pre-observations and models · precision and accuracy needed on the final parameters ? p? ......

56
Pre-observations and models Carine Babusiaux Observatoire de Paris - GEPI GREAT-ITN, IAC, September 2012

Upload: others

Post on 19-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Pre-observations and models

    Carine BabusiauxObservatoire de Paris - GEPI

    GREAT-ITN, IAC, September 2012

  • The questions

    2

    1) Can the observing program tackle the scientific problem ?

    2) What is the best configuration of the observing parameters to get the desired results ?

    → Which fields, which targets ? Precision and accuracy needed on the final parameters ? P? Wavelength coverage ? Resolution ? Minimum SNR ? Target selection ? Pollution expected in the sample ?

  • Using models to define where your best constraints are

    3

    Minchev & Quillen 2007

  • Using models to define the precision needed

    4Antoja et al. 2010

    Sun

    Vr (km/s)

    μ β (m

    as/y

    r)

    + GAIA errors+ survey σ(Vr)=2 km/s

    l = 305°dist = 7 kpc

  • Modelling the observations

    Gaia simulation – a quite complete (and complex!) example

    5

    X

    simulated observations

  • Modelling the observations

    Gaia simulation – a quite complete (and complex!) example

    6

    X

    X simulated catalogue

  • Modelling the observations

    7

    Simple tools are often enough... http://iraf.noao.edu/

    Instrument specific exposure time calculators & user manual

    http://iraf.noao.edu/

  • Contents

    1. Observing strategy – the trade-offs

    2. Supporting catalogues

    3. Testing the target selection

    4. Extra considerations

    5. Modelling the observations

    – Stellar population synthesis

    – Photometry / Spectroscopy

    – Extinction models8

  • Field observability from the telescope !

    http://www.eso.org/sci/observing/tools/calendar/observability.html

    9

    Sky accessibility for one of the VTL

    Air mass ≈ 1/cos(ZA)

  • Observing Strategy

    Goal is to optimize :

    10

    Nfields x Nsetups x exptime(SNR,Vlim) = Nnights

  • Observing Strategy

    Example for spectroscopy : trade-offs to analyse :

    11

    Nfields x Nsetups x exptime(SNR,Vlim) = Nnights

    1) Radial Velocities

    2) Teff, logg, [M/H]

    3) Individual abundances

    Resolving power R = λ / ΔλSNR

    Wavelength coverage

  • The magnitude limit

    12

    mλ=M 0+ 5 log10(d )−5+ Aλ

  • SNR

    Signal-to-noise ratio (S/N or SNR)

    signal : total number of photons of the source (F*)

    noise :

    – photon noise [ Poisson distribution : ]

    – background noise

    – dark current

    – read-out noise

    For bright stars :

    13

    σ (F *)=√ F *

    SN

    =F*

    σ (F *)=√ F *

  • SNR

    14

    σ (F )=√ F ¿

  • SNR

    Exposure Time Calculator

    http://www.eso.org/observing/etc/

    15Mean SNR for a G2V star for GES set-ups

  • SNR

    Exposure Time Calculator

    16Mean SNR for a G2V star for GES set-ups

  • SNR

    Check the wavelength of your main spectral features...

    17 UVES 580 SNR for a G2V star with V=15, 4*45 min exposure time

  • Which wavelengths ? Resolution ? SNR ? Tests using synthetic or observed standard spectra with different SNR

    18

    Tests made by A. Recio-Blanco et al. for GES

    → which set-ups ?→ which SNR ?

  • Contents

    1. Observing strategy – the trade-offs

    2. Supporting catalogues

    3. Testing the target selection

    4. Extra considerations

    5. Modelling the observations

    19

  • Supporting catalogues

    Target selection (incl. SNR estimation)

    Scientific analysis – Stellar atmosphere parameters constrains– Extinction estimates– Proper motions – …

    Check that extra input do not bias your target selection

    20

  • Current main photometric surveys

    21

    Survey H Filters Mag Lim Area Dates

    GALEX - FUV,NUV 20.5 4 π 2003

    OGLE S V,I 20.5 1992-2014

    SDSS N u,g,r,i,z 22.0 / 20.5 1.4 π 2000-2009

    IPHAS / VPHAS+ N/S (u,g),r,i,Hα 20 / 21 0.4 π 2003-2006 / 2012

    APASS N/S B,V,g,r,i 17 4 π 2010-2013

    SkyMapper S u,v,g,r,i,z 22.9 / 21.5 2 π 2009-2014

    Pan-STARRS N g,r,i,z,y 24 3 π 2012-2022

    2MASS N/S J,H,Ks 15.8 / 14.3 4 π 1997-2001

    UKIDSS N (Z,Y),J,H,K 19.4 / 17.8 0.7 π 2005

    VISTA S (Z,Y),J,H,Ks 20 / 18 2 π 2010

    GLIMPSE - IR 0.2 π 2004

    WISE - IR 4 π 2010

  • Current main all sky astrometric surveys

    22

    Survey Accuracy Mag Lim Nb stars

    USNO-B1 200 mas V=21 1 billion

    Tycho-2 60 mas V=12 2.5 million

    UCAC-4 20-70 mas R=16 40 million

  • Astrometry Good precision needed for fibre positioning

    23From FPOS User Manual

    For FLAMES, accuracy≤ 0.3 arcsec is needed

  • Astrometry

    High proper motion for nearby objects needs to be taken into account!

    24

    White DwarfCopyright © Rochester Institute of Technology.

  • “Home-made” pre-observations

    1) Imaging (→ photometry, astrometry)

    [+] multi-epoch (if variability or proper motion needed)

    [+] multi-wavelength (ex. Optical + NIR)

    2) Low resolution spectroscopy (→ tighter object selection)

    3) High resolution spectroscopy

    25

  • “Home-made” pre-observations

    Example: Metal poor stars in GES come from:

    ● HES (Hamburg/ESO objective-prism) survey pre-selection

    based on B-V, J-K and Ca II K line (Christlieb et al. 2008)

    ● Skymapper photometry + AAOmega LR spectroscopy

    26

  • Checking available data

    27

    http://vizier.u-strasbg.fr/viz-bin/VizieR

  • Checking available data

    28

    http://www.star.bris.ac.uk/~mbt/topcat/

  • Contents

    1. Observing strategy – the trade-offs

    2. Supporting catalogues

    3. Testing the target selection

    4. Extra considerations

    5. Modelling the observations

    29

  • Object selection : test on synthetic data

    30

    Ex: MS turn-off colour with Padova isochrones

    http://stev.oapd.inaf.it/cgi-bin/cmd

  • Object selection : test on empirical data

    31

    Ex: magnitude/colour selection of G2V with Hipparcos / 2MASS

  • Object selection : test on empirical data

    32

    Ex: giant branch shape using Globular Clusters

    [Fe/H]=-0.9

    J-K

    K

    Ferraro et al. 2000

  • Checking total number of targets

    33

  • Target selection

    34

    J

    Which selection will increase your % of targets ?

  • Target selection

    35

    What are your contaminants ?

    Will they be easy to identify ? remove ? model ?

  • Target selection

    36

    Easy to model

    Enough margin (catalogues and models uncertainties)

  • Contents

    1. Observing strategy – the trade-offs

    2. Supporting catalogues

    3. Testing the target selection

    4. Extra considerations

    5. Modelling the observations

    37

  • Multi-epoch

    38

    Variability detection as a goal (primary or secondary) of the survey

    (variable stars, binaries, proper motion...)

    Removing pollution

    – Cosmic rays

    – Variables, binaries... removal

  • Multi-epoch

    39

    Un-detected binaries

    → abundances determination bias1% flux contamination can produce a 0.1 dex bias (Erspamer & North 2003)

    → Vr dispersion biasExtra Vr dispersion due to un-detected binaries on solar type stars at V=18 mag is ~ 8 km/s

  • Calibrators

    40

    Adding some objects for calibration (zero point)

    or objects in common with other programs (validation / scaling)→ checking for standard stars or clusters

    For GES, 10 nights have been allocated for calibration :

    standard stars, open and globular clusters,

    specific fields (e.g. Corot), outliers prototypes

  • Presentation

    1. Observing strategy – the trade-offs

    2. Supporting catalogues

    3. Testing the target selection

    4. Extra considerations

    5. Modelling the observations

    – Stellar population synthesis

    – Photometry / Spectroscopy

    – Extinction model

    41

  • Stellar population synthesis model

    The Besançon model http://model.obs-besancon.fr/

    The TRILEGAL modelhttp://stev.oapd.inaf.it/cgi-bin/trilegal

    42

  • Stellar population synthesis model - ingredients

    4 components: thin disc, thick disc, halo, bulge

    43

  • Stellar population synthesis model - ingredients

    SFH (Star Formation History) → age

    IMF (Initial Mass Function) → mass

    AMR (Age Metallicity Relation) → [M/H]

    Density distributions → X, Y, Z

    Velocity distributions → Vx, Vy, Vz

    Evolutionary tracks → Teff, logg

    + synthetic spectral libraries → photometry

    44

  • Stellar population synthesis model - ingredients

    Evolutionary tracks (Padova, Dartmouth, BaSTI,Y2...)

    45

  • Stellar population synthesis model - ingredients synthetic spectral libraries (Basel2, ATLAS, MARCS, Phoenix...)

    → photometry in the required filters

    46

  • Stellar population synthesis model - ingredients Extinction law

    47Cardelli et al. 89 & Fitzpatrick 99

  • Spectral features

    Synthetic spectra (ATLAS, MARCS, PHOENIX...)http://pollux.graal.univ-montp2.fr/ Lines identification in spectral standard atlases (e.g. solar) http://spectra.freeshell.org/spectroweb.html Checking sky emission and telluric absorptionhttp://www.eso.org/observing/dfo/quality/UVES/uvessky/http://www.eso.org/sci/facilities/eelt/science/drm/tech_data/background/

    ISM absorption lines + DIBShttp://leonid.arc.nasa.gov/DIBcatalog.html

    48

  • Spectral features

    49From Battaglia et al. 2008

    Sky emission example in FLAMES LR08 spectra

  • Extinction model

    How to chose an extinction model ?― 2D / 3D (map or model)― Sky coverage― Spatial resolution― Accuracy

    50

  • Extinction model : some famous examples

    Schlegel et al. 1998:

    2D, full sky, 6' resolution, 16% accuracy

    from IR photometry of extragalactic objects

    51

    NGPSGP

  • Extinction model : some famous examples

    Drimmel et al. 2003:

    3D, full sky, model calibrated at ∞ to Schlegel

    52

  • Extinction model : some famous examples

    Marshall et al. 2006:

    3D, |l| ≤ 100° and |b| ≤ 10°, 15' resolution

    Besançon model fitted on 2MASS data

    53

  • Extinction model : some famous examples

    2D bulge extinction maps based on the Red Clump colour― Sumi et al. 2004, on OGLE-II (V,I) ― Gonzalez et al. 2012, on VVV (J,H,Ks)

    54

  • Extinction models in GES

    2D bulge (Gonzalez et al. 2012) for the bulge 2D ∞ (Schlegel et al. 1998) for the halo/thick disc 3D (Marshall et al. 2006) for the thin disc kinematics

    55

  • Diapo 1Diapo 2Diapo 3Diapo 4Diapo 5Diapo 6Diapo 7Diapo 8Diapo 9Diapo 10Diapo 11Diapo 12Diapo 13Diapo 14Diapo 15Diapo 16Diapo 17Diapo 18Diapo 19Diapo 20Diapo 21Diapo 22Diapo 23Diapo 24Diapo 25Diapo 26Diapo 27Diapo 28Diapo 29Diapo 30Diapo 31Diapo 32Diapo 33Diapo 34Diapo 35Diapo 36Diapo 37Diapo 38Diapo 39Diapo 40Diapo 41Diapo 42Diapo 43Diapo 44Diapo 45Diapo 46Diapo 47Diapo 48Diapo 49Diapo 50Diapo 51Diapo 52Diapo 53Diapo 54Diapo 55Diapo 56