-Trifluoroethanol 0.02 0.60 0.57 0.25 1.22 0.50 -20.88 3

1,1,1,3,3,3-Hexafluoropropan-2-ol

-0.24 0.55 0.77 0.10 1.39 0.70 -22.09 3

Benzyl alcohol 0.80 0.87 0.33 0.56 4.22 0.92 -42.38 3

Thiophene 0.69 0.56 0.00 0.15 2.82 0.64 -29.92 3

Benzyl chloride 0.82 0.82 0.00 0.33 4.38 0.98 -43.32 3

1-Chloronaphthalene 1.42 1.00 0.00 0.14 5.86 1.21 -61.74 282

1-Methylnaphthalene 1.34 0.94 0.00 0.22 5.80 1.23 -55.80 283

228

Table S5.13. Values of t he gas t o c yclohexane solvation enthalpy in kJ /mol a t 298K for 201 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 0.25 -3.01 25

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -11.13 25

Propane 0.00 0.00 0.00 0.00 1.05 0.53 -16.50 25

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -25.52 91

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -30.42 91

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -34.94 91

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -39.66 91

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -44.48 91

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -49.08 91

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -58.41 91

Tetradecane 0.00 0.00 0.00 0.00 6.71 2.08 -68.20 284

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -77.32 28

2-Methylbutane 0.00 0.00 0.00 0.00 2.01 0.81 -24.60 41

2,2-Dimethylpropane 0.00 0.00 0.00 0.00 1.82 0.81 -24.27 284

3-Ethylpentane 0.00 0.00 0.00 0.00 3.09 1.09 -34.27 41

2,2-Dimethylbutane 0.00 0.00 0.00 0.00 2.35 0.95 -27.16 41

2-Methylpentane 0.00 0.00 0.00 0.00 2.50 0.95 -28.91 285

3-Methylpentane 0.00 0.00 0.00 0.00 2.58 0.95 -28.87 284

2,2-Dimethylpentane 0.00 0.00 0.00 0.00 2.80 1.09 -31.38 284

2,3-Dimethylbutane 0.00 0.00 0.00 0.00 2.50 0.95 -27.17 285

2,4-Dimethylpentane 0.00 0.00 0.00 0.00 2.81 1.09 -31.76 199

3,3-Diethylpentane 0.00 0.00 0.00 0.00 3.82 1.38 -41.76 286

229

Solute E S A B L V Exp Ref

3-Methylheptane 0.00 0.00 0.00 0.00 3.51 1.24 -37.66 284

2-Methyloctane 0.00 0.00 0.00 0.00 3.97 1.38 -43.10 284

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -34.31 284

2,2-Dimethylhexane 0.00 0.00 0.00 0.00 1.24 -35.56 284

2,2,4,4-Tetramethylpentane 0.00 0.00 0.00 0.00 3.51 1.38 -38.24 41

2,2,5,5-Tetramethylhexane 0.00 0.00 0.00 0.00 4.04 1.52 -40.17 284

Cyclopentane 0.26 0.10 0.00 0.00 2.48 0.70 -28.54 286

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -33.05 41

Cycloheptane 0.35 0.10 0.00 0.00 3.70 0.99 -38.50 287

Cyclooctane 0.41 0.10 0.00 0.00 4.33 1.13 -43.47 286

Methylcyclohexane 0.24 0.06 0.00 0.00 3.32 0.99 -35.40 286

cis-1,2-Dimethylcyclohexane 0.28 0.24 0.00 0.00 3.85 1.13 -38.03 286

Ethene 0.11 0.10 0.00 0.07 0.29 0.35 -9.03 74

1-Pentene 0.09 0.08 0.00 0.07 2.05 0.77 -24.31 286

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -29.39 90

1-Heptene 0.09 0.08 0.00 0.07 3.06 1.05 -34.18 286

1-Octene 0.09 0.08 0.00 0.07 3.57 1.19 -38.95 286

1-Nonene 0.09 0.08 0.00 0.07 4.07 1.33 -43.72 286

1-Decene 0.09 0.08 0.00 0.07 4.55 1.47 -48.41 286

1-Dodecene 0.09 0.08 0.00 0.07 5.52 1.76 -58.24 286

1-Tridecene 0.09 0.08 0.00 0.07 6.02 1.90 -63.39 286

1-Tetradecene 0.09 0.08 0.00 0.07 6.51 2.04 -68.07 286

230

Solute E S A B L V Exp Ref

1-Pentadecene 0.08 0.08 0.00 0.07 7.01 2.18 -72.97 286

cis 2-Octene 0.14 0.08 0.00 0.07 3.68 1.19 -38.16 286

trans 2-Octene 0.12 0.08 0.00 0.07 3.60 1.19 -38.24 286

cis 4-Octene 0.13 0.08 0.00 0.07 3.61 1.19 -37.99 286

trans 4-Octene 0.14 0.08 0.00 0.07 3.59 1.19 -37.70 286

1,5-Hexadiene 0.19 0.15 0.00 0.10 2.45 0.87 -29.37 286

Cyclopentene 0.34 0.20 0.00 0.10 2.40 0.66 -27.20 286

Cyclohexene 0.40 0.20 0.00 0.10 3.02 0.80 -33.05 286

1-Methylcyclohexene 0.39 0.20 0.00 0.10 3.48 0.94 -37.95 286

Norbornadiene 0.50 0.32 0.00 0.11 3.11 0.79 -33.56 47

1-Octyne 0.16 0.22 0.09 0.10 3.52 1.15 -38.57 128

2-Octyne 0.23 0.30 0.00 0.10 3.85 1.15 -41.59 128

Dichloromethane 0.39 0.57 0.10 0.05 2.02 0.49 -25.25 288

Trichloromethane 0.43 0.49 0.15 0.02 2.48 0.62 -28.23 288

Tetrachloromethane 0.46 0.38 0.00 0.00 2.82 0.74 -31.80 288

1-Chloropropane 0.22 0.40 0.00 0.10 2.20 0.65 -25.42 288

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.79 -30.62 41

1-Chlorooctane 0.19 0.40 0.00 0.10 4.77 1.36 -51.46 41

Difluorodichloromethane 0.04 0.04 0.00 0.04 1.00 0.53 -19.75 289

Chlorotrifluoromethane -0.25 -0.05 0.00 0.00 0.21 0.43 -9.29 45

Diiodomethane 1.20 0.69 0.05 0.17 3.86 0.77 -38.58 55

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -21.09 41

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -26.69 41

2-Pentanone 0.14 0.68 0.00 0.51 2.76 0.83 -31.30 41

231

Solute E S A B L V Exp Ref

3-Pentanone 0.15 0.66 0.00 0.51 2.81 0.83 -30.42 290

2-Hexanone 0.14 0.68 0.00 0.51 3.29 0.97 -36.15 41

3-Hexanone 0.14 0.66 0.00 0.51 3.31 0.97 -34.52 290

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -40.67 41

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -39.62 41

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -45.00 41

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -50.01 41

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -48.89 41

2-Decanone 0.11 0.68 0.00 0.51 5.25 1.53 -52.51 290

2-Undecanone 0.10 0.68 0.00 0.51 5.73 1.67 -56.90 290

6-Undecanone 0.08 0.66 0.00 0.51 5.68 1.67 -56.27 290

3,3-Dimethyl-2-butanone 0.11 0.62 0.00 0.51 2.93 0.97 -31.05 290

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 1.39 -41.05 291

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 0.72 -33.64 41

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -37.65 41

Cycloheptanone 0.44 0.86 0.00 0.56 4.38 1.00 -42.43 290

2,4-Pentanedione 0.41 0.78 0.00 0.63 3.33 0.84 -33.35 41

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -23.05 62

Dipropyl ether 0.01 0.25 0.00 0.45 2.95 1.01 -34.11 199

Diisopropyl ether -0.06 0.16 0.00 0.58 2.53 1.01 -30.34 199

Methyl tert-butyl ether 0.02 0.11 0.00 0.63 2.38 0.87 -28.44 292

Ethyl tert-butyl ether -0.02 0.16 0.00 0.60 2.72 1.01 -32.14 293

232

Solute E S A B L V Exp Ref

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -28.70 294

Tetrahydropyran 0.28 0.47 0.00 0.55 3.06 0.77 -33.60 294

Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -29.67 62

1,3-Dioxane 0.31 0.72 0.00 0.70 2.52 0.68 -31.26 295

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -30.98 295

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 0.76 -31.79 294

2,5-Dimethyltetrahydrofuran 0.20 0.38 0.00 0.58 2.98 0.90 -33.31 294

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -16.90 288

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -17.50 296

1-Propanol 0.24 0.42 0.37 0.48 2.03 0.59 -22.50 296

1-Butanol 0.22 0.42 0.37 0.48 2.60 0.73 -27.70 296

2-Propanol 0.21 0.36 0.33 0.56 1.76 0.59 -20.80 296

1-Pentanol 0.22 0.42 0.37 0.48 3.11 0.87 -31.80 296

1-Hexanol 0.21 0.42 0.37 0.48 3.61 1.02 -36.40 61

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -46.40 61

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -25.44 62

2-Methoxyethanol 0.27 0.50 0.30 0.84 2.49 0.65 -32.56 297

2-Ethoxyethanol 0.24 0.52 0.31 0.81 2.79 0.79 -35.88 298

Methyl acetate 0.14 0.64 0.00 0.45 1.91 0.61 -23.94 299

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -27.86 41

Propyl acetate 0.09 0.60 0.00 0.45 2.82 0.89 -32.20 299

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -17.93 41

Propionitrile 0.16 0.90 0.02 0.36 2.08 0.55 -23.50 300

233

Solute E S A B L V Exp Ref

Butyronitrile 0.18 0.90 0.00 0.36 2.55 0.69 -29.00 300

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -30.66 41

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -35.05 41

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -39.40 41

1,4-Dimethylbenzene 0.61 0.52 0.00 0.16 3.84 1.00 -38.79 69

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -43.35 41

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -49.89 41

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -57.80 41

Anthracene 2.29 1.34 0.00 0.28 7.57 1.45 -72.00 41

Acetophenone 0.82 1.01 0.00 0.48 4.50 1.01 -42.66 41

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -39.62 41

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 0.87 -39.92 41

Benzonitrile 0.74 1.11 0.00 0.33 4.04 0.87 -40.77 41

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -39.33 41

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -37.19 41

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 0.96 -42.48 41

1,4-Dichlorobenzene 0.83 0.75 0.00 0.02 4.44 0.96 -42.70 41

Hexachlorobenzene 1.49 0.99 0.00 0.00 7.62 1.45 -64.80 41

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 0.73 -30.92 41

Iodobenzene 1.19 0.82 0.00 0.12 4.50 0.97 -44.12 41

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -43.10 41

Trifluoromethylbenzene 0.23 0.48 0.00 0.10 2.89 0.91 -30.62 41

N-Methylpyrrole 0.56 0.79 0.00 0.31 2.92 0.72 -32.68 41

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -38.12 286

234

Solute E S A B L V Exp Ref

N-Methylaniline 0.95 0.90 0.17 0.43 4.48 0.96 -43.61 69

N-Ethylaniline 0.95 0.85 0.17 0.43 4.81 1.10 -48.43 69

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 1.10 -46.39 41

Methyl methacrylate 0.25 0.51 0.00 0.44 2.88 0.84 -30.53 107

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 0.92 -36.53 62

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -25.60 288

Nitroethane 0.27 0.95 0.02 0.33 2.41 0.56 -28.40 288

1-Nitropropane 0.24 0.95 0.00 0.31 2.89 0.71 -33.00 288

2-Nitropropane 0.22 0.92 0.00 0.33 2.55 0.71 -30.23 59

Helium 0.00 0.00 0.00 0.00 -1.74 0.07 10.13 25

Neon 0.00 0.00 0.00 0.00 -1.58 0.09 6.11 25

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 -0.92 25

Krypton 0.00 0.00 0.00 0.00 -0.21 0.25 -3.56 25

Xenon 0.00 0.00 0.00 0.00 0.38 0.33 -10.00 25

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 5.19 25

Nitrogen 0.00 0.00 0.00 0.00 -0.98 0.22 2.13 25

Carbon monoxide 0.00 0.00 0.00 0.04 -0.84 0.22 0.84 25

Carbon dioxide 0.00 0.28 0.05 0.10 0.06 0.28 -6.66 74

Oxygen 0.00 0.00 0.00 0.00 -0.72 0.18 0.25 25

Carbon tetrafluoride -0.58 -0.26 0.00 0.00 -0.82 0.32 0.50 25

Sulfur hexafluoride -0.60 -0.20 0.00 0.00 -0.12 0.46 -5.77 25

Nitric oxide 0.37 0.02 0.00 0.09 -0.59 0.20 -4.46 75

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -32.01 286

2-Methylpyridine 0.60 0.75 0.00 0.58 3.42 0.82 -35.92 70

235

Solute E S A B L V Exp Ref

2,4-Dimethylpyridine 0.63 0.76 0.00 0.63 4.01 0.96 -39.87 70

2,6-Dimethylpyridine 0.61 0.70 0.00 0.63 3.76 0.96 -39.89 70

2-Chloropyridine 0.74 1.03 0.00 0.37 3.88 0.80 -39.70 70

3-Chloropyridine 0.73 0.83 0.00 0.40 3.78 0.80 -41.70 70

3-Cyanopyridine 0.75 1.26 0.00 0.62 4.16 0.83 -40.50 70

4-Cyanopyridine 0.75 1.21 0.00 0.59 4.03 0.83 -38.80 70

1-Butanethiol 0.38 0.35 0.00 0.24 3.24 0.84 -33.32 114

N,N-Dimethylformamide 0.37 1.31 0.00 0.74 3.17 0.65 -34.10 41

Dimethyl Sulfoxide 0.52 1.74 0.00 0.88 3.46 0.61 -35.40 41

n-Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -29.51 301

n-Pentylamine 0.21 0.35 0.16 0.61 3.14 0.91 -33.95 301

n-Hexylamine 0.20 0.35 0.16 0.61 3.66 1.05 -39.57 301

Octylamine 0.19 0.35 0.16 0.61 4.52 1.34 -49.24 301

Nonylamine 0.19 0.35 0.16 0.61 5.10 1.48 -53.39 301

Decylamine 0.18 0.35 0.16 0.61 5.61 1.62 -58.15 301

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -33.80 199

Tri-n-butylamine 0.05 0.15 0.00 0.79 6.05 1.90 -67.51 41

Ethyl benzoate 0.69 0.85 0.00 0.46 5.08 1.21 -52.55 302

Dimethoxymethane 0.10 0.46 0.00 0.52 1.89 0.65 -23.74 303

Propyl propionate 0.07 0.56 0.00 0.45 3.34 1.03 -38.21 304

Propionaldehyde 0.20 0.65 0.00 0.45 1.82 0.55 -21.38 305

Carbon disulfide 0.88 0.26 0.00 0.03 2.37 0.49 -26.11 305

Methyl propanoate 0.13 0.60 0.00 0.45 2.43 0.75 -27.61 305

236

Solute E S A B L V Exp Ref

1,2-Dimethoxyethane 0.12 0.67 0.00 0.68 2.65 0.79 -29.50 305

Hexafluorobenzene 0.09 0.56 0.00 0.01 2.35 0.82 -27.15 305

Trichloroethene 0.52 0.37 0.08 0.03 3.00 0.71 -32.21 305

1,4-Difluorobenzene 0.38 0.60 0.00 0.06 2.77 0.75 -30.92 305

1-Iodopropane 0.63 0.40 0.00 0.15 3.13 0.79 -32.97 305

Butyl acetate 0.07 0.60 0.00 0.45 3.35 1.03 -37.40 305

1-Decanol 0.19 0.42 0.37 0.48 5.63 1.58 -56.27 305

Phenanthrene 2.06 1.29 0.00 0.26 7.63 1.45 -68.70 305

Benzil 1.45 1.59 0.00 0.62 7.61 1.64 -65.98 305

Adamantane 0.76 0.57 0.00 0.04 4.93 1.19 -49.30 44

Iodomethane 0.68 0.43 0.00 0.12 2.11 0.51 -24.27 54

1-Iodobutane 0.63 0.40 0.00 0.15 3.63 0.93 -35.55 54

2-Chloro-2-methylpropane 0.14 0.30 0.00 0.03 2.27 0.79 -26.74 54

2-Iodo-2-methylpropane 0.59 0.35 0.00 0.19 3.44 0.93 -33.39 54

Sulfur dioxide 0.37 0.66 0.28 0.10 0.78 0.35 -14.64 176

1-Bromoadamantane 1.07 0.90 0.00 0.20 6.13 1.37 -58.40 193

1-Adamantanol 0.94 0.90 0.31 0.66 5.63 1.25 -57.60 193

Table S5.14. Values of the gas to benzene solvation enthalpy in kJ/mol at 298K for 174 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 0.25 -1.26 25

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -8.37 25

Propane 0.00 0.00 0.00 0.00 1.05 0.53 -13.39 25

237

Solute E S A B L V Exp Ref

2-Methylpropane 0.00 0.00 0.00 0.00 1.41 0.67 -15.48 25

Butane 0.00 0.00 0.00 0.00 1.62 0.67 -17.41 25

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -22.13 91

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -26.65 91

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -31.00 91

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -35.48 91

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -39.66 91

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -43.85 91

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -52.30 91

Tetradecane 0.00 0.00 0.00 0.00 6.71 2.08 -61.63 306

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -70.08 91

2-Methylbutane 0.00 0.00 0.00 0.00 2.01 0.67 -20.50 307

3-Ethylpentane 0.00 0.00 0.00 0.00 3.09 1.09 -30.00 185

2,2-Dimethylbutane 0.00 0.00 0.00 0.00 2.35 0.95 -22.88 286

2,2-Dimethylpentane 0.00 0.00 0.00 0.00 2.80 1.09 -26.94 286

3,3-Diethylpentane 0.00 0.00 0.00 0.00 3.82 1.09 -36.86 286

2-Methyloctane 0.00 0.00 0.00 0.00 3.97 1.38 -38.03 286

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -29.16 286

2,2,4,4-Tetramethylpentane 0.00 0.00 0.00 0.00 3.51 1.38 -32.01 286

2,2,5,5-Tetramethylhexane 0.00 0.00 0.00 0.00 4.04 1.52 -34.43 286

Cyclopentane 0.26 0.10 0.00 0.00 2.48 0.70 -25.65 286

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -29.41 286

238

Solute E S A B L V Exp Ref

Cycloheptane 0.35 0.10 0.00 0.00 3.70 0.99 -35.34 87

Cyclooctane 0.41 0.10 0.00 0.00 4.33 1.13 -39.68 87

Methylcyclohexane 0.24 0.06 0.00 0.00 3.32 0.99 -31.30 286

cis-1,2-Dimethylcyclohexane 0.28 0.24 0.00 0.00 3.85 1.13 -35.27 286

cis Decalin 0.55 0.25 0.00 0.00 5.16 1.30 -46.43 88

Ethene 0.11 0.10 0.00 0.07 0.29 0.35 -9.00 45

1-Butene 0.10 0.08 0.00 0.07 1.49 0.63 -18.53 308

cis 2-Butene 0.14 0.08 0.00 0.05 1.74 0.63 -20.95 308

trans 2-Butene 0.13 0.08 0.00 0.05 1.66 0.63 -19.23 308

2-Methylpropene 0.12 0.08 0.00 0.08 1.58 0.63 -19.10 308

1-Pentene 0.09 0.08 0.00 0.07 2.05 0.77 -22.92 286

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -27.91 286

1-Heptene 0.09 0.08 0.00 0.07 3.06 1.05 -32.47 286

1-Octene 0.09 0.08 0.00 0.07 3.57 1.19 -36.69 286

1-Nonene 0.09 0.08 0.00 0.07 4.07 1.33 -41.21 286

1-Decene 0.09 0.08 0.00 0.07 4.55 1.47 -45.56 286

1-Dodecene 0.09 0.08 0.00 0.07 5.52 1.76 -54.52 286

1-Tridecene 0.09 0.08 0.00 0.07 6.02 1.90 -59.07 286

1-Tetradecene 0.09 0.08 0.00 0.07 6.51 2.04 -63.43 286

1-Pentadecene 0.08 0.08 0.00 0.07 7.01 2.18 -67.82 286

cis 2-Octene 0.14 0.08 0.00 0.07 3.68 1.19 -35.98 286

trans 2-Octene 0.12 0.08 0.00 0.07 3.60 1.19 -35.81 286

cis 4-Octene 0.13 0.08 0.00 0.07 3.61 1.19 -35.44 286

239

Solute E S A B L V Exp Ref

trans 4-Octene 0.14 0.08 0.00 0.07 3.59 1.19 -35.31 286

1,3-Butadiene 0.32 0.23 0.00 0.10 1.54 0.59 -20.28 308

1,5-Hexadiene 0.19 0.15 0.00 0.10 2.45 0.87 -29.20 286

Cyclopentene 0.34 0.20 0.00 0.10 2.40 0.66 -26.27 286

Cyclohexene 0.40 0.20 0.00 0.10 3.02 0.80 -31.51 286

1-Methylcyclohexene 0.39 0.20 0.00 0.10 3.48 0.94 -34.94 286

Norbornadiene 0.50 0.32 0.00 0.11 3.11 0.79 -33.66 47

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -30.08 91

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -34.27 91

2-Pentanone 0.14 0.68 0.00 0.51 2.76 0.83 -37.61 290

3-Pentanone 0.15 0.66 0.00 0.51 2.81 0.83 -38.58 290

2-Hexanone 0.14 0.68 0.00 0.51 3.29 0.97 -42.17 290

3-Hexanone 0.14 0.66 0.00 0.51 3.31 0.97 -41.97 290

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -46.44 91

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -45.81 91

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -50.84 290

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -54.98 91

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -53.35 91

2-Decanone 0.11 0.68 0.00 0.51 5.25 1.53 -58.62 290

2-Undecanone 0.10 0.68 0.00 0.51 5.73 1.67 -62.80 290

6-Undecanone 0.08 0.66 0.00 0.51 5.68 1.67 -61.37 290

3,3-Dimethyl-2-butanone 0.11 0.62 0.00 0.51 2.93 0.97 -37.66 290

240

Solute E S A B L V Exp Ref

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 1.39 -43.01 91

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 0.72 -43.72 290

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -46.16 91

Cycloheptanone 0.44 0.86 0.00 0.56 4.38 1.00 -49.62 290

Dimethyl ether 0.00 0.27 0.00 0.41 1.29 0.45 -21.10 308

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -26.36 307

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.30 -42.17 94

Methyl butyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -31.38 307

Methyl heptyl ether 0.05 0.25 0.00 0.45 4.09 1.30 -44.81 94

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 0.87 -28.03 307

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 1.02 -34.61 99

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -31.80 108

1,3-Dioxane 0.31 0.72 0.00 0.70 2.52 0.68 -39.77 295

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -39.03 295

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 0.76 -34.16 309

Diglyme 0.11 0.76 0.00 1.17 3.92 1.13 -49.00 182

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -81.45 99

18-Crown-6 0.40 1.34 0.00 2.13 7.92 2.04 -100.80 53

1-Butanol 0.22 0.42 0.37 0.48 2.60 0.73 -35.14 307

1-Pentanol 0.22 0.42 0.37 0.48 3.11 0.87 -39.33 307

1-Hexanol 0.21 0.42 0.37 0.48 3.61 1.02 -49.66 310

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -52.76 94

1-Decanol 0.19 0.42 0.37 0.48 5.63 1.58 -65.00 311

241

Solute E S A B L V Exp Ref

tert-Butanol 0.18 0.30 0.31 0.60 1.96 0.73 -34.00 312

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -33.47 307

2-Ethoxyethanol 0.24 0.52 0.31 0.81 2.79 0.79 -39.43 313

1,1-Difluoroethane -0.25 0.47 0.04 0.07 0.57 0.43 -18.13 308

1-Fluorooctane -0.02 0.35 0.00 0.10 3.85 1.25 -47.61 94

Chloroethane 0.23 0.40 0.00 0.10 1.68 0.51 -25.62 308

1-Chlorohexane 0.20 0.40 0.00 0.10 3.78 1.08 -41.97 314

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 1.36 -50.38 94

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 0.88 -47.72 119

Phenol 0.81 0.89 0.60 0.30 3.77 0.78 -49.95 98

2,6-Dimethylphenol 0.85 0.82 0.51 0.37 4.50 1.06 -52.59 108

1-Naphthol 1.52 1.05 0.60 0.37 6.13 1.14 -69.20 159

Dimethyl sulfoxide 0.52 1.72 0.00 0.97 3.46 0.61 -48.08 98

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -40.20 98

2-Methylpyridine 0.60 0.75 0.00 0.58 3.42 0.82 -42.43 70

2,4-Dimethylpyridine 0.63 0.76 0.00 0.63 4.01 0.96 -47.04 70

2,6-Dimethylpyridine 0.61 0.70 0.00 0.63 3.76 0.96 -45.00 70

2-Chloropyridine 0.74 1.03 0.00 0.37 3.88 0.80 -47.90 70

3-Chloropyridine 0.73 0.83 0.00 0.40 3.78 0.80 -48.50 70

3-Cyanopyridine 0.75 1.26 0.00 0.62 4.16 0.83 -54.10 70

4-Cyanopyridine 0.75 1.21 0.00 0.59 4.03 0.83 -55.00 70

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -37.06 98

Nitric oxide 0.37 0.02 0.00 0.09 -0.59 0.20 2.45 75

242

Solute E S A B L V Exp Ref

Helium 0.00 0.00 0.00 0.00 -1.74 0.07 10.29 25

Neon 0.00 0.00 0.00 0.00 -1.58 0.09 10.46 25

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 1.26 25

Krypton 0.00 0.00 0.00 0.00 -0.21 0.25 -1.92 25

Xenon 0.00 0.00 0.00 0.00 0.38 0.33 -7.11 25

Radon 0.00 0.00 0.00 0.00 0.88 0.38 -13.31 25

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 6.36 25

Nitrogen 0.00 0.00 0.00 0.00 -0.98 0.22 4.27 25

Carbon Monoxide 0.00 0.00 0.00 0.04 -0.84 0.22 2.68 25

Carbon Dioxide 0.00 0.28 0.05 0.10 0.06 0.28 -9.20 315

Oxygen 0.00 0.00 0.00 0.00 -0.72 0.18 1.72 25

Tetrafluoromethane -0.58 -0.26 0.00 0.00 -0.82 0.32 2.26 25

Sulfur hexafluoride -0.60 -0.20 0.00 0.00 -0.12 0.46 -3.26 25

Sulfur dioxide 0.37 0.66 0.28 0.10 0.78 0.35 -24.27 176

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -33.85 307

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -37.66 307

1,4-Dimethylbenzene 0.61 0.52 0.00 0.16 3.84 1.00 -42.15 302

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -44.77 307

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -55.28 201

Phenanthrene 2.06 1.29 0.00 0.26 7.63 1.45 -74.04 201

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -63.40 191

1,3-Dichlorobenzene 0.85 0.73 0.00 0.02 4.41 0.96 -45.95 316

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -46.58 106

γ-Butyrolactone 0.39 1.38 0.00 0.59 3.33 0.64 -53.92 82

243

Solute E S A B L V Exp Ref

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -34.74 187

Difluorodichloromethane 0.04 0.04 0.00 0.04 1.00 0.53 -18.58 289

Ethyl formate 0.15 0.66 0.00 0.38 1.85 0.61 -30.38 317

1-Butanethiol 0.38 0.35 0.00 0.24 3.24 0.84 -35.79 114

Methyl methacrylate 0.25 0.51 0.00 0.44 2.88 0.84 -38.44 107

Benzonitrile 0.74 1.11 0.00 0.33 4.04 0.87 -52.03 318

Chlorotrifluoromethane -0.25 -0.05 0.00 0.00 0.21 0.43 -5.02 45

Diiodomethane 0.71 0.69 0.11 0.07 2.89 0.77 -45.02 55

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -52.72 307

Trifluoromethylbenzene 0.23 0.48 0.00 0.10 2.89 0.91 -35.15 307

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 0.92 -51.04 307

Ethyl benzoate 0.69 0.85 0.00 0.46 5.08 1.21 -58.78 302

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -31.23 319

1-Nitropropane 0.24 0.95 0.00 0.31 2.89 0.71 -43.37 59

2-Nitropropane 0.22 0.92 0.00 0.33 2.55 0.71 -40.30 59

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -35.01 157

Nitroethane 0.27 0.95 0.02 0.33 2.41 0.56 -38.29 320

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 0.73 -35.44 302

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -40.83 302

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -43.60 302

Iodobenzene 1.19 0.82 0.00 0.12 4.50 0.97 -48.76 302

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -50.54 185

Carbon Tetrachloride 0.46 0.38 0.00 0.00 2.82 0.74 -31.88 286

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -32.27 321

244

Solute E S A B L V Exp Ref

Dimethoxymethane 0.10 0.46 0.00 0.52 1.89 0.65 -28.12 303

1,2-Dimethoxyethane 0.12 0.67 0.00 0.68 2.65 0.79 -37.21 298

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -29.62 89

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 0.87 -48.95 51

1-Nitronaphthalene 1.34 0.94 0.00 0.22 5.80 1.26 -68.20 51

4-Chloronitrobenzene 0.98 1.18 0.00 0.24 5.22 1.01 -55.23 51

1,4-Dibromobenzene 1.15 0.86 0.00 0.04 5.32 1.07 -54.54 222

4-Nitrotoluene 0.87 1.11 0.00 0.28 5.15 1.01 -61.33 222

Pyrrole 0.61 0.73 0.41 0.29 2.87 0.56 -42.10 120

N-Methylpyrrole 0.56 0.79 0.00 0.31 2.92 0.72 -40.02 120

Table S5.15. Values of t he gas t o methanol solvation enthalpy, ΔHSolv,MeOH, i n kJ/mole at 298 K for 188 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 0.25 -3.60 25

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -7.95 25

Propane 0.00 0.00 0.00 0.00 1.05 0.53 -13.10 25

2-Methylpropane 0.00 0.00 0.00 0.00 1.41 0.67 -16.36 25

Butane 0.00 0.00 0.00 0.00 1.62 0.67 -18.79 25

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -22.38 28

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -26.53 28

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -30.75 28

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -34.89 28

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -38.83 28

245

Solute E S A B L V Exp Ref

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -42.80 28

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -51.09 28

Tetradecane 0.00 0.00 0.00 0.00 6.71 2.08 -59.50 286

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -67.99 28

2,2-Dimethylbutane 0.00 0.00 0.00 0.00 2.35 0.95 -23.26 286

3,3-Diethylpentane 0.00 0.00 0.00 0.00 3.82 1.09 -37.24 286

2-Methyloctane 0.00 0.00 0.00 0.00 3.97 1.38 -37.70 286

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -29.46 286

2,2,4,4-Tetramethylpentane 0.00 0.00 0.00 0.00 3.51 1.38 -32.30 286

2,2,5,5-Tetramethylhexane 0.00 0.00 0.00 0.00 4.04 1.52 -34.31 286

Cyclopentane 0.26 0.10 0.00 0.00 2.48 0.70 -24.60 286

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -28.11 286

Cyclooctane 0.41 0.10 0.00 0.00 4.33 1.13 -36.90 286

Methylcyclohexane 0.24 0.06 0.00 0.00 3.32 0.99 -30.29 286

cis-1,2-Dimethylcyclohexane 0.28 0.24 0.00 0.00 3.85 1.13 -34.35 286

Adamantane 0.76 0.57 0.00 0.04 4.93 1.19 -42.30 322

1-Butene 0.10 0.08 0.00 0.07 1.49 0.63 -19.20 123

cis 2-Butene 0.14 0.08 0.00 0.05 1.74 0.63 -20.73 323

1-Pentene 0.09 0.08 0.00 0.07 2.05 0.77 -23.43 286

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -27.82 286

1-Heptene 0.09 0.08 0.00 0.07 3.06 1.05 -31.84 286

246

Solute E S A B L V Exp Ref

1-Octene 0.09 0.08 0.00 0.07 3.57 1.19 -35.81 286

1-Nonene 0.09 0.08 0.00 0.07 4.07 1.33 -39.96 286

1-Decene 0.09 0.08 0.00 0.07 4.55 1.47 -44.27 286

1-Dodecene 0.09 0.08 0.00 0.07 5.52 1.76 -52.59 286

1-Tridecene 0.09 0.08 0.00 0.07 6.02 1.90 -56.57 286

1-Tetradecene 0.09 0.08 0.00 0.07 6.51 2.04 -60.88 286

1-Pentadecene 0.08 0.08 0.00 0.07 7.01 2.18 -65.18 286

cis 2-Octene 0.14 0.08 0.00 0.07 3.68 1.19 -34.98 286

trans 2-Octene 0.12 0.08 0.00 0.07 3.60 1.19 -34.94 286

cis 4-Octene 0.13 0.08 0.00 0.07 3.61 1.19 -34.69 286

trans 4-Octene 0.14 0.08 0.00 0.07 3.59 1.19 -34.39 286

1,3-Butadiene 0.32 0.23 0.00 0.10 1.54 0.59 -21.50 123

1,5-Hexadiene 0.19 0.15 0.00 0.10 2.45 0.87 -29.12 286

Cyclopentene 0.34 0.20 0.00 0.10 2.40 0.66 -25.44 286

Cyclohexene 0.40 0.20 0.00 0.10 3.02 0.80 -29.54 286

1-Methylcyclohexene 0.39 0.20 0.00 0.10 3.48 0.94 -33.85 286

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -37.80 324

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -42.30 324

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 0.59 -45.86 324

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 0.73 -51.15 324

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 0.87 -55.33 324

Hexan-1-ol 0.21 0.42 0.37 0.48 3.61 1.02 -59.52 325

Octan-1-ol 0.20 0.42 0.37 0.48 4.62 1.30 -67.39 324

Decan-1-ol 0.19 0.42 0.37 0.48 5.63 1.58 -76.49 326

247

Solute E S A B L V Exp Ref

Ethylene glycol 0.40 0.90 0.58 0.78 2.66 0.51 -64.93 327

1,2-Propanediol 0.37 0.90 0.58 0.80 2.92 0.65 -64.70 327

1,3-Propanediol 0.40 0.91 0.77 0.85 3.26 0.65 -71.50 328

1,4-Butanediol 0.40 0.93 0.72 0.90 3.80 0.79 -76.20 328

Glycerol 0.51 0.76 0.47 1.43 3.97 0.71 -90.10 328

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -32.37 129

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -35.37 102

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -39.94 329

Isopropylbenzene 0.60 0.49 0.00 0.16 4.08 1.14 -42.34 329

4-Isopropyltoluene 0.61 0.49 0.00 0.19 4.59 1.14 -46.58 329

sec-Butylbenzene 0.60 0.48 0.00 0.16 4.51 1.28 -46.74 329

tert-Butylbenzene 0.62 0.49 0.00 0.18 4.41 1.28 -44.63 329

Hexamethylbenzene 0.95 0.72 0.00 0.21 6.56 1.56 -62.25 329

Octylbenzene 0.58 0.48 0.00 0.15 6.71 1.84 -60.37 329

1,3,5-Trimethylbenzene 0.65 0.52 0.00 0.19 4.34 1.14 -46.45 329

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -53.79 132

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -61.85 329

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -36.10 182

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 0.74 -32.98 330

Chloroethane 0.23 0.40 0.00 0.10 1.68 0.51 -23.72 323

2-Chloro-2-methylpropane 0.14 0.30 0.00 0.03 2.27 0.79 -27.44 331

2-Methyl-2-bromopropane 0.31 0.29 0.00 0.07 2.61 0.85 -28.80 332,333

248

Solute E S A B L V Exp Ref

2-Methyl-2-iodopropane 0.59 0.35 0.00 0.19 3.44 0.93 -32.80 334

Methyl iodide 0.68 0.43 0.00 0.12 2.02 0.51 -25.95 335

1,1-Difluoroethane -0.25 0.47 0.04 0.07 0.57 0.42 -18.97 323

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -28.79 91

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -32.26 91

2-Pentanone 0.14 0.68 0.00 0.51 2.76 0.83 -35.86 290

3-Pentanone 0.15 0.66 0.00 0.51 2.81 0.83 -36.02 290

2-Hexanone 0.14 0.68 0.00 0.51 3.29 0.97 -40.12 290

3-Hexanone 0.14 0.66 0.00 0.51 3.31 0.97 -39.46 290

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -44.31 91

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -43.22 91

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -48.24 290

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -51.88 91

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -50.96 91

2-Decanone 0.11 0.68 0.00 0.51 5.25 1.53 -55.27 290

2-Undecanone 0.10 0.68 0.00 0.51 5.73 1.67 -59.00 290

6-Undecanone 0.08 0.66 0.00 0.51 5.68 1.67 -57.44 290

4-Methyl-2-pentanone 0.11 0.65 0.00 0.51 3.09 0.97 -39.63 91

3,3-Dimethyl-2-butanone 0.11 0.62 0.00 0.51 2.93 0.97 -35.52 290

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 1.39 -41.51 91

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 0.72 -39.25 290

249

Solute E S A B L V Exp Ref

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -44.48 91

Cycloheptanone 0.44 0.86 0.00 0.56 4.38 1.00 -46.65 290

Dimethyl ether 0.00 0.27 0.00 0.41 1.29 0.45 -17.70 323

Diisopropyl ether -0.06 0.16 0.00 0.58 2.53 1.01 -32.89 336

Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -30.63 95

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 0.87 -30.75 337

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 1.01 -34.72 338

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -30.96 339

Tetrahydropyran 0.28 0.47 0.00 0.55 3.06 0.77 -33.48 340

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -34.82 339

1,2-Dimethoxyethane 0.12 0.67 0.00 0.68 2.65 0.79 -36.50 328

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -91.28 161,341

18-Crown-6 0.40 1.34 0.00 2.13 7.92 2.04 -101.60 53

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -59.17 342

Nitric oxide 0.37 0.02 0.00 0.09 -0.59 0.20 -2.64 75

Helium 0.00 0.00 0.00 0.00 -1.74 0.07 5.86 25

Neon 0.00 0.00 0.00 0.00 -1.58 0.09 4.81 25

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 -0.84 25

Krypton 0.00 0.00 0.00 0.00 -0.21 0.25 -4.90 25

Xenon 0.00 0.00 0.00 0.00 0.38 0.33 -9.41 38

Radon 0.00 0.00 0.00 0.00 0.88 0.38 -15.98 25

Nitrogen 0.00 0.00 0.00 0.00 -0.98 0.22 0.50 25

250

Solute E S A B L V Exp Ref

Carbon monoxide 0.00 0.00 0.00 0.04 -0.84 0.22 0.67 25

Carbon dioxide 0.00 0.28 0.05 0.10 0.06 0.28 -10.67 45

Oxygen 0.00 0.00 0.00 0.00 -0.72 0.18 -0.96 25

Methyl acetate 0.14 0.64 0.00 0.45 1.91 0.61 -29.02 343

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -31.74 188

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -28.62 319

Butyronitrile 0.18 0.90 0.00 0.36 2.55 0.69 -35.87 344

Dimethyl sulfoxide 0.52 1.74 0.00 0.88 3.46 0.61 -53.89 319

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -47.80 319

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -40.19 345

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 0.96 -46.28 329

1,4-Dichlorobenzene 0.83 0.75 0.00 0.02 4.44 0.96 -46.11 84

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 0.73 -35.39 329

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -42.55 329

Iodobenzene 1.19 0.82 0.00 0.12 4.50 0.97 -47.47 329

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -33.94 157

4-Nitrophenol 1.07 1.72 0.82 0.26 5.88 0.95 -91.16 346

4-Bromophenol 1.08 1.17 0.67 0.20 5.14 0.95 -82.82 346

Phenol 0.81 0.89 0.60 0.30 3.77 0.78 -66.02 346

4-Methylphenol 0.82 0.87 0.57 0.31 4.31 0.92 -66.66 346

4-tert-Butylphenol 0.81 0.89 0.56 0.41 5.26 1.34 -78.34 346

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -44.21 347

2-Methylpyridine 0.60 0.75 0.00 0.58 3.42 0.82 -48.36 347

4-Methylpyridine 0.63 0.82 0.00 0.54 3.64 0.82 -50.43 348

251

Solute E S A B L V Exp Ref

4-Ethylpyridine 0.63 0.80 0.00 0.57 4.12 0.76 -50.80 349

2,6-Dimethylpyridine 0.61 0.70 0.00 0.63 3.76 0.96 -52.89 347

3,5-Dimethylpyridine 0.66 0.79 0.00 0.60 4.21 0.96 -54.77 348

3-Chloropyridine 0.73 0.83 0.00 0.40 3.78 0.80 -49.60 347

4-Cyanopyridine 0.75 1.21 0.00 0.59 4.03 0.83 -52.00 347

4-Methoxypyridine 0.68 0.93 0.00 0.53 4.28 0.88 -56.57 348

Ethyl benzoate 0.69 0.85 0.00 0.46 5.08 1.21 -53.93 302

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -50.84 329

1,2-Dinitrobenzene 1.17 1.70 0.00 0.38 5.91 1.07 -64.05 329

1,4-Dinitrobenzene 1.13 1.63 0.00 0.46 5.80 1.07 -70.25 329

1-Chloro-2-nitrobenzene 1.02 1.24 0.00 0.24 5.24 1.01 -61.15 329

1-Chloro-3-nitrobenzene 1.00 1.14 0.00 0.25 5.21 1.01 -57.87 329

1-Chloro-4-nitrobenzene 0.98 1.18 0.00 0.24 5.22 1.01 -57.12 329

Acetophenone 0.82 1.01 0.00 0.48 4.50 1.01 -48.37 329

2-Nitrophenol 1.02 1.05 0.05 0.37 4.76 0.95 -53.22 329

3-Nitrophenol 1.05 1.57 0.79 0.23 5.69 0.95 -88.06 329

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -43.26 95

Benzonitrile 0.74 1.11 0.00 0.33 4.04 0.87 -48.70 329

3-Methylaniline 0.97 0.92 0.23 0.45 4.46 0.96 -60.94 329

2-Nitroaniline 1.18 1.37 0.30 0.36 5.63 0.99 -71.42 329

3-Nitroaniline 1.20 1.71 0.40 0.35 5.88 0.99 -78.09 329

4-Nitroaniline 1.22 1.93 0.46 0.35 6.34 0.99 -86.44 329

252

Solute E S A B L V Exp Ref

1,2-Diphenylethane 1.20 1.03 0.00 0.28 6.76 1.61 -66.71 329

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 1.10 -48.52 329

1-Chloronaphthalene 1.42 1.00 0.00 0.14 5.86 1.21 -61.70 329

1-Nitronaphthalene 1.60 1.59 0.00 0.29 7.06 1.26 -72.90 329

1-Naphthylamine 1.67 1.20 0.20 0.57 6.49 1.19 -78.49 329

Styrene 0.85 0.65 0.00 0.16 3.86 0.96 -42.04 329

alpha-Methylstyrene 0.85 0.64 0.00 0.19 4.29 1.10 -46.47 329

trans-Stilbene 1.45 1.05 0.00 0.34 7.52 1.56 -74.91 329

Diphenyl ether 1.22 1.08 0.00 0.20 6.29 1.38 -62.34 329

Trifluorotoluene 0.23 0.48 0.00 0.10 2.89 0.91 -37.78 95

1-Naphthol 1.52 1.05 0.60 0.37 6.13 1.14 -83.47 350

Quinoline 1.27 0.97 0.00 0.54 5.46 1.04 -60.33 84

Pyrrole 0.61 0.73 0.41 0.29 2.87 0.58 -46.48 120

N-Methylpyrrole 0.56 0.79 0.00 0.31 2.92 0.72 -37.32 120

Salicylamide 1.16 1.65 0.63 0.48 5.91 1.03 -78.66 194,195

2,2,2-Trifluoroethanol 0.02 0.60 0.57 0.25 1.22 0.50 -47.10 351

Ferrocene 1.35 0.85 0.00 0.20 5.62 1.12 -58.11 352

Benzamide 0.99 1.50 0.49 0.67 5.77 0.97 -85.05 353

Benzoic acid 0.73 0.90 0.59 0.40 4.51 0.93 -77.03 353

Picric acid 1.43 2.66 0.46 0.42 8.13 1.30 -95.57 354

Tetramethylsilicon -0.06 0.08 0.00 0.00 1.81 0.92 -20.90 332

Tetraethyltin 0.46 0.18 0.00 0.13 4.92 1.61 -42.82 355

253

Table S5.16. Values of the gas to ethanol solvation enthalpy, ΔHSolv,EtOH, i n kJ/mole at 298 K for 111 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 0.29 -3.85 45

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -8.79 25

Propane 0.00 0.00 0.00 0.00 1.05 0.53 -14.06 25

Butane 0.00 0.00 0.00 0.00 1.62 0.67 -20.56 356

2-Methylpropane 0.00 0.00 0.00 0.00 1.41 0.67 -20.09 356

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -24.97 124

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -28.83 357

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -33.46 296

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -34.35 358

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -47.32 359

Undecane 0.00 0.00 0.00 0.00 5.19 1.66 -50.59 357

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -73.59 360

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -32.28 361

Cyclopentane 0.26 0.10 0.00 0.00 2.48 0.70 -26.52 362

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -30.24 288

Adamantane 0.76 0.57 0.00 0.04 4.93 1.19 -45.02 322

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -37.40 124

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -42.30 324

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 0.59 -46.18 324

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 0.73 -51.82 324

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 0.87 -55.65 324

Hexan-1-ol 0.21 0.42 0.37 0.48 3.61 1.02 -60.00 363

254

Solute E S A B L V Exp Ref

Octan-1-ol 0.20 0.42 0.37 0.48 4.62 1.30 -69.35 324

Decan-1-ol 0.19 0.42 0.37 0.48 5.63 1.58 -78.91 364

2-Propanol 0.21 0.36 0.33 0.56 1.76 0.59 -45.46 365

Ethylene glycol 0.40 0.90 0.58 0.78 2.66 0.51 -63.36 366

1,2-Propanediol 0.37 0.90 0.58 0.80 2.92 0.65 -69.84 327

Dimethyl ether 0.00 0.27 0.00 0.41 1.29 0.45 -16.37 367

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -25.63 368

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.30 -41.99 369

Methyl butyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -30.37 370

Diisopropyl ether -0.06 0.16 0.00 0.58 2.53 1.01 -31.95 336

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 0.87 -29.36 371

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 1.01 -34.61 339,359

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -30.44 372

Tetrahydropyran 0.28 0.47 0.00 0.55 3.06 0.77 -32.58 373

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -32.99 374

1,2-Dimethoxyethane 0.12 0.67 0.00 0.68 2.65 0.79 -34.73 375

1,2-Diethoxyethane 0.01 0.73 0.00 0.79 3.31 1.07 -41.78 89

2-Methyl-2-bromopropane 0.31 0.29 0.00 0.07 2.61 0.85 -30.06 333

2-Methyl-2-chloropropane 0.14 0.30 0.00 0.03 2.27 0.79 -27.48 334

2-Methyl-2-iodopropane 0.59 0.35 0.00 0.19 3.44 0.93 -33.61 334

Nitric oxide 0.37 0.02 0.00 0.09 -0.59 0.20 -4.52 75

Helium 0.00 0.00 0.00 0.00 -1.74 0.07 7.23 45

255

Solute E S A B L V Exp Ref

Neon 0.00 0.00 0.00 0.00 -1.58 0.09 3.90 45

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 -0.38 45

Xenon 0.00 0.00 0.00 0.00 0.38 0.33 -9.44 38

Radon 0.00 0.00 0.00 0.00 0.88 0.38 -11.88 25

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 3.72 45

Nitrogen 0.00 0.00 0.00 0.00 -0.98 0.22 0.46 45

Oxygen 0.00 0.00 0.00 0.00 -0.72 0.18 -1.21 45

Carbon Monoxide 0.00 0.00 0.00 0.04 -0.84 0.22 0.33 45

Carbon Dioxide 0.00 0.28 0.05 0.10 0.06 0.28 -12.80 45

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -32.01 157

1-Bromoadamantane 1.07 0.90 0.00 0.20 6.13 1.37 -55.34 333

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -44.00 101

Dimethyl carbonate 0.14 0.54 0.00 0.57 2.33 0.66 -30.39 376

Diethyl carbonate 0.06 0.58 0.00 0.53 3.41 0.95 -37.85 377

alpha-Methylstyrene 0.85 0.64 0.00 0.19 4.29 1.10 -47.11 378

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -26.20 296

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -30.83 379

4-Methyl-2-pentanone 0.11 0.65 0.00 0.51 3.09 0.97 -37.76 379

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -41.00 380

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -57.25 381

Ethyl formate 0.15 0.66 0.00 0.38 1.85 0.61 -27.62 317

Methyl acetate 0.14 0.64 0.00 0.45 1.91 0.61 -27.86 299

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -30.44 188

Propyl acetate 0.09 0.60 0.00 0.45 2.82 0.89 -34.61 299

256

Solute E S A B L V Exp Ref

Butyl acetate 0.07 0.60 0.00 0.45 3.35 1.03 -38.83 382

Pentyl acetate 0.07 0.60 0.00 0.45 3.84 1.17 -44.20 383

Methyl propanoate 0.13 0.60 0.00 0.45 2.43 0.75 -30.53 384

Methyl butanoate 0.11 0.60 0.00 0.45 2.89 0.89 -35.99 384

Methyl pentanoate 0.11 0.60 0.00 0.45 3.39 1.03 -38.21 384

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -27.14 385

Butyronitrile 0.19 0.90 0.00 0.36 2.55 0.69 -33.87 386

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 0.74 -33.19 387

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -36.90 182

Dimethyl sulfoxide 0.52 1.74 0.00 0.88 3.46 0.61 -49.19 388

Piperidine 0.42 0.46 0.10 0.69 3.30 0.80 -53.89 389

Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -47.31 389

Benzylamine 0.83 0.88 0.10 0.72 4.39 0.96 -59.50 389

Morpholine 0.43 0.79 0.06 0.91 3.29 0.72 -52.15 389

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -43.42 389

2-Methylpyridine 0.60 0.75 0.00 0.58 3.42 0.82 -46.89 389

4-Ethylpyridine 0.63 0.80 0.00 0.57 4.12 0.96 -48.80 349

3-Chloropyridine 0.73 0.83 0.00 0.40 3.78 0.80 -46.30 349

Quinoline 1.27 0.97 0.00 0.54 5.46 1.04 -60.07 389

2,2,2-Trifluoroethanol 0.02 0.60 0.57 0.25 1.22 0.50 -48.20 351

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -32.17 124

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -35.40 102

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -40.48 124

1,4-Dimethylbenzene 0.61 0.52 0.00 0.16 3.84 1.00 -39.93 390

257

Solute E S A B L V Exp Ref

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -40.67 124

Ferrocene 1.35 0.85 0.00 0.20 5.62 1.12 -52.65 352

Ammonia 0.14 0.39 0.16 0.56 0.32 0.21 -26.23 391

Difluoromethane -0.32 0.49 0.06 0.05 0.04 0.28 -11.53 392

Dichlorodifluoromethane 0.04 0.04 0.00 0.04 1.00 0.53 -17.64 392

Chlorodifluoromethane 0.00 0.25 0.20 0.00 0.69 0.41 -15.82 392

Pentafluoroethane -0.51 -0.02 0.11 0.06 0.10 0.48 -16.54 392

1,1,1,2-Tetrafluoroethane -0.39 0.16 0.16 0.05 0.40 0.46 -15.14 392

1,1-Difluoroethane -0.25 0.47 0.04 0.07 0.57 0.43 -15.14 392

Chloropentafluoroethane -0.36 -0.10 0.00 0.00 0.54 0.60 -12.55 392

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -52.40 122

Imidazole 0.71 0.85 0.42 0.78 4.02 0.54 -73.48 393

N,N-Dimethylformamide 0.37 1.31 0.00 0.74 3.17 0.65 -44.77 394

2,4,4-Trimethyl-1-pentene 0.09 0.07 0.00 0.07 3.29 1.19 -33.13 395

Benzamide 0.99 1.50 0.49 0.67 5.77 0.97 -82.75 353

Benzoic acid 0.73 0.90 0.59 0.40 4.51 0.93 -76.53 353

Tetramethylsilicon -0.06 0.08 0.00 0.00 1.81 0.92 -22.20 332

258

Table S5.17. Values o f t he gas t o 1 -butanol solvation enthalpy, ΔHSolv,BtOH, i n kJ/mole at 298 K for 103 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 0.29 -3.77 25

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -12.14 398

Propane 0.00 0.00 0.00 0.00 1.05 0.53 -17.70 25

2-Methylpropane 0.00 0.00 0.00 0.00 1.41 0.67 -17.87 399

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -25.69 124

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -30.17 124

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -34.81 124

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -39.21 357

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -42.55 89

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -48.38 400

Undecane 0.00 0.00 0.00 0.00 5.19 1.66 -54.03 401

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -56.66 89

Tetradecane 0.00 0.00 0.00 0.00 6.71 2.08 -67.94 400

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -76.64 400

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -33.69 361

Cyclopentane 0.26 0.10 0.00 0.00 2.48 0.70 -30.54 25

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -31.60 400

Methylcyclohexane 0.24 0.06 0.00 0.00 3.32 0.99 -32.98 402

Ethene 0.11 0.10 0.00 0.07 0.29 0.35 -10.42 398

Propene 0.10 0.08 0.00 0.07 0.95 0.49 -14.12 399

1-Butene 0.10 0.08 0.00 0.07 1.49 0.63 -18.50 399

iso-Butene 0.12 0.08 0.00 0.08 1.58 0.63 -18.40 399

259

Solute E S A B L V Exp Ref

cis-2-Butene 0.14 0.08 0.00 0.05 1.74 0.63 -21.48 323

trans-2-Butene 0.13 0.08 0.00 0.05 1.66 0.63 -19.84 399

1,3-Butadiene 0.32 0.23 0.00 0.10 1.54 0.59 -19.20 399

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -26.03 403

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -37.80 124

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -42.30 124

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 0.59 -46.30 124

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 0.73 -52.10 124

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 0.87 -56.69 124

Hexan-1-ol 0.21 0.42 0.37 0.48 3.61 1.02 -60.38 124

Octan-1-ol 0.20 0.42 0.37 0.48 4.62 1.30 -70.24 404

Decan-1-ol 0.19 0.42 0.37 0.48 5.63 1.58 -80.45 405

Dimethyl ether 0.00 0.27 0.00 0.41 1.29 0.45 -17.80 323

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -24.01 403

Methyl butyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -30.37 72

Diisopropyl ether -0.06 0.16 0.00 0.58 2.53 1.01 -31.65 336

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 0.76 -31.55 406

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -30.56 407

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -70.37 99

2,5,8,11,14-pentaoxopentadecane -0.02 1.11 0.00 1.79 6.50 1.81 -68.73 408

1-Bromobutane 0.36 0.40 0.00 0.12 3.11 0.93 -34.08 409

2-Methyl-2-bromopropane 0.31 0.29 0.00 0.07 2.61 0.93 -29.44 387

260

Solute E S A B L V Exp Ref

Dichloromethane 0.39 0.57 0.10 0.05 2.02 0.49 -29.35 403

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -35.50 182

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 0.74 -32.63 387

Chloroethane 0.23 0.40 0.00 0.10 1.68 0.51 -23.45 323

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.79 -31.65 410

2-Chlorobutane 0.19 0.35 0.00 0.12 2.54 0.79 -29.61 410

1-Chlorohexane 0.20 0.40 0.00 0.10 3.78 1.08 -40.48 411

2-Methyl-2-chloropropane 0.14 0.30 0.00 0.03 2.27 0.79 -26.88 387

Trichloroethene 0.52 0.37 0.08 0.03 3.00 0.71 -34.05 34

2-Methyl-2-iodopropane 0.59 0.35 0.00 0.19 3.44 0.93 -32.89 334

Helium 0.00 0.00 0.00 0.00 -1.74 0.07 5.52 398

Neon 0.00 0.00 0.00 0.00 -1.58 0.09 6.53 398

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 -2.38 25

Krypton 0.00 0.00 0.00 0.00 -0.21 0.25 -4.89 398

Xenon 0.00 0.00 0.00 0.00 0.38 0.33 -10.49 398

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 -1.42 25

Nitrogen 0.00 0.00 0.00 0.00 -0.98 0.22 -1.63 25

Oxygen 0.00 0.00 0.00 0.00 -0.72 0.18 -1.21 25

Carbon Monoxide 0.00 0.00 0.00 0.04 -0.84 0.22 -1.42 25

Carbon Dioxide 0.00 0.28 0.05 0.10 0.06 0.28 -11.43 398

Sulfur hexafluoride -0.60 -0.20 0.00 0.00 -0.12 0.46 -7.78 398

Carbon tetrafluoride -0.58 -0.26 0.00 0.00 -0.82 0.32 -1.71 398

261

Solute E S A B L V Exp Ref

1-Bromoadamantane 1.07 0.90 0.00 0.20 6.13 1.37 -55.75 333

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -45.40 72

Dimethyl carbonate 0.14 0.54 0.00 0.57 2.33 0.66 -29.81 412

Diethyl carbonate 0.06 0.58 0.00 0.53 3.41 0.95 -35.65 413

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -25.33 403

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -26.93 403

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -53.49 414

Methyl acetate 0.14 0.64 0.00 0.45 1.91 0.61 -25.14 415

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -28.99 416

Propyl acetate 0.09 0.60 0.00 0.45 2.82 0.89 -33.54 417

Butyl acetate 0.07 0.60 0.00 0.45 3.35 1.03 -37.92 418

Pentyl acetate 0.07 0.60 0.00 0.45 3.84 1.17 -42.72 419

Methyl propanoate 0.13 0.60 0.00 0.45 2.43 0.75 -29.37 384

Methyl butanoate 0.11 0.60 0.00 0.45 2.89 0.89 -33.37 384

Methyl pentanoate 0.11 0.60 0.00 0.45 3.39 1.03 -36.99 384

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -23.71 420

Butyronitrile 0.19 0.90 0.00 0.36 2.55 0.69 -32.01 386

Dimethyl sulfoxide 0.52 1.74 0.00 0.88 3.46 0.61 -46.72 388

Butylamine 0.22 0.35 0.16 0.61 2.62 0.77 -45.80 72

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -40.40 349

4-Ethylpyridine 0.63 0.80 0.00 0.57 4.12 0.96 -50.90 349

3-Chloropyridine 0.73 0.83 0.00 0.40 3.78 0.80 -45.30 349

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -31.34 124

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -35.86 124

262

Solute E S A B L V Exp Ref

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -40.11 124

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -39.63 414

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 0.96 -48.54 414

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -47.47 414

1,1-Difluoroethane -0.25 0.47 0.04 0.07 0.57 0.43 -17.25 323

Benzamide 0.99 1.50 0.49 0.67 5.77 0.97 -81.11 353

Benzoic acid 0.73 0.90 0.59 0.40 4.51 0.93 -74.65 353

Tetramethylsilicon -0.06 0.08 0.00 0.03 1.81 0.92 -23.30 332

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 0.87 -43.45 396

Acetophenone 0.82 1.01 0.00 0.48 4.50 1.01 -47.29 421

N-Methylpyrrole 0.56 0.79 0.00 0.31 2.92 0.72 -35.61 120

beta-Pinene 0.53 0.24 0.00 0.19 4.39 1.26 -44.68 422

Table S5.18. Experimental E nthalpies of S olvation i n kJ /mole of G aseous Solutes in Linear Alkane Solvents.

Solute E S A B L Exp Ref

Pentane 0.00 0.00 0.00 0.00 2.16 -26.74 217

Methyl methacrylate 0.25 0.51 0.00 0.44 2.88 -32.17 250

Pentyl acetate 0.07 0.60 0.00 0.45 3.84 -43.96 249

Butyl acetate 0.07 0.60 0.00 0.45 3.35 -40.09 248

Butyl propanoate 0.06 0.56 0.00 0.47 3.83 -44.17 248

Propyl acetate 0.09 0.60 0.00 0.45 2.82 -34.04 423

Propyl propanoate 0.07 0.56 0.00 0.45 3.34 -38.58 423

Propyl butanoate 0.05 0.56 0.00 0.45 3.78 -41.90 423

263

Solute E S A B L Exp Ref

Ethyl butanoate 0.07 0.58 0.00 0.45 3.27 -38.29 183

Ethyl pentanoate 0.05 0.58 0.00 0.45 3.77 -43.46 183

Ethyl hexanoate 0.04 0.58 0.00 0.45 4.25 -48.71 183

Xenon 0.00 0.00 0.00 0.00 0.38 -10.95 424

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 -40.64 425

Propanenitrile 0.16 0.90 0.02 0.36 2.08 -26.10 426

Acetophenone 0.82 1.01 0.00 0.48 4.50 -44.93 427

Methyl acrylate 0.25 0.66 0.00 0.42 2.36 -29.79 428

1,1,1-Trichloroethane 0.37 0.41 0.00 0.09 2.73 -30.86 429

Hexane

Methane 0.00 0.00 0.00 0.00 -0.32 -2.25 25

Ethane 0.00 0.00 0.00 0.00 0.49 -8.33 25

Propane 0.00 0.00 0.00 0.00 1.05 -14.10 25

Butane 0.00 0.00 0.00 0.00 1.62 -20.50 25

Pentane 0.00 0.00 0.00 0.00 2.16 -26.74 25

Hexane 0.00 0.00 0.00 0.00 2.67 -31.54 25

Heptane 0.00 0.00 0.00 0.00 3.17 -36.56 25

Octane 0.00 0.00 0.00 0.00 3.68 -41.50 25

Decane 0.00 0.00 0.00 0.00 4.69 -50.84 430

Undecane 0.00 0.00 0.00 0.00 5.19 -56.22 431

Dodecane 0.00 0.00 0.00 0.00 5.70 -61.60 200

Hexadecane 0.00 0.00 0.00 0.00 7.71 -81.34 432

2-Methylpropane 0.00 0.00 0.00 0.00 1.41 -18.87 25

264

Solute E S A B L Exp Ref

2,2-Dimethylpropane 0.00 0.00 0.00 0.00 1.82 -21.55 25

2,2-Dimethylbutane 0.00 0.00 0.00 0.00 2.35 -27.80 433

2,4-Dimethylpentane 0.00 0.00 0.00 0.00 2.81 -32.67 434

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 -35.24 433

Cyclopentane 0.26 0.10 0.00 0.00 2.48 -28.28 200

Cyclohexane 0.31 0.10 0.00 0.00 2.96 -32.43 25

Adamantane 0.76 0.57 0.00 0.04 4.93 -48.40 44

Ethene 0.11 0.10 0.00 0.07 0.29 -7.46 45

Benzene 0.61 0.52 0.00 0.14 2.79 -30.70 414

Toluene 0.60 0.52 0.00 0.14 3.33 -34.11 223

Naphthalene 1.34 0.92 0.00 0.20 5.16 -51.20 132

Bromobenzene 0.88 0.73 0.00 0.09 4.04 -41.44 435

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 -38.02 414

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 -44.35 414

1,2,4-Trichlorobenzene 0.98 0.81 0.00 0.00 5.25 -51.94 436

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 -40.44 414

Methanol 0.28 0.44 0.43 0.47 0.97 -15.10 260

Ethanol 0.25 0.42 0.37 0.48 1.49 -19.30 260

1-Propanol 0.24 0.42 0.37 0.48 2.03 -22.06 437

1-Butanol 0.22 0.42 0.37 0.48 2.60 -28.57 437

1-Hexanol 0.21 0.42 0.37 0.48 3.61 -34.44 438

2-Ethyl-1-butanol 0.23 0.39 0.37 0.48 3.52 -34.43 438

2-Methyl-1-pentanol 0.21 0.39 0.37 0.48 3.53 -33.51 438

1-Nonanol 0.19 0.42 0.37 0.48 5.12 -57.67 262

265

Solute E S A B L Exp Ref

1-Undecanol 0.18 0.42 0.37 0.48 6.13 -63.33 262

1,1,1,3,3,3-hexafluoro-2-propanol -0.24 0.55 0.77 0.10 1.39 -20.03 439

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 -40.89 440

Aniline 0.96 0.96 0.26 0.41 3.93 -46.80 414

Pyridine 0.63 0.84 0.00 0.52 3.02 -32.08 70

2-Methylpyridine 0.60 0.75 0.00 0.58 3.42 -36.75 70

3-Methylpyridine 0.63 0.81 0.00 0.54 3.63 -37.91 441

4-Methylpyridiine 0.63 0.82 0.00 0.54 3.64 -37.88 442

2,4-Dimethylpyridine 0.63 0.76 0.00 0.63 4.01 -41.53 70

2,6-Dimethylpyridine 0.61 0.70 0.00 0.63 3.76 -40.16 70

2-Chloropyridine 0.74 1.03 0.00 0.37 3.88 -39.70 70

3-Chloropyridine 0.73 0.83 0.00 0.40 3.78 -42.00 70

3-Cyanopyridine 0.75 1.26 0.00 0.62 4.16 -40.40 70

4-Cyanopyridine 0.75 1.21 0.00 0.59 4.03 -39.00 70

Methyl methacrylate 0.25 0.51 0.00 0.44 2.88 -33.24 250

Propionitrile 0.16 0.90 0.02 0.36 2.08 -24.09 443

Butyronitrile 0.19 0.90 0.00 0.36 2.55 -31.68 426

Acetone 0.18 0.70 0.04 0.49 1.70 -21.84 443

2-Butanone 0.17 0.70 0.00 0.51 2.29 -27.44 443

2-Pentanone 0.14 0.68 0.00 0.51 2.76 -32.50 444

3-Pentanone 0.15 0.66 0.00 0.51 2.81 -33.08 445

Dipropyl ether 0.01 0.25 0.00 0.45 2.95 -35.07 443

Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 -31.29 446

266

Solute E S A B L Exp Ref

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 -29.18 447

Ethyl tert-butyl ether -0.02 0.16 0.00 0.60 2.72 -32.50 252

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 -34.79 448

Furan 0.37 0.51 0.00 0.13 1.91 -23.83 449

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 -28.81 450

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 -31.64 255

Tetrahydropyran 0.28 0.47 0.00 0.55 3.06 -32.55 449

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 -31.15 443

Dimethoxymethane 0.10 0.46 0.00 0.52 1.89 -23.85 303

1,2-Dimethoxyethane 0.12 0.67 0.00 0.68 2.65 -31.36 443

2,5,8-Trioxanonane 0.11 0.76 0.00 1.17 3.92 -40.30 443

2,5,8,11,14-Pentaoxapentadecane -0.02 1.11 0.00 1.79 6.50 -67.61 451

Paraldehyde 0.14 0.68 0.00 0.68 3.17 -34.66 443

Anisole 0.71 0.75 0.00 0.29 3.89 -40.75 443

Acetal -0.02 0.56 0.00 0.62 3.07 -37.51 443

Quinoline 1.27 0.97 0.00 0.54 5.46 -50.19 443

Methyl acetate 0.14 0.64 0.00 0.45 1.91 -21.40 235

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 -28.28 235

Propyl acetate 0.09 0.60 0.00 0.45 2.82 -33.45 235

Butyl acetate 0.07 0.60 0.00 0.45 3.35 -38.40 235

Pentyl acetate 0.07 0.60 0.00 0.45 3.84 -42.50 235

Ethyl propionate 0.09 0.58 0.00 0.45 2.81 -32.52 235

Ethyl butanoate 0.07 0.58 0.00 0.45 3.27 -36.71 235

267

Solute E S A B L Exp Ref

Ethyl hexanoate 0.04 0.58 0.00 0.45 4.25 -47.24 235

Propyl propionate 0.07 0.56 0.00 0.45 3.34 -37.65 452

Helium 0.00 0.00 0.00 0.00 -1.74 8.03 25

Neon 0.00 0.00 0.00 0.00 -1.58 5.44 25

Argon 0.00 0.00 0.00 0.00 -0.69 -2.72 25

Krypton 0.00 0.00 0.00 0.00 -0.21 -4.73 25

Xenon 0.00 0.00 0.00 0.00 0.38 -10.71 25

Radon 0.00 0.00 0.00 0.00 0.88 -12.68 25

Hydrogen 0.00 0.00 0.00 0.00 -1.20 5.10 25

Nitrogen 0.00 0.00 0.00 0.00 -0.98 0.79 25

Oxygen 0.00 0.00 0.00 0.00 -0.72 -0.96 25

Nitric Oxide 0.37 0.02 0.00 0.09 -0.59 -2.23 75

Tetrafluoromethane -0.58 -0.26 0.00 0.00 -0.82 -1.46 25

Sulfur Hexafluoride -0.60 -0.20 0.00 0.00 -0.12 -8.28 25

Triethylamine 0.10 0.15 0.00 0.79 3.04 -34.58 453

Penylamine 0.21 0.35 0.16 0.61 3.14 -35.01 454

Hexylamine 0.20 0.35 0.16 0.61 3.66 -40.61 455

Heptylamine 0.20 0.35 0.16 0.61 4.15 -45.61 456

Octylamine 0.19 0.35 0.16 0.61 4.52 -50.68 457

Decylamine 0.18 0.35 0.16 0.61 5.61 -60.18 458

Nitromethane 0.31 0.95 0.06 0.31 1.89 -22.59 320

Nitroethane 0.27 0.95 0.02 0.33 2.41 -27.61 223

1-Nitropropane 0.24 0.95 0.00 0.31 2.89 -32.66 223

2-Nitropropane 0.22 0.92 0.00 0.33 2.55 -31.23 59

268

Solute E S A B L Exp Ref

Diethyl sulfide 0.37 0.38 0.00 0.32 3.10 -33.64 459

1,2-Dichloroethane 0.42 0.64 0.10 0.11 2.57 -29.23 233

Chloroform 0.43 0.49 0.15 0.02 2.48 -29.90 460

Ethyl iodide 0.64 0.40 0.00 0.15 2.57 -28.64 223

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 -34.21 223

2-Chloro-2-methylpropane 0.14 0.30 0.00 0.03 2.27 -27.07 223

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 -32.40 223

1-Chloronaphthalene 1.42 1.00 0.00 0.14 5.86 -61.74 461

Acetophenone 0.82 1.01 0.00 0.48 4.50 -44.77 462

Ethyl benzoate 0.69 0.85 0.00 0.46 5.08 -54.11 113

Methyl benzoate 0.73 0.85 0.00 0.46 4.70 -49.08 113

Heptane

Methane 0.00 0.00 0.00 0.00 -0.32 -3.81 341

Ethane 0.00 0.00 0.00 0.00 0.49 -11.17 341

Pentane 0.00 0.00 0.00 0.00 2.16 -26.53 341

Hexane 0.00 0.00 0.00 0.00 2.67 -31.55 341

Heptane 0.00 0.00 0.00 0.00 3.17 -36.57 341

Octane 0.00 0.00 0.00 0.00 3.68 -41.51 341

Nonane 0.00 0.00 0.00 0.00 4.18 -46.40 341

Decane 0.00 0.00 0.00 0.00 4.69 -51.38 341

Dodecane 0.00 0.00 0.00 0.00 5.70 -61.17 341

Hexadecane 0.00 0.00 0.00 0.00 7.71 -80.92 341

3-Ethylpentane 0.00 0.00 0.00 0.00 3.09 -35.19 341

269

Solute E S A B L Exp Ref

2-Methylpentane 0.00 0.00 0.00 0.00 2.50 -30.05 341

3-Methylpentane 0.00 0.00 0.00 0.00 2.58 -30.43 341

2,2-Dimethylbutane 0.00 0.00 0.00 0.00 2.35 -27.85 341

2,3-Dimethylbutane 0.00 0.00 0.00 0.00 2.50 -29.30 341

2,4-Dimethylpentane 0.00 0.00 0.00 0.00 2.81 -32.92 341

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 -35.06 341

Cyclohexane 0.31 0.10 0.00 0.00 2.96 -32.29 341

Cycloheptane 0.35 0.10 0.00 0.00 3.70 -37.81 341

Cyclooctane 0.41 0.10 0.00 0.00 4.33 -42.66 341

Cyclodecane 0.47 0.10 0.00 0.00 5.34 -52.10 341

Methylcyclopentane 0.23 0.10 0.00 0.00 2.82 -31.39 341

Methylcyclohexane 0.24 0.10 0.00 0.00 3.32 -35.37 341

cis-1,2-Dimethylcyclohexane 0.28 0.24 0.00 0.00 3.85 -39.76 341

trans-1,2-Dimethylcyclohexane 0.23 0.20 0.00 0.00 3.72 -38.69 341

cis Decalin 0.55 0.25 0.00 0.00 5.16 -50.82 341

trans Decalin 0.47 0.23 0.00 0.00 4.98 -49.95 341

Bicyclohexyl 0.53 0.33 0.00 0.07 5.92 -57.84 341

Tetralin 0.89 0.65 0.00 0.17 5.20 -52.80 341

1-Hexene 0.08 0.08 0.00 0.07 2.57 -30.38 341

1-Octyne 0.16 0.22 0.09 0.10 3.52 -40.04 341

2-Octyne 0.23 0.30 0.00 0.10 3.85 -42.63 341

Propanal 0.20 0.65 0.00 0.45 1.82 -20.19 341

270

Solute E S A B L Exp Ref

Butanal 0.19 0.65 0.00 0.45 2.27 -25.19 341

Pentanal 0.16 0.65 0.00 0.45 2.77 -31.15 341

Hexanal 0.15 0.65 0.00 0.45 3.37 -36.45 341

Heptanal 0.14 0.65 0.00 0.45 3.86 -41.59 341

Octanal 0.16 0.65 0.00 0.45 4.38 -45.76 341

Nonanal 0.15 0.65 0.00 0.45 4.86 -50.84 341

Isobutyraldehyde 0.14 0.62 0.00 0.45 2.12 -26.30 341

Acetone 0.18 0.70 0.04 0.49 1.70 -21.59 341

2-Butanone 0.17 0.70 0.00 0.51 2.29 -26.53 341

2-Heptanone 0.12 0.68 0.00 0.51 3.76 -41.09 341

4-Heptanone 0.11 0.66 0.00 0.51 3.71 -41.51 341

2-Nonanone 0.12 0.68 0.00 0.51 4.74 -50.12 341

5-Nonanone 0.10 0.66 0.00 0.51 4.70 -50.08 341

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 -42.13 341

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 -37.78 341

Butyl acetate 0.07 0.60 0.00 0.45 3.35 -38.72 341

Butyl propionate 0.06 0.56 0.00 0.47 3.83 -44.94 341

Butyl butanoate 0.04 0.56 0.00 0.45 4.28 -47.61 341

Methyl methacrylate 0.25 0.51 0.00 0.44 2.88 -33.11 341

Diethyl ether 0.04 0.25 0.00 0.45 2.02 -24.31 341

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 -44.22 341

Dipentyl ether 0.00 0.25 0.00 0.45 4.88 -52.54 341

Diisopropyl Ether -0.06 0.16 0.00 0.58 2.53 -30.96 341

271

Solute E S A B L Exp Ref

n-Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 -30.79 341

Methyl heptyl ether 0.05 0.25 0.00 0.45 4.09 -46.11 341

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 -24.81 341

Ethyl tert-butyl ether -0.02 0.16 0.00 0.60 2.72 -32.28 341

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 -34.61 341

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 -29.32 341

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 -31.59 341

1-Fluorooctane -0.02 0.35 0.00 0.10 3.85 -47.86 341

Tetrachloromethane 0.46 0.38 0.00 0.00 2.82 -31.21 341

1,2-Dichloroethane 0.42 0.64 0.10 0.11 2.57 -27.98 341

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 -50.88 341

Diiodomethane 0.71 0.69 0.11 0.07 2.89 -37.74 341

Methanol 0.28 0.44 0.43 0.47 0.97 -14.90 341

Ethanol 0.25 0.42 0.37 0.48 1.49 -18.60 341

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 -27.87 341

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 -34.14 341

1-Octanol 0.20 0.42 0.37 0.48 4.62 -47.57 341

1-Nonanol 0.19 0.42 0.37 0.48 5.12 -53.66 341

1-Undecanol 0.18 0.42 0.37 0.48 6.13 -61.83 341

3-Methyl-1-butanol 0.19 0.39 0.37 0.48 3.01 -35.63 341

2-Pentanol 0.20 0.36 0.33 0.56 2.84 -35.90 341

3-Methyl-2-butanol 0.19 0.33 0.33 0.56 2.79 -31.93 341

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 -26.44 341

Cyclohexanol 0.46 0.54 0.32 0.57 3.76 -37.50 341

272

Solute E S A B L Exp Ref

2-Methoxyethanol 0.27 0.50 0.30 0.84 2.49 -34.22 341

Triethylamine 0.10 0.15 0.00 0.79 3.04 -34.45 341

Propylamine 0.23 0.35 0.16 0.61 2.14 -25.14 341

Isopropylamine 0.18 0.32 0.16 0.61 1.91 -22.87 341

Butylamine 0.22 0.35 0.16 0.61 2.62 -29.97 341

sec-Butylamine 0.17 0.32 0.16 0.63 2.41 -27.89 341

iso-Butylamine 0.12 0.29 0.16 0.71 2.49 -28.11 341

tert-Butylamine 0.12 0.29 0.16 0.71 2.49 -24.98 341

Pentylamine 0.21 0.35 0.16 0.61 3.14 -34.12 341

Hexylamine 0.20 0.35 0.16 0.61 3.66 -39.47 341

Heptylamine 0.20 0.35 0.16 0.61 4.15 -44.97 341

Octylamine 0.19 0.35 0.16 0.61 4.52 -49.41 341

Nonylamine 0.19 0.35 0.16 0.61 5.10 -54.09 341

Decylamine 0.18 0.35 0.16 0.61 5.61 -58.69 341

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 -39.92 341

Benzene 0.61 0.52 0.00 0.14 2.79 -30.54 341

Toluene 0.60 0.52 0.00 0.14 3.33 -35.94 341

Mesitylene 0.65 0.52 0.00 0.19 4.34 -46.23 341

Naphthalene 1.34 0.92 0.00 0.20 5.16 -51.82 341

Trifluorotoluene 0.23 0.48 0.00 0.10 2.89 -33.35 341

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 -44.73 341

Anisole 0.71 0.75 0.00 0.29 3.89 -41.21 341

Aniline 0.96 0.96 0.26 0.41 3.93 -40.75 341

Acetonitrile 0.24 0.90 0.07 0.32 1.74 -17.56 341

273

Solute E S A B L Exp Ref

Helium 0.00 0.00 0.00 0.00 -1.74 7.72 341

Neon 0.00 0.00 0.00 0.00 -1.58 5.56 341

Argon 0.00 0.00 0.00 0.00 -0.69 -1.22 341

Krypton 0.00 0.00 0.00 0.00 -0.21 -5.51 341

Xenon 0.00 0.00 0.00 0.00 0.38 -10.08 341

Hydrogen 0.00 0.00 0.00 0.00 -1.20 3.78 341

Carbon dioxide 0.00 0.28 0.05 0.10 0.06 -9.66 341

Tetrafluoromethane -0.58 -0.26 0.00 0.00 -0.82 -1.59 341

Sulfur Hexafluoride -0.60 -0.20 0.00 0.00 -0.12 -8.28 341

Difluorodichloromethane 0.04 0.13 0.00 0.00 1.12 -18.91 341

Hexafluorobenzene 0.09 0.56 0.00 0.01 2.35 -31.62 341

Chlorotrifluoromethane -0.25 -0.05 0.00 0.00 0.21 -12.84 341

Nitromethane 0.31 0.95 0.06 0.31 1.89 -24.40 341

1-Methylnaphthalene 1.34 0.94 0.00 0.22 5.80 -54.06 341

1-Butanethiol 0.38 0.35 0.00 0.24 3.24 -33.81 341

1,2,4-Trimethylbenzene 0.68 0.56 0.00 0.19 4.44 -46.76 341

2,5,8,11,14-Pentaoxopentadecane -0.02 1.11 0.00 1.79 6.50 -68.10 341

2,5,8,11-Tetraoxododecane 0.00 0.98 0.00 1.44 5.16 -54.15 341

2,5,8-Trioxanonane 0.11 0.76 0.00 1.17 3.92 -39.94 341

Diethoxymethane 0.01 0.49 0.00 0.54 2.79 -33.41 341

1,2-Dimethoxyethane 0.12 0.67 0.00 0.68 2.65 -31.76 341

Dimethoxymethane 0.10 0.46 0.00 0.52 1.89 -26.06 341

274

Solute E S A B L Exp Ref

1-Propanol 0.24 0.42 0.37 0.48 2.03 -22.10 341

2-Butanol 0.22 0.36 0.33 0.56 2.34 -26.70 341

2-Methyl-1-propanol 0.22 0.39 0.37 0.48 2.41 -26.60 341

2-Methyl-2-propanol 0.18 0.30 0.31 0.60 1.96 -22.60 341

1-Hexanol 0.21 0.42 0.37 0.48 3.61 -38.32 341

Sulfur dioxide 0.37 0.66 0.28 0.10 0.78 -15.90 341

Pentyl acetate 0.07 0.60 0.00 0.45 3.84 -44.52 341

Cyclopentanol 0.43 0.54 0.32 0.56 3.24 -37.21 341

Ethyl benzoate 0.69 0.85 0.00 0.46 5.08 -53.08 341

Ethyl butanoate 0.07 0.58 0.00 0.45 3.27 -38.07 341

Propyl butanoate 0.05 0.56 0.00 0.45 3.78 -43.10 341

Pyridine 0.63 0.84 0.00 0.52 3.02 -31.76 463

3-Methylpyridine 0.63 0.81 0.00 0.54 3.63 -37.77 464

4-Methylpyridiine 0.63 0.82 0.00 0.54 3.64 -37.34 465

Propane 0.00 0.00 0.00 0.00 1.05 -17.13 466

1,2,4-Trichlorobenzene 0.98 0.81 0.00 0.00 5.25 -52.36 436

Octane

Methane 0.00 0.00 0.00 0.00 -0.32 -4.06 45

Octane 0.00 0.00 0.00 0.00 3.68 -41.51 217

Dodecane 0.00 0.00 0.00 0.00 5.70 -61.62 467

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 -35.09 433

Diethyl ether 0.04 0.25 0.00 0.45 2.02 -25.90 468

Dipropyl ether 0.01 0.25 0.00 0.45 2.95 -34.76 469

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 -44.37 470

275

Solute E S A B L Exp Ref

n-Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 -31.22 471

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 -28.60 468

Ethyl tert-butyl ether -0.02 0.16 0.00 0.60 2.72 -32.19 252

Tetrahydropyran 0.28 0.47 0.00 0.55 3.06 -33.31 472

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 -31.02 473

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 -31.43 255

2,5,8-Trioxanonane 0.11 0.76 0.00 1.17 3.92 -40.80 474

Methanol 0.28 0.44 0.43 0.47 0.97 -15.30 260

Ethanol 0.25 0.42 0.37 0.48 1.49 -19.50 260

1-Propanol 0.24 0.42 0.37 0.48 2.03 -25.00 475

1-Butanol 0.22 0.42 0.37 0.48 2.60 -29.90 475

1-Nonanol 0.19 0.42 0.37 0.48 5.12 -55.74 476

1-Undecanol 0.18 0.42 0.37 0.48 6.13 -64.40 476

1-Hexene 0.08 0.08 0.00 0.07 2.57 -30.36 477

Chlorotrifluoromethane -0.25 -0.05 0.00 0.00 0.21 -9.41 45

Dichlorodifluoromethane 0.04 0.13 0.00 0.00 1.12 -17.07 45

1-Chloronaphthalene 1.42 1.00 0.00 0.14 5.86 -61.57 478

Helium 0.00 0.00 0.00 0.00 -1.74 8.06 45

Neon 0.00 0.00 0.00 0.00 -1.58 6.94 45

Argon 0.00 0.00 0.00 0.00 -0.69 -0.36 45

Krypton 0.00 0.00 0.00 0.00 -0.21 -5.00 45

Xenon 0.00 0.00 0.00 0.00 0.38 -10.16 424

Hydrogen 0.00 0.00 0.00 0.00 -1.20 4.04 45

Tetrafluoromethane -0.58 -0.26 0.00 0.00 -0.82 -0.09 45

276

Solute E S A B L Exp Ref

Sulfur hexafluoride -0.60 -0.20 0.00 0.00 -0.12 -8.34 45

Carbon monoxide 0.00 0.00 0.00 0.04 -0.84 -1.13 39

Carbon dioxide 0.00 0.28 0.05 0.10 0.06 -8.11 39

Butyronitrile 0.19 0.90 0.00 0.36 2.55 -30.26 426

Acetophenone 0.82 1.01 0.00 0.48 4.50 -44.68 427

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 -29.14 113

Ethyl benzoate 0.69 0.85 0.00 0.46 5.08 -52.89 113

Pyridine 0.63 0.84 0.00 0.52 3.02 -31.50 479

3-Methylpyridine 0.63 0.81 0.00 0.54 3.63 -37.61 480

4-Methylpyridiine 0.63 0.82 0.00 0.54 3.64 -37.70 481

Nonane

Nonane 0.00 0.00 0.00 0.00 4.18 -46.44 217

Cycloheptane 0.35 0.10 0.00 0.00 3.70 -37.71 482

Cyclooctane 0.41 0.10 0.00 0.00 4.33 -42.53 482

Bromobenzene 0.88 0.73 0.00 0.09 4.04 -40.82 435

Helium 0.00 0.00 0.00 0.00 -1.74 9.69 45

Neon 0.00 0.00 0.00 0.00 -1.58 6.29 45

Argon 0.00 0.00 0.00 0.00 -0.69 -1.46 45

Krypton 0.00 0.00 0.00 0.00 -0.21 -4.64 45

Xenon 0.00 0.00 0.00 0.00 0.38 -9.95 424

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 -28.61 483

Methyl nonanoate 0.06 0.60 0.00 0.45 5.32 -58.51 484

Methyl decanoate 0.05 0.60 0.00 0.45 5.81 -63.41 484

Decane

277

Solute E S A B L Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 -4.31 25

Ethane 0.00 0.00 0.00 0.00 0.49 -7.78 25

Propane 0.00 0.00 0.00 0.00 1.05 -13.72 25

Butane 0.00 0.00 0.00 0.00 1.62 -20.29 25

Hexane 0.00 0.00 0.00 0.00 2.67 -31.49 485

Decane 0.00 0.00 0.00 0.00 4.69 -51.38 217

Dodecane 0.00 0.00 0.00 0.00 5.70 -61.68 467

2-Methylpropane 0.00 0.00 0.00 0.00 1.41 -16.65 25

2-Methylpentane 0.00 0.00 0.00 0.00 2.50 -29.73 430

3-Methylpentane 0.00 0.00 0.00 0.00 2.58 -30.14 430

2,2-Dimethylbutane 0.00 0.00 0.00 0.00 2.35 -27.43 430

2,3-Dimethylbutane 0.00 0.00 0.00 0.00 2.50 -28.83 430

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 -34.94 245

1-Hexene 0.08 0.08 0.00 0.07 2.57 -30.26 477

Diethyl ether 0.04 0.25 0.00 0.45 2.02 -25.63 486

Dipropyl ether 0.01 0.25 0.00 0.45 2.95 -34.66 469

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 -44.26 487

n-Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 -31.05 471

Ethyl tert-Butyl ether -0.02 0.16 0.00 0.60 2.72 -32.22 488

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 -28.73 450

2,5,8,11-Tetraoxadodecane 0.00 0.98 0.00 1.44 5.16 -53.14 257

2,5,8,11,14-Pentaoxapentadecane -0.02 1.11 0.00 1.79 6.50 -56.58 451

278

Solute E S A B L Exp Ref

Methyl methacrylate 0.25 0.51 0.00 0.44 2.88 -33.18 250

Methanol 0.28 0.44 0.43 0.47 0.97 -15.82 437

1-Nonanol 0.19 0.42 0.37 0.48 5.12 -54.96 262

1-Undecanol 0.18 0.42 0.37 0.48 6.13 -63.87 262

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 -28.30 489

1-Chloronaphthalene 1.42 1.00 0.00 0.14 5.86 -61.92 490

Helium 0.00 0.00 0.00 0.00 -1.74 6.86 25

Neon 0.00 0.00 0.00 0.00 -1.58 6.53 25

Argon 0.00 0.00 0.00 0.00 -0.69 -1.63 25

Krypton 0.00 0.00 0.00 0.00 -0.21 -4.87 45

Xenon 0.00 0.00 0.00 0.00 0.38 -9.84 424

Nitrogen 0.00 0.00 0.00 0.00 -0.98 -0.29 25

Carbon monoxide 0.00 0.00 0.00 0.04 -0.84 0.38 25

Carbon dioxide 0.00 0.28 0.05 0.10 0.06 -6.92 39

Oxygen 0.00 0.00 0.00 0.00 -0.72 -0.25 25

Sulfur hexafluoride -0.60 -0.20 0.00 0.00 -0.12 -7.91 25

Acetophenone 0.82 1.01 0.00 0.48 4.50 -44.75 427

Pyridine 0.63 0.84 0.00 0.52 3.02 -31.43 491

3-Methylpyridine 0.63 0.81 0.00 0.54 3.63 -37.43 492

4-Methylpyridiine 0.63 0.82 0.00 0.54 3.64 -37.57 493

Undecane

Undecane 0.00 0.00 0.00 0.00 5.19 -56.30 217

Xenon 0.00 0.00 0.00 0.00 0.38 -9.64 424

1-Hexanol 0.21 0.42 0.37 0.48 3.61 -37.91 261

279

Solute E S A B L Exp Ref

Dodecane

Methane 0.00 0.00 0.00 0.00 -0.32 -3.95 45

Propane 0.00 0.00 0.00 0.00 1.05 -15.28 466

Hexane 0.00 0.00 0.00 0.00 2.67 -31.43 200

Heptane 0.00 0.00 0.00 0.00 3.17 -36.49 200

Octane 0.00 0.00 0.00 0.00 3.68 -41.43 200

Decane 0.00 0.00 0.00 0.00 4.69 -51.36 467

Dodecane 0.00 0.00 0.00 0.00 5.70 -61.70 217

2,4-Dimethylpentane 0.00 0.00 0.00 0.00 2.81 -32.32 434

1-Hexene 0.08 0.08 0.00 0.07 2.57 -30.15 477

Diethyl ether 0.04 0.25 0.00 0.45 2.02 -25.42 486

Dipropyl ether 0.01 0.25 0.00 0.45 2.95 -34.49 469

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 -44.10 487

n-Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 -31.09 471

Ethyl tert-Butyl ether -0.02 0.16 0.00 0.60 2.72 -32.02 488

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 -31.27 255

2,5,8,11-Tetraoxadodecane 0.00 0.98 0.00 1.44 5.16 -53.61 257

Methyl methacrylate 0.25 0.51 0.00 0.44 2.88 -32.80 250

1,4-Difluorobenzene 0.38 0.60 0.00 0.06 2.77 -32.48 270

1-Chloronaphthalene 1.42 1.00 0.00 0.14 5.86 -62.37 494

Helium 0.00 0.00 0.00 0.00 -1.74 7.21 45

Neon 0.00 0.00 0.00 0.00 -1.58 6.97 45

Argon 0.00 0.00 0.00 0.00 -0.69 -0.64 45

280

Solute E S A B L Exp Ref

Krypton 0.00 0.00 0.00 0.00 -0.21 -4.25 45

Xenon 0.00 0.00 0.00 0.00 0.38 -9.53 424

Carbon dioxide 0.00 0.28 0.05 0.10 0.06 -6.00 466

Butyronitrile 0.19 0.90 0.00 0.36 2.55 -32.86 426

1-Propanol 0.24 0.42 0.37 0.48 2.03 -22.62 261

Pyridine 0.63 0.84 0.00 0.52 3.02 -31.86 441

3-Methylpyridine 0.63 0.81 0.00 0.54 3.63 -37.52 495

4-Methylpyridiine 0.63 0.82 0.00 0.54 3.64 -37.55 496

Tridecane

Tridecane 0.00 0.00 0.00 0.00 6.20 -66.50 217

Xenon 0.00 0.00 0.00 0.00 0.38 -9.53 424

Tetradecane

Tetradecane 0.00 0.00 0.00 0.00 6.71 -71.40 217

Diethyl ether 0.04 0.25 0.00 0.45 2.02 -25.20 468

Dipropyl ether 0.01 0.25 0.00 0.45 2.95 -33.68 468

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 -26.52 468

1-Hexene 0.08 0.08 0.00 0.07 2.57 -30.06 477

Benzene 0.61 0.52 0.00 0.14 2.79 -30.58 200

Hexafluorobenzene 0.09 0.56 0.00 0.01 2.35 -32.33 270

3-Pentanone 0.15 0.66 0.00 0.51 2.81 -31.69 485

Helium 0.00 0.00 0.00 0.00 -1.74 5.89 45

Neon 0.00 0.00 0.00 0.00 -1.58 5.88 45

Argon 0.00 0.00 0.00 0.00 -0.69 -1.47 45

Krypton 0.00 0.00 0.00 0.00 -0.21 -5.32 45

281

Solute E S A B L Exp Ref

Xenon 0.00 0.00 0.00 0.00 0.38 -9.36 424

15-Crown-5 0.41 1.20 0.00 1.75 6.77 -75.76 161 341

Pentadecane

Pentadecane 0.00 0.00 0.00 0.00 7.21 -74.50 217

1-Chloronaphthalene 1.42 1.00 0.00 0.14 5.86 -62.39 497

Xenon 0.00 0.00 0.00 0.00 0.38 -9.34 424

Hexadecane

Methane 0.00 0.00 0.00 0.00 -0.32 -3.97 341

Ethane 0.00 0.00 0.00 0.00 0.49 -11.51 341

Propane 0.00 0.00 0.00 0.00 1.05 -15.94 341

Butane 0.00 0.00 0.00 0.00 1.62 -20.79 341

Pentane 0.00 0.00 0.00 0.00 2.16 -25.94 341

Hexane 0.00 0.00 0.00 0.00 2.67 -31.04 341

Heptane 0.00 0.00 0.00 0.00 3.17 -36.15 341

Octane 0.00 0.00 0.00 0.00 3.68 -41.13 341

Hexadecane 0.00 0.00 0.00 0.00 7.71 -81.38 341

2-Methylpropane 0.00 0.00 0.00 0.00 1.41 -18.74 341

Cyclopentane 0.26 0.10 0.00 0.00 2.48 -27.66 341

Cyclohexane 0.31 0.10 0.00 0.00 2.96 -31.50 341

Ethene 0.11 0.10 0.00 0.07 0.29 -11.17 341

Propene 0.10 0.08 0.00 0.07 0.95 -13.35 341

Acetone 0.18 0.70 0.04 0.49 1.70 -21.42 341

2-Butanone 0.17 0.70 0.00 0.51 2.29 -26.48 341

2-Pentanone 0.14 0.68 0.00 0.51 2.76 -31.05 341

282

Solute E S A B L Exp Ref

2-Hexanone 0.14 0.68 0.00 0.51 3.29 -35.77 341

2-Heptanone 0.12 0.68 0.00 0.51 3.76 -40.46 341

4-Heptanone 0.11 0.66 0.00 0.51 3.71 -44.89 341

2-Octanone 0.11 0.68 0.00 0.51 4.26 -44.89 341

2-Nonanone 0.12 0.68 0.00 0.51 4.74 -49.37 341

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 -36.48 341

Diethyl ether 0.04 0.25 0.00 0.45 2.02 -25.19 341

Dipropyl ether 0.01 0.25 0.00 0.45 2.95 -34.15 341

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 -43.42 341

Butyl Methyl Ether 0.05 0.25 0.00 0.44 2.66 -30.53 341

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 -28.53 341

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 -30.78 341

Dichloromethane 0.39 0.57 0.10 0.05 2.02 -23.18 341

Chloroform 0.43 0.49 0.15 0.02 2.48 -28.07 341

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 -30.92 341

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 -30.88 341

Tetrachloroethene 0.64 0.44 0.00 0.00 3.58 -38.41 341

Nitromethane 0.31 0.95 0.06 0.31 1.89 -25.36 341

2-Nitropropane 0.22 0.92 0.00 0.33 2.55 -30.15 341

Acetonitrile 0.24 0.90 0.07 0.32 1.74 -19.08 341

Methanol 0.28 0.44 0.43 0.47 0.97 -13.35 341

Ethanol 0.25 0.42 0.37 0.48 1.49 -16.32 341

1-Propanol 0.24 0.42 0.37 0.48 2.03 -21.17 341

2-Propanol 0.21 0.36 0.33 0.56 1.76 -22.38 341

283

Solute E S A B L Exp Ref

1-Butanol 0.22 0.42 0.37 0.48 2.60 -28.07 341

1-Pentanol 0.22 0.42 0.37 0.48 3.11 -31.34 341

1-Hexanol 0.21 0.42 0.37 0.48 3.61 -39.79 341

Heptan-1-ol 0.21 0.42 0.37 0.48 4.12 -44.43 341

1-Octanol 0.20 0.42 0.37 0.48 4.62 -49.07 341

1-Nonanol 0.19 0.42 0.37 0.48 5.12 -52.81 341

1-Undecanol 0.18 0.42 0.37 0.48 6.13 -61.39 341

tert-Butanol 0.18 0.30 0.31 0.60 1.96 -23.01 341

Cyclohexanol 0.46 0.54 0.32 0.57 3.76 -47.53 341

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 -27.99 341

Butyl acetate 0.07 0.60 0.00 0.45 3.35 -38.49 341

Methyl benzoate 0.73 0.85 0.00 0.46 4.70 -48.37 341

Benzene 0.61 0.52 0.00 0.14 2.79 -30.38 341

Toluene 0.60 0.52 0.00 0.14 3.33 -35.90 341

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 -40.12 341

Propylbenzene 0.60 0.50 0.00 0.15 4.23 -44.14 341

m-Xylene 0.62 0.52 0.00 0.16 3.84 -41.37 341

p-Xylene 0.61 0.52 0.00 0.16 3.84 -41.51 341

Mesitylene 0.65 0.52 0.00 0.19 4.34 -46.56 341

Acetophenone 0.82 1.01 0.00 0.48 4.50 -47.36 341

Anisole 0.71 0.75 0.00 0.29 3.89 -41.24 341

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 -41.17 341

Benzonitrile 0.74 1.11 0.00 0.33 4.04 -41.25 341

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 -38.24 341

284

Solute E S A B L Exp Ref

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 -31.05 341

1,4-Difluorobenzene 0.38 0.60 0.00 0.06 2.77 -32.19 341

Aniline 0.96 0.96 0.26 0.41 3.93 -41.80 341

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 -45.65 341

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 -48.36 341

Pyridine 0.63 0.84 0.00 0.52 3.02 -32.64 341

2-Methylpyridine 0.60 0.75 0.00 0.58 3.42 -35.90 341

3-Methylpyridine 0.63 0.81 0.00 0.54 3.63 -37.49 341

4-Methylpyridine 0.63 0.82 0.00 0.54 3.64 -36.78 341

Propylamine 0.23 0.35 0.16 0.61 2.14 -23.97 341

Butylamine 0.22 0.35 0.16 0.61 2.62 -29.41 341

Pentylamine 0.21 0.35 0.16 0.61 3.14 -34.81 341

Hexylamine 0.20 0.35 0.16 0.61 3.66 -39.46 341

Heptylamine 0.20 0.35 0.16 0.61 4.15 -45.27 341

Nonylamine 0.19 0.35 0.16 0.61 5.10 -55.03 341

Decylamine 0.18 0.35 0.16 0.61 5.61 -60.02 341

tert-Butylamine 0.12 0.29 0.16 0.71 2.49 -26.15 341

Diethylamine 0.15 0.30 0.08 0.69 2.40 -24.60 341

Triethylamine 0.10 0.15 0.00 0.79 3.04 -34.14 341

Helium 0.00 0.00 0.00 0.00 -1.74 8.24 341

Neon 0.00 0.00 0.00 0.00 -1.58 6.78 341

Argon 0.00 0.00 0.00 0.00 -0.69 -0.79 341

Krypton 0.00 0.00 0.00 0.00 -0.21 -5.02 341

Xenon 0.00 0.00 0.00 0.00 0.38 -10.08 341

285

Solute E S A B L Exp Ref

Radon 0.00 0.00 0.00 0.00 0.88 -14.18 341

Hydrogen 0.00 0.00 0.00 0.00 -1.20 4.56 341

Diiodomethane 0.71 0.69 0.11 0.07 2.89 -38.95 341

2,2,2-Trifluoroethanol 0.02 0.60 0.57 0.25 1.22 -20.88 341

1,1,1,3,3,3-Hexafluoropropan-2-ol -0.24 0.55 0.77 0.10 1.39 -22.09 341

Benzyl alcohol 0.80 0.87 0.33 0.56 4.22 -42.38 341

Thiophene 0.69 0.56 0.00 0.15 2.82 -29.92 341

Benzyl chloride 0.82 0.82 0.00 0.33 4.38 -43.32 341

1-Chloronaphthalene 1.42 1.00 0.00 0.14 5.86 -61.74 341

1-Methylnaphthalene 1.34 0.94 0.00 0.22 5.80 -55.80 341

Diisopropyl ether -0.06 0.16 0.00 0.58 2.53 -30.67 341

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 -34.12 341

2,2-Dimethylpropane 0.00 0.00 0.00 0.00 1.82 -21.14 341

Table S5.19. Experimental va lues of t he gas t o N ,N-dimethylformamide solvation enthalpy, ΔHSolv,DMF, in kJ /mole, f or 159 s olutes, t ogether with t he solute descriptors.

Solute E S A B L V Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 0.25 -2.36 498

Propane 0.00 0.00 0.00 0.00 1.05 0.53 -13.44 498

Butane 0.00 0.00 0.00 0.00 1.62 0.67 -16.00 123

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -19.29 28

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -23.05 28

Heptane 0.00 0.00 0.00 0.00 3.17 1.10 -27.28 28

286

Solute E S A B L V Exp Ref

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -30.96 28

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -34.60 28

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -37.86 28

Undecane 0.00 0.00 0.00 0.00 5.19 1.66 -41.94 499

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -45.43 28

Tetradecane 0.00 0.00 0.00 0.00 6.71 2.08 -52.68 286

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -60.25 28

2-Methylpentane 0.00 0.00 0.00 0.00 2.50 0.95 -22.22 500

2,2-Dimethylbutane 0.00 0.00 0.00 0.00 2.35 0.95 -19.25 286

3-Ethylpentane 0.00 0.00 0.00 0.00 3.09 1.10 -26.30 133

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -25.19 286

2-Methyloctane 0.00 0.00 0.00 0.00 3.97 1.38 -32.05 286

3,3-Diethylpentane 0.00 0.00 0.00 0.00 3.82 1.38 -31.30 286

2,2,4,4-Tetramethylpentane 0.00 0.00 0.00 0.00 3.51 1.38 -27.78 291

2,2,5,5-Tetramethylhexane 0.00 0.00 0.00 0.00 4.04 1.52 -28.83 286

Cyclopentane 0.26 0.10 0.00 0.00 2.48 0.70 -22.34 286

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -25.36 286

Cyclooctane 0.41 0.10 0.00 0.00 4.33 1.13 -34.06 286

Methylcyclohexane 0.24 0.06 0.00 0.00 3.32 0.99 -27.07 286

cis-1,2-Dimethylcyclohexane 0.28 0.24 0.00 0.00 3.85 1.13 -30.84 286

1-Butene 0.10 0.08 0.00 0.07 1.49 0.63 -18.40 123

1-Pentene 0.09 0.08 0.00 0.07 2.05 0.77 -21.34 286

287

Solute E S A B L V Exp Ref

1-Hexene 0.08 0.08 0.00 0.07 2.57 0.91 -25.52 286

1-Heptene 0.09 0.08 0.00 0.07 3.06 1.05 -29.46 286

1-Octene 0.09 0.08 0.00 0.07 3.57 1.19 -32.76 286

1-Nonene 0.09 0.08 0.00 0.07 4.07 1.33 -36.65 286

1-Decene 0.09 0.08 0.00 0.07 4.55 1.48 -40.50 291

1-Dodecene 0.09 0.08 0.00 0.07 5.52 1.76 -48.16 286

1-Tridecene 0.09 0.08 0.00 0.07 6.02 1.90 -52.01 286

1-Tetradecene 0.09 0.08 0.00 0.07 6.51 2.04 -56.11 286

1-Pentadecene 0.08 0.08 0.00 0.07 7.01 2.18 -59.79 286

cis-2-Octene 0.14 0.08 0.00 0.07 3.68 1.19 -32.05 286

trans-2-Octene 0.12 0.08 0.00 0.07 3.60 1.19 -31.92 286

cis-4-Octene 0.13 0.08 0.00 0.07 3.61 1.19 -31.46 286

trans-4-Octene 0.14 0.08 0.00 0.07 3.59 1.19 -31.21 286

Cyclopentene 0.34 0.20 0.00 0.10 2.40 0.66 -24.56 286

Cyclohexene 0.40 0.20 0.00 0.10 3.02 0.80 -28.12 286

1-Methylcyclohexene 0.39 0.20 0.00 0.10 3.48 0.99 -32.05 286

1,3-Butadiene 0.32 0.23 0.00 0.10 1.54 0.59 -20.40 123

1,5-Hexadiene 0.19 0.15 0.00 0.10 2.45 0.87 -27.91 286

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -33.68 69

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -37.32 69

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -40.57 329

Isopropylbenzene 0.60 0.49 0.00 0.16 4.08 1.14 -42.84 329

sec-Butylbenzene 0.60 0.48 0.00 0.16 4.51 1.28 -46.82 329

tert-Butylbenzene 0.62 0.49 0.00 0.18 4.41 1.28 -44.96 329

288

Solute E S A B L V Exp Ref

1,4-Dimethylbenzene 0.61 0.52 0.00 0.16 3.84 1.00 -40.75 69

1,3,5-Trimethylbenzene 0.65 0.52 0.00 0.19 4.34 1.14 -44.20 69

Hexamethylbenzene 0.95 0.72 0.00 0.21 6.56 1.56 -62.67 329

Octylbenzene 0.58 0.48 0.00 0.15 6.71 1.70 -59.20 329

4-Isopropyltoluene 0.61 0.49 0.00 0.19 4.59 1.28 -46.70 329

1,2-Diphenylethane 1.20 1.03 0.00 0.28 6.76 1.61 -69.64 329

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -64.37 329

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -56.57 329

Anthracene 2.29 1.34 0.00 0.28 7.57 1.45 -79.50 133

Styrene 0.85 0.65 0.00 0.16 3.86 0.96 -44.38 329

α-Methylstyrene 0.85 0.64 0.00 0.19 4.29 1.10 -48.65 329

trans-Stilbene 1.45 1.05 0.00 0.34 7.52 1.56 -79.10 329

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -31.38 91

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -34.27 91

2-Pentanone 0.14 0.68 0.00 0.51 2.76 0.83 -37.40 290

3-Pentanone 0.15 0.66 0.00 0.51 2.81 0.83 -37.61 290

2-Hexanone 0.14 0.68 0.00 0.51 3.29 0.97 -41.30 290

3-Hexanone 0.14 0.66 0.00 0.51 3.31 0.97 -40.54 290

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -45.23 91

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -43.72 91

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -49.08 290

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -52.55 91

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -50.33 91

2-Decanone 0.11 0.68 0.00 0.51 5.25 1.53 -55.48 290

289

Solute E S A B L V Exp Ref

2-Undecanone 0.10 0.68 0.00 0.51 5.73 1.67 -58.58 290

6-Undecanone 0.08 0.66 0.00 0.51 5.68 1.67 -57.11 290

3,3-Dimethyl-2-butanone 0.11 0.62 0.00 0.51 2.93 0.97 -36.78 290

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 1.39 -41.59 91

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 0.72 -42.05 290

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -43.64 91

Cycloheptanone 0.44 0.86 0.00 0.56 4.38 1.00 -48.41 290

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -37.22 14

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -41.03 14

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 0.59 -44.10 14

Propan-2-ol 0.21 0.36 0.33 0.56 1.76 0.59 -42.19 14

2-Methyl-1-propanol 0.22 0.39 0.37 0.48 2.41 0.73 -47.62 14

2-Butanol 0.22 0.36 0.33 0.56 2.34 0.73 -46.19 14

2-Methyl-2-propanol 0.18 0.30 0.31 0.60 1.96 0.73 -43.10 14

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 0.87 -53.09 14

2-Pentanol 0.20 0.36 0.33 0.56 2.84 0.87 -48.90 501

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -47.04 14

2-Hexanol 0.19 0.36 0.33 0.56 3.34 1.01 -52.81 501

2-Heptanol 0.19 0.36 0.33 0.56 3.84 1.15 -54.69 501

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -63.72 94

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -24.90 133

Dibutyl ether 0.00 0.25 0.00 0.45 3.92 1.30 -37.57 94

290

Solute E S A B L V Exp Ref

Butyl methyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -29.00 62

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 0.87 -27.80 133

Methyl heptyl ether 0.05 0.25 0.00 0.45 4.09 1.30 -40.38 94

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 0.62 -31.60 372

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -37.74 502

18-Crown-6 0.40 1.34 0.00 2.13 7.92 2.04 -100.80 53

1-Fluorooctane -0.02 0.35 0.00 0.10 3.85 1.25 -43.76 94

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -36.90 182

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 1.36 -45.81 94

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 0.88 -58.58 503

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -39.72 157

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 0.73 -36.98 302

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -42.01 302

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 0.96 -50.44 329

1,4-Dichlorobenzene 0.83 0.75 0.00 0.02 4.44 0.96 -48.50 133

1,2,4,5-Tetrachlorobenzene 1.16 0.86 0.00 0.00 5.93 1.42 -57.70 133

Hexachlorobenzene 1.49 0.99 0.00 0.00 7.62 1.45 -64.90 133

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -44.60 302

1,3,5-Tribromobenzene 1.45 1.02 0.00 0.00 6.31 1.24 -62.30 133

1,2,3,5-Tetrabromobenzene 1.83 1.19 0.00 0.00 7.43 1.42 -71.50 133

Iodobenzene 1.19 0.82 0.00 0.12 4.50 0.97 -47.93 302

Acetophenone 0.82 1.01 0.00 0.48 4.50 1.01 -53.98 302

291

Solute E S A B L V Exp Ref

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -55.81 302

1,2-Dinitrobenzene 1.17 1.70 0.00 0.38 5.91 1.07 -71.58 329

Ethyl benzoate 0.69 0.85 0.00 0.46 5.08 1.21 -58.39 302

1-Chloro-2-nitrobenzene 1.02 1.24 0.00 0.24 5.24 1.01 -65.75 329

1-Chloro-3-nitrobenzene 1.00 1.14 0.00 0.25 5.21 1.01 -62.89 329

1-Chloro-4-nitrobenzene 0.98 1.18 0.00 0.24 5.22 1.01 -62.15 329

3-Nitroacetophenone 1.01 1.50 0.00 0.63 5.95 1.19 -91.17 329

Phenol 0.81 0.89 0.60 0.30 3.77 0.78 -70.60 329

3-Chlorophenol 0.91 1.06 0.69 0.15 4.77 0.90 -81.27 238

4-Chlorophenol 0.92 1.08 0.67 0.20 4.78 0.90 -83.03 238

4-Bromophenol 1.08 1.17 0.67 0.20 5.14 0.95 -92.22 238

2-Methoxyphenol 0.84 0.91 0.22 0.52 4.45 0.98 -74.00 238

3-Methoxyphenol 0.88 1.17 0.59 0.38 4.80 0.98 -91.30 238

4-Methoxyphenol 0.90 1.17 0.57 0.48 4.77 0.98 -85.30 238

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 0.92 -75.72 302

2-Nitrophenol 1.02 1.05 0.05 0.37 4.76 0.95 -63.26 329

3-Nitrophenol 1.05 1.57 0.79 0.23 5.69 0.95 -99.36 329

4-Nitrophenol 1.07 1.72 0.82 0.26 5.88 0.95 -102.57 329

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -47.11 329

Benzonitrile 0.74 1.11 0.00 0.33 4.04 0.87 -54.31 329

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -63.02 504

3-Methylaniline 0.97 0.92 0.23 0.45 4.46 0.96 -69.51 329

292

Solute E S A B L V Exp Ref

2-Nitroaniline 1.18 1.37 0.30 0.36 5.63 0.99 -81.89 329

3-Nitroaniline 1.20 1.71 0.40 0.35 5.88 0.99 -90.64 329

4-Nitroaniline 1.22 1.93 0.46 0.35 6.34 0.99 -101.50 329

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 1.10 -52.83 329

1-Chloronaphthalene 1.42 1.00 0.00 0.14 5.86 1.21 -64.79 329

1-Nitronaphthalene 1.60 1.59 0.00 0.29 7.06 1.26 -78.78 329

1-Naphthylamine 1.67 1.20 0.20 0.57 6.49 1.19 -88.90 329

1-Naphthol 1.52 1.05 0.60 0.37 6.13 1.14 -91.70 505

Diphenyl ether 1.22 1.08 0.00 0.20 6.29 1.38 -66.52 329

Trifluoromethylbenzene 0.23 0.48 0.00 0.10 2.89 0.91 -37.61 62

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -29.70 101

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -40.60 133

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 6.73 506

Carbon dioxide 0.00 0.28 0.05 0.10 0.06 0.28 -15.23 145

1-Bromoadamantane 1.07 0.90 0.00 0.20 6.13 1.37 -53.40 193

1-Adamantanol 0.94 0.90 0.31 0.66 5.63 1.25 -68.40 193

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -34.17 507

Table S5.20. Experimental values o f the gas to t ert-butanol solvation enthalpy, ΔHSolv,t-BTOH in kJ/mole, for 84 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -22.80 28

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -27.70 28

Heptane 0.00 0.00 0.00 0.00 3.17 1.10 -31.51 28

293

Solute E S A B L V Exp Ref

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -35.77 28

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -40.29 28

Decane 0.00 0.00 0.00 0.00 4.69 1.52 -44.64 28

Dodecane 0.00 0.00 0.00 0.00 5.70 1.80 -53.47 28

Tetradecane 0.00 0.00 0.00 0.00 6.71 2.08 -63.53 400

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -70.58 28

3-Ethylpentane 0.00 0.00 0.00 0.00 3.09 1.10 -30.50 185

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -30.85 361

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -28.74 62

cis 2-Butene 0.14 0.08 0.00 0.05 1.74 0.63 -18.04 323

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -38.28 185

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -44.56 185

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -26.11 185

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -30.63 62

1,2-Dimethylbenzene 0.66 0.56 0.00 0.16 3.94 1.00 -37.89 508

1,3-Dimethylbenzene 0.62 0.52 0.00 0.16 3.84 1.00 -38.80 508

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -39.04 62

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -45.31 509

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -52.26 509

Trifluorotoluene 0.23 0.48 0.00 0.10 2.89 0.91 -28.87 62

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -38.95 62

Anisole 0.71 0.75 0.00 0.29 3.89 0.92 -34.85 62

3-Methylphenol 0.82 0.88 0.57 0.34 4.31 0.92 -66.07 62

294

Solute E S A B L V Exp Ref

1-Butanol 0.22 0.42 0.37 0.48 2.60 0.73 -54.43 62

1-Pentanol 0.22 0.42 0.37 0.48 3.11 0.87 -59.04 62

1-Decanol 0.19 0.42 0.37 0.48 5.63 1.58 -81.28 510

2-Methyl-2-butanol 0.19 0.30 0.31 0.60 2.63 0.87 -49.71 62

2-Methyl-2-propanol 0.18 0.30 0.31 0.60 1.96 0.73 -46.80 511

2-Ethoxyethanol 0.24 0.52 0.31 0.81 2.79 0.79 -47.24 512

Ethanediol 0.40 0.90 0.58 0.78 2.66 0.51 -61.10 511

Butan-1,4-diol 0.40 0.93 0.72 0.90 3.80 0.80 -84.18 512

Glycerol 0.51 0.76 0.47 1.43 3.97 0.71 -85.80 511

Dimethyl ether 0.00 0.27 0.00 0.41 1.29 0.45 -16.61 323

Diethyl ether 0.04 0.25 0.00 0.45 2.02 0.73 -24.94 62

Methyl butyl ether 0.05 0.25 0.00 0.44 2.66 0.87 -29.50 62

Methyl tert-butyl ether 0.02 0.11 0.00 0.63 2.38 0.87 -29.41 62

2-Methyltetrahydrofuran 0.24 0.48 0.00 0.53 2.82 0.76 -32.45 513

1,3-Dioxolane 0.30 0.51 0.00 0.62 1.83 0.54 -27.37 407

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -30.42 407

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -24.23 91

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -28.20 91

2-Heptanone 0.12 0.68 0.00 0.51 3.76 1.11 -41.71 91

4-Heptanone 0.11 0.66 0.00 0.51 3.71 1.11 -40.67 91

2-Nonanone 0.12 0.68 0.00 0.51 4.74 1.39 -50.88 91

5-Nonanone 0.10 0.66 0.00 0.51 4.70 1.39 -49.66 91

295

Solute E S A B L V Exp Ref

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 0.86 -41.09 91

2,2,4,4-Tetramethyl-3-pentanone 0.10 0.56 0.00 0.52 4.37 1.39 -39.33 91

Chloroethane 0.23 0.40 0.00 0.10 1.68 0.51 -21.93 323

Propyl formate 0.13 0.63 0.00 0.38 2.43 0.75 -29.44 514

Butyl formate 0.12 0.63 0.00 0.38 2.96 0.89 -32.52 515

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 0.75 -28.31 516

Propyl acetate 0.09 0.60 0.00 0.45 2.82 0.89 -32.51 514

Butyl acetate 0.07 0.60 0.00 0.45 3.35 1.03 -37.17 515

Methyl propanoate 0.13 0.60 0.00 0.45 2.43 0.75 -28.84 517

Ethyl propanoate 0.09 0.58 0.00 0.45 2.81 0.89 -32.71 516

Propyl propanoate 0.07 0.56 0.00 0.45 3.34 1.03 -37.43 514

Butyl propanoate 0.06 0.56 0.00 0.47 3.83 1.17 -41.66 515

Methyl butanoate 0.11 0.60 0.00 0.45 2.89 0.89 -32.57 517

Ethyl butanoate 0.07 0.58 0.00 0.45 3.27 1.03 -35.00 516

Propyl butanoate 0.05 0.56 0.00 0.45 3.78 1.17 -41.13 514

Butyl butanoate 0.04 0.56 0.00 0.45 4.28 1.31 -45.23 515

Dimethyl carbonate 0.14 0.54 0.00 0.57 2.33 0.66 -24.93 412

Diethyl carbonate 0.06 0.58 0.00 0.53 3.41 0.95 -32.71 413

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -22.00 512

1-Butanenitrile 0.18 0.90 0.00 0.36 2.55 0.69 -29.35 518

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.79 -26.34 410

2-Chlorobutane 0.19 0.35 0.00 0.12 2.54 0.79 -25.29 410

2-Methyl-1- 0.19 0.37 0.00 0.12 2.57 0.79 -25.51 410

296

Solute E S A B L V Exp Ref

chloropropane

2-Chloro-2-methylpropane 0.14 0.30 0.00 0.03 2.27 0.79 -22.66 387

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 0.74 -27.86 387

1-Bromobutane 0.36 0.40 0.00 0.12 3.11 0.85 -24.08 409

2-Methyl-2-bromopropane 0.31 0.29 0.00 0.07 2.61 0.85 -24.55 387

2-Methyl-2-iodopropane 0.59 0.35 0.00 0.19 3.44 0.93 -27.88 334

Tetramethylsilicon -0.06 0.08 0.00 0.03 1.81 0.92 -20.20 332

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 0.84 -32.51 509

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -35.27 509

Iodobenzene 1.19 0.82 0.00 0.12 4.50 0.97 -39.62 509

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -23.61 512

β-Pinene 0.53 0.24 0.00 0.19 4.39 1.26 -41.39 519

Methyl tert-amyl ether 0.05 0.21 0.00 0.60 2.92 1.02 -34.09 520

Adipic acid 0.35 1.21 1.13 0.76 4.47 1.10 -114.60 521

Table S5.21. Experimental v alues o f th e gas to a cetonitrile e nthalpy of solvation, ΔHSolv,CAN in kJ /mole, f or 74 s olutes, t ogether w ith t he s olute descriptors.

Solute E S A B L V Exp Ref

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -17.79 288

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -21.46 288, 357

Heptane 0.00 0.00 0.00 0.00 3.17 1.09 -24.49 288

297

Solute E S A B L V Exp Ref

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -28.21 288, 357

Undecane 0.00 0.00 0.00 0.00 5.19 1.66 -38.70 357

2-Methylpentane 0.00 0.00 0.00 0.00 2.50 0.95 -19.96 288

2,2,4-Trimethylpentane 0.00 0.00 0.00 0.00 3.11 1.24 -26.04 522

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -23.25 288

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -32.14 288

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -34.42 288

1-Propanol 0.24 0.42 0.37 0.48 2.03 0.59 -37.43 288

1-Butanol 0.22 0.42 0.37 0.48 2.60 0.73 -41.81 288

1-Pentanol 0.22 0.42 0.37 0.48 3.11 0.87 -45.61 324

1-Hexanol 0.21 0.42 0.37 0.48 3.61 1.02 -49.90 523

1-Heptanol 0.21 0.42 0.37 0.48 4.12 1.15 -49.08 524

1-Octanol 0.20 0.42 0.37 0.48 4.62 1.30 -55.49 324

2-Methyl-1-propanol 0.22 0.39 0.37 0.48 2.41 0.73 -40.21 420

2-Butanol 0.22 0.36 0.33 0.56 2.34 0.73 -40.12 525

2-Methyl-2-propanol 0.18 0.30 0.31 0.60 1.96 0.73 -37.07 525

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -31.32 129

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -55.00 504

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -38.35 288

Nitroethane 0.27 0.95 0.02 0.33 2.41 0.56 -39.60 288

1-Nitropropane 0.24 0.95 0.00 0.31 2.89 0.71 -43.41 288

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -32.93 288

298

Solute E S A B L V Exp Ref

Propionitrile 0.16 0.90 0.02 0.36 2.08 0.55 -35.89 288

Butyronitrile 0.18 0.90 0.00 0.36 2.55 0.69 -38.33 288

1-Chloropropane 0.22 0.40 0.00 0.10 2.20 0.65 -26.02 288

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.79 -29.99 288

Dichloromethane 0.39 0.57 0.10 0.05 2.02 0.49 -31.37 288

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -32.57 288

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 0.74 -29.42 288

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -37.32 526

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -41.52 526

m-Xylene 0.62 0.52 0.00 0.16 3.84 1.00 -41.97 526

p-Xylene 0.61 0.52 0.00 0.16 3.84 1.00 -41.47 526

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -34.79 527

Diethylamine 0.15 0.30 0.08 0.69 2.40 0.77 -29.73 528

sec-Butylamine 0.17 0.32 0.16 0.63 2.41 0.77 -31.33 528

Methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 0.87 -28.68 529

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 0.88 -49.45 530

Nitric Oxide 0.37 0.02 0.00 0.09 -0.59 0.20 -1.83 75

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -83.19 26

12-Crown-4 0.42 0.99 0.00 1.39 5.14 1.36 -69.31 175

cis 1,2-Dichloroethene 0.44 0.61 0.11 0.05 2.44 0.59 -31.74 197

trans-1,2-Dichloroethene 0.43 0.41 0.09 0.05 2.28 0.59 -29.54 197

299

Solute E S A B L V Exp Ref

Trichloroethene 0.52 0.37 0.08 0.03 3.00 0.72 -32.95 197

Tetrachloroethene 0.64 0.44 0.00 0.00 3.58 0.84 -34.83 197

2-Chloro-2-methylpropane 0.14 0.30 0.00 0.03 2.27 0.79 -25.95 189

2-Bromo-2-methylpropane 0.31 0.29 0.00 0.07 2.61 0.61 -28.01 189

Methyl acetate 0.14 0.64 0.00 0.45 1.91 0.61 -32.86 343

Phenol 0.81 0.89 0.60 0.30 3.77 0.78 -59.41 531

Pyridine 0.63 0.84 0.00 0.52 3.02 0.68 -36.00 532

Methyl isobutyrate 0.09 0.57 0.00 0.47 2.64 0.89 -36.09 110

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 6.54 506

2-Chlorophenol 0.85 0.88 0.32 0.31 4.18 0.90 -56.70 238

3-Chlorophenol 0.91 1.06 0.69 0.15 4.77 0.90 -65.87 238

4-Chlorophenol 0.92 1.08 0.67 0.20 4.78 0.90 -67.33 238

4-Bromophenol 1.08 1.17 0.67 0.20 5.14 0.95 -76.00 238

2-Methoxyphenol 0.84 0.91 0.22 0.52 4.45 0.98 -62.10 238

3-Methoxyphenol 0.88 1.17 0.59 0.38 4.80 0.98 -78.00 238

4-Methoxyphenol 0.90 1.17 0.57 0.48 4.77 0.98 -78.50 238

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -50.70 191

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -60.20 191

Anthracene 2.29 1.34 0.00 0.28 7.57 1.45 -73.70 191

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -32.89 533

Sulfur dioxide 0.37 0.66 0.28 0.10 0.78 0.35 -29.71 176

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -29.50 101

300

Solute E S A B L V Exp Ref

1-Naphthol 1.52 1.05 0.60 0.37 6.13 1.14 -77.60 159

Carbon dioxide 0.00 0.28 0.05 0.10 0.06 0.28 -13.88 145

Imidazole 0.71 0.85 0.42 0.78 4.02 0.54 -63.05 393

Diphenyl ether 1.22 1.08 0.00 0.20 6.29 1.38 -60.00 534

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -47.69 533

Table S5.22. Experimental va lues of the g as t o a cetone e nthalpy o f s olvation, ΔHSolv,ACE (kJ/mole), for 81 solutes, together with the solute descriptors.

Solute E S A B L V Exp Ref

Methane 0.00 0.00 0.00 0.00 -0.32 0.29 -2.80 45

Ethane 0.00 0.00 0.00 0.00 0.49 0.39 -8.62 45

Propane 0.00 0.00 0.00 0.00 1.05 0.53 -16.07 25

Pentane 0.00 0.00 0.00 0.00 2.16 0.81 -19.58 25

Hexane 0.00 0.00 0.00 0.00 2.67 0.95 -24.14 305

Heptane 0.00 0.00 0.00 0.00 3.17 1.10 -26.76 296

Octane 0.00 0.00 0.00 0.00 3.68 1.24 -31.76 288

Nonane 0.00 0.00 0.00 0.00 4.18 1.38 -35.70 288

Hexadecane 0.00 0.00 0.00 0.00 7.71 2.36 -63.38 535

Cyclohexane 0.31 0.10 0.00 0.00 2.96 0.85 -26.13 322

Adamantane 0.76 0.57 0.00 0.04 5.10 1.19 -40.40 322

Benzene 0.61 0.52 0.00 0.14 2.79 0.72 -31.32 129

Toluene 0.60 0.52 0.00 0.14 3.33 0.86 -36.99 222

p-Xylene 0.61 0.52 0.00 0.16 3.84 1.00 -42.00 222

Mesitylene 0.65 0.52 0.00 0.19 4.34 1.14 -44.35 222

301

Solute E S A B L V Exp Ref

Naphthalene 1.34 0.92 0.00 0.20 5.16 1.09 -54.00 191

Biphenyl 1.36 0.99 0.00 0.26 6.01 1.32 -62.30 191

Anthracene 2.29 1.34 0.00 0.28 7.57 1.45 -76.10 191

Methanol 0.28 0.44 0.43 0.47 0.97 0.31 -33.89 186

Ethanol 0.25 0.42 0.37 0.48 1.49 0.45 -37.66 296

1-Propanol 0.24 0.42 0.37 0.48 2.03 0.59 -42.84 536

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 0.73 -43.95 537

2-Butanol 0.22 0.36 0.33 0.56 2.34 0.73 -42.67 537

Ethylene glycol 0.40 0.90 0.58 0.78 2.66 0.51 -53.53 536

Glycerol 0.51 0.76 0.47 1.43 3.97 0.71 -75.38 536

15-Crown-5 0.41 1.20 0.00 1.75 6.78 1.70 -78.25 538

18-Crown-6 0.40 1.34 0.00 2.13 7.92 2.04 -93.70 53

Helium 0.00 0.00 0.00 0.00 -1.74 0.07 11.51 288

Neon 0.00 0.00 0.00 0.00 -1.58 0.09 10.08 288

Argon 0.00 0.00 0.00 0.00 -0.69 0.19 1.92 288

Radon 0.00 0.00 0.00 0.00 0.88 0.38 -10.50 357

Hydrogen 0.00 0.00 0.00 0.00 -1.20 0.11 4.52 288

Oxygen 0.00 0.00 0.00 0.00 -0.72 0.18 0.13 288

Nitrogen 0.00 0.00 0.00 0.00 -0.98 0.22 1.76 288

Carbon Monoxide 0.00 0.00 0.00 0.04 -0.84 0.22 0.25 288

2-Methyl-1-propanol 0.22 0.39 0.37 0.48 2.41 0.73 -44.24 539

Iodomethane 0.68 0.43 0.00 0.12 2.11 0.51 -26.64 54

1-Iodobutane 0.63 0.40 0.00 0.15 3.63 0.93 -36.79 54

302

Solute E S A B L V Exp Ref

2-Iodo-2-methylpropane 0.59 0.35 0.00 0.19 3.44 0.93 -32.04 54

1-Chlorobutane 0.21 0.40 0.00 0.10 2.72 0.79 -31.58 54

2-Chloro-2-methylpropane 0.14 0.30 0.00 0.03 2.27 0.79 -27.08 54

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 1.10 -51.61 222

Aniline 0.96 0.96 0.26 0.41 3.93 0.82 -58.24 222

Bromobenzene 0.88 0.73 0.00 0.09 4.04 0.89 -43.51 222

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 0.87 -49.15 222

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 0.89 -54.85 222

1,4-Dibromobenzene 1.15 0.86 0.00 0.04 5.32 1.07 -53.70 222

4-Nitrotoluene 0.87 1.11 0.00 0.28 5.15 1.01 -62.36 222

1,4-Dinitrobenzene 1.13 1.63 0.00 0.46 5.80 1.06 -73.80 222

4-Nitroaniline 1.22 1.93 0.46 0.35 6.34 0.99 -93.13 222

Acetone 0.18 0.70 0.04 0.49 1.70 0.55 -31.90 288

2-Butanone 0.17 0.70 0.00 0.51 2.29 0.69 -34.32 288

2-Pentanone 0.14 0.68 0.00 0.51 2.76 0.83 -37.87 186

2-Hexanone 0.14 0.68 0.00 0.51 3.29 0.97 -41.55 186

2-Octanone 0.11 0.68 0.00 0.51 4.26 1.25 -48.79 186

Phenol 0.81 0.89 0.60 0.30 3.77 0.78 -66.11 186

Carbon disulfide 0.88 0.26 0.00 0.03 2.37 0.49 -24.19 288

Carbon tetrachloride 0.46 0.38 0.00 0.00 2.82 0.74 -31.95 288

303

Solute E S A B L V Exp Ref

Chloroform 0.43 0.49 0.15 0.02 2.48 0.62 -34.63 288

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 0.68 -38.18 288

1,3-Dioxane 0.31 0.72 0.00 0.70 2.52 0.68 -38.91 540

Nitromethane 0.31 0.95 0.06 0.31 1.89 0.42 -39.05 288

Triethylamine 0.10 0.15 0.00 0.79 3.04 1.05 -30.30 101

1-Bromoadamantane 1.07 0.90 0.00 0.20 6.13 1.37 -53.60 160

1-Adamantanol 0.94 0.90 0.31 0.66 5.63 1.25 -63.80 160

Ferrocene 1.35 0.85 0.00 0.20 5.62 1.12 -56.53 541

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 0.88 -53.25 141

1,3,5-Trioxane 0.23 0.93 0.00 0.51 2.24 0.60 -41.70 541

Tetramethyl tin 0.32 0.11 0.00 0.10 2.65 1.04 -25.31 25

Tetraethyl tin 0.46 0.18 0.00 0.13 4.92 1.61 -40.50 25

cis 1,2-Dichloroethene 0.44 0.61 0.11 0.05 2.44 0.59 -34.75 197

trans-1,2-Dichloroethene 0.43 0.41 0.09 0.05 2.28 0.59 -32.51 197

Trichloroethene 0.52 0.37 0.08 0.03 3.00 0.72 -35.42 197

Tetrachloroethene 0.64 0.44 0.00 0.00 3.58 0.84 -37.30 197

Adipic acid 0.35 1.21 1.13 0.76 4.47 1.10 -105.80 542

methyl tert-butyl ether 0.02 0.21 0.00 0.59 2.38 0.87 -28.05 547

Dimethyl carbonate 0.14 0.54 0.00 0.57 2.33 0.66 -37.23 543

Diethyl carbonate 0.06 0.58 0.00 0.53 3.41 0.95 -43.17 543

304

Solute E S A B L V Exp Ref

1,2,4-Trimethylbenzene 0.68 0.56 0.00 0.19 4.44 1.14 -46.06 544

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 1.00 -40.90 545

Acetonitrile 0.24 0.90 0.07 0.32 1.74 0.40 -33.50 546

CHAPTER 6

Table S6.1. Logarithms o f th e e xperimental gas-to-Leonardite hum ic a cid partition coefficients, log KLHA data, and numerical values of the Abraham solute descriptors used in the regression analyses.

Solute E S A B L T log KLHA

n-Octane 0.00 0.00 0.00 0.00 3.68 278.15 2.71

n-Nonane 0.00 0.00 0.00 0.00 4.18 278.15 2.21

n-Decane 0.00 0.00 0.00 0.00 4.69 278.15 3.67

n-Undecane 0.00 0.00 0.00 0.00 5.19 278.15 4.24

n-Dodecane 0.00 0.00 0.00 0.00 5.70 278.15 4.75

n-Tridecane 0.00 0.00 0.00 0.00 6.20 278.15 5.24

Cyclodecane 0.47 0.10 0.00 0.00 5.34 278.15 3.99

1-Octene 0.09 0.08 0.00 0.07 3.57 278.15 2.89

1-Nonene 0.09 0.08 0.00 0.07 4.07 278.15 3.16

1-Decene 0.09 0.08 0.00 0.07 4.55 278.15 3.56

1-Undecene 0.09 0.08 0.00 0.07 5.02 278.15 4.19

1-Dodecene 0.09 0.08 0.00 0.07 5.52 278.15 4.62

1-Tridecene 0.09 0.08 0.00 0.07 6.02 278.15 5.23

Ethanol 0.25 0.42 0.37 0.48 1.49 278.15 4.03

305

Solute E S A B L T log KLHA

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 278.15 4.16

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 278.15 4.45

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 278.15 4.77

Hexan-1-ol 0.21 0.42 0.37 0.48 3.61 278.15 5.17

Heptan-1-ol 0.21 0.42 0.37 0.48 4.12 278.15 5.65

Propan-2-ol 0.21 0.36 0.33 0.56 1.76 278.15 3.96

2-Methylpropan-1-ol 0.22 0.39 0.37 0.48 2.41 278.15 4.16

2-Methylpropan-2-ol 0.28 0.30 0.31 0.60 1.96 278.15 3.93

3-Methylbutan-1-ol 0.19 0.39 0.37 0.48 3.01 278.15 4.63

Cyclopentanol 0.43 0.54 0.32 0.56 3.24 278.15 4.96

Cyclohexanol 0.46 0.54 0.32 0.57 3.76 278.15 5.40

1,1,1,3,3,3-Hexafluoropropan-2-ol

-0.24 0.55 0.77 0.10 1.39 278.15 4.28

Phenol 0.81 0.89 0.60 0.30 3.77 278.15 6.32

2-Chlorophenol 0.85 0.88 0.32 0.31 4.18 278.15 5.77

2-Propanone 0.18 0.70 0.04 0.49 1.70 278.15 3.27

2-Butanone 0.17 0.70 0.00 0.51 2.29 278.15 3.39

2-Pentanone 0.14 0.68 0.00 0.51 2.76 278.15 3.57

2-Hexanone 0.14 0.68 0.00 0.51 3.29 278.15 3.77

2-Heptanone 0.12 0.68 0.00 0.51 3.76 278.15 4.24

2-Octanone 0.11 0.68 0.00 0.51 4.26 278.15 4.61

2-Nonanone 0.12 0.68 0.00 0.51 4.74 278.15 5.15

2-Decanone 0.11 0.68 0.00 0.51 5.25 278.15 5.61

306

Solute E S A B L T log KLHA

3-Methylbutan-2-one 0.13 0.65 0.00 0.51 2.69 278.15 3.29

4-Methylpentan-2-one 0.11 0.65 0.00 0.51 3.09 278.15 3.57

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 278.15 4.36

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 278.15 4.59

Cycloheptanone 0.44 0.86 0.00 0.56 4.38 278.15 5.08

Acetophenone 0.82 1.01 0.00 0.48 4.50 278.15 5.50

Methyl acetate 0.14 0.64 0.00 0.45 1.91 278.15 2.92

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 278.15 3.13

n-Propyl acetate 0.09 0.60 0.00 0.45 2.82 278.15 3.33

n-Butyl acetate 0.07 0.60 0.00 0.45 3.35 278.15 3.64

Isobutyl acetate 0.05 0.57 0.00 0.47 3.16 278.15 3.60

n-Pentyl acetate 0.07 0.60 0.00 0.45 3.84 278.15 4.05

Methyl benzoate 0.73 0.85 0.00 0.46 4.70 278.15 5.28

Di-n-butyl ether 0.00 0.25 0.00 0.45 3.92 278.15 3.59

Di-n-pentyl ether 0.00 0.25 0.00 0.45 4.88 278.15 4.59

Methyl tert-butyl ether (MTBE) 0.02 0.21 0.00 0.59 2.38 278.15 2.40

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 278.15 3.21

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 278.15 4.18

Methyl phenyl ether (Anisole) 0.71 0.75 0.00 0.29 3.89 278.15 4.03

Benzene 0.61 0.52 0.00 0.14 2.79 278.15 2.37

Toluene 0.60 0.52 0.00 0.14 3.33 278.15 2.57

p-Xylene 0.61 0.52 0.00 0.16 3.84 278.15 2.82

307

Solute E S A B L T log KLHA

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 278.15 2.77

n-Butylbenzene 0.60 0.51 0.00 0.15 4.73 278.15 3.77

n-Pentylbenzene 0.59 0.51 0.00 0.15 5.23 278.15 4.30

n-Hexylbenzene 0.59 0.50 0.00 0.15 5.72 278.15 4.94

1,2,4-Trimethylbenzene 0.68 0.56 0.00 0.19 4.44 278.15 3.49

1,3,5-Trimethylbenzene 0.65 0.52 0.00 0.19 4.34 278.15 3.32

Styrene 0.85 0.65 0.00 0.16 3.86 278.15 3.48

Indane 0.83 0.62 0.00 0.17 4.59 278.15 3.72

Naphthalene 1.34 0.92 0.00 0.20 5.16 278.15 5.02

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 278.15 3.23

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 278.15 4.23

1,3-Dichlorobenzene 0.85 0.73 0.00 0.02 4.41 278.15 4.03

1,4-Dibromobenzene 1.15 0.86 0.00 0.04 5.32 278.15 5.04

1,2,4-Trichlorobenzene 0.98 0.81 0.00 0.00 5.25 278.15 4.76

1,2,3,4-Tetrachlorobenzene 1.18 0.92 0.00 0.00 6.17 278.15 5.59

1,2,3,5-Tetrachlorobenzene 1.16 0.85 0.00 0.00 5.92 278.15 5.27

1,2,4,5-Tetrachlorobenzene 1.16 0.86 0.00 0.00 5.93 278.15 6.20

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 278.15 2.27

4-Fluorotoluene 0.49 0.55 0.00 0.14 3.37 278.15 2.53

4-Chlorobenzotrifluoride 0.53 0.58 0.00 0.01 3.73 278.15 3.24

308

Solute E S A B L T log KLHA

1,1,1,2-Tetrachloroethane 0.54 0.63 0.10 0.08 3.64 278.15 3.17

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 278.15 3.97

1-Chlorohexane 0.20 0.40 0.00 0.10 3.78 278.15 2.67

1-Chloroheptane 0.19 0.40 0.00 0.10 4.28 278.15 3.29

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 278.15 4.08

1-Bromopentane 0.36 0.40 0.00 0.12 3.61 278.15 1.97

Butanal (Butyraldehyde) 0.19 0.65 0.00 0.45 2.27 278.15 2.69

Pentanal 0.16 0.65 0.00 0.45 2.77 278.15 3.03

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 278.15 4.99

1-Cyanopropane (Butanenitrile) 0.19 0.90 0.00 0.36 2.55 278.15 3.57

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 278.15 5.38

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 278.15 5.20

2-Nitrotoluene 0.87 1.11 0.00 0.27 4.88 278.15 5.38

Benzonitrile 0.74 1.11 0.00 0.33 4.04 278.15 4.98

Acetonitrile 0.24 0.90 0.07 0.32 1.74 278.15 3.42

Nitromethane 0.31 0.95 0.06 0.31 1.89 278.15 3.46

Nitroethane 0.27 0.95 0.02 0.33 2.41 278.15 3.46

1-Nitropropane 0.24 0.95 0.00 0.31 2.89 278.15 3.57

2-Nitropropane 0.22 0.92 0.00 0.33 2.55 278.15 3.31

Thiophenol 1.00 0.80 0.09 0.16 4.11 278.15 4.46

2,4-Pentanedione 0.41 0.78 0.00 0.63 3.33 278.15 4.37

309

Solute E S A B L T log KLHA

2-Methoxyethanol 0.27 0.50 0.30 0.84 2.49 278.15 5.45

2-Ethoxyethanol 0.24 0.52 0.31 0.81 2.79 278.15 5.44

1,4-Dimethoxybenzene 0.81 1.00 0.00 0.50 5.04 278.15 5.59

n-Octane 0.00 0.00 0.00 0.00 3.68 288.15 2.16

n-Nonane 0.00 0.00 0.00 0.00 4.18 288.15 2.82

n-Decane 0.00 0.00 0.00 0.00 4.69 288.15 3.41

n-Undecane 0.00 0.00 0.00 0.00 5.19 288.15 3.91

n-Dodecane 0.00 0.00 0.00 0.00 5.70 288.15 4.38

n-Tridecane 0.00 0.00 0.00 0.00 6.20 288.15 4.88

n-Tetradecane 0.00 0.00 0.00 0.00 6.71 288.15 5.43

Cyclodecane 0.47 0.10 0.00 0.00 5.34 288.15 3.69

1-Octene 0.09 0.08 0.00 0.07 3.57 288.15 2.08

1-Nonene 0.09 0.08 0.00 0.07 4.07 288.15 2.69

1-Decene 0.09 0.08 0.00 0.07 4.55 288.15 3.28

1-Undecene 0.09 0.08 0.00 0.07 5.02 288.15 3.83

1-Dodecene 0.09 0.08 0.00 0.07 5.52 288.15 4.35

1-Tridecene 0.09 0.08 0.00 0.07 6.02 288.15 4.77

Ethanol 0.25 0.42 0.37 0.48 1.49 288.15 3.68

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 288.15 3.82

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 288.15 4.08

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 288.15 4.39

Hexan-1-ol 0.21 0.42 0.37 0.48 3.61 288.15 4.76

Heptan-1-ol 0.21 0.42 0.37 0.48 4.12 288.15 5.18

310

Solute E S A B L T log KLHA

Octan-1-ol 0.20 0.42 0.37 0.48 4.62 288.15 5.63

Nonan-1-ol 0.19 0.42 0.37 0.48 5.12 288.15 6.14

Decan-1-ol 0.19 0.42 0.37 0.48 5.63 288.15 6.43

Undecan-1-ol 0.18 0.42 0.37 0.48 6.13 288.15 6.59

Propan-2-ol 0.21 0.36 0.33 0.56 1.76 288.15 3.56

2-Methylpropan-1-ol 0.22 0.39 0.37 0.48 2.41 288.15 3.82

2-Methylpropan-2-ol 0.28 0.30 0.31 0.60 1.96 288.15 3.60

3-Methylbutan-1-ol 0.19 0.39 0.37 0.48 3.01 288.15 4.23

2-Ethyl-1-hexanol 0.21 0.39 0.37 0.48 4.43 288.15 5.38

Benzyl alcohol 0.80 0.87 0.39 0.56 4.22 288.15 6.10

1-Naphthol 1.52 1.05 0.60 0.37 6.13 288.15 8.20

Cyclopentanol 0.43 0.54 0.32 0.56 3.24 288.15 4.56

Cyclohexanol 0.46 0.54 0.32 0.57 3.76 288.15 4.92

2,2,2-Trifluoroethanol 0.02 0.60 0.57 0.25 1.22 288.15 3.42

1,1,1,3,3,3-Hexafluoropropan-2-ol

-0.24 0.55 0.77 0.10 1.39 288.15 3.88

Phenol 0.81 0.89 0.60 0.30 3.77 288.15 6.00

o-Cresol (2-Methylphenol) 0.84 0.86 0.52 0.30 4.22 288.15 5.96

m-Cresol (3-Methylphenol) 0.82 0.88 0.57 0.34 4.31 288.15 6.50

p-Cresol (4-Methylphenol) 0.82 0.87 0.57 0.31 4.31 288.15 6.48

2-Chlorophenol 0.85 0.88 0.32 0.31 4.18 288.15 5.44

4-Chlorophenol 0.92 1.08 0.67 0.20 4.78 288.15 7.19

311

Solute E S A B L T log KLHA

2,3-Dichlorophenol 0.90 0.94 0.48 0.20 4.99 288.15 6.36

2,6-Dichlorophenol 0.90 0.90 0.38 0.24 5.09 288.15 5.87

2,4,5-Trichlorophenol 1.07 0.92 0.73 0.10 5.73 288.15 8.08

2,4,6-Trichlorophenol 1.01 1.01 0.82 0.08 5.66 288.15 8.20

2-Propanone 0.18 0.70 0.04 0.49 1.70 288.15 2.68

2-Butanone 0.17 0.70 0.00 0.51 2.29 288.15 2.85

2-Pentanone 0.14 0.68 0.00 0.51 2.76 288.15 3.28

2-Hexanone 0.14 0.68 0.00 0.51 3.29 288.15 3.49

2-Heptanone 0.12 0.68 0.00 0.51 3.76 288.15 3.92

2-Octanone 0.11 0.68 0.00 0.51 4.26 288.15 4.29

2-Nonanone 0.12 0.68 0.00 0.51 4.74 288.15 4.81

2-Decanone 0.11 0.68 0.00 0.51 5.25 288.15 5.27

2-Undecanone 0.10 0.68 0.00 0.51 5.73 288.15 5.67

3-Methylbutan-2-one 0.13 0.65 0.00 0.51 2.69 288.15 3.08

4-Methylpentan-2-one 0.11 0.65 0.00 0.51 3.09 288.15 3.31

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 288.15 4.05

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 288.15 4.29

Cycloheptanone 0.44 0.86 0.00 0.56 4.38 288.15 4.75

Acetophenone 0.82 1.01 0.00 0.48 4.50 288.15 5.22

Methyl acetate 0.14 0.64 0.00 0.45 1.91 288.15 2.50

Ethyl acetate 0.11 0.62 0.00 0.45 2.31 288.15 2.39

n-Propyl acetate 0.09 0.60 0.00 0.45 2.82 288.15 2.85

n-Butyl acetate 0.07 0.60 0.00 0.45 3.35 288.15 3.28

Isobutyl acetate 0.05 0.57 0.00 0.47 3.16 288.15 3.40

312

Solute E S A B L T log KLHA

n-Pentyl acetate 0.07 0.60 0.00 0.45 3.84 288.15 3.72

Methyl benzoate 0.73 0.85 0.00 0.46 4.70 288.15 5.01

Benzyl acetate 0.80 1.06 0.00 0.65 5.01 288.15 5.32

2-Phenylethyl acetate 0.79 1.10 0.00 0.50 5.36 288.15 5.74

Di-n-butyl ether 0.00 0.25 0.00 0.45 3.92 288.15 3.22

Di-n-pentyl ether 0.00 0.25 0.00 0.45 4.88 288.15 4.23

Methyl tert-butyl ether (MTBE) 0.02 0.21 0.00 0.59 2.38 288.15 1.94

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 288.15 2.70

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 288.15 3.82

Benzofuran 0.89 0.83 0.00 0.15 4.36 288.15 4.09

Dibenzofuran 1.41 1.02 0.00 0.17 6.72 288.15 5.80

Methyl phenyl ether (Anisole) 0.71 0.75 0.00 0.29 3.89 288.15 3.72

Benzene 0.61 0.52 0.00 0.14 2.79 288.15 2.18

Toluene 0.60 0.52 0.00 0.14 3.33 288.15 2.29

p-Xylene 0.61 0.52 0.00 0.16 3.84 288.15 2.88

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 288.15 2.79

n-Propylbenzene 0.60 0.50 0.00 0.15 4.23 288.15 3.10

n-Butylbenzene 0.60 0.51 0.00 0.15 4.73 288.15 3.53

n-Pentylbenzene 0.59 0.51 0.00 0.15 5.23 288.15 4.03

n-Hexylbenzene 0.59 0.50 0.00 0.15 5.72 288.15 4.53

1,2,4-Trimethylbenzene 0.68 0.56 0.00 0.19 4.44 288.15 3.33

1,3,5- 0.65 0.52 0.00 0.19 4.34 288.15 3.05

313

Solute E S A B L T log KLHA

Trimethylbenzene

Styrene 0.85 0.65 0.00 0.16 3.86 288.15 3.34

Indane 0.83 0.62 0.00 0.17 4.59 288.15 3.49

Naphthalene 1.34 0.92 0.00 0.20 5.16 288.15 4.66

1-Methylnaphthalene 1.34 0.94 0.00 0.22 5.80 288.15 5.48

Acenaphthene 1.60 1.05 0.00 0.22 6.47 288.15 5.75

Anthracene 2.29 1.34 0.00 0.28 7.57 288.15 7.29

Phenanthrene 2.06 1.29 0.00 0.29 7.63 288.15 7.17

Biphenyl 1.36 0.99 0.00 0.26 6.01 288.15 5.58

p-Terphenyl 2.04 1.48 0.00 0.30 9.69 288.15 9.49

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 288.15 3.05

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 288.15 4.01

1,3-Dichlorobenzene 0.85 0.73 0.00 0.02 4.41 288.15 3.81

1,4-Dichlorobenzene 0.83 0.75 0.00 0.02 4.44 288.15 3.87

1,4-Dibromobenzene 1.15 0.86 0.00 0.04 5.32 288.15 4.69

1,2,4-Trichlorobenzene 0.98 0.81 0.00 0.00 5.25 288.15 4.52

1,2,3,4-Tetrachlorobenzene 1.18 0.92 0.00 0.00 6.17 288.15 5.36

1,2,3,5-Tetrachlorobenzene 1.16 0.85 0.00 0.00 5.92 288.15 5.14

1,2,4,5-Tetrachlorobenzene 1.16 0.86 0.00 0.00 5.93 288.15 5.79

Pentachlorobenzene 1.33 0.92 0.06 0.00 6.63 288.15 6.05

Hexachlorobenzene 1.49 0.99 0.00 0.00 7.62 288.15 6.50

Fluorobenzene 0.48 0.57 0.00 0.10 2.79 288.15 2.21

314

Solute E S A B L T log KLHA

Bromobenzene 0.88 0.73 0.00 0.09 4.04 288.15 3.54

Iodobenzene 1.19 0.82 0.00 0.12 4.50 288.15 4.03

4-Fluorotoluene 0.49 0.55 0.00 0.14 3.37 288.15 2.60

4-Chlorobenzotrifluoride 0.53 0.58 0.00 0.01 3.73 288.15 3.00

1,1,1,2-Tetrachloroethane 0.54 0.63 0.10 0.08 3.64 288.15 3.01

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 288.15 3.70

1-Chlorohexane 0.20 0.40 0.00 0.10 3.78 288.15 2.50

1-Chloroheptane 0.19 0.40 0.00 0.10 4.28 288.15 3.10

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 288.15 3.82

1-Bromopentane 0.36 0.40 0.00 0.12 3.61 288.15 2.32

Butanal (Butyraldehyde) 0.19 0.65 0.00 0.45 2.27 288.15 2.41

Pentanal 0.16 0.65 0.00 0.45 2.77 288.15 2.59

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 288.15 4.70

1-Cyanopropane (Butanenitrile) 0.19 0.90 0.00 0.36 2.55 288.15 3.44

Aniline 0.96 0.96 0.26 0.41 3.93 288.15 5.81

o-Toluidine (2-Methylaniline) 0.97 0.92 0.23 0.45 4.44 288.15 5.82

p-Toluidine (4-Methylaniline) 0.92 0.95 0.23 0.45 4.45 288.15 6.63

2,6-Dimethylaniline 0.97 0.90 0.05 0.59 5.03 288.15 5.76

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 288.15 5.12

4-Iodoaniline 1.53 1.28 0.32 0.40 5.70 288.15 7.10

315

Solute E S A B L T log KLHA

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 288.15 5.02

2-Nitrotoluene 0.87 1.11 0.00 0.27 4.88 288.15 5.12

2-Chloronitrobenzene 1.02 1.24 0.00 0.24 5.24 288.15 5.59

Benzonitrile 0.74 1.11 0.00 0.33 4.04 288.15 4.60

Acetonitrile 0.24 0.90 0.07 0.32 1.74 288.15 3.16

Nitromethane 0.31 0.95 0.06 0.31 1.89 288.15 3.27

Nitroethane 0.27 0.95 0.02 0.33 2.41 288.15 3.29

1-Nitropropane 0.24 0.95 0.00 0.31 2.89 288.15 3.32

2-Nitropropane 0.22 0.92 0.00 0.33 2.55 288.15 3.02

Pyridine 0.63 0.84 0.00 0.52 3.02 288.15 3.36

2-Methylpyrazine 0.63 0.90 0.00 0.64 3.25 288.15 4.99

Methylamine 0.25 0.35 0.16 0.58 1.30 288.15 3.34

N,N-Dimethylformamide 0.37 1.31 0.00 0.74 3.17 288.15 5.78

N,N-Dimethylacetamide 0.36 1.33 0.00 0.78 3.72 288.15 6.31

Indole (1H-Indole) 1.20 1.12 0.44 0.22 5.51 288.15 6.48

Quinoline 1.27 0.97 0.00 0.54 5.46 288.15 6.25

Propanoic acid 0.23 0.65 0.61 0.44 2.28 288.15 5.51

Butanoic acid 0.21 0.64 0.61 0.45 2.75 288.15 5.73

Pentanoic acid 0.21 0.60 0.60 0.45 3.38 288.15 6.17

3-Methylbutanoic acid 0.21 0.60 0.60 0.45 3.38 288.15 5.77

1,2-Dinitrobenzene 1.17 1.70 0.00 0.38 5.91 288.15 7.08

1,4-Dinitrobenzene 1.13 1.63 0.00 0.46 5.80 288.15 7.00

316

Solute E S A B L T log KLHA

Diethyl phthalate 0.73 1.40 0.00 0.86 6.80 288.15 7.68

Triethylphosphate 0.00 1.00 0.00 1.06 4.75 288.15 6.15

Thiophene 0.69 0.56 0.00 0.15 2.82 288.15 2.55

Dimethylsulfoxide 0.52 1.72 0.00 0.97 3.46 288.15 6.03

2,4-Pentanedione 0.41 0.78 0.00 0.63 3.33 288.15 4.14

Lindane (gamma-HCH) 1.45 0.91 0.00 0.68 7.47 288.15 7.27

2-Methoxyethanol 0.27 0.50 0.30 0.84 2.49 288.15 5.00

2-Ethoxyethanol 0.24 0.52 0.31 0.81 2.79 288.15 4.94

2-Nitroaniline 1.18 1.37 0.30 0.36 5.63 288.15 7.03

1,4-Dimethoxybenzene 0.81 1.00 0.00 0.50 5.04 288.15 5.42

3-Hydroxybenzonitrile 0.93 1.55 0.77 0.28 5.18 288.15 8.30

4-Aminobenzonitrile 1.09 1.78 0.40 0.50 5.64 288.15 8.03

n-Nonane 0.00 0.00 0.00 0.00 4.18 298.15 2.81

n-Decane 0.00 0.00 0.00 0.00 4.69 298.15 3.06

n-Undecane 0.00 0.00 0.00 0.00 5.19 298.15 3.57

n-Dodecane 0.00 0.00 0.00 0.00 5.70 298.15 4.04

n-Tridecane 0.00 0.00 0.00 0.00 6.20 298.15 4.56

n-Tetradecane 0.00 0.00 0.00 0.00 6.71 298.15 5.07

Cyclodecane 0.47 0.10 0.00 0.00 5.34 298.15 3.42

1-Nonene 0.09 0.08 0.00 0.07 4.07 298.15 2.81

1-Decene 0.09 0.08 0.00 0.07 4.55 298.15 3.02

1-Undecene 0.09 0.08 0.00 0.07 5.02 298.15 3.52

317

Solute E S A B L T log KLHA

1-Dodecene 0.09 0.08 0.00 0.07 5.52 298.15 4.05

1-Tridecene 0.09 0.08 0.00 0.07 6.02 298.15 4.49

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 298.15 3.72

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 298.15 4.04

Hexan-1-ol 0.21 0.42 0.37 0.48 3.61 298.15 4.41

Heptan-1-ol 0.21 0.42 0.37 0.48 4.12 298.15 4.75

Octan-1-ol 0.20 0.42 0.37 0.48 4.62 298.15 5.21

Nonan-1-ol 0.19 0.42 0.37 0.48 5.12 298.15 5.60

Propan-2-ol 0.21 0.36 0.33 0.56 1.76 298.15 3.29

2-Methylpropan-1-ol 0.22 0.39 0.37 0.48 2.41 298.15 3.42

2-Methylpropan-2-ol 0.28 0.30 0.31 0.60 1.96 298.15 3.43

3-Methylbutan-1-ol 0.19 0.39 0.37 0.48 3.01 298.15 3.89

2-Ethyl-1-hexanol 0.21 0.39 0.37 0.48 4.43 298.15 4.92

Benzyl alcohol 0.80 0.87 0.39 0.56 4.22 298.15 5.70

Cyclopentanol 0.43 0.54 0.32 0.56 3.24 298.15 4.21

Cyclohexanol 0.46 0.54 0.32 0.57 3.76 298.15 4.62

2,2,2-Trifluoroethanol 0.02 0.60 0.57 0.25 1.22 298.15 3.16

1,1,1,3,3,3-Hexafluoropropan-2-ol

-0.24 0.55 0.77 0.10 1.39 298.15 3.52

Phenol 0.81 0.89 0.60 0.30 3.77 298.15 5.62

o-Cresol (2-Methylphenol) 0.84 0.86 0.52 0.30 4.22 298.15 5.50

m-Cresol (3-Methylphenol) 0.82 0.88 0.57 0.34 4.31 298.15 5.84

318

Solute E S A B L T log KLHA

p-Cresol (4-Methylphenol) 0.82 0.87 0.57 0.31 4.31 298.15 5.88

2-Chlorophenol 0.85 0.88 0.32 0.31 4.18 298.15 5.13

2,3-Dichlorophenol 0.90 0.94 0.48 0.20 4.99 298.15 5.87

2,6-Dichlorophenol 0.90 0.90 0.38 0.24 5.09 298.15 5.67

2-Butanone 0.17 0.70 0.00 0.51 2.29 298.15 2.88

2-Pentanone 0.14 0.68 0.00 0.51 2.76 298.15 3.02

2-Heptanone 0.12 0.68 0.00 0.51 3.76 298.15 3.63

2-Octanone 0.11 0.68 0.00 0.51 4.26 298.15 3.97

2-Nonanone 0.12 0.68 0.00 0.51 4.74 298.15 4.40

2-Decanone 0.11 0.68 0.00 0.51 5.25 298.15 4.83

2-Undecanone 0.10 0.68 0.00 0.51 5.73 298.15 5.29

3-Methylbutan-2-one 0.13 0.65 0.00 0.51 2.69 298.15 2.91

4-Methylpentan-2-one 0.11 0.65 0.00 0.51 3.09 298.15 3.09

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 298.15 3.80

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 298.15 4.02

Cycloheptanone 0.44 0.86 0.00 0.56 4.38 298.15 4.46

Acetophenone 0.82 1.01 0.00 0.48 4.50 298.15 4.83

n-Propyl acetate 0.09 0.60 0.00 0.45 2.82 298.15 2.99

n-Butyl acetate 0.07 0.60 0.00 0.45 3.35 298.15 3.02

Isobutyl acetate 0.05 0.57 0.00 0.47 3.16 298.15 3.12

n-Pentyl acetate 0.07 0.60 0.00 0.45 3.84 298.15 3.46

Methyl benzoate 0.73 0.85 0.00 0.46 4.70 298.15 4.62

Benzyl acetate 0.80 1.06 0.00 0.65 5.01 298.15 5.00

319

Solute E S A B L T log KLHA

2-Phenylethyl acetate 0.79 1.10 0.00 0.50 5.36 298.15 5.27

Di-n-butyl ether 0.00 0.25 0.00 0.45 3.92 298.15 2.95

Di-n-pentyl ether 0.00 0.25 0.00 0.45 4.88 298.15 3.86

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 298.15 3.64

Benzofuran 0.89 0.83 0.00 0.15 4.36 298.15 3.79

Dibenzofuran 1.41 1.02 0.00 0.17 6.72 298.15 5.56

Methyl phenyl ether (Anisole) 0.71 0.75 0.00 0.29 3.89 298.15 3.52

Ethylbenzene 0.61 0.51 0.00 0.15 3.78 298.15 2.58

n-Propylbenzene 0.60 0.50 0.00 0.15 4.23 298.15 2.95

n-Butylbenzene 0.60 0.51 0.00 0.15 4.73 298.15 3.22

n-Pentylbenzene 0.59 0.51 0.00 0.15 5.23 298.15 3.63

n-Hexylbenzene 0.59 0.50 0.00 0.15 5.72 298.15 4.26

1,3,5-Trimethylbenzene 0.65 0.52 0.00 0.19 4.34 298.15 2.83

Indane 0.83 0.62 0.00 0.17 4.59 298.15 3.24

Naphthalene 1.34 0.92 0.00 0.20 5.16 298.15 4.48

1-Methylnaphthalene 1.34 0.94 0.00 0.22 5.80 298.15 4.95

Acenaphthene 1.60 1.05 0.00 0.22 6.47 298.15 5.30

Biphenyl 1.36 0.99 0.00 0.26 6.01 298.15 5.18

Chlorobenzene 0.72 0.65 0.00 0.07 3.66 298.15 2.91

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 298.15 3.61

1,3-Dichlorobenzene 0.85 0.73 0.00 0.02 4.41 298.15 3.46

1,4-Dichlorobenzene 0.83 0.75 0.00 0.02 4.44 298.15 3.54

320

Solute E S A B L T log KLHA

1,4-Dibromobenzene 1.15 0.86 0.00 0.04 5.32 298.15 4.38

1,2,4-Trichlorobenzene 0.98 0.81 0.00 0.00 5.25 298.15 4.24

1,2,3,4-Tetrachlorobenzene 1.18 0.92 0.00 0.00 6.17 298.15 4.94

1,2,3,5-Tetrachlorobenzene 1.16 0.85 0.00 0.00 5.92 298.15 4.78

1,2,4,5-Tetrachlorobenzene 1.16 0.86 0.00 0.00 5.93 298.15 5.40

Hexachlorobenzene 1.49 0.99 0.00 0.00 7.62 298.15 6.21

Bromobenzene 0.88 0.73 0.00 0.09 4.04 298.15 3.27

Iodobenzene 1.19 0.82 0.00 0.12 4.50 298.15 3.72

4-Fluorotoluene 0.49 0.55 0.00 0.14 3.37 298.15 2.35

4-Chlorobenzotrifluoride 0.53 0.58 0.00 0.01 3.73 298.15 2.76

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 298.15 3.36

1-Chloroheptane 0.19 0.40 0.00 0.10 4.28 298.15 2.90

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 298.15 3.47

Butanal (Butyraldehyde) 0.19 0.65 0.00 0.45 2.27 298.15 2.27

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 298.15 4.47

1-Cyanopropane (Butanenitrile) 0.19 0.90 0.00 0.36 2.55 298.15 3.16

Aniline 0.96 0.96 0.26 0.41 3.93 298.15 5.37

o-Toluidine (2-Methylaniline) 0.97 0.92 0.23 0.45 4.44 298.15 5.45

p-Toluidine (4- 0.92 0.95 0.23 0.45 4.45 298.15 6.03

321

Solute E S A B L T log KLHA

Methylaniline)

2,6-Dimethylaniline 0.97 0.90 0.05 0.59 5.03 298.15 5.41

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 298.15 4.71

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 298.15 4.71

2-Nitrotoluene 0.87 1.11 0.00 0.27 4.88 298.15 4.73

2-Chloronitrobenzene 1.02 1.24 0.00 0.24 5.24 298.15 5.38

Benzonitrile 0.74 1.11 0.00 0.33 4.04 298.15 4.41

Acetonitrile 0.24 0.90 0.07 0.32 1.74 298.15 2.99

Nitromethane 0.31 0.95 0.06 0.31 1.89 298.15 3.03

1-Nitropropane 0.24 0.95 0.00 0.31 2.89 298.15 3.03

2-Methylpyrazine 0.63 0.90 0.00 0.64 3.25 298.15 4.74

N,N-Dimethylformamide 0.37 1.31 0.00 0.74 3.17 298.15 5.51

N,N-Dimethylacetamide 0.36 1.33 0.00 0.78 3.72 298.15 5.98

Quinoline 1.27 0.97 0.00 0.54 5.46 298.15 5.84

Propanoic acid 0.23 0.65 0.61 0.44 2.28 298.15 5.40

Butanoic acid 0.21 0.64 0.61 0.45 2.75 298.15 5.44

Pentanoic acid 0.21 0.60 0.60 0.45 3.38 298.15 5.72

Triethylphosphate 0.00 1.00 0.00 1.06 4.75 298.15 5.97

Thiophenol 1.00 0.80 0.09 0.16 4.11 298.15 3.83

Dimethylsulfoxide 0.52 1.72 0.00 0.97 3.46 298.15 5.61

2,4-Pentanedione 0.41 0.78 0.00 0.63 3.33 298.15 3.97

2-Methoxyethanol 0.27 0.50 0.30 0.84 2.49 298.15 4.71

2-Ethoxyethanol 0.24 0.52 0.31 0.81 2.79 298.15 4.68

322

Solute E S A B L T log KLHA

1,4-Dimethoxybenzene 0.81 1.00 0.00 0.50 5.04 298.15 5.06

n-Decane 0.00 0.00 0.00 0.00 4.69 308.15 2.89

n-Undecane 0.00 0.00 0.00 0.00 5.19 308.15 3.07

n-Dodecane 0.00 0.00 0.00 0.00 5.70 308.15 3.61

n-Tridecane 0.00 0.00 0.00 0.00 6.20 308.15 4.23

n-Tetradecane 0.00 0.00 0.00 0.00 6.71 308.15 4.51

Cyclodecane 0.47 0.10 0.00 0.00 5.34 308.15 3.08

1-Decene 0.09 0.08 0.00 0.07 4.55 308.15 2.81

1-Undecene 0.09 0.08 0.00 0.07 5.02 308.15 3.24

1-Dodecene 0.09 0.08 0.00 0.07 5.52 308.15 3.62

1-Tridecene 0.09 0.08 0.00 0.07 6.02 308.15 4.06

Ethanol 0.25 0.42 0.37 0.48 1.49 308.15 3.29

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 308.15 3.36

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 308.15 3.37

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 308.15 3.67

Hexan-1-ol 0.21 0.42 0.37 0.48 3.61 308.15 3.97

Heptan-1-ol 0.21 0.42 0.37 0.48 4.12 308.15 4.35

Octan-1-ol 0.20 0.42 0.37 0.48 4.62 308.15 4.74

Nonan-1-ol 0.19 0.42 0.37 0.48 5.12 308.15 5.16

Decan-1-ol 0.19 0.42 0.37 0.48 5.63 308.15 5.58

Propan-2-ol 0.21 0.36 0.33 0.56 1.76 308.15 3.02

2-Methylpropan-1-ol 0.22 0.39 0.37 0.48 2.41 308.15 3.12

2-Methylpropan-2-ol 0.28 0.30 0.31 0.60 1.96 308.15 3.12

323

Solute E S A B L T log KLHA

3-Methylbutan-1-ol 0.19 0.39 0.37 0.48 3.01 308.15 3.51

2-Ethyl-1-hexanol 0.21 0.39 0.37 0.48 4.43 308.15 4.50

Benzyl alcohol 0.80 0.87 0.39 0.56 4.22 308.15 5.31

1-Naphthol 1.52 1.05 0.60 0.37 6.13 308.15 7.15

Cyclopentanol 0.43 0.54 0.32 0.56 3.24 308.15 3.91

Cyclohexanol 0.46 0.54 0.32 0.57 3.76 308.15 4.26

2,2,2-Trifluoroethanol 0.02 0.60 0.57 0.25 1.22 308.15 2.97

1,1,1,3,3,3-Hexafluoropropan-2-ol

-0.24 0.55 0.77 0.10 1.39 308.15 3.18

o-Cresol (2-Methylphenol) 0.84 0.86 0.52 0.30 4.22 308.15 5.16

m-Cresol (3-Methylphenol) 0.82 0.88 0.57 0.34 4.31 308.15 5.50

p-Cresol (4-Methylphenol) 0.82 0.87 0.57 0.31 4.31 308.15 5.53

2-Chlorophenol 0.85 0.88 0.32 0.31 4.18 308.15 4.70

4-Chlorophenol 0.92 1.08 0.67 0.20 4.78 308.15 6.20

2,3-Dichlorophenol 0.90 0.94 0.48 0.20 4.99 308.15 5.55

2,6-Dichlorophenol 0.90 0.90 0.38 0.24 5.09 308.15 5.34

2,4,5-Trichlorophenol 1.07 0.92 0.73 0.10 5.73 308.15 6.75

2-Pentanone 0.14 0.68 0.00 0.51 2.76 308.15 2.73

2-Hexanone 0.14 0.68 0.00 0.51 3.29 308.15 2.91

2-Heptanone 0.12 0.68 0.00 0.51 3.76 308.15 3.27

2-Octanone 0.11 0.68 0.00 0.51 4.26 308.15 3.59

2-Nonanone 0.12 0.68 0.00 0.51 4.74 308.15 3.98

324

Solute E S A B L T log KLHA

2-Undecanone 0.10 0.68 0.00 0.51 5.73 308.15 4.79

3-Methylbutan-2-one 0.13 0.65 0.00 0.51 2.69 308.15 2.71

4-Methylpentan-2-one 0.11 0.65 0.00 0.51 3.09 308.15 2.82

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 308.15 3.51

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 308.15 3.72

Cycloheptanone 0.44 0.86 0.00 0.56 4.38 308.15 4.13

Acetophenone 0.82 1.01 0.00 0.48 4.50 308.15 4.50

n-Pentyl acetate 0.07 0.60 0.00 0.45 3.84 308.15 3.03

Methyl benzoate 0.73 0.85 0.00 0.46 4.70 308.15 4.23

Benzyl acetate 0.80 1.06 0.00 0.65 5.01 308.15 4.63

2-Phenylethyl acetate 0.79 1.10 0.00 0.50 5.36 308.15 4.86

Di-n-pentyl ether 0.00 0.25 0.00 0.45 4.88 308.15 3.52

Tetrahydrofuran 0.29 0.52 0.00 0.48 2.64 308.15 2.57

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 308.15 3.38

Benzofuran 0.89 0.83 0.00 0.15 4.36 308.15 3.49

Dibenzofuran 1.41 1.02 0.00 0.17 6.72 308.15 5.24

n-Propylbenzene 0.60 0.50 0.00 0.15 4.23 308.15 2.52

n-Butylbenzene 0.60 0.51 0.00 0.15 4.73 308.15 2.94

n-Pentylbenzene 0.59 0.51 0.00 0.15 5.23 308.15 3.33

n-Hexylbenzene 0.59 0.50 0.00 0.15 5.72 308.15 3.78

1,2,4-Trimethylbenzene 0.68 0.56 0.00 0.19 4.44 308.15 2.67

1,3,5-Trimethylbenzene 0.65 0.52 0.00 0.19 4.34 308.15 2.52

325

Solute E S A B L T log KLHA

Styrene 0.85 0.65 0.00 0.16 3.86 308.15 2.92

Indane 0.83 0.62 0.00 0.17 4.59 308.15 3.14

Naphthalene 1.34 0.92 0.00 0.20 5.16 308.15 4.12

1-Methylnaphthalene 1.34 0.94 0.00 0.22 5.80 308.15 4.56

Acenaphthene 1.60 1.05 0.00 0.22 6.47 308.15 5.08

Anthracene 2.29 1.34 0.00 0.28 7.57 308.15 6.28

Phenanthrene 2.06 1.29 0.00 0.29 7.63 308.15 6.23

Biphenyl 1.36 0.99 0.00 0.26 6.01 308.15 4.89

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 308.15 3.39

1,3-Dichlorobenzene 0.85 0.73 0.00 0.02 4.41 308.15 3.22

1,4-Dichlorobenzene 0.83 0.75 0.00 0.02 4.44 308.15 3.34

1,4-Dibromobenzene 1.15 0.86 0.00 0.04 5.32 308.15 4.09

1,2,4-Trichlorobenzene 0.98 0.81 0.00 0.00 5.25 308.15 3.90

1,2,3,4-Tetrachlorobenzene 1.18 0.92 0.00 0.00 6.17 308.15 4.59

1,2,3,5-Tetrachlorobenzene 1.16 0.85 0.00 0.00 5.92 308.15 4.50

Pentachlorobenzene 1.33 0.92 0.06 0.00 6.63 308.15 5.15

Bromobenzene 0.88 0.73 0.00 0.09 4.04 308.15 3.07

Iodobenzene 1.19 0.82 0.00 0.12 4.50 308.15 3.33

1,1,1,2-Tetrachloroethane 0.54 0.63 0.10 0.08 3.64 308.15 2.70

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 308.15 2.99

1-Chloroheptane 0.19 0.40 0.00 0.10 4.28 308.15 2.63

326

Solute E S A B L T log KLHA

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 308.15 3.16

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 308.15 4.09

Aniline 0.96 0.96 0.26 0.41 3.93 308.15 5.05

o-Toluidine (2-Methylaniline) 0.97 0.92 0.23 0.45 4.44 308.15 5.06

p-Toluidine (4-Methylaniline) 0.92 0.95 0.23 0.45 4.45 308.15 5.63

2,6-Dimethylaniline 0.97 0.90 0.05 0.59 5.03 308.15 4.97

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 308.15 4.23

4-Iodoaniline 1.53 1.28 0.32 0.40 5.70 308.15 6.29

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 308.15 4.35

2-Nitrotoluene 0.87 1.11 0.00 0.27 4.88 308.15 4.48

2-Chloronitrobenzene 1.02 1.24 0.00 0.24 5.24 308.15 5.00

Benzonitrile 0.74 1.11 0.00 0.33 4.04 308.15 4.10

Acetonitrile 0.24 0.90 0.07 0.32 1.74 308.15 2.82

Nitromethane 0.31 0.95 0.06 0.31 1.89 308.15 2.88

Nitroethane 0.27 0.95 0.02 0.33 2.41 308.15 2.81

1-Nitropropane 0.24 0.95 0.00 0.31 2.89 308.15 2.79

2-Nitropropane 0.22 0.92 0.00 0.33 2.55 308.15 2.33

2-Methylpyrazine 0.63 0.90 0.00 0.64 3.25 308.15 4.41

N,N-Dimethylformamide 0.37 1.31 0.00 0.74 3.17 308.15 5.29

N,N-Dimethylacetamide 0.36 1.33 0.00 0.78 3.72 308.15 5.65

Indole (1H-Indole) 1.20 1.12 0.44 0.22 5.51 308.15 5.68

327

Solute E S A B L T log KLHA

Quinoline 1.27 0.97 0.00 0.54 5.46 308.15 5.57

Propanoic acid 0.23 0.65 0.61 0.44 2.28 308.15 5.09

Butanoic acid 0.21 0.64 0.61 0.45 2.75 308.15 5.21

Pentanoic acid 0.21 0.60 0.60 0.45 3.38 308.15 5.39

3-Methylbutanoic acid 0.21 0.60 0.60 0.45 3.38 308.15 5.20

1,2-Dinitrobenzene 1.17 1.70 0.00 0.38 5.91 308.15 5.97

1,4-Dinitrobenzene 1.13 1.63 0.00 0.46 5.80 308.15 6.28

Dimethyl phthalate 0.78 1.41 0.00 0.84 6.05 308.15 5.87

Triethylphosphate 0.00 1.00 0.00 1.06 4.75 308.15 5.41

Dimethylsulfoxide 0.52 1.72 0.00 0.97 3.46 308.15 5.00

2,4-Pentanedione 0.41 0.78 0.00 0.63 3.33 308.15 3.74

1,2-Ethanediol 0.40 0.90 0.58 0.78 2.66 308.15 6.50

Lindane (gamma-HCH) 1.45 0.91 0.00 0.68 7.47 308.15 6.27

2-Methoxyethanol 0.27 0.50 0.30 0.84 2.49 308.15 4.46

2-Ethoxyethanol 0.24 0.52 0.31 0.81 2.79 308.15 4.39

2-Nitroaniline 1.18 1.37 0.30 0.36 5.63 308.15 5.97

1,4-Dimethoxybenzene 0.81 1.00 0.00 0.50 5.04 308.15 4.72

4-Aminobenzonitrile 1.09 1.78 0.40 0.50 5.64 308.15 7.22

n-Undecane 0.00 0.00 0.00 0.00 5.19 318.15 2.88

n-Tridecane 0.00 0.00 0.00 0.00 6.20 318.15 3.88

n-Tetradecane 0.00 0.00 0.00 0.00 6.71 318.15 4.17

1-Decene 0.09 0.08 0.00 0.07 4.55 318.15 2.59

328

Solute E S A B L T log KLHA

1-Dodecene 0.09 0.08 0.00 0.07 5.52 318.15 3.27

1-Tridecene 0.09 0.08 0.00 0.07 6.02 318.15 3.68

Ethanol 0.25 0.42 0.37 0.48 1.49 318.15 3.05

Propan-1-ol 0.24 0.42 0.37 0.48 2.03 318.15 3.19

Butan-1-ol 0.22 0.42 0.37 0.48 2.60 318.15 3.16

Pentan-1-ol 0.22 0.42 0.37 0.48 3.11 318.15 3.40

Hexan-1-ol 0.21 0.42 0.37 0.48 3.61 318.15 3.71

Heptan-1-ol 0.21 0.42 0.37 0.48 4.12 318.15 4.12

Octan-1-ol 0.20 0.42 0.37 0.48 4.62 318.15 4.39

Nonan-1-ol 0.19 0.42 0.37 0.48 5.12 318.15 4.74

Decan-1-ol 0.19 0.42 0.37 0.48 5.63 318.15 5.10

2-Methylpropan-1-ol 0.22 0.39 0.37 0.48 2.41 318.15 2.81

3-Methylbutan-1-ol 0.19 0.39 0.37 0.48 3.01 318.15 3.19

2-Ethyl-1-hexanol 0.21 0.39 0.37 0.48 4.43 318.15 4.08

Benzyl alcohol 0.80 0.87 0.39 0.56 4.22 318.15 4.97

Cyclopentanol 0.43 0.54 0.32 0.56 3.24 318.15 3.67

Cyclohexanol 0.46 0.54 0.32 0.57 3.76 318.15 3.97

1,1,1,3,3,3-Hexafluoropropan-2-ol

-0.24 0.55 0.77 0.10 1.39 318.15 2.90

Phenol 0.81 0.89 0.60 0.30 3.77 318.15 4.85

o-Cresol (2-Methylphenol) 0.84 0.86 0.52 0.30 4.22 318.15 4.81

p-Cresol (4-Methylphenol) 0.82 0.87 0.57 0.31 4.31 318.15 5.14

329

Solute E S A B L T log KLHA

2-Chlorophenol 0.85 0.88 0.32 0.31 4.18 318.15 4.42

4-Chlorophenol 0.92 1.08 0.67 0.20 4.78 318.15 5.74

2,3-Dichlorophenol 0.90 0.94 0.48 0.20 4.99 318.15 5.32

2,6-Dichlorophenol 0.90 0.90 0.38 0.24 5.09 318.15 5.11

2,4,5-Trichlorophenol 1.07 0.92 0.73 0.10 5.73 318.15 6.06

2,4,6-Trichlorophenol 1.01 1.01 0.82 0.08 5.66 318.15 6.39

2-Pentanone 0.14 0.68 0.00 0.51 2.76 318.15 2.64

2-Heptanone 0.12 0.68 0.00 0.51 3.76 318.15 3.03

2-Octanone 0.11 0.68 0.00 0.51 4.26 318.15 3.37

2-Nonanone 0.12 0.68 0.00 0.51 4.74 318.15 3.74

2-Decanone 0.11 0.68 0.00 0.51 5.25 318.15 4.07

2-Undecanone 0.10 0.68 0.00 0.51 5.73 318.15 4.39

4-Methylpentan-2-one 0.11 0.65 0.00 0.51 3.09 318.15 2.65

Cyclopentanone 0.37 0.86 0.00 0.52 3.22 318.15 3.28

Cyclohexanone 0.40 0.86 0.00 0.56 3.79 318.15 3.45

Cycloheptanone 0.44 0.86 0.00 0.56 4.38 318.15 3.94

Acetophenone 0.82 1.01 0.00 0.48 4.50 318.15 4.19

n-Butyl acetate 0.07 0.60 0.00 0.45 3.35 318.15 2.52

Methyl benzoate 0.73 0.85 0.00 0.46 4.70 318.15 4.06

Benzyl acetate 0.80 1.06 0.00 0.65 5.01 318.15 4.40

2-Phenylethyl acetate 0.79 1.10 0.00 0.50 5.36 318.15 4.52

Di-n-butyl ether 0.00 0.25 0.00 0.45 3.92 318.15 2.42

1,4-Dioxane 0.33 0.75 0.00 0.64 2.89 318.15 3.15

Methyl phenyl ether 0.71 0.75 0.00 0.29 3.89 318.15 2.97

330

Solute E S A B L T log KLHA

(Anisole)

n-Hexylbenzene 0.59 0.50 0.00 0.15 5.72 318.15 3.43

1,2,4-Trimethylbenzene 0.68 0.56 0.00 0.19 4.44 318.15 2.50

1,3,5-Trimethylbenzene 0.65 0.52 0.00 0.19 4.34 318.15 2.38

Styrene 0.85 0.65 0.00 0.16 3.86 318.15 2.87

Indane 0.83 0.62 0.00 0.17 4.59 318.15 3.00

Naphthalene 1.34 0.92 0.00 0.20 5.16 318.15 3.75

1-Methylnaphthalene 1.34 0.94 0.00 0.22 5.80 318.15 4.13

Anthracene 2.29 1.34 0.00 0.28 7.57 318.15 5.97

Phenanthrene 2.06 1.29 0.00 0.29 7.63 318.15 5.82

Biphenyl 1.36 0.99 0.00 0.26 6.01 318.15 4.54

1,2-Dichlorobenzene 0.87 0.78 0.00 0.04 4.52 318.15 3.03

1,3-Dichlorobenzene 0.85 0.73 0.00 0.02 4.41 318.15 2.86

1,4-Dichlorobenzene 0.83 0.75 0.00 0.02 4.44 318.15 2.96

1,4-Dibromobenzene 1.15 0.86 0.00 0.04 5.32 318.15 3.73

1,2,4-Trichlorobenzene 0.98 0.81 0.00 0.00 5.25 318.15 3.56

Pentachlorobenzene 1.33 0.92 0.06 0.00 6.63 318.15 4.90

Hexachlorobenzene 1.49 0.99 0.00 0.00 7.62 318.15 5.32

Bromobenzene 0.88 0.73 0.00 0.09 4.04 318.15 2.80

1,1,1,2-Tetrachloroethane 0.54 0.63 0.10 0.08 3.64 318.15 2.62

1,1,2,2-Tetrachloroethane 0.60 0.76 0.16 0.12 3.80 318.15 2.76

331

Solute E S A B L T log KLHA

1-Chlorooctane 0.19 0.40 0.00 0.09 4.71 318.15 3.06

Benzaldehyde 0.82 1.00 0.00 0.39 4.01 318.15 3.90

1-Cyanopropane (Butanenitrile) 0.19 0.90 0.00 0.36 2.55 318.15 2.78

Aniline 0.96 0.96 0.26 0.41 3.93 318.15 4.66

o-Toluidine (2-Methylaniline) 0.97 0.92 0.23 0.45 4.44 318.15 4.76

p-Toluidine (4-Methylaniline) 0.92 0.95 0.23 0.45 4.45 318.15 5.18

2,6-Dimethylaniline 0.97 0.90 0.05 0.59 5.03 318.15 4.66

N,N-Dimethylaniline 0.96 0.81 0.00 0.41 4.70 318.15 3.98

4-Iodoaniline 1.53 1.28 0.32 0.40 5.70 318.15 6.01

Nitrobenzene 0.87 1.11 0.00 0.28 4.56 318.15 4.13

2-Nitrotoluene 0.87 1.11 0.00 0.27 4.88 318.15 4.24

2-Chloronitrobenzene 1.02 1.24 0.00 0.24 5.24 318.15 4.62

Benzonitrile 0.74 1.11 0.00 0.33 4.04 318.15 3.93

Nitromethane 0.31 0.95 0.06 0.31 1.89 318.15 2.62

Nitroethane 0.27 0.95 0.02 0.33 2.41 318.15 2.62

2-Methylpyrazine 0.63 0.90 0.00 0.64 3.25 318.15 4.16

N,N-Dimethylformamide 0.37 1.31 0.00 0.74 3.17 318.15 4.97

N,N-Dimethylacetamide 0.36 1.33 0.00 0.78 3.72 318.15 5.27

Indole (1H-Indole) 1.20 1.12 0.44 0.22 5.51 318.15 5.45

Quinoline 1.27 0.97 0.00 0.54 5.46 318.15 5.13

Propanoic acid 0.23 0.65 0.61 0.44 2.28 318.15 4.93

332

Solute E S A B L T log KLHA

Butanoic acid 0.21 0.64 0.61 0.45 2.75 318.15 5.02

Pentanoic acid 0.21 0.60 0.60 0.45 3.38 318.15 5.17

3-Methylbutanoic acid 0.21 0.60 0.60 0.45 3.38 318.15 4.90

1,2-Dinitrobenzene 1.17 1.70 0.00 0.38 5.91 318.15 5.49

1,4-Dinitrobenzene 1.13 1.63 0.00 0.46 5.80 318.15 5.91

Dimethyl phthalate 0.78 1.41 0.00 0.84 6.05 318.15 5.50

Triethylphosphate 0.00 1.00 0.00 1.06 4.75 318.15 5.14

Dimethylsulfoxide 0.52 1.72 0.00 0.97 3.46 318.15 4.65

2,4-Pentanedione 0.41 0.78 0.00 0.63 3.33 318.15 3.55

1,2-Ethanediol 0.40 0.90 0.58 0.78 2.66 318.15 6.03

Lindane (gamma-HCH) 1.45 0.91 0.00 0.68 7.47 318.15 5.79

2-Methoxyethanol 0.27 0.50 0.30 0.84 2.49 318.15 4.16

2-Ethoxyethanol 0.24 0.52 0.31 0.81 2.79 318.15 4.06

2-Nitroaniline 1.18 1.37 0.30 0.36 5.63 318.15 5.57

1,4-Dimethoxybenzene 0.81 1.00 0.00 0.50 5.04 318.15 4.56

3-Hydroxybenzonitrile 0.93 1.55 0.77 0.28 5.18 318.15 7.26

4-Aminobenzonitrile 1.09 1.78 0.40 0.50 5.64 318.15 6.96

Undecan-1-ol 0.18 0.42 0.37 0.48 6.13 328.15 5.00

1-Naphthol 1.52 1.05 0.60 0.37 6.13 328.15 6.24

o-Cresol (2-Methylphenol) 0.84 0.86 0.52 0.30 4.22 328.15 4.52

m-Cresol (3-Methylphenol) 0.82 0.88 0.57 0.34 4.31 328.15 4.87

333

Solute E S A B L T log KLHA

p-Cresol (4-Methylphenol) 0.82 0.87 0.57 0.31 4.31 328.15 4.85

4-Chlorophenol 0.92 1.08 0.67 0.20 4.78 328.15 5.38

2,4,5-Trichlorophenol 1.07 0.92 0.73 0.10 5.73 328.15 5.33

2,4,6-Trichlorophenol 1.01 1.01 0.82 0.08 5.66 328.15 6.08

1-Methylnaphthalene 1.34 0.94 0.00 0.22 5.80 328.15 3.84

Anthracene 2.29 1.34 0.00 0.28 7.57 328.15 5.62

Phenanthrene 2.06 1.29 0.00 0.29 7.63 328.15 5.48

Biphenyl 1.36 0.99 0.00 0.26 6.01 328.15 4.05

p-Terphenyl 2.04 1.48 0.00 0.30 9.69 328.15 7.38

Hexachlorobenzene 1.49 0.99 0.00 0.00 7.62 328.15 4.52

Aniline 0.96 0.96 0.26 0.41 3.93 328.15 4.25

4-Iodoaniline 1.53 1.28 0.32 0.40 5.70 328.15 5.59

2-Chloronitrobenzene 1.02 1.24 0.00 0.24 5.24 328.15 4.32

2-Methylpyrazine 0.63 0.90 0.00 0.64 3.25 328.15 3.99

N,N-Dimethylformamide 0.37 1.31 0.00 0.74 3.17 328.15 4.89

Indole (1H-Indole) 1.20 1.12 0.44 0.22 5.51 328.15 4.94

Quinoline 1.27 0.97 0.00 0.54 5.46 328.15 4.85

3-Methylbutanoic acid 0.21 0.60 0.60 0.45 3.38 328.15 4.80

1,2-Dinitrobenzene 1.17 1.70 0.00 0.38 5.91 328.15 5.00

1,4-Dinitrobenzene 1.13 1.63 0.00 0.46 5.80 328.15 5.64

Dimethyl phthalate 0.78 1.41 0.00 0.84 6.05 328.15 5.24

Diethyl phthalate 0.73 1.40 0.00 0.86 6.80 328.15 6.11

334

Solute E S A B L T log KLHA

1,2-Ethanediol 0.40 0.90 0.58 0.78 2.66 328.15 5.71

Lindane (gamma-HCH) 1.45 0.91 0.00 0.68 7.47 328.15 5.38

2-Nitroaniline 1.18 1.37 0.30 0.36 5.63 328.15 5.05

3-Hydroxybenzonitrile 0.93 1.55 0.77 0.28 5.18 328.15 7.02

4-Aminobenzonitrile 1.09 1.78 0.40 0.50 5.64 328.15 6.69

Undecan-1-ol 0.18 0.42 0.37 0.48 6.13 338.15 4.73

1-Naphthol 1.52 1.05 0.60 0.37 6.13 338.15 5.79

4-Chlorophenol 0.92 1.08 0.67 0.20 4.78 338.15 5.10

2,4,6-Trichlorophenol 1.01 1.01 0.82 0.08 5.66 338.15 5.38

Anthracene 2.29 1.34 0.00 0.28 7.57 338.15 5.25

Phenanthrene 2.06 1.29 0.00 0.29 7.63 338.15 5.13

p-Terphenyl 2.04 1.48 0.00 0.30 9.69 338.15 6.93

Indole (1H-Indole) 1.20 1.12 0.44 0.22 5.51 338.15 4.74

Quinoline 1.27 0.97 0.00 0.54 5.46 338.15 4.67

Diethyl phthalate 0.73 1.40 0.00 0.86 6.80 338.15 5.59

3-Hydroxybenzonitrile 0.93 1.55 0.77 0.28 5.18 338.15 6.67

4-Aminobenzonitrile 1.09 1.78 0.40 0.50 5.64 338.15 6.21

Undecan-1-ol 0.18 0.42 0.37 0.48 6.13 348.15 4.34

4-Chlorophenol 0.92 1.08 0.67 0.20 4.78 348.15 4.57

2,4,5-Trichlorophenol 1.07 0.92 0.73 0.10 5.73 348.15 4.43

Anthracene 2.29 1.34 0.00 0.28 7.57 348.15 4.85

Phenanthrene 2.06 1.29 0.00 0.29 7.63 348.15 4.80

p-Terphenyl 2.04 1.48 0.00 0.30 9.69 348.15 6.49

335

Solute E S A B L T log KLHA

Diethyl phthalate 0.73 1.40 0.00 0.86 6.80 348.15 5.44

336

REFERENCES

1 A. V. Plyasunov and E. L. Shock, Geochim. Cosmochim. Acta 67 (24), 4981 (2003).

2 R. E. Kuhne, R.U.; Schuurman, G., Environ. Sci. Technol. 39, 6705 (2005).

3 M. H. Abraham, G. S. Whiting, R. Fuchs, and E. J. Chambers, J. Chem. Soc., Perkin Trans. 2 (2), 291 (1990).

4 E. L. Purlee, R. W. Taft, Jr., and C. A. DeFazio, J. Am. Chem. Soc. 77, 837 (1955).

5 A. Lutsyk, V. Portnanskij, S. Sujkov, and V. Tchuprina, Monatsh. Chem. 136 (7), 1183 (2005).

6 T. Shimotori and W. A. Arnold, J. Chem. Eng. Data 47 (2), 183 (2002).

7 A. V. Plyasunov, N. V. Plyasunova, and E. L. Shock, J. Chem. Eng. Data 51 (1), 276 (2006).

8 S. G. Cabani, P.; Mollica, V.; Lepori, L., J. Solution Chem. 8, 563 (1981).

9 Z. Atik, D. Gruber, M. Krummen, and J. Gmehling, J. Chem. Eng. Data 49 (5), 1429 (2004).

10 A. V. Plyasunov, N. V. Plyasunova, and E. L. Shock, J. Chem. Eng. Data 49 (5), 1152 (2004).

11 A. V. Plyasunov and E. L. Shock, J. Chem. Eng. Data 46 (5), 1016 (2001).

12 N. Segatin and C. Klofutar, Monatsh. Chem. 132 (12), 1451 (2001).

13 G. L. Bertrand, F. J. Millero, C. Wu, and L. G. Hepler, J. Phys. Chem. 70 (3), 699 (1966).

14 A. C. Rouw and G. Somsen, J. Chem. Thermodyn. 13 (1), 67 (1981).

15 Y. Koga, W. W. Y. Siu, and T. Y. H. Wong, J. Phys. Chem. 94 (19), 7700 (1990).

16 C. V. Krishnan and H. L. Friedman, J. Phys. Chem. 73 (5), 1572 (1969).

17 M. H. Abraham and E. Matteoli, J. Chem. Soc., Faraday Trans. 1 84 (6), 1985 (1988).

18 M. H. Abraham, J. Chem. Soc., Faraday Trans. 1 80 (1), 153 (1984).

19 F. S. Costa, M. E. Eusebio, J. S. Redinha, and M. L. P. Leitao, J. Chem. Thermodyn. 31 (7), 895 (1999).

20 M. Y. Nagamachi and A. Z. Francesconi, J. Chem. Thermodyn. 38 (4), 461 (2006).

21 R. C. C. Guedes, K.; Cabral, B.J.C; Canuto,S., J. Phys. Chem. 107, 4304 (2003).

337

22 A. V. Plyasunov, N. V. Plyasunova, and E. L. Shock, J. Chem. Eng. Data 51 (5), 1481 (2006).

23 E. M. Arnett and B. Chawla, J. Am. Chem. Soc. 101 (24), 7141 (1979).

24 N. V. Plyasunova, A. V. Plyasunov, and E. L. Shock, J. Chem. Eng. Data 50 (1), 246 (2005).

25 M. H. Abraham, J. Am. Chem. Soc. 104 (8), 2085 (1982).

26 M. Jozwiak, Thermochim. Acta 417 (1), 31 (2004).

27 A. J. L. Jesus, L. I. N. Tome, M. E. S. Eusebio, and J. S. Redinha, J. Phys. Chem. B 110 (18), 9280 (2006).

28 R. Fuchs, Stephenson, W.K., Can. J. Chem. 63, 349 (1985).

29 L. Bernazzani, P. Gianni, V. Mollica, and P. Pizzolla, Thermochim. Acta 418 (1-2), 109 (2004).

30 S. C. Cabani, Giovanni; Mollica, Vincenzo; Bernazzani, Luca, J. Chem. Soc., Faraday Trans. 87 (15), 2433 (1991).

31 IUPAC Solubility Data Series Vol. (IUPAC, Research Triangle, NC).

32 D. Gruber, D. Langenheim, J. Gmehling, and W. Moollan, J. Chem. Eng. Data 42 (5), 882 (1997).

33 S. R. Bhatia and S. I. Sandler, J. Chem. Eng. Data 40 (6), 1196 (1995).

34 H. Iloukhani, J. Chem. Eng. Data 42 (4), 802 (1997).

35 L. Bernazzani, G. Conti, and V. Mollica, J. Solution Chem. 31 (4), 279 (2002).

36 T. Harner and D. Mackay, Environ. Sci. Technol. 29 (6), 1599 (1995).

37 T. Harner and T. F. Bidleman, J. Chem. Eng. Data 43 (1), 40 (1998).

38 G. L. Pollack, J. F. Himm, and J. J. Enyeart, J. Chem. Phys. 81 (7), 3239 (1984).

39 R. J. Wilcock, R. Battino, W. F. Danforth, and E. Wilhelm, J. Chem. Thermodyn. 10 (9), 817 (1978).

40 T. Harner and T. F. Bidleman, J. Chem. Eng. Data 41 (4), 895 (1996).

41 B. N. Solomonov, V. B. Novikov, M. A. Varfolomeev, and N. M. Mileshko, J. Phys. Org. Chem. 18 (1), 49 (2005).

42 P. Goralski, J. Chem. Soc., Faraday Trans. 1 84 (12), 4311 (1988).

338

43 B. Marongiu, S. Porcedda, L. Lepori, and E. Matteoli, Fluid Phase Equilib. 108 (1-2), 167 (1995).

44 N. Morel-Desrosiers and J. P. Morel, J. Solution Chem. 8 (8), 579 (1979).

45 E. Wilhelm and R. Battino, Chem. Rev. 73 (1), 1 (1973).

46 M. H. Karbalai Ghassemi and J. P. E. Grolier, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 68 (1976).

47 B. S. Bjola, M. A. Siddiqi, U. Fornefeld-Schwarz, and P. Svejda, J. Chem. Eng. Data 47 (2), 250 (2002).

48 G. C. Benson, O. Kiyohara, and J. P. E. Grolier, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 64 (1991).

49 J. N. Spencer, K. J. Modarress, W. L. Nachlis, and J. W. Hovick, J. Phys. Chem. 90 (18), 4443 (1986).

50 T. E. Burchfield, University of Missouri-Rolla, 1977.

51 B. N. Solomonov, Konovalov, A.I., Norikov, V.B., Borbachuk, V.V., Neklyudov, S.A., J. Gen. Chem. 55, 1681 (1985).

52 V. P. Barannikov, S. S. Guseinov, and A. I. V'Yugin, Zh. Fiz. Khim. 78 (1), 144 (2004).

53 V. P. Barannikov, S. S. Guseynov, and A. I. Vyugin, J. Chem. Thermodyn. 36 (4), 277 (2004).

54 M. D. Borisover, A. Stolov, F. D. Baitalov, A. I. Morozov, and B. N. Solomonov, Thermochim. Acta 285 (2), 199 (1996).

55 R. Fuchs, E. J. Chambers, and W. K. Stephenson, Can. J. Chem. 65 (11), 2624 (1987).

56 B. Marongiu, Thermochim. Acta 95 (1), 105 (1985).

57 K. N. Marsh, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 62 (1992).

58 K. N. Marsh, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 63 (1992).

59 K. N. Marsh, W. A. Allan, and A. E. Richards, J. Chem. Thermodyn. 16 (12), 1107 (1984).

60 W. C. Duer and G. L. Bertrand, J. Am. Chem. Soc. 97 (14), 3894 (1975).

61 B. N. Solomonov, V. B. Novikov, M. A. Varfolomeev, and A. E. Klimovitskii, J. Phys. Org. Chem. 18 (11), 1132 (2005).

62 W. K. Stephenson and R. Fuchs, Can. J. Chem. 63 (9), 2535 (1985).

339

63 A. Otterstedt and R. W. Missen, Trans. Faraday Soc. 58, 879 (1962).

64 G. Avedis, A. H. Roux, and J. P. E. Grolier, J. Chem. Thermodyn. 24 (12), 1233 (1992).

65 G. Avedis, A. H. Roux, and J. P. E. Grolier, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 26 (1990).

66 G. Avedis, A. H. Roux, and J. P. E. Grolier, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 27 (1990).

67 G. Avedis, A. H. Roux, and J. P. E. Grolier, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 29 (1990).

68 S. P. Verevkin and C. Schick, Fluid Phase Equilib. 211 (2), 161 (2003).

69 J. N. Spencer, J. E. Gleim, C. H. Blevins, R. C. Garrett, and F. J. Mayer, J. Phys. Chem. 83 (10), 1249 (1979).

70 I. Uruska, Koschmidder, M., J. Chem. Soc., Perkin Trans. 2, 1845 (1989).

71 E. M. Arnett, E. J. Mitchell, and T. S. S. R. Murty, J. Am. Chem. Soc. 96 (12), 3875 (1974).

72 J. N. Spencer, W. S. Wolbach, J. W. Hovick, L. Ansel, and K. J. Modarress, J. Solution Chem. 14 (11), 805 (1985).

73 R. Francesconi and F. Comelli, J. Chem. Eng. Data 37 (2), 230 (1992).

74 R. Battino and K. N. Marsh, Aust. J. Chem. 33 (9), 1997 (1980).

75 A. W. Shaw and A. J. Vosper, J. Chem. Soc., Faraday Trans. 1 73 (8), 1239 (1977).

76 A. D. Sherry and K. F. Purcell, J. Amer. Chem. Soc. 94 (6), 1848 (1972).

77 G. C. Kresheck and I. M. Klotz, Biochemistry 8 (1), 8 (1969).

78 F. T. Khafizov, Breus, V.A., Kiselev, O.E., Solomonov, B.N., Konovalov, A.I., Russ. J. Gen. Chem. 60, 627 (1980).

79 P. Goralski, U. Krzemien, and S. Taniewska-Osinska, J. Chem. Soc., Faraday Trans. 1 81 (3), 695 (1985).

80 M. H. Abraham, P. P. Duce, D. V. Prior, R. A. Schulz, J. J. Morris, and P. J. Taylor, J. Chem. Soc., Faraday Trans. 1 84 (3), 865 (1988).

81 M. A. R. Matos, M. S. Miranda, and V. M. F. Morais, J. Chem. Eng. Data 48 (3), 669 (2003).

82 B. S. Bjola, M. A. Siddiqi, and P. Svejda, J. Chem. Eng. Data 46 (5), 1167 (2001).

83 I. I. Sheikhet, V. N. Levchuk, and B. Y. Simkin, J. Mol. Liq. 40 (3), 191 (1989).

340

84 B. N. Solomonov, Borisover, M.D., Konovalov, A.I., Russ. J. Gen. Chem. 56, 1 (1986).

85 I. P. C. Li, Y.-W. Wong, S.-D. Chang, and B. C. Y. Lu, J. Chem. Eng. Data 17 (4), 492 (1972).

86 R. Francesconi and F. Comelli, Thermochim. Acta 216 (1-2), 35 (1993).

87 E. Wilhelm, A. Inglese, and J. P. E. Grolier, Thermochim. Acta 229 (1-2), 271 (1993).

88 Y. Shiohama, H. Ogawa, S. Murakami, and I. Fujihara, Fluid Phase Equilib. 32 (3), 249 (1987).

89 J. J. Christensen, Rowley, R.L., Izatt, R.M., Handbook of Heats of Mixing: Supplementary Volume. Vol. (Wiley, New York, 1988).

90 Z. Wang, G. C. Benson, and B. C. Y. Lu, Thermochim. Acta 414 (1), 31 (2004).

91 W. K. Stephenson and R. Fuchs, Can. J. Chem. 63 (2), 336 (1985).

92 K. Tamura, J. Chem. Thermodyn. 33 (10), 1345 (2001).

93 K. Tamura, S. Murakami, and R. Fujishiro, J. Chem. Thermodyn. 7 (11), 1089 (1975).

94 W. K. Stephenson and R. Fuchs, Can. J. Chem. 63 (2), 342 (1985).

95 W. K. Stephenson and R. Fuchs, Can. J. Chem. 63 (9), 2529 (1985).

96 T. M. Letcher and U. Domanska, J. Chem. Thermodyn. 29 (7), 721 (1997).

97 B. Schmitt-Diefenbach, A. Steiger, and F. Becker, Thermochim. Acta 94 (1), 85 (1985).

98 J. N. Spencer, J. E. Mihalick, T. J. Nicholson, P. A. Cortina, J. L. Rinehimer, J. E. Smith, X. Ke, Q. He, S. E. Daniels, and et al., J. Phys. Chem. 97 (40), 10509 (1993).

99 J. N. Spencer, J. E. Mihalick, I. M. Paul, W. J. Nicholson, T. J. Nicholson, X. Ke, Q. He, F. J. Carter, S. E. Daniels, and et al., J. Solution Chem. 23 (6), 721 (1994).

100 J. Fernandez, R. Garriga, I. Velasco, and S. Otin, Fluid Phase Equilib. 152 (2), 243 (1998).

101 M. H. Abraham and A. Nasehzadeh, J. Chem. Thermodyn. 13 (6), 549 (1981).

102 P. Vrbka, D. Rozbroj, and V. Dohnal, Fluid Phase Equilib. 209 (2), 265 (2003).

103 H. C. Van Ness and M. M. Abbott, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 49 (1976).

104 M. Lohse and W. D. Deckwer, J. Chem. Eng. Data 26 (2), 159 (1981).

105 R. Tanaka and G. C. Benson, J. Chem. Thermodyn. 8 (3), 259 (1976).

341

106 A. H. Roux and E. Wilhelm, Thermochim. Acta 391 (1-2), 129 (2002).

107 J. George, N. V. Sastry, and D. H. L. Prasad, Fluid Phase Equilib. 214 (1), 39 (2003).

108 P. Goralski and M. Tkaczyk, J. Chem. Soc., Faraday Trans. 1 83 (9), 3083 (1987).

109 K. N. Surendranath, A. Krishnaiah, and M. Ramakrishna, Thermochim. Acta 157 (1), 83 (1990).

110 C. Cardelli, G. Conti, and P. Gianni, J. Therm. Anal. Calorim. 61 (2), 377 (2000).

111 S. Delcros, E. Jimenez, L. Romani, A. H. Roux, J. P. E. Grolier, and H. V. Kehiaian, Fluid Phase Equilib. 111 (1), 71 (1995).

112 J. Gmehling and B. Meents, Int. DATA Ser., Sel. Data Mixtures, Ser. A (3), 183 (1992).

113 J. P. E. Grolier, D. Ballet, and A. Viallard, J. Chem. Thermodyn. 6 (9), 895 (1974).

114 G. C. Allred, J. W. Beets, and W. R. Parrish, J. Chem. Eng. Data 40 (5), 1062 (1995).

115 S. Murakami and F. Kimura, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 34 (1979).

116 H. P. Dahiya, S. Dagar, and P. P. Singh, J. Chem. Eng. Data 32 (3), 342 (1987).

117 R. Tanaka and G. C. Benson, J. Chem. Eng. Data 23 (1), 75 (1978).

118 R. Tanaka and G. C. Benson, J. Chem. Eng. Data 21 (3), 320 (1976).

119 B. Marongiu, E. Pusceddu, S. Porcedda, L. Lepori, and E. Matteoli, Fluid Phase Equilib. 250 (1-2), 105 (2006).

120 J. Catalan, J. Gomez, A. Couto, and J. Laynez, J. Am. Chem. Soc. 112 (5), 1678 (1990).

121 H. Ukibe, R. Tanaka, S. Murakami, and R. Fujishiro, J. Chem. Thermodyn. 6 (2), 201 (1974).

122 W. E. J. Acree, IUPAC Solubility Data Series 59 (1995).

123 X. Hu, Y. Zhang, and Z. Huang, Wuli Huaxue Xuebao 1 (2), 130 (1985).

124 C. V. Krishnan and H. L. Friedman, J. Phys. Chem. 75 (23), 3598 (1971).

125 T. Kimura, T. Matsushita, and T. Kamiyama, J. Solution Chem. 33 (6/7), 875 (2004).

126 F. S. Costa, M. E. Eusebio, J. S. Redinha, and M. L. P. Leitao, J. Chem. Thermodyn. 32 (3), 311 (2000).

127 M. Topphoff, D. Gruber, and J. Gmehling, J. Chem. Eng. Data 44 (6), 1355 (1999).

128 J. H. Hallman, W. K. Stephenson, and R. Fuchs, Can. J. Chem. 61 (9), 2044 (1983).

342

129 N. G. Manin, S. Y. Belichenko, and V. P. Korolev, Russ. J. Gen. Chem. 73 (1), 9 (2003).

130 T. Kimura, T. Matsushita, and T. Kamiyama, Thermochim. Acta 416 (1-2), 129 (2004).

131 E. M. Arnett and D. R. McKelvey, J. Am. Chem. Soc. 88 (11), 2598 (1966).

132 D. Figeys, M. Koschmidder, and R. L. Benoit, Can. J. Chem. 70 (6), 1586 (1992).

133 B. N. Solomonov, F. T. Khafizov, and V. V. Gorbachuk, Zh. Obshch. Khim. 60 (7), 1446 (1990).

134 T. Kimura and S. Takagi, Thermochim. Acta 253, 59 (1995).

135 R. Francesconi, F. Comelli, A. Bigi, and K. Rubini, Thermochim. Acta 447 (2), 154 (2006).

136 T. Kimura and S. Takagi, Netsu Sokutei 23 (2), 53 (1996).

137 K. Ohtsu and K. Ozutsumi, J. Inclusion Phenom. Macrocyclic Chem. 45 (3-4), 217 (2003).

138 R. Philippe, Int. DATA Ser., Sel. Data Mixtures, Ser. A (2), 122 (1975).

139 T. Matsui, L. G. Hepler, and D. V. Fenby, J. Phys. Chem. 77 (20), 2397 (1973).

140 R. Philippe, Int. DATA Ser., Sel. Data Mixtures, Ser. A (2), 126 (1975).

141 G. Pathak, A. D. Tripathi, and S. Pradhan, Thermochim. Acta 197 (2), 329 (1992).

142 R. Philippe, Int. DATA Ser., Sel. Data Mixtures, Ser. A (2), 124 (1975).

143 T. Kimura, T. Tsuda, and S. Takagi, Thermochim. Acta 267, 333 (1995).

144 T. Kimura, K. Suzuki, and S. Takagi, Fluid Phase Equilib. 136 (1-2), 269 (1997).

145 A. Gennaro, A. A. Isse, and E. Vianello, J. Electroanal. Chem. Interfacial Electrochem. 289 (1-2), 203 (1990).

146 A. A. C. C. Pais, A. Sousa, M. E. Eusebio, and J. S. Redinha, Phys. Chem. Chem. Phys. 3 (18), 4001 (2001).

147 F. Comelli, S. Ottani, R. Francesconi, and C. Castellari, J. Chem. Eng. Data 48 (4), 995 (2003).

148 D. V. Batov, O. A. Antonova, and V. P. Korolev, Russ. J. Gen. Chem. 71 (5), 689 (2001).

149 R. L. Benoit, M. J. Mackinnon, and L. Bergeron, Can. J. Chem. 59 (10), 1501 (1981).

150 R. L. Benoit and M. Frechette, Thermochim. Acta 126, 155 (1988).

151 F. Comelli, R. Francesconi, A. Bigi, and K. Rubini, J. Chem. Eng. Data 51 (2), 665 (2006).

343

152 R. Francesconi, A. Bigi, K. Rubini, and F. Comelli, J. Chem. Eng. Data 50 (6), 1932 (2005).

153 G. R. Bebahani, D. Dunnion, P. Falvey, K. Hickey, M. Meade, Y. McCarthy, M. C. R. Symons, and W. E. Waghorne, J. Solution Chem. 29 (6), 521 (2000).

154 B. G. Cox, J. Chem. Soc., Perkin Trans. 2 (5), 607 (1973).

155 M. Lahti, A. Kankaanpera, and H. Sapyska, J. Chem. Soc., Perkin Trans. 2 (7), 1081 (1990).

156 R. L. Benoit, M. Frechette, and D. Lefebvre, Can. J. Chem. 66 (5), 1159 (1988).

157 G. A. Krestov, V. P. Korolev, and D. V. Batov, Thermochim. Acta 169, 69 (1990).

158 A. Nissema, T. Kaivamo, and M. Karvo, J. Chem. Thermodyn. 15 (11), 1083 (1983).

159 V. I. Smirnov, E. V. Kastorina, G. A. Kiestov, and A. Y. Fridman, Zh. Fiz. Khim. 67 (6), 1123 (1993).

160 N. M. Nunes, Luis; Leitao, Ruben E.; Martins, Filomena, Journal of Chemical Thermodynamics 39 (8), 1201 (2007).

161 Y. Takeda, T. Watanabe, H. Yamada, and S. Katsuta, J. Mol. Liq. 108 (1-3), 151 (2003).

162 F. Comelli, R. Francesconi, and S. Ottani, J. Chem. Eng. Data 43 (3), 333 (1998).

163 R. Francesconi and F. Comelli, J. Chem. Eng. Data 40 (4), 811 (1995).

164 F. Comelli and R. Francesconi, J. Chem. Eng. Data 40 (4), 805 (1995).

165 S. Ottani, F. Comelli, and C. Castellari, J. Chem. Eng. Data 46 (1), 125 (2001).

166 F. Comelli and R. Francesconi, J. Chem. Eng. Data 50 (1), 191 (2005).

167 R. Francesconi and F. Comelli, J. Chem. Eng. Data 40 (1), 31 (1995).

168 K. Ohtsu, T. Kawashima, and K. Ozutsumi, J. Chem. Soc., Faraday Trans. 91 (24), 4375 (1995).

169 R. Francesconi and F. Comelli, J. Chem. Eng. Data 41 (6), 1397 (1996).

170 R. Francesconi and F. Comelli, Thermochim. Acta 260, 95 (1995).

171 F. Comelli, R. Francesconi, and C. Castellari, Thermochim. Acta 354 (1-2), 89 (2000).

172 F. Comelli, R. Francesconi, and C. Castellari, J. Chem. Eng. Data 44 (1), 144 (1999).

173 C. Castellari, F. Comelli, and R. Francesconi, Thermochim. Acta 413 (1-2), 249 (2004).

344

174 F. Blanchard, B. Carre, F. Bonhomme, P. Biensan, and D. Lemordant, Can. J. Chem. 81 (5), 385 (2003).

175 A. F. D. de Namor, J. C. Y. Ng, M. A. L. Tanco, and M. Salomon, J. Phys. Chem. 100 (34), 14485 (1996).

176 R. L. Benoit and E. Milanova, Can. J. Chem. 57 (11), 1319 (1979).

177 G. C. Benson, B. Luo, and B. C. Y. Lu, Int. DATA Ser., Sel. Data Mixtures, Ser. A (3), 180 (1988).

178 Z. Wang, G. C. Benson, and B. C. Y. Lu, J. Solution Chem. 32 (10), 907 (2003).

179 Z. Wang, G. C. Benson, and B. C. Y. Lu, J. Solution Chem. 33 (2), 143 (2004).

180 R. S. Murray and M. L. Martin, J. Chem. Thermodyn. 10 (8), 711 (1978).

181 C. Castellari, J. Chem. Eng. Data 51 (2), 599 (2006).

182 V. B. Novikov, D. I. Abaidullina, N. Z. Gainutdinova, M. A. Varfalomeev, and B. N. Solomonov, Russ. J. Phys. Chem. 80 (11), 1790 (2006).

183 M. Vidal, J. Ortega, and J. Placido, J. Chem. Thermodyn. 29 (1), 47 (1997).

184 J. Ortega and F. J. Toledo-Marante, J. Chem. Thermodyn. 34 (9), 1439 (2002).

185 W. K. Stephenson and R. Fuchs, Can. J. Chem. 63 (9), 2540 (1985).

186 B. N. Solomonov, A. I. Konovalov, V. B. Novikov, V. V. Borbachuk, and S. A. Neklyudov, Russ. J. Gen. Chem. 55, 1681 (1984).

187 J. Hu, K. Tamura, and S. Murakami, Fluid Phase Equilib. 134 (1-2), 239 (1997).

188 R. Zhang, W. Yan, X. Wang, and R. Lin, Thermochim. Acta 429 (2), 155 (2005).

189 M. H. Abraham, P. L. Grellier, A. Nasehzadeh, and R.A.C.Walker, J. Chem. Soc., Perkin Trans. 2, 1717 (1988).

190 J. Ortega, A. Navas, J. Placido, and F. J. Toledo, J. Chem. Thermodyn. 38 (5), 585 (2006).

191 B. N. Solomonov and I. A. Sedov, J. Phys. Chem. B 110 (18), 9298 (2006).

192 J. S. Chickos and W. E. Acree, Jr., J. Phys. Chem. Ref. Data 31 (2), 537 (2002).

193 N. Nunes, L. Moreira, R. E. Leitao, and F. Martins, J. Chem. Thermodyn. 39 (8), 1201 (2007).

194 F. L. Nordstroem and A. C. Rasmuson, J. Chem. Eng. Data 51 (5), 1775 (2006).

345

195 M. D. M. C. Ribeiro da Silva and N. R. M. Araujo, J. Chem. Thermodyn. 39 (10), 1372 (2007).

196 R. C. Paul, S. K. Rehani, S. S. Pahil, and S. C. Ahluwalia, Indian J. Chem. 7 (7), 715 (1969).

197 M. D. Borisover, A. A. Stolov, S. V. Izosimova, F. D. Baitalov, V. A. Breus, and B. P. Solomonov, Zh. Fiz. Khim. 65 (3), 594 (1991).

198 J. Ortega and J. Placido, ELDATA Int. Electron. J. Phys.-Chem. Data 1 (1), 59 (1995).

199 T. E. Burchfield, Dissertation, University of Missouri-Rolla, 1977.

200 J. J. Christensen, R. L. Rowley, and R. M. Izatt, Handbook of Heats of Mixing: Supplementary Volume Vol. (John Wiley and Sons, Inc., New York, NY, 1988).

201 H. Ogawa, S. Murakami, T. Takigawa, and M. Ohba, Fluid Phase Equilib. 136 (1-2), 279 (1997).

202 P. G. J.L. Chevalier, J. Balade, Rend. des Seances l’Acad. des Sci., Ser. C: Sci. Chim. 266, 326 (1968).

203 Z. E. Ilic and Z. B. Maksimovic, Thermochim. Acta 53 (3), 251 (1982).

204 S. C. Sharma and J. Singh, J. Solution Chem. 24 (2), 145 (1995).

205 F. Becker and F. Hallauer, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 45 (1988).

206 A. Inglese, Thermochim. Acta 199, 173 (1992).

207 T. Ohta, Int. DATA Ser., Sel. Data Mixtures, Ser. A 26 (4), 298 (1998).

208 M. L. S. J.J. Moura Ramos, J. Reisse, Chem. Phys. Lett. 42, 373 (1976).

209 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 21 (1), 40 (1993).

210 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 21 (1), 41 (1993).

211 T. Ohta, Int. DATA Ser., Sel. Data Mixtures, Ser. A 26 (4), 286 (1998).

212 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 21 (1), 43 (1993).

213 J. Ortega, Int. Data Ser., Sel. Data Mix., Ser. A 44 (1993).

214 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 21 (1), 45 (1993).

215 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 21 (1), 46 (1993).

216 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 21 (1), 47 (1993).

346

217 J. S. Chickos and W. E. Acree, Jr., J. Phys. Chem. Ref. Data 32 (2), 519 (2003).

218 A. H. R. J. Munoz Embid, J.P.E. Grolier, Int. Data Ser., Sel. Data Mix., Ser. A 67 (1990).

219 J. N. Spencer, E. S. Holmboe, D. W. Firth, and M. R. Kirshenbaum, J. Solution Chem. 10 (10), 745 (1981).

220 D. F. Gray, N. F. Pasco, and A. G. Williamson, J. Chem. Eng. Data 33 (3), 333 (1988).

221 D. Fenclova, P. Vrbka, V. Dohnal, K. Rehak, and G. Garcia-Miaja, J. Chem. Thermodyn. 34 (3), 361 (2002).

222 B. N. A. Solomonov, I.S.; Gorbachuk, V.V.; Konovalov, A.I.; Russ, A.I. , J. Gen. Chem. 48, 2113 (1978).

223 E. R. Thomas, B. A. Newman, G. L. Nicolaides, and C. A. Eckert, J. Chem. Eng. Data 27 (3), 233 (1982).

224 V. I. Smirnov, E. V. Kastorina, G. L. Perlovich, and A. Y. Fridman, Zh. Fiz. Khim. 66 (6), 1466 (1992).

225 J. Placido, J. Ortega, and H. V. Kehiaian, ELDATA: Int. Electron. J. Phys.-Chem. Data 1 (3), 239 (1995).

226 J. Ortega and J. Placido, ELDATA: Int. Electron. J. Phys.-Chem. Data 2 (2), 85 (1996).

227 W. Riebesehl, E. Tomlinson, and P. R. Niemel, J. Solution Chem. 14 (10), 699 (1985).

228 J. Ortega and J. Placido, Int. DATA Ser., Sel. Data Mixtures, Ser. A 21 (1), 6 (1993).

229 J. Ortega and J. Placido, Int. DATA Ser., Sel. Data Mixtures, Ser. A 21 (1), 7 (1993).

230 G. Hahn and P. Svejda, Int. DATA Ser., Sel. Data Mixtures, Ser. A (2), 146 (1985).

231 J. Ortega and J. Placido, Int. DATA Ser., Sel. Data Mixtures, Ser. A 21 (1), 8 (1993).

232 J. Ortega and J. Placido, Int. DATA Ser., Sel. Data Mixtures, Ser. A 21 (1), 9 (1993).

233 S. K. Chaudhari and S. S. Katti, Thermochim. Acta 158 (1), 99 (1990).

234 J. Ortega and E. Marrero, J. Chem. Thermodyn. 39 (5), 742 (2007).

235 C. Airoldi and S. Roca, J. Solution Chem. 22 (8), 707 (1993).

236 J. Ortega, E. Marrero, F. J. Toledo, and F. Espiau, J. Chem. Thermodyn. 37 (12), 1332 (2005).

237 J. Ortega, E. Marrero, and F. J. Toledo, J. Chem. Thermodyn. 38 (9), 1139 (2006).

347

238 F. T. Khafizov, V. A. Breus, O. E. Kiselev, B. N. Solomonov, and A. I. Konovalov, Zh. Obshch. Khim. 60 (4), 721 (1990).

239 R. F. F. Comelli, J. Chem. Eng. Data 40, 509 (1995).

240 R. F. F. Comelli, H.V. Kehiaian, J. Chem. Eng. Data 36 (1991).

241 C. B. J. Munoz Embid, S. Otin Int. Data Ser., Sel. Data Mix., Ser. A, 273 (1991).

242 F. Comelli and R. Francesconi, J. Chem. Eng. Data 39 (3), 560 (1994).

243 J. R. Munoz Embid, A.H.; Grolier, J.P.E., Int. Data Ser., Sel. Data Mix., Ser. A 71 (1990).

244 I. Putze, R. Garriga, P. Perez, and M. Gracia, J. Chem. Thermodyn. 27 (11), 1153 (1995).

245 D.-Y. Peng, Y. Horikawa, Z. Wang, G. C. Benson, and B. C. Y. Lu, J. Chem. Eng. Data 46 (2), 237 (2001).

246 Z. B. Wang, G.C.; Lu, B.C.-Y., J. Chem. Eng. Data 46, 237 (2001).

247 M. R. D. G. Tine, G.; Kehiaian, H. V., Fluid Phase Equilib. 54, 277 (1990).

248 F. J. Toledo-Marante, J. Ortega, M. Chaar, and M. Vidal, J. Chem. Thermodyn. 32, 1013 (2000).

249 J. O. M. Chaar, F. J. Toledo-Marante, C. Gonzalez, J. Chem. Thermodyn. 33, 689 (2001).

250 N. V. Sastry, S. R. Patel, and D. H. L. Prasad, Thermochim. Acta 359 (2), 169 (2000).

251 L. Wang, G. C. Benson, and B. C.-Y. Lu, Fluid Phase Equilib. 46, 211 (1989).

252 D.-Y. Peng, Z. Wang, G. C. Benson, and B. C. Y. Lu, J. Chem. Thermodyn. 33 (1), 83 (2001).

253 Z. Tong, G. C. Benson, L. L. Wang, and B. C. Y. Lu, J. Chem. Eng. Data 41, 865 (1996).

254 M. Keller, S. Schnabel, and A. Heintz, Fluid Phase Equilib. 110, 231 (1995).

255 Z. Wang, G. C. Benson, and B. C. Y. Lu, J. Chem. Eng. Data 46 (5), 1188 (2001).

256 T. Treszczanowicz, G. C. Benson, and B. C. Y. Lu, J. Chem. Eng. Data 33, 379 (1988).

257 T. Treszczanowicz, L. Wang, G. C. Benson, and B. C. Y. Lu, J. Chem. Thermodyn. 189, 255 (1991).

258 F. Kimura, P. J. D’Arcy, M. E. Sugamori, and G. C. Benson, Thermochim. Acta 64, 149 (1983).

348

259 B. Marongiu, S. Dernini, L. Lepori, E. Matteoli, and H. V. Kehiaian, J. Chem. Eng. Data 33, 118 (1988).

260 P. Vrbka, B. Hauge, L. Frydendal, and V. Dohnal, J. Chem. Eng. Data 47 (6), 1521 (2002).

261 M. K. Woycicka and W. M. Recko, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 20, 783 (1972).

262 C. Klofutar, S. Paljk, and U. Domanska, Thermochim. Acta 158 (2), 301 (1990).

263 M. K. Woycicka and B. Kalinowska, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 25, 639 (1977).

264 J. C. Young, J. S. Binford, and S. W. Campbell, Fluid Phase Equilib. 209, 255 (2003).

265 S. E. M. Haman, M. K. Kumaran, and G. C. Benson, J. Chem. Thermodyn. 16, 1013 (1984).

266 E. L. Matteoli, L.; Spanedda, A, Fluid Phase Equilib. 212, 41 (2003).

267 D.-Y. Peng, G. C. Benson, and B. C.-Y. Lu, J. Chem. Thermodyn. 30, 1141 (1998).

268 B. Marongiu and S. Porcedda, J. Chem. Eng. Data 35, 172 (1990).

269 A. Ben-Naim and Y. Marcus, J. Chem. Phys. 80, 4438 (1984).

270 E. Wilhelm, A. Inglese, A. Lainez, A. H. Roux, and J.-P. E. Grolier, Fluid Phase Equilib. 110, 299 (1995).

271 E. Wilhelm, A. Inglese, A. H. Roux, and J.-P. E. Grolier, Int. Data Ser., Sel. Data Mix., Ser. A, 260 (1991).

272 E. Wilhelm, A. Inglese, A. H. Roux, and J.-P. E. Grolier, Fluid Phase Equilib. 4, 49 (1987).

273 T. M. Letcher, R. C. Baxter, A. Bean, and J. D. Sewry, J. Chem. Thermodyn. 20, 581 (1988).

274 G. C. Benson, L. Wang, and C.-Y. Lu, Int. Data Ser., Sel. Data Mix., Ser. A, 101 (1989).

275 G. C. Benson, B. Luo, and B. C.-Y. Lu, Int. Data Ser., Sel. Data Mix., Ser. A, 182 (1988).

276 G. C. Benson, L. Wang, and B. C.-Y. Lu, Int. Data Ser., Sel. Data Mix., Ser. A, 301 (1990).

277 S. Zhu, S. Shen, G. C. Benson, and B. C.-Y. Lu, J. Chem. Thermodyn. 26, 415 (1994).

278 S. Zhu, S. Shen, G. C. Benson, and B. C.-Y. Lu, J. Chem. Thermodyn. 26, 35 (1994).

279 Z. Wang, G. C. Benson, and B. C.-Y. Lu, J. Chem. Eng. Data 47, 1030 (2002).

280 G. Li, Y. Liu, X. Sun, and F. Xue, Thermochim. Acta 247, 283 (1994).

281 J. Fernandez, I. Velasco, and S. Otin, Thermochim. Acta 143, 333 (1989).

349

282 A. Inglese and J.-P. E. Grolier, Int. Data Ser., Sel. Data Mix., Ser. A, 292 (1987).

283 E. Wilhelm, A. Inglese, A. H. Roux, and J.-P. E. Grolier, Int. Data Ser., Sel. Data Mix., Ser. A, 264 (1991).

284 A. S. Lekomtsev and I. V. Chernyshev, Russ. J. Gen. Chem. 72, 696 (2002).

285 T. Takigawa, M. Ohba, H. Ogawa, and S. Murakami, Fluid Phase Equilib. 204, 119 (2003).

286 P. P. S. Saluja, T. M. Young, R. F. Rodewald, F. H. Fuchs, D. Kohli, and R. Fuchs, J. Am. Chem. Soc. 99 (9), 2949 (1977).

287 K. N. Marsh, Int. Data Ser., Sel. Data Mix., Ser. A, 97 (1977).

288 D. M. Trampe and C. A. Eckert, J. Chem. Eng. Data 36 (1), 112 (1991).

289 E. Wilhelm and R. Battino, J. Chem. Thermodyn. 3, 379 (1971).

290 P. P. S. Saluja, L. A. Peacock, and R. Fuchs, J. Am. Chem. Soc. 101 (8), 1958 (1979).

291 R. S. Fuchs, P.S., Can. J. Chem. 54, 3857 (1976).

292 S. Zhu, S. Shen, G. C. Benson, and B. C.-Y. Lu, Thermochim. Acta 235, 161 (1994).

293 H. Ohji, A. Oskai, K. Tamura, S. Murakami, and H. Ogawa, J. Chem. Thermodyn. 30, 761 (1998).

294 C. Lafuente, P. Cea, M. Dominguez, F. M. Royo, and J. S. Urieta, J. Solution Chem. 30, 795 (2001).

295 T. Takigawa, H. Ogawa, K. Tamura, and S. Murakami, Fluid Phase Equilib. 136, 257 (1997).

296 T. Pfeffer, B. Loewen, and S. Schulz, Fluid Phase Equilib. 106 (1-2), 139 (1995).

297 M. Nishimoto, S. Tabata, K. Tamura, and S. Murakami, Fluid Phase Equilib. 136, 235 (1997).

298 H. T. Ohji, K., J. Chem. Thermodyn. 35, 1591 (2003).

299 P. L. Huyskens and L. Vanderheyden, Fluid Phase Equilib. 49, 271 (1989).

300 B. Marongiu, B. Pittau, and S. Porcedda, Thermochim. Acta 221, 143 (1993).

301 J. Fernandez, I. Velasco, and S. Otin, Int. Data Ser., Sel. Data Mix., Ser. A 1990, 164 (1990).

302 R. Fuchs, T. M. Young, and R. F. Rodewald, J. Amer. Chem. Soc. 96 (14), 4705 (1974).

303 K. V. N. S. Reddy, Y. V. L. R. Kumar, D. H. L. Prasad, and A. Krishnaiah, J. Chem. Eng. Data 51, 326 (2006).

350

304 H. Casas, L. Segade, S. García-Garabal, M. M. Piñeiro, C. Franjo, E. Jiménez, and M. I. P. Andrade, Fluid Phase Equilib. 182, 279 (2001).

305 B. N. Solomonov, I. S. Antipin, V. B. Novikov, and A. I. Konovalov, Russ. J. Gen. Chem. 52, 2364 (1982).

306 C. Menduina and M. D. Pena, Int. Data Ser., Sel. Data Mix., Ser. A, 59 (1976).

307 R. Fuchs, L. A. Peacock, and W. K. Stephenson, Can. J. Chem. 60, 1953 (1982).

308 Y. Miyano, A. Kimura, M. Kuroda, A. Matsushita, A. Yamasaki, Y. Yamaguchi, A. Yoshizawa, and Y. Tateishi, J. Chem. Eng. Data 52 (1), 291 (2007).

309 I. Gascon, B. Giner, S. Rodriguez, C. Lafuente, and F. M. Royo, Thermochim. Acta 439, 1 (2005).

310 H. Casas, J. J. d. Llano, S. García-Garabal, L. Segade, C. Franjo, E. Jiménez, and J. L. Legido, J. Chem. Eng. Data 48, 763 (2003).

311 P. Saris, J. B. Roesenholm, E. Sjoblom, and U. Henriksson, J. Phys. Chem. 90, 660 (1986).

312 U. Bhardwaj, K. C. Singh, and S. Maken, J. Chem. Thermodyn. 30, 253 (1998).

313 D. Missopolinou, I. Tsivintzelis, and C. Panayiotou, Fluid Phase Equilib. 245, 89 (2006).

314 M. M. Mato, M. Lopez, J. L. Legido, J. Salgado, P. V. Verdes, and M. I. P. Andrade, J. Chem. Eng. Data 48, 646 (2003).

315 E. Wilhelm and R. Battino, J. Chem. Thermodyn. 3, 761 (1971).

316 M. M. Mato, J. Balseiro, J. Salgado, E. Jiménez, J. L. Legido, M. M. Piñeiro, and M. I. P. Andrade, J. Chem. Eng. Data 47, 4 (2002).

317 J. Hu, K. Tamura, and S. Murakami, Fluid Phase Equilib. 131 (1-2), 197 (1997).

318 E. Wilhelm, W. Egger, M. Vencour, A. H. Roux, M. Polednicek, and J.-P. E. Grolier, J. Chem. Thermodyn. 30, 1509 (1998).

319 B. N. Solomonov, M. A. Varfolomeev, V. B. Novikov, A. E. Klimovitskii, and D. A. Faizullin, Russ. J. Phys. Chem. 79 (7), 1029 (2005).

320 K. N. Marsh, J. Chem. Thermodyn. 17 (1), 29 (1985).

321 J. P. R.-D. Grolier, G.; Kooner, Z. S.; Smith, J. F.; Hepler, L. G., J. Solution Chem. 16, 745 (1987).

322 J. P. Morel and N. Morel-Desrosiers, J. Solution Chem. 10 (7), 451 (1981).

351

323 Y. Miyano, T. Kobashi, H. Shinjo, S. Kumada, Y. Watanabe, W. Niya, and Y. Tateishi, J. Chem. Thermodyn. 38 (6), 724 (2006).

324 I. McStravick, K. Flynn, J. Lambert, N. Teahan, and W. E. Waghorne, J. Mol. Liq. 94 (2), 145 (2001).

325 G. C. Benson, Int. DATA Ser., Sel. Data Mixtures, Ser. A (2), 78 (1973).

326 G. C. Benson, Int. DATA Ser., Sel. Data Mixtures, Ser. A (2), 79 (1973).

327 C. Kracht, P. Ulbig, and S. Schulz, Thermochim. Acta 337 (1-2), 209 (1999).

328 V. P. Korolev, Russ. J. Appl. Chem. 79 (11), 1779 (2006).

329 R. Fuchs and R. F. Rodewald, J. Amer. Chem. Soc. 95 (18), 5897 (1973).

330 Y. A. Sivolozhskaya, N. L. Potkina, and V. P. Korolev, Russ. J. Gen. Chem. 72 (6), 864 (2002).

331 L. M. P. C. Albuquerque, M. L. C. J. Moita, A. M. N. Simoes, and R. M. C. Goncalves, Thermochim. Acta 275 (1), 67 (1996).

332 R. M. C. Goncalves, L. M. P. C. Albuquerque, A. M. N. Simoes, and J. J. M. Ramos, Thermochim. Acta 209, 63 (1992).

333 F. Martins, N. Nunes, M. L. Moita, and R. E. Leitao, Thermochim. Acta 444 (1), 83 (2006).

334 R. M. C. A. Goncalves, L.M.P.C.; Martins, F.E.L.; Simoes, A.M.N.; Moura Ramos, J.J., J. Phys. Org. Chem. 5, 93 (1992).

335 P. Haberfield, L. Clayman, and J. S. Cooper, J. Amer. Chem. Soc. 91 (3), 787 (1969).

336 A. Pineiro, A. Olvera, G. Garcia-Miaja, and M. Costas, J. Chem. Eng. Data 46 (5), 1274 (2001).

337 S. M. Cebreiro, M. Illobre, M. M. Mato, V. V. Verdes, J. L. Legido, and M. I. Paz Andrade, J. Therm. Anal. Calorim. 70 (1), 251 (2002).

338 K. Kammerer and R. N. Lichtenthaler, Thermochim. Acta 271, 49 (1996).

339 T. M. Letcher and U. P. Govender, J. Chem. Eng. Data 40 (5), 1097 (1995).

340 K. Tamura and M. M. H. Bhuiyan, J. Chem. Thermodyn. 35 (10), 1657 (2003).

341 C. Mintz, M. Clark, W. E. Acree, Jr., and M. H. Abraham, J. Chem. Inf. Model. 47 (1), 115 (2007).

342 V. P. Korolev and N. L. Potkina, Russ. J. Gen. Chem. 73 (5), 701 (2003).

352

343 M. Meade, K. Hickey, Y. McCarthy, W. E. Waghorne, M. R. Symons, and P. P. Rastogi, J. Chem. Soc., Faraday Trans. 93 (4), 563 (1997).

344 R. Garriga, J. Ilarraza, P. Perez, and M. Gracia, J. Chem. Thermodyn. 28 (2), 233 (1996).

345 Y. X. Wang, J. P. Chao, and M. Dai, Thermochim. Acta 169, 161 (1990).

346 G. H. Parsons and C. H. Rochester, J. Chem. Soc., Faraday Trans. 1 71 (5), 1069 (1975).

347 I. Uruska and M. Koschmidder, J. Chem. Soc., Perkin Trans. 2 (11), 1845 (1989).

348 C. H. Rochester and J. A. Waters, J. Chem. Soc., Faraday Trans. 1 78 (2), 631 (1982).

349 G. G. Siegel, P. L. Huyskens, and L. Vanderheyden, Ber. Bunsen-Ges. Phys. Chem. 94 (5), 549 (1990).

350 B. N. B. Solomonov, M.D.; Konovalov, A.I. , Russ. J. Gen. Chem. 57, 368 (1987).

351 T. Minamihonoki, H. Ogawa, H. Nomura, and S. Murakami, Thermochim. Acta 459 (1-2), 80 (2007).

352 O. M. Gaisinskaya, S. M. Rubinchik, and V. A. Sokolov, Zh. Neorg. Khim. 8 (12), 2814 (1963).

353 S. Taniewska-Osinska, L. Kaminska-Bartel, H. Piekarski, and T. M. Krygowski, Can. J. Chem. 59 (5), 817 (1981).

354 L. Yang, Q. Pei, T. Zhang, J. Zhang, and Y. Cao, Thermochim. Acta 463 (1-2), 13 (2007).

355 M. H. Abraham, R. J. Irving, and G. F. Johnston, J. Chem. Soc. A (2), 199 (1970).

356 C. B. Kretschmer and R. Wiebe, J. Am. Chem. Soc. 73, 3778 (1951).

357 D. V. Batov, Russ. Chem. Bull. 53 (8), 1640 (2004).

358 P.-J. Lien, H.-m. Lin, and M.-J. Lee, J. Chem. Eng. Data 48 (2), 359 (2003).

359 Z. Tong, G. C. Benson, and B. C. Y. Lu, Thermochim. Acta 288 (1-2), 29 (1996).

360 A. H. Roux, G. Roux-Desgranges, and J. P. E. Grolier, Fluid Phase Equilib. 89 (1), 57 (1993).

361 R. H. Stokes, M. Adamson, and A. Richards, J. Chem. Thermodyn. 11 (3), 303 (1979).

362 T. M. Letcher, J. Mercer-Chalmers, and A. K. Prasad, Thermochim. Acta 188 (1), 157 (1991).

363 G. C. Benson, Int. DATA Ser., Sel. Data Mixtures, Ser. A (2), 82 (1973).

353

364 G. C. Benson, Int. DATA Ser., Sel. Data Mixtures, Ser. A (2), 84 (1973).

365 I. Nagata, K. Tamura, and K. Miyai, Fluid Phase Equilib. 149 (1-2), 147 (1998).

366 A. Nagashima, S. Yoshii, H. Matsuda, and K. Ochi, J. Chem. Eng. Data 49 (2), 286 (2004).

367 S.-J. Park, K.-J. Han, and J. Gmehling, J. Chem. Eng. Data 52 (1), 230 (2007).

368 M. A. Villamanan, A. H. Roux, and J. P. E. Grolier, Int. DATA Ser., Sel. Data Mixtures, Ser. A (2), 126 (1984).

369 M. A. Villamanan, A. H. Roux, and J. P. E. Grolier, Int. DATA Ser., Sel. Data Mixtures, Ser. A (2), 119 (1984).

370 M. A. Villamanan, A. H. Roux, and J. P. E. Grolier, Int. DATA Ser., Sel. Data Mixtures, Ser. A (2), 123 (1984).

371 M. M. Mato, M. Illobre, P. V. Verdes, and M. I. Paz Andrade, J. Therm. Anal. Calorim. 84 (1), 291 (2006).

372 G. Conti, P. Gianni, and E. Matteoli, Thermochim. Acta 247 (2), 293 (1994).

373 K. Tamura and M. M. H. Bhuiyan, J. Chem. Eng. Data 50 (1), 66 (2005).

374 M. M. H. Bhuiyan and K. Tamura, Thermochim. Acta 405 (1), 137 (2003).

375 D.-Y. Peng, G. C. Benson, and B. C. Y. Lu, J. Chem. Eng. Data 43 (5), 880 (1998).

376 E. Romano, J. L. Trenzado, E. Gonzalez, J. S. Matos, L. Segade, and E. Jimenez, Fluid Phase Equilib. 211 (2), 219 (2003).

377 R. Francesconi and F. Comelli, J. Chem. Eng. Data 42 (1), 45 (1997).

378 I. Malijevska, G. Oswald, and A. Heintz, J. Chem. Thermodyn. 28 (11), 1247 (1996).

379 J. Chao and M. Dai, Thermochim. Acta 179, 257 (1991).

380 J. J. Moura Ramos, M. L. Stien, and J. Reisse, Chem. Phys. Lett. 42 (2), 373 (1976).

381 I. Nagata and M. Sano, Thermochim. Acta 200, 475 (1992).

382 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 23 (3), 173 (1995).

383 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 23 (3), 179 (1995).

384 J. Ortega, M. Chaar, and J. Placido, ELDATA: Int. Electron. J. Phys.-Chem. Data 1 (2), 139 (1995).

354

385 G. R. Behbehani, S. Ghammamy, and W. E. Waghorne, Thermochim. Acta 448 (1), 37 (2006).

386 R. Garriga, I. Putze, P. Perez, and M. Gracia, J. Chem. Thermodyn. 27 (5), 481 (1995).

387 R. M. C. Goncalves and A. M. N. Simoes, J. Solution Chem. 16 (1), 39 (1987).

388 K. Rubini, R. Francesconi, A. Bigi, and F. Comelli, Thermochim. Acta 452 (2), 124 (2007).

389 R. Parkash, S. C. Ahluwalia, and R. C. Paul, Monatsh. Chem. 115 (2), 135 (1984).

390 R. H. Stokes and H. T. French, J. Chem. Soc., Faraday Trans. 1 76 (3), 537 (1980).

391 J. R. Morton, III, J. Chem. Eng. Data 4, 251 (1959).

392 M. Takenouchi, R. Kato, and H. Nishiumi, J. Chem. Eng. Data 46 (3), 746 (2001).

393 O. Rogne, J. Chem. Soc., Perkin Trans. 2 (13), 1760 (1973).

394 G. Conti, P. Gianni, L. Lepori, and E. Matteoli, Fluid Phase Equilib. 105 (1), 93 (1995).

395 J.-P. Pokki, K. Rehak, Y. Kim, J. Matous, and J. Aittamaa, J. Chem. Eng. Data 48 (1), 75 (2003).

396 J. Mokrzan, Acta Univ. Lodz., Folia Chim. 4, 71 (1985).

397 J. Catalan, A. Couto, J. Gomez, J. L. Saiz, and J. Laynez, J. Chem. Soc., Perkin Trans. 2 (7), 1181 (1992).

398 J. Pardo, M. C. Lopez, J. Santafe, F. M. Royo, and J. S. Urieta, Fluid Phase Equilib. 109 (1), 29 (1995).

399 Y. Miyano, J. Chem. Eng. Data 49 (5), 1285 (2004).

400 D. V. Batov, N. A. Potkina, and V. P. Korolev, Russ. J. Gen. Chem. 68 (10), 1558 (1998).

401 V. C. Rose and T. S. Storvick, J. Chem. Eng. Data 11 (2), 143 (1966).

402 R. Alonso, R. Guerrero, and J. A. Corrales, J. Chem. Thermodyn. 19 (12), 1271 (1987).

403 I. Landau, A. J. Belfer, and D. C. Locke, Ind. Eng. Chem. Res. 30 (8), 1900 (1991).

404 G. C. Benson, Int. Data Ser., Sel. Data Mix., Ser. A, 100 (1975).

405 G. C. Benson, Int. Data Ser., Sel. Data Mix., Ser. A, 101 (1975).

406 C. Valles, E. Perez, A. M. Mainar, J. Santafe, and M. Dominguez, J. Chem. Eng. Data 51 (3), 1105 (2006).

355

407 I. Gascon, H. Artigas, S. Martin, P. Cea, and C. Lafuente, J. Chem. Thermodyn. 34 (9), 1351 (2002).

408 M. E. F. De Ruiz Holgado, J. Fernandez, M. I. Paz Andrade, and E. L. Arancibia, Can. J. Chem. 80 (5), 462 (2002).

409 R. Garriga, S. Martinez, P. Perez, and M. Gracia, J. Chem. Eng. Data 47 (2), 322 (2002).

410 C. Lafuente, H. Artigas, M. C. Lopez, F. M. Royo, and J. S. Urieta, Phys. Chem. Liq. 39 (6), 665 (2001).

411 P. Santana, J. Balseiro, J. Salgado, E. Jimenez, J. L. Legido, E. Carballo, and M. I. Paz Andrade, J. Chem. Eng. Data 44 (6), 1195 (1999).

412 R. Francesconi and F. Comelli, J. Chem. Eng. Data 44 (1), 44 (1999).

413 F. Comelli, R. Francesconi, and C. Castellari, J. Chem. Eng. Data 44 (4), 739 (1999).

414 V. P. Korolev, N. L. Smirnova, and D. V. Batov, Russ. J. Appl. Chem. 79 (2), 213 (2006).

415 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 23 (3), 156 (1995).

416 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 23 (3), 162 (1995).

417 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 23 (3), 168 (1995).

418 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 23 (3), 174 (1995).

419 J. Ortega, Int. DATA Ser., Sel. Data Mixtures, Ser. A 23 (3), 180 (1995).

420 I. Nagata and K. Tamura, J. Chem. Thermodyn. 20 (9), 1101 (1988).

421 J. Mokrzan, Acta Univ. Lodz., Folia Chim. 1, 65 (1982).

422 E. Langa, A. M. Mainar, J. I. Pardo, and J. S. Urieta, J. Chem. Eng. Data 51 (2), 392 (2006).

423 J. Ortega, M. Vidal, F. J. Toledo-Marante, and J. Placido, J. Chem. Thermodyn. 31, 1025 (1999).

424 G. L. Pollack and J. F. Himm, J. Chem. Phys. 77, 3221 (1982).

425 J. Ortega and J. Placido, J. Physico-Chem.Data 1, 69 (1995).

426 I. A. McLure and A. Trejo Rodriguez, J. Chem. Thermodyn. 14 (5), 439 (1982).

427 O. Urdaneta, S. Hamam, Y. P. Handa, and G. C. Benson, J. Chem. Thermodyn. 11, 851 (1979).

428 J. Placido, J. Ortega, and F. J. Toledo, J. Chem. Thermodyn. 30, 805 (1998).

356

429 J. Gmehling, J. Chem. Eng. Data 38, 143 (1993).

430 S. E. M. Hamam and G. C. Benson, J. Chem. Eng. Data 31, 45 (1986).

431 K. N. Marsh, J. B. Ott, and A. E. Richards, J. Chem. Thermodyn. 12 (9), 897 (1980).

432 B. N. Solomonov, I. S. Antipin, V. V. Gorbachuk, and A. I. Konovalov, Dokl. Akad. Nauk SSSR 243 (6), 1499 (1978).

433 D.-Y. Peng, G. C. Benson, and B. C. Y. Lu, J. Chem. Thermodyn. 32 (4), 539 (2000).

434 S. E. M. Hamam, M. K. Kumaran, D. Zhang, and G. C. Benson, J. Chem. Eng. Data 30 (2), 222 (1985).

435 E. Wilhelm, A. Inglese, J. P. E. Grolier, and H. V. Kehiaian, Thermochim. Acta 31 (1), 85 (1979).

436 E. Wilhelm, Ber. Bunsenges. Phys. Chem. 81 (11), 1150 (1977).

437 V. Dohnal and P. Vrbka, Fluid Phase Equilib. 1331, 73 (1997).

438 M. K. Kumaran, C. J. Halpin, and G. C. Benson, J. Chem. Thermodyn. 15 (3), 249 (1983).

439 R. M. Guidry and R. S. Drago, J. Phys. Chem. 78 (4), 454 (1974).

440 I. Ferino, B. Marongiu, V. Solinas, and S. Torrazza, Thermochim. Acta 57 (2), 147 (1982).

441 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 18 (1992).

442 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 25 (1992).

443 B. N. Solomonov, M. D. Borisover, and A. I. Konovalov, Russ. J. Gen. Chem. 56, 1 (1985).

444 G. C. Benson and Y. P. Handa, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 72 (1980).

445 G. C. Benson and Y. P. Handa, Int. DATA Ser., Sel. Data Mixtures, Ser. A (1), 77 (1980).

446 G. C. Benson, Int. DATA Ser., Sel. Data Mixtures, Ser. A (4), 296 (1990).

447 M. M. Mato, S. M. Cebreiro, P. V. Verdes, J. L. Legido, and M. I. Paz Andrade, J. Therm. Anal. Calorim. 80 (2), 303 (2005).

448 C. Alonso, C. R. Chamorro, J. J. Segovia, M. C. Martin, E. A. Montero, and M. A. Villamanan, Fluid Phase Equilib. 217 (2), 145 (2004).

449 M. D. Guillen and C. Gutierrez Losa, J. Chem. Thermodyn. 10 (6), 567 (1978).

357

450 Z. Wang, G. C. Benson, and B. C. Y. Lu, J. Chem. Eng. Data 48 (1), 190 (2003).

451 T. Treszczanowicz, G. C. Benson, and B. C. Y. Lu, J. Chem. Eng. Data 33 (3), 379 (1988).

452 H. Casas, L. Segade, C. Franjo, E. Jimenez, and M. I. Paz Andrade, J. Chem. Eng. Data 45 (3), 445 (2000).

453 M. Kwaterski, E. N. Rezanova, and R. N. Lichtenthaler, Fluid Phase Equilib. 237 (1-2), 170 (2005).

454 J. Fernandez, I. Velasco, and S. Otin, Int. DATA Ser., Sel. Data Mixtures, Ser. A (3), 206 (1987).

455 J. Fernandez, I. Velasco, and S. Otin, Int. DATA Ser., Sel. Data Mixtures, Ser. A (3), 207 (1987).

456 J. Fernandez, I. Velasco, and S. Otin, Int. DATA Ser., Sel. Data Mixtures, Ser. A (3), 208 (1987).

457 J. Fernandez, I. Velasco, and S. Otin, Int. DATA Ser., Sel. Data Mixtures, Ser. A (3), 209 (1987).

458 J. Fernandez, I. Velasco, and S. Otin, Int. DATA Ser., Sel. Data Mixtures, Ser. A (3), 211 (1987).

459 E. Sapei, A. Zaytseva, P. Uusi-Kyyny, K. I. Keskinen, and J. Aittamaa, J. Chem. Eng. Data 52 (2), 571 (2007).

460 B. R. Sharma, G. S. Pundeer, and P. P. Singh, Thermochim. Acta 11 (2), 105 (1975).

461 A. Inglese and J. P. E. Grolier, Int. DATA Ser., Sel. Data Mixtures, Ser. A (4), 299 (1987).

462 J. P. E. Grolier, O. Kiyohara, and G. C. Benson, J. Chem. Thermodyn. 9 (7), 697 (1977).

463 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. Data Ser., Sel. Data Mix., Ser. A, 12 (1992).

464 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. Data Ser., Sel. Data Mix., Ser. A, 19 (1992).

465 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. Data Ser., Sel. Data Mix., Ser. A, 26 (1992).

466 W. Hayduk, E. B. Walter, and P. Simpson, J. Chem. Eng. Data 17, 59 (1972).

467 M. K. Kumaran and G. C. Benson, J. Chem. Thermodyn. 18, 993 (1986).

468 K. Fukuchi, K. Miyoshi, and Y. Arai, Fluid Phase Equilib. 136, 135 (1997).

469 L. Wang, G. C. Benson, and B. C. Y. Lu, J. Chem. Thermodyn. 20, 975 (1988).

358

470 E. Jimenez, C. Franjo, L. Segade, J. L. Legido, and M. I. Paz Andrade, Fluid Phase Equilib. 133, 179 (1997).

471 L. Wang, G. C. Benson, and B. C. Y. Lu, J. Chem. Thermodyn. 22, 173 (1990).

472 I. Castro, M. Pintos, A. Amigo, R. Bravo, and M. I. Paz Andrade, J. Chem. Thermodyn. 26, 29 (1994).

473 Z. Hamoudi, F. B. Belaribi, A. Ait-Kaci, and G. Boukais-Belaribi, Fluid Phase Equilib. 244, 62 (2006).

474 H. Nakai, H. Soejima, K. Tamura, H. Ogawa, S. Murakami, and Y. Toshiyasu, Thermochim. Acta 183, 15 (1991).

475 P. Vrbka, V. Dohnal, and W. Arlt, J. Chem. Eng. Data 49, 867 (2004).

476 U. Domanska, K. Domanski, C. Klofutar, and S. Paljk, Thermochim. Acta 164, 227 (1990).

477 Z. Wang, G. C. Benson, and B. C.-Y. Lu, J. Chem. Eng. Data 49, 311 (2004).

478 A. Inglese and J. P. E. Grolier, Int. Data Ser., Sel. Data Mix., Ser. A, 288 (1987).

479 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. Data Ser., Sel. Data Mix., Ser. A, 13 (1992).

480 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. Data Ser., Sel. Data Mix., Ser. A, 20 (1992).

481 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. Data Ser., Sel. Data Mix., Ser. A, 27 (1992).

482 E. Wilhelm, A. Inglese, and J. P. E. Grolier, J. Chem. Eng. Data 28, 202 (1983).

483 J. Ortega, F. Espiau, and F. J. Toledo, J. Chem. Thermodyn. 36, 193 (2004).

484 J. Ortega, J. S. Matos, and J. A. Pena, Thermochim. Acta 160, 337 (1990).

485 M. López, M. I. P. Andrade, J. Peleteiro, J. L. Legido, L. Romaní, and E. P. Martell, Thermochim. Acta 211, 33 (1992).

486 B. Luo, G. C. Benson, and B. C. Y. Lu, J. Chem. Thermodyn. 20, 267 (1988).

487 G. C. Benson, B. Luo, and B. C. Y. Lu, Can. J. Chem. 66, 531 (1988).

488 Z. Wang, Y. Horikawa, G. C. Benson, and B. C.-Y. Lu, J. Solution Chem. 30, 401 (2001).

489 B. Luo, G. C. Benson, and B. C. Y. Lu, J. Chem. Thermodyn. 19, 785 (1987).

490 A. Inglese and J. P. E. Grolier, Int. Data Ser., Sel. Data Mix., Ser. A, 289 (1987).

491 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. Data Ser., Sel. Data Mix., Ser. A, 14 (1992).

359

492 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. Data Ser., Sel. Data Mix., Ser. A, 21 (1992).

493 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. Data Ser., Sel. Data Mix., Ser. A, 28 (1992).

494 A. Inglese and J. P. E. Grolier, Int. Data Ser., Sel. Data Mix., Ser. A, 290 (1987).

495 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. Data Ser., Sel. Data Mix., Ser. A, 22 (1992).

496 R. Kechavarz, J. P. Dubes, and H. Tachoire, Int. Data Ser., Sel. Data Mix., Ser. A, 29 (1992).

497 A. Inglese and J. P. E. Grolier, Int. Data Ser., Sel. Data Mix., Ser. A, 291 (1987).

498 W. M. S. Melzer, F.; Knapp, H.;, Fluid Phase Equilib. 49, 167 (1989).

499 V. N. Vandyshev, Zhur. Obshch. Khim. 66, 35 (1996).

500 M. R. Bendova, K.; Matous, J.;Novak, J.P., J. Chem. Eng. Data (49), 1318 (2004).

501 H. P. Iloukhani, J.B.; Saboury, A.A., J. Chem. Eng. Data 45, 1016 (2000).

502 M. Jozwiak, J. Chem. Thermodyn. 39, 433 (2007).

503 P. R. Venkatesu, R.S.; Rao, M.V.P.; Prasad H.L., J. Chem. Eng. Data 45, 515 (2000).

504 A. V. B. Kustov, A.V.; Antonova, O.A.; Korolev, B.P., Russ. J. Gen. Chem. 72, 918 (2002).

505 V. I. K. Smirnov, G.A., Zhur. Khim. Termodin. Termokhim 2, 5 (1993).

506 E. Brunner, J. Chem. Eng. Data 30, 269 (1985).

507 M. V. Kulikov, Russ. Chem. Bull. 46, 274 (1997).

508 U. S. Bhardwaj, K.C.; Maken, S., J. Chem. Thermodyn. 30, 253 (1998).

509 B. N. B. Solomonov, M.D.; Konovalov, A.I., Zhur. Obshch. Khim 57, 423 (1987).

510 V. T. P. Lam, H.D.; Murakami, S.; Benson, G.C., J. Chem. Eng. Data 18, 63 (1973).

511 D. V. K. Batov, V.P., Russian Chemical Bulletin 46 (10), 1716 (1997).

512 D. V. A. Batov, O.A.; Svishchev, A.F.; Korolev, V.P., Zhur. Obshch. Khim. 66, 1773 (1996).

513 B. A. Giner, H.; Carrion, A.; Lafuente, C.; Royo, F.M., J. Mol. Liq. 108, 303 (2003).

514 J. E. Ortega, F.; Sabater, G.; Postigo, M., J. Chem. Eng. Data 51, 730 (2006).

515 J. E. Ortega, F.; Postigo, M., J. Chem. Eng. Data 50, 444 (2005).

516 J. E. Ortega, F.; Postigo, M., J. Chem. Eng. Data 48, 916 (2003).

360

517 J. E. Ortega, F.; Postigo, M., J. Chem. Eng. Data 49, 1602 (2004).

518 R. S. Garriga, F.; Perez, P.; Gracia, M., Fluid Phase Equilib. 130, 195 (1997).

519 E. M. Langa, A.M.; Pardo, J.I.; Urieta, J.S., J. Chem. Eng. Data 52, 2182 (2007).

520 B. N. Strothmann, O.; Fischer, K.; Gmehling, J., J. Chem. Eng. Data 44, 379 (1999).

521 A. N. G. Gaivoronskii, V.A., Russ. J. Appl. Chem. 78, 404 (2005).

522 H. Kalali, F. Kohler, and P. Svejda, J. Chem. Eng. Data 36, 326 (1991).

523 A. C. Galvao and A. Z. Francesconi, Thermochim. Acta 450, 81 (2006).

524 R. F. Checoni, L. D’Agostini, and A.Z. Francesconi, J. Chem. Thermodyn. 40, 759 (2008).

525 I. Nagata and K. Tamura, J. Chem. Thermodyn. 21, 955 (1989).

526 S. D. Cave, R. D. Santis, and L. Marrelli, J. Chem. Eng. Data, 70 (1980).

527 K. Tamura, M.Watanabe, S. Tsuchiya, and T. Yamada, J. Chem. Thermodyn. 33, 95 (2001).

528 R. F. Checoni and A. Z. Francesconi, J. Therm. Anal. Calorim. 80, 295 (2005).

529 I. Nagata, K. Tamura, and F. Nischikawa, J. Chem. Thermodyn. 31, 181 (1999).

530 A. D. Tripathi, J. Chem. Eng. Data 40, 1262 (1995).

531 R. C. Guedes, K. Coutinho, B. J. C. Cabral, S. Canuto, C. F. Correia, R. M. B. d. Santos, and J. A. M. Simoes, J. Phys. Chem. 106, 9197 (2003).

532 L. Audergon, F. Emmenegger, M. Piccand, H. Piekarski, and J. Mokrzan, Polyhedron 20, 387 (2001).

533 V. B. Novikov, A.A. Stolov, V. V. Gorbatchuk, and B. N. Solomonov, J. Phys. Org. Chem. 11, 283 (1998).

534 J. Burgess and R. D. Peacock, J. Chem. Soc., Dalton Trans., 1565 (1975).

535 N. L. Potkina and V. P. Korolev, Russ. J. Gen. Chem. 71, 1682 (2001).

536 D. V. Batov, A. V. Kustov, and V. P. Korolev, Russ. J. Gen. Chem. 74, 663 (2004).

537 I. Nagata, K. Tamura, H. Kataoka, and A. Ksiazczak, J. Chem. Eng. Data 41, 593 (1996).

538 M. Jozwiak, Thermochim. Acta 417, 27 (2004).

539 I. Nagata, K. Tamura, and K. Miyai, J. Chem. Eng. Data 41, 1350 (1996).

361

540 J. Reisse, M. Claessens, O. Fabre, G. Michaux, M. L. Stien, and D. Zimmermann, Bull. Soc. Chim. Belges 92, 819 (1983).

541 M. L. Sagu, J. Swarup, K. M. Sharan, and K. K. Bhattacharyya, J. Chem. Eng. Data 28, 81 (1983).

542 A. N. Gaivoronskii and V. A. Granzhan, Russ. J. Appl. Chem. 78, 404 (2005).

543 R. Francesconi and F. Comelli, Thermochim. Acta 264, 95 (1995).

544 R. Francesconi and F. Comelli, Thermochim. Acta 216, 35 (1993).

545 F. Comelli, R. Francesconi, and C. Castellari, J. Chem. Eng. Data 38 (224-226) (1993).

546 I. Nagata, K. Tamura, and S. Tokuriki, Thermochim. Acta 47, 315 (1981).

547 I. Nagata and K. Tamura, J. Chem. Thermodyn. 29, 31 (1997).