power&system&technologies&for& future&venus&missions& · performance of...

42
Power System Technologies for Future Venus Missions Presenta9on to Venus Technology Forum Rao Surampudi, Sa9sh Khanna, Jonathan Grandidier, Kumar Bugga Nov 19, 2013

Upload: ngoxuyen

Post on 18-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Power  System  Technologies  for  Future  Venus  Missions  

Presenta9on  to    

Venus  Technology  Forum  

Rao  Surampudi,    Sa9sh  Khanna,      Jonathan  Grandidier,  Kumar  Bugga  Nov  19,  2013  

Outline  

•  Power  System  Technology  Needs  of  Venus  Explora9on  Missions  

•   Poten9al  Power  System  Technologies  for  Future  Venus  Explora9on  Missions  –  Nuclear  Power  systems  (  SOP&  Advanced)    –  Solar  Arrays  (SOP  &  Advanced)  –  Energy  Storage  systems  (SOP  &  Advanced)  

•  Summary  &  Conclusions  

Power  System  Technology  Needs  for  Venus  Explora9on  Mission  

Types  of  Venus  Explora9on  Missions  

•  Orbital  Missions  

•  Aerial    Missions  –  Balloons-­‐Constant  Al9tude  –  Balloons-­‐Variable  al9tude  –  Airplanes  –  Hybrid  Vehicles  

•  Surface  Missions  –  Short  Dura9on  (Probes,  

Landers)  –  Long  Dura9on  (Landers,  

Probes,  Rovers)  

4  

Power  System  Needs  for  Venus  Explora9on  Missions  

•  Capable    of  Opera9on  in  Venus  environments  – High  Temperature  – Corrosive  Environments  

•  High  Specific  Energy  /Power  (Low    Mass)  •  High  Energy/power  Density    (Low  Volume)  

•  Long  Life  

Venus  Environment  Challenges  for  Power  system  Technologies  

•  High  Temperature  (  >  450  C)  

•  Corrosive  Environment  (sulfuric  acid)  

•   High  Solar  intensity  

•  Nature  of  Solar  spectrum  

 

Venus  Atmosphere  Temperature  (in  °C)  as  a  func9on  of  al9tude  

The  surface  temperature  of  Venus  is  about  460°C.  Temperature  in  the  Venus  atmosphere  decreases  with  al9tude,  with  a  lapse  of  about  7.7  °C  per  kilometer.      

Solar  Spectrum  in  the  Venus  Atmosphere  

Solar  intensity  becomes  significantly  a`enuated  at  lower  al9tudes.  

Solar  Spectrum  as  a  Func9on  of  Al9tude    

•  Cloud  par9cles  absorb  and  sca`er  the  incident  light,  with  mid-­‐wavelength  (visible)  light  penetra9ng  somewhat  more  than  the  longer  wavelength  red  and  infrared  light.  

•  There  is  almost  no  energy  in  the  small  amount  of  light  near  the  surface  in  the  wavelength  range  below  450  nanometers.  

Poten9al  Power  System  Technologies  for  Future  Venus  Explora9on  Missions  

Opera9onal  Envelope  of  Power  Conversion  Technologies  

10 5

10 -1

10 0

10 1

10 2

10 3

10 4 El

ectr

ic P

ower

Lev

el (k

We)

1 hour 1 day 1 month 1 year 10 years

Chemical

Fission Reactors

• Fission Reactors • Solar

• Dynamic Radioisotope Generators

• Solar Solar • Static Radioisotope

Generators • Solar

Duration of Use Space missions need a variety of power solutions ( solar cells, radioisotope power sources, nuclear reactor, batteries )

SOP  Technology  Capabili9es  

Radioisotope Power Sources

Solar Cells

Rechargeable Batteries

Power System

Power Electronics

Technology Element Capability

30-100 Wh/kg >10 years -10 to 30 C

Ni-H2

Rigid Panel 30-40 W/kg Flexible Fold Out Array : 40-100 W/kg

4-5 W/kg 6.5 % eff

GPHS RTG Si cells 9-15% eff , TJ Cells 24-28%

22- 120 V dc -55 to 75C, up to a 1Mrad > 85% converter efficiency

0.5 to 20 kW, 28- 120 V dc

Direct Energy Transfer Shunt Regulator/Radiator

Power  System  Technologies  for  Long  Dura9on  Surface  Opera9ons  

•  Long  dura9on  surface  opera9ons  >  5  hours  will  require  major  advances  in  extreme  environment  power    technologies    –  Passive  thermal  control  

–  Ac9ve  thermal  control  –  High  temperature  

components  –  Innova9ve  architectures  

13  

Radioisotope  Power  Systems    for  Venus  Explora8on  Systems  

   

Radioisotope  Thermoelectric  Generators    Used  In  Space  Missions    

 

285 We (BOM) 6.8% efficiency 5.1 We/kg 114 cm (44.9 in) long 42.7cm (16.8in) dia 56 kg (123 lb) SiGe Thermoelectrics

Galileo, Ulysses, Cassini & New Horizons

158 We (BOM) 6.6 % efficiency 4.2 We/kg 58.4 cm (23 in) long 39.7 cm (15.64 in) dia 38 kg (83.7lb) SiGe Thermoelectrics LES 8/9, Voyager 1/2

40.3 Watts (BOM) 6.2 % efficiency 3 We/kg 22.86 cm (9.0 in) long 50.8 cm (20 in) dia ~13 kg (28.6 lb) PbTe Thermoelectrics

Nimbus B-1/III, Pioneer 10/11, Viking 1/2

SiGe GPHS RTG (1980-2006)

SiGe MHW RTG (1970’s)

SNAP-19(PbTe RTG) (1960-70’s)

Limitations: Not Avaliable

Advanced  RPS  Systems  Under  Development    

3Export Controlled InformationSRG110 Quarterly 04/01/2004

SRG110 Program

•  Multi-Mission RTG (MMRTG) –  Specific Power: 2.8 We/kg –  System efficiency: 6.3% –  Design Life: 14 Years + Storage –  Power BOM/14 years: ~120 We/100 We –  Environments: Deep space, Planetary –  Powering currently Curiosity Rover

•  Stirling Radioisotope Generator (SRG) –  Specific Power: ~ 6 We/kg –  System efficiency: 30% –  Design Life: 14 Years + Storage –  Power BOM: 130 We –  Environments: Deep space, Planetary –  Under development to support 2018 first launch (?)

–  Enhanced MMRTG (e-MMRTG) –  Specific Power: 4 We/kg –  System efficiency: 8-9% –  Design Life: 14 Years + Storage –  Power BOM/14 years: ~160 We/130 We –  Environments: Deep space, Planetary –  Under development to support 2025 first launch (?)

eMMRTG  

Advanced    Small  Nuclear  Space  Power  System  Technologies  for  Future  Venus  Missions    

•  Small  Radioisotope  Thermoelectric  Generator/Small  ASRG’s    for  Small  Planetary  Spacecraf  –  20-­‐30  W,    >  14  Years  

•  mW  Radioisotope  Thermoelectric  Generator  for  Planetary  Sensor  Networks  –  40  to  200  mW,  14  Years  

Heating and Cooling Load # Cooling Stages # GPHS Required

Case 1: Complete Lander (400 W Heating/700 W Cooling)

1 94 2 72 3 54

Case 2: Lander Subset (100W Heating/700 W Cooling) 1 65 2 31 3 17

Subsystem Technologies Thermal Control- Multistage Stirling-Based Power/Cooling

   

Photovoltaic  Power  Systems  for  Venus  Explora8on  Systems  

   

SOA  Solar  Cells  &  Arrays-­‐Overview  •  Solar  Cells  

–  High  efficiency  Silicon  and  Mul9  Junc9on  Solar  Cells  are  presently    being  used  in  many  space  missions            

•  Solar  Arrays  –  Body  mounted,  rigid  panel  and    flexible  deployable  arrays    

are  currently  being  used  in  many  spacecraf.    –  These  arrays  are  mostly  suitable  for  low–medium  power    

(0.5-­‐5  kW)  applica9ons  

Cell Type Efficiency High Efficiency Si Cells 16 %

Multi Junction Solar Cells 26.5%

Array Type Specific Power (W/kg) Rigid Panel Array 30-40 (3 J)

Flexible Foldout Arrays 30-50 (Si) Concentrator Arrays 30 -60

Flexible foldout Arrays 80-100 (3 J)

Ge

GaInP

GaAsGe

Ge

GaInP

GaAsGe

Si

Body-MountedBody-Mounted

MGS

Rigid Panel

MGSMGS

Rigid Panel

Performance of SOP Solar Cells and Arrays is Inadequate for Future Venus Missions

Concentrated Array

Phoenix

Flexible Foldout Array (Ultraflex)

Advanced  Solar  Cell  Technologies    Under  Development    

Low Eg Material (1.05eV)

AM0 Theoretical3-Junctions 39%4-Junctions 42%

GaAs(1.42eV)

AM0 SOLAR SPECTRUMPin =1367W/m2

Ge (0.67 eV)

Substrate

GaAs (1.42 eV)

InGaAlP (2.0 eV)

Low Eg Material (1.05eV)

AM0 Theoretical3-Junctions 39%4-Junctions 42%

GaAs(1.42eV)

AM0 SOLAR SPECTRUMPin =1367W/m2

Ge (0.67 eV)

Substrate

GaAs (1.42 eV)

InGaAlP (2.0 eV)

GaAs(1.42eV)

AM0 SOLAR SPECTRUMPin =1367W/m2

Ge (0.67 eV)

Substrate

GaAs (1.42 eV)

InGaAlP (2.0 eV)

Multi Junction Crystalline Cell

Status:34% Goal: 39%

UltraFlex

Product Performance Targets: • Specific Power*: 150-300 W/kg • Stowage volume*: 30-70 kW/m3

• Status: 100 W/kg

Mars Solar Spectrum

Substrate Thicker upper layer

Mars Solar Cells

Panel Back Side

Piezo-electric Buzzer(s)

Facesheet(.010 - .015 G/E)

Structural Spars(.040 x .30 G/E)

Panel Back Side

Piezo-electric Buzzer(s)

Facesheet(.010 - .015 G/E)

Structural Spars(.040 x .30 G/E)

Dust Accumulated

Vibratory Motion Initiated, Dust

Removal Begins

Vibratory Motion Complete

>90% Dust Removed

Dust Accumulated

Vibratory Motion Initiated, Dust

Removal Begins

Vibratory Motion Complete

>90% Dust Removed

Panel Back Side

Piezo-electric Buzzer(s)

Facesheet(.010 - .015 G/E)

Structural Spars(.040 x .30 G/E)

Panel Back Side

Piezo-electric Buzzer(s)

Facesheet(.010 - .015 G/E)

Structural Spars(.040 x .30 G/E)

Panel Back Side

Piezo-electric Buzzer(s)

Facesheet(.010 - .015 G/E)

Structural Spars(.040 x .30 G/E)

Panel Back Side

Piezo-electric Buzzer(s)

Facesheet(.010 - .015 G/E)

Structural Spars(.040 x .30 G/E)

Dust Accumulated

Vibratory Motion Initiated, Dust

Removal Begins

Vibratory Motion Complete

>90% Dust Removed

Dust Accumulated

Vibratory Motion Initiated, Dust

Removal Begins

Vibratory Motion Complete

>90% Dust Removed

Dust Accumulated

Vibratory Motion Initiated, Dust

Removal Begins

Vibratory Motion Complete

>90% Dust Removed

Dust Accumulated

Vibratory Motion Initiated, Dust

Removal Begins

Vibratory Motion Complete

>90% Dust Removed

Dust Accumulated

Vibratory Motion Initiated, Dust

Removal Begins

Vibratory Motion Complete

>90% Dust Removed

Dust Accumulated

Vibratory Motion Initiated, Dust

Removal Begins

Vibratory Motion Complete

>90% Dust Removed

Solar Array Dust Mitigation Systems

Use  of  TJ  cells  for  Venus  Orbital  &  Aerial  Missions  

•  Commercial  triple-­‐junc9on  solar  cells  con9nue  to  operate  at  temperatures  of  400°C  without  catastrophic  degrada9on  [10,  11].  

•  The  temperature  of  450°C  is  a  higher  temperature  than  the  specified  opera9ng  range  of  exis9ng  adhesives  used  to  affix  cover  glass  to  solar  array.  

•  At  the  cloud  level,  the  atmosphere  contains  sulfuric  acid  droplets.  Soilar  arrays  need  to  be  encapsula9on  against  corrosion  by  sulfuric  acid.  

•  Overall,  the  problems  of  encapsula9ng,  tes9ng,  and  qualifying  the  arrays  for  opera9on  in  the  Venus  environment  has  not  yet  been  examined  in  detail,  and  many  issues  remain  to  be  addressed.  

TJ  Cell  Performance  in  Venus  Environments  

Commercial  triple-­‐junc9on  solar  cells  con9nue  to  operate  at  temperatures  of  400°C  without  catastrophic  degrada9on  [10,  11].  

Project Name

24  

National Aeronautics and Space Administration!Jet Propulsion Laboratory!California Institute of Technology!JPL/Caltech Proprietary – Not for Public Release!!

State of the art

High  temperature  PV  tests  have  been  done  on  concentrator  solar  cells  250C  during  800  hr  

High  temperature  measurements  were  done  by  A.  L.  Geoffrey  et  al.  on  commercial  triple-­‐junc9on  (GaInP2/GaAs/Ge)  solar  cells  

Wavelength  (nm)  

EQE  

EQE  of  the  top  junc9on  GaInP2  as  a  func9on  of  temperature  

29.5%  -­‐  28C,  terrestrial  AM0  -­‐  Spectrolab  triple  junc9on  XTJ  Solar  Cells  

C3MJ+  concentrator  solar  cell  designed  to  operate  up  to  110C.  Tested  during  800  hrs  at  250C.  

12/7/13   25  

High  Temperature  Solar  Cells  Product Description Cell types: GaInP, Si-C

Product Performance Targets: • Efficiency at 425 0C: 11% • Lifetime at 425 0C: 2 years

Advantages Reduce Risk Extend Life Technology Status • GaInP: ~14.5% at AM0, 28C, ~ 5% at 450C, Life? • Si-C: Unoptimized cells fabricated and tested in lab TRL: 1-2 (02)

Technology Issues: •  Materials issues • Device fabrication

Major Team Players: Rochester Institute of Technology, NASA-Pennsylvania State University • Ohio Aerospace Institute, NASA • AFRL

Cu(In,Ga)S2

Pt (20 nm)Au (100 nm)Al (100 nm)Ti (5 nm)

n-type, ρ = 0.042 Ω-cm,d = 0.0129", θ = 3.5 o

n-type, n = 3.0E+17d = 5.0 µm

p-type, p = 3.0E+18d = 0.4 µm

Al (100 nm)Au (200 nm)

Pt (20 nm)Au (100 nm)Al (100 nm)Ti (5 nm)

n-type, ρ = 0.042 Ω-cm,d = 0.0129", θ = 3.5 o

n-type, n = 3.0E+17d = 5.0 µm

p-type, p = 3.0E+18d = 0.4 µm

n-type, ρ = 0.042 Ω-cm,d = 0.0129", θ = 3.5 o

n-type, n = 3.0E+17d = 5.0 µm

p-type, p = 3.0E+18d = 0.4 µm

Al (100 nm)Au (200 nm)

Si-C Cells: Band Gap: 3-3.2 V

Project Name

26

National Aeronautics and Space Administration!Jet Propulsion Laboratory!California Institute of Technology!JPL/Caltech Proprietary – Not for Public Release!!

High temperature missions Surface missions

High temperature solar cells: CdTe – CIGS – Triple Junction Solar cell with high temperature electronic and packaging

480C at the surface of Venus. 450C at the surface of Mercury.

Orbital missions

Atmospheric missions Solar orbiter

1000C for a solar probe spacecraft.

Low Intensity High Temperature

Normal Intensity High Temperature

Venus At 30km altitude, intensity is equivalent to earth Temperature is 200C

High Intensity High Temperature

High Intensity Venus At 60km altitude, intensity twice intensity of earth Temperature is 0C

VEGA prototype test Balloon for Venus atmosphere

Solar probe flying by the sun

Rover at the surface of Venus Solar probe flying by

Venus

Normal Intensity

Standard Triple Junction Solar cells

Standard Triple Junction Solar cells with high temperature electronics

Simgle junction solar cells: CdTe – CIGS – GaAs Solar cell with high temperature electronic and packaging Resistant to radiations

Energy  Storage  Technologies  for  Future  Venus  Missions  

12/7/13 28

Performance Envelope of Electrochemical Power Sources

C

a p

a c

i t

o r s

Service life dictates the choice of energy storage technology

SOP  Energy  Storage  Technologies  Primary Batteries Rechargeable Batteries Fuel Cells

Li-SOCl2

Li-SO2

Ni-Cd

Ni-H2

Li-Ion

PEM

PEM

Alkaline

Ag-Zn Battery

Characteris9cs  of  SOP  Primary  Ba`eries    

12/7/13 30

Limitations •  Moderate specific energy (100-250 Wh/kg) •  Limited operating temp range (-40 C to 70oC) •  Radiation tolerance poorly understood •  Voltage delay

Type Application Mission Specific

Energy, Wh/kg (b)

Energy Density, Wh/l

(b)

Operating Temp.

Range, °C

Mission Life (yrs)

Issues

Cell 238 375 -40 to 70 <10

Li-SO2 Battery

Galileo Probe Genesis SRC MER Lander Stardust SRC

90-150 130-180 -20 to 60 9 Voltage Delay

Cell 390 878 -30 to- 60 >5

Li-SOCl2 Battery

Sojourner Deep Impact DS-2 Centaur Launch batteries

200-250 380-500 -20 to 30 < 5 Severe voltage

delay

Li-CFx Cell 614 1051 -20 to 60 Poor power capability

12/7/13 31

Characteristics SOP Rechargeable Batteries

Limitations of Ni-Cd & Ni-H2 batteries: •  Heavy and bulky •  Limited operating temp range (-10oC to 30oC) •  Radiation tolerance poorly understood.

Technology Mission Specific Energy, Wh/kg

Energy Density,

Wh/l

Operating Temp.

Range, o C

Design life,

Years

Cycle life Issues

Ag - Zn Pathfinder Lander

100 191 - 20 t0 25 2 100 Electrolyte Leakage Limited Life

Ni - Cd Landsat,

TOPEX 34 53 - 10 to 25 3 25 - 40K Heavy

Poor Low Temp. Perf. Super Ni - Cd Sampex

Battery, Image 28 - 33 70 - 10 to 30 5 58K Heavy

Poor Low Temp. Perf IPV Ni - H 2 Space Station,

HST, Landsat 7 8 - 24 10 - 10 to 30 6.5 >60K Heavy, Bulky

Poor Low Temp. Perf CPV Ni - H 2 Odyssey, Mars

98 MGS, EOS Terra Stardust, MRO

30 - 35 20 - 40 - 5 to 10 10 to 14

50 K Heavy, Bulky Poor Low Temp. Perf

SPV Ni - H 2 Clementine,

Iridium 53 - 54 70 - 78 - 10 to 30 10 <30 K Heavy

Poor Low Temp. Perf

Li - Ion MER - Rover 90 250 -20 to 30 1 >500 Limited Life

12/7/13 32

High  Temperature  Ba`eries  Technology  Status  •  Three  types  of  chemistries:  Na-­‐S,  Na-­‐  MCl2,,  Li-­‐FeS2  

–  Operate  at  >  400o  C.  Developed  ini9ally  for  EV  applica9ons(1980’s).  TRL  3  

–  No  work  is  presently  in  progress  on  these  ba`eries  afer  the  inven9on  of  Li-­‐Ion  ba`eries.    

•  Li-­‐FeS2  thermal  ba`eries  are  in  use  for  pyro  firing  applica9ons  •  No  high  energy  density  primary  ba`eries  exist  •  New  Concepts:  Li-­‐CoS2,  Li-­‐CO2  ,  TRL  1  

Advantages  High  Temperature  opera9on  

Mission  Applica8ons    •  Inner  planetary  surface  missions  (High  temp)  Technical  Issues  

•  Seals  •  Safety  •  Zero  gravity  effects  Current  programs  •  None  

Potential Capabilities Characteristic SOA Adv. HT Battery

Operating Temp Range, °C 400 475 Specific Energy for Batteries, Wh/kg

100 150

Cycle Life, cycles >100 > 500

Sodium-Sulfur Batteries (Na-S) •  Chemistry  

–  Uses  (molten)  sodium  as  the  anode  and  (molten)  sulfur  as  the  cathode,  and  sodium-­‐ion-­‐conduc9ve  β-­‐alumina  ceramic  as  the  electrolyte/separator.    

–  Operate  at  ~300-­‐350°C  –  Cell  Reac9on:        

•  Performance  –  High  specific  energy  (150  Wh/kg)    –  100%  coulombic  efficiency,  i.e.  no  self-­‐  discharge.    –  Excellent  cycle  life:  40,000+  cycles  to  20%,  4500  cycles  to  

90%,  and  2500  cycles  to  100%  depth  of  discharge.    –  Comparable  to  Li-­‐ion,  which  cannot  survive  >  65oC.  

•  Status  –  Currently  used  in  sta9onary  applica9ons  1.5  to  35MW  

(manufacturers:  NGK  Insulators  (Japan);  Ford  aerospace  (past)  

•  Issues  –  Reliability  and  safety  issues  emana9ng  from  the  failure  of  the  

bri`le  ceramic  separator  (beta  alumina).  •  TRL  

–  6-­‐7  for  terrestrial  applica9ons    However,  the  TRL  is  only  3-­‐4  for  temperatures  exceeding  350oC.  

   

   

 

Development of Sodium-Sulfur Batterieswww.ceramics.org/ACT 271

with the positive electrode in the center is also conceiv-able. However, a design with the positive electrode in theperiphery and the negative electrode in the center pro-vides higher energy density since the positive electroderequires a significantly larger volume than the negativeelectrode.

For both safety and performance reasons, a high-in-tegrity seal between the electrodes is essential. The openend of the E-alumina tube is capped with a disk consist-ing of an D-alumina (Al2O3) ring joined to borosilicateglass that insulates the electrodes. Aluminum electrodeterminals are joined to the D-alumina ring by thermalcompression. The E-alumina electrolyte and D-aluminaring electrically isolate the active materials of the two elec-trodes, and the cell is hermetically sealed by the thermalcompression fitting between the D-alumina ring and thealuminum casing surrounding the positive (S) electrode.Also, a protective coating (plasma sprayed Fe-75Cr alloy)to resist corrosion by sulfur and sodium polysulfide isapplied to the inner wall of the sulfur electrode alumi-num casing.

NAS battery cells are configured in series and paral-lel to provide the specified voltage and energy, and en-closed within a thermally insulated enclosure to form aNAS battery module as illustrated in Fig. 5. The spacebetween cells is filled with sand, which acts as both an

insulator and a means of lateral support. Cell tempera-tures are maintained at about 300°C by a combination ofelectric heaters located within the enclosures and naturalair convection over the outside to reject excess heat. Thethermal design of the module is optimized so that heatgenerated during daily charging and discharging main-tains the operating temperature regime under most am-bient conditions.

NAS BNAS BNAS BNAS BNAS Batteratteratteratterattery Fy Fy Fy Fy Featureatureatureatureatureseseseses

Key features of NAS batteries include:· High energy density with corresponding reductions

in space required for battery installations, i.e., aboutone-third the space required for lead-acid batteriesin similar commercial applications.

· 100% coulombic efficiency, i.e., there is no self-discharge.

· 85+% average DC conversion efficiency, i.e., thereare no intermediate reactions and the electrical re-sistance of the E-alumina solid electrolyte prohib-its the internal flow of electrons between electrodes.(This value does not include energy losses for con-version to AC power (~8%) or to maintain thebattery operating temperature, which is very smallin daily cycling applications.)

· High cycle life, e.g., NAS batteries are capable of40,000+ cycles to 20%, 4500 cycles to 90%, and2500 cycles to 100% depth of discharge (DOD).(These values are about a factor of 4 better thanhigh-quality commercial lead-acid batteries.)

· No barriers to high volume, low cost production,i.e., sodium and sulfur are abundant materials, ce-ramic component manufacturing has been verified,and fabrication of integrated modules has beenautomated.

Fig. 4. NAS battery cell.

Fig. 5. NAS battery module.

Oshima.p65 6/16/2004, 11:12 PM71

Development of Sodium-Sulfur Batterieswww.ceramics.org/ACT 271

with the positive electrode in the center is also conceiv-able. However, a design with the positive electrode in theperiphery and the negative electrode in the center pro-vides higher energy density since the positive electroderequires a significantly larger volume than the negativeelectrode.

For both safety and performance reasons, a high-in-tegrity seal between the electrodes is essential. The openend of the E-alumina tube is capped with a disk consist-ing of an D-alumina (Al2O3) ring joined to borosilicateglass that insulates the electrodes. Aluminum electrodeterminals are joined to the D-alumina ring by thermalcompression. The E-alumina electrolyte and D-aluminaring electrically isolate the active materials of the two elec-trodes, and the cell is hermetically sealed by the thermalcompression fitting between the D-alumina ring and thealuminum casing surrounding the positive (S) electrode.Also, a protective coating (plasma sprayed Fe-75Cr alloy)to resist corrosion by sulfur and sodium polysulfide isapplied to the inner wall of the sulfur electrode alumi-num casing.

NAS battery cells are configured in series and paral-lel to provide the specified voltage and energy, and en-closed within a thermally insulated enclosure to form aNAS battery module as illustrated in Fig. 5. The spacebetween cells is filled with sand, which acts as both an

insulator and a means of lateral support. Cell tempera-tures are maintained at about 300°C by a combination ofelectric heaters located within the enclosures and naturalair convection over the outside to reject excess heat. Thethermal design of the module is optimized so that heatgenerated during daily charging and discharging main-tains the operating temperature regime under most am-bient conditions.

NAS BNAS BNAS BNAS BNAS Batteratteratteratterattery Fy Fy Fy Fy Featureatureatureatureatureseseseses

Key features of NAS batteries include:· High energy density with corresponding reductions

in space required for battery installations, i.e., aboutone-third the space required for lead-acid batteriesin similar commercial applications.

· 100% coulombic efficiency, i.e., there is no self-discharge.

· 85+% average DC conversion efficiency, i.e., thereare no intermediate reactions and the electrical re-sistance of the E-alumina solid electrolyte prohib-its the internal flow of electrons between electrodes.(This value does not include energy losses for con-version to AC power (~8%) or to maintain thebattery operating temperature, which is very smallin daily cycling applications.)

· High cycle life, e.g., NAS batteries are capable of40,000+ cycles to 20%, 4500 cycles to 90%, and2500 cycles to 100% depth of discharge (DOD).(These values are about a factor of 4 better thanhigh-quality commercial lead-acid batteries.)

· No barriers to high volume, low cost production,i.e., sodium and sulfur are abundant materials, ce-ramic component manufacturing has been verified,and fabrication of integrated modules has beenautomated.

Fig. 4. NAS battery cell.

Fig. 5. NAS battery module.

Oshima.p65 6/16/2004, 11:12 PM71

270 Vol. 1, No. 3, 2004International Journal of Applied Ceramic Technology�Oshima, Kajita, and Okuno

through the E-alumina electrolyte to the positive elec-trode where they react with sulfur to form sodium polysul-fide. When a cell is charged, this reaction is reversed, i.e.,the sodium polysulfide at the positive electrode decom-poses, and sodium ions return to the positive electrode.Within the battery industry, batteries that are capable ofbeing repeatedly discharged and charged through revers-ible electrochemical reactions are termed “secondary” bat-teries, as opposed to “primary” batteries which cannot berecharged.

The composition of the sodium polysulfide (Na2Sx)that forms at the positive electrode changes with the state-of-charge. Fig. 2 is a phase diagram for the Na2Sx series,and Fig. 3 shows the relation between the electromotiveforce and the state-of-charge. The changing compositionof sodium polysulfide is indicated by the number of Satoms, i.e., by the value of “x” in the expression, Na2Sx.At a high state-of-charge, in which the electromotive forceis essentially constant and the temperature is near 300°C,the S (positive) electrode consists of co-existing phases ofboth S and Na2S5. As the cell is discharged, all S com-bines with Na to form a single-phase region with onlyNa2Sx, in which “x” is less than 5. In this region, the rela-tionship between state-of-charge and electromotive forceis essentially linear as “x” decreases. With still further dis-charging, a solid phase with a high melting point formsas “x” approaches 2 (Na2S2). At this point, increased resis-tance at the positive electrode prohibits further discharge.

The ConfigurThe ConfigurThe ConfigurThe ConfigurThe Configuration of NAS Bation of NAS Bation of NAS Bation of NAS Bation of NAS Batteratteratteratterattery Cy Cy Cy Cy Cellsellsellsellsells

Fig. 4 is an illustration of NGK’s NAS battery cell.The cell is cylindrical with sodium (the negative electrode)

in the center and sulfur (the positive electrode) located inan annulus, separated from the negative electrode by theE-alumina solid electrolyte. The E-alumina electrolyte isin the form of a tube with the bottom end closed. Theo-retically, E-alumina electrolyte could be configured as aflat plate; however, strength and fabricability issues limitpractical designs to cylindrical shapes. A configuration

Fig. 1. NAS battery cell principle of operation.

Fig. 2. Na2Sx phase diagram.

Fig. 3. NAS cell voltage vs. state-of-charge (note changingcomposition of the sulfur electrode).

Oshima.p65 6/16/2004, 11:11 PM70

Sodium-­‐Sulfur  Cell  

Sodium-­‐Sulfur  BaEery  

Sodium-Metal Chloride Batteries (Na-MCl2) •  Chemistry  

–  Uses  (molten)  sodium  as  the  anode  and  solid  metal  chloride  (iron  or  nickel)  as  cathode  in  sodium  tetrachloro-­‐aluminate  melt  and  with  Na+-­‐ion-­‐conduc9ve  β-­‐alumina  ceramic  as  the  separator  electrolyte.    

–  Operate  at  ~300-­‐400°C  –  Cell  Reac9on:  

                                         2.6  V  

 •  Performance  

–  Specific  energy:  115  Wh/kg;  Energy  density:  160  Wh/L  –  Cycle  Life:  >  2000    cycles  at  100%  DOD  and    >3,000  cycles  

at  80%  DOD.  –  Safer  and  more  reliable  than  Na-­‐S  –  Can  be  operated  at  higher  temperatures    (Venus:  475oC)  

due  to  the  low  vapor  pressure  of  the  molten  salt.  –  Comparable  to  Li-­‐ion,  which  cannot  survive  >  65oC.  

•  Status  –  Currently  used  in  sta9onary  applica9ons  1.5  to  35MW  

(manufacturers:  NGK  Insulators  (Japan);  Ford  aerospace  (past)  

•  Issues  –  Reliability  and  safety  emana9ng  from  the  failure  of  the  

ceramic  separator  (beta  alumina).  •  TRL  

–  6-­‐7  for  terrestrial  applica9ons    However,  The  TRL  is    3-­‐4  for  temperatures  exceeding  350oC.  

   

   

 

Planar  Sodium-­‐  Nickel  Chloride  Cell    

oxygen ions from the packing ȕ"-Al2O3 powders to the samples. The phase structures of the as-sintered and converted samples were determined by powder X-ray diffraction (XRD). The microstructures of the samples were observed using scanning electron microscope (SEM) equipped with an energy-dispersive X-ray spectroscope (EDS) and sodium ion distribution across the BASE was examined with SEM/EDS as well. The achieved ȕ"-Al2O3 discs had a thickness of 1 mm. The packing ȕ"-Al2O3 powders were synthesized using starting precursors of boehmite, Na2CO3 and Li2CO3 via solid-state reaction (16,17). Single Cell Construction and Testing The single cell was schematically shown in Figure 1. The converted ȕ"-Al2O3 disc with the diameter of 26 mm was glass-sealed to an outer thicker Į-Al2O3 ring. The cell was then moved into a glove box and assembled in a discharged state with starting powders consisting of Ni, NaCl and small amounts of additives. The powders with the amount of 2g were thoroughly mixed and granulated. The granulate was then poured into cathode compartment. After a final drying treatment to get rid of all traces of moisture, molten NaAlCl4 was vacuum-infiltrated into the granulate at 250°C. A Ni mesh and wire was imbedded into the cathode as current collector. At the anode side, a metal shim was inserted into the anode compartment and copper wool filled the gap between the electrolyte and shim. Anode and cathode end plates were then compressed to the Į-Al2O3 ring with the help of alumina washers, as shown in Figure 1. Platinum leads were welded to the electrode end plates as current collector. The effective cell area was 3 cm2. The assembled cell was placed in a furnace inside the glove box and cell testing was carried out using an electrochemical interface (Solatron 1470E, Solartron Analytical) at 300°C. A constant current of 10 mA was used for initial five charge/discharge cycles. After cell performance was stabilized, it was further cycled at a higher rate (e.g., C/3). A low current rejuvenation process was employed for each ten higher current cycles to recover the cell performance. Microstructure of the cathode after long-term cycling was analyzed using SEM/EDS to evaluate its contribution to the cell performance degradation.

Figure 1. Schematic of a sodium-nickel chloride cell with planar design.

+

0.5

Na

Cathode/NaAlCl4

Cu wool

Ni mesh

Metal shim

Al washerȕ"-alumina electrolyte

Cathode end plate

Anode end plate

Į-alumina ring

-

ECS Transactions, 28 (22) 7-13 (2010)

9 ecsdl.org/site/terms_use address. Redistribution subject to ECS license or copyright; see 75.84.172.251Downloaded on 2013-11-12 to IP

Sodium-­‐  Nickel  Chloride  Cell    

Development of a Ni,NiCI2 Positive Electrode for a Liquid Sodium (ZEBRA) Battery Cell

R. J. Bones, D. A. Teagle, S. D. Brooker, and F. L. Cullen Harwell Laboratory, Didcot, Oxfordshire, England, 0 X l i ORA

ABSTRACT

Medium-temperature liquid sodium (ZEBRA) battery cells, employing solid transition metal dichloride cathodes, are under active development. This paper details key aspects of the development of a Ni, NiC12 positive electrode, operating in NaA1C14 molten salt electrolyte. Cells using these materials have achieved a high degree of reversibility and long cell life (>2000 cycles) and operate over the temperature range 200~176 The cell has an open-circuit voltage of 2.58V at 300~ and is an attractive contender for use in high-energy and power density advanced batteries. Mention is made to the related Fe-based electrode.

Medium-temperature liquid sodium ZEBRA battery cells employing solid transition metal dichloride cathodes (positive electrodes) are under active development (1-4). This paper discusses key aspects of the development of the Ni, NiC12 cathode option in this family of cells. Figure 1 shows a schematic diagram of the cell in the charged state and gives the cell reaction; the solid cathode operates in a basic NaA1C14 molten salt electrolyte in which both NiC12 and NaC1 are effectively insoluble.

The open-circuit voltage of the cell at 250~ is 2.59V, an 0.24V advantage over the related cell with an Fe,FeC12 cathode at the same temperature. It is customary to oper- ate the Na/Ni,NiC12 cells at 300~176 where the combina- tion of a lower beta"-alumina resistance and the high OCV (2.58V at 300~ results in this cell being suitable for high- power applications.

A companion paper (5) deals with cell and battery devel- opment. In the present paper, emphasis is placed on the scientific aspects of the cathode operation. A significant difference exists between the NiC12-based cathode and the FeC12 electrode during cell operation in that intermediate phases have been observed between NaC1 and FeCI= in the case of the Na/FeC12 cell (6, 7).

A battery based on the sodium/Ni, NiCI= cell is a very at- tractive option, especially for high-power applications, be- cause of its high voltage and ability to operate reversibly over a wide temperature range.

Experimental The positive electrodes are conveniently assembled in

the discharged state by cosintering Ni and NaC1 powders;

T~Jna

T:200-350~

OCV = 2.59 V (at 250~

)dium

Cell reaction: NiClz § 2No ~ 2 N o C I + N i CHARGED STATE DISCHARGED STATE

Fig. 1. Schematic diagram of sodium/nickel II chloride battery cell

the porosity structure of the cathode is determined by pre- selecting the particle size distribution in the components. The ratio of NaCI:Ni for this series of experiments was such that when fully charged, 30% of the Ni metal was con- verted to NiC12.

The published NiC12-NaC1 phase diagram (8) is shown in Fig. 2a. It can be seen that within the indicated tempera- ture range of operation, two phases exist in equilibrium; this has been confirmed in practice both by x-ray diffrac- tion of partially charged cathodes and by accurate cou- lometric titrations at 250~176 Figure 2b shows the con- stant OCV throughout the first charge and discharge cycle---this is retained throughout the life of the cell. The charge and discharge curves shown are at low rates, 10 mA cm -2 and 20 m A c m -2, respectively.

SEM examination (Fig. 3) of a partially charged NiC12 cathode, previously operating at 300~ clearly shows the

O

1000 , , ,

600

200

OI I ~ I I 100 75 50 25 0

NiCI 2 2NoCI MOLE %

2'8

U3 t-- - 2-6 O >

-- 2- / . - LU

1.58

0 FULL CHARGE

,/INITIAL CHARGE (0"5A}

-O-C-V7 ~FIRST DISCHARGE'~" ',

el.OAf \ , , i

I I I I I 20 40 60 80 100 FULL DISCHARGE

% THEORETICAL CAPACITY Fig. 2. (a, top) Phase diagram of NiCI2/NaCI system. (b, bottom) First

complete cycle of Na/NiCIz cell (assembled in the discharged state).

1274 J. Electrochem. Sac., Vol. 136, No. 5, May 1989 9 The Electrochemical Society, Inc. ecsdl.org/site/terms_use address. Redistribution subject to ECS license or copyright; see 137.79.61.169Downloaded on 2013-11-13 to IP

Lithium-Iron Disulfide (Li-FeS2) •  Chemistry  

–  Uses  Li-­‐Al  alloy  as  anode  and  iron  disulfide  as  cathode  in  a  molten  salt  containing  LiCl-­‐KCl  eutec9c.    

–  Operate  at  ~375-­‐425°C  –  Chemistry  similar  to  the  (proven)  thermal  ba`eries  –  Cell  Reac9on:  

               4  Li        +    FeS2        =          Fe  +  2Li2S                          2.6  V    

•  Performance  –  Specific  energy:  160  Wh/kg  demonstrated  in  cells/  stacks  l  –  Suitable  high  pulse  power  applica9ons  (150-­‐900  W/kg)  –  Cycle  Life:  >  500    cycles  at  100%  DOD  –  Can  be  operated  at  higher  temperatures    (Venus:  475oC)  

with  CoS2  cathode,  which  has  be`er  thermal  stability  –  Prisma9c  bipolar  configura9ons  (of  20-­‐35  Ah)  developed  

and  large  stacks  were  built.  –  Comparable  to  Li-­‐ion,  which  cannot  survive  >  65oC.  

•  Status  –  Developed  by  Argonne  Na9onal  Laboratory,  

Wes9nghouse  and  SAFT  America;  Currently  not  in  produc9on/use.  

•  Issues  –  Opera9onal/safety  issues  related  to  high  temperature  

•  TRL  –  5  for  terrestrial  applica9ons    However,  The  TRL  is    3-­‐4  for  

temperatures  exceeding  450oC.  

   

   

 

Li-­‐FeS2  Cell  

Lithium-Iron Disulfide (Li-FeS2) •  Chemistry  

–  Uses  Li-­‐Al  alloy  as  anode  and  iron  disulfide  as  cathode  in  a  molten  salt  containing  LiCl-­‐KCl  eutec9c.    

–  Operate  at  ~375-­‐425°C  –  Chemistry  similar  to  the  (proven)  thermal  ba`eries  –  Cell  Reac9on:  

               4  Li        +    FeS2        =          Fe  +  2Li2S                          2.6  V    

•  Performance  –  Specific  energy:  160  Wh/kg  demonstrated  in  cells/  stacks  l  –  Suitable  high  pulse  power  applica9ons  (150-­‐900  W/kg)  –  Cycle  Life:  >  500    cycles  at  100%  DOD  –  Can  be  operated  at  higher  temperatures    (Venus:  475oC)  

with  CoS2  cathode,  which  has  be`er  thermal  stability  –  Prisma9c  bipolar  configura9ons  (of  20-­‐35  Ah)  developed  

and  large  stacks  were  built.  –  Comparable  to  Li-­‐ion,  which  cannot  survive  >  65oC.  

•  Status  –  Developed  by  Argonne  Na9onal  Laboratory,  

Wes9nghouse  and  SAFT  America;  Currently  not  in  produc9on/use.  

•  Issues  –  Opera9onal/safety  issues  related  to  high  temperature  

•  TRL  –  5  for  terrestrial  applica9ons    However,  The  TRL  is    3-­‐4  for  

temperatures  exceeding  450oC.  

   

   

 

Li-­‐FeS2  Cell  

Wide Temperature Solid State Lithium Batteries •  Chemistry  

–  Uses  Li  metal  or  Li  alloy  as  anode  against  a  high  capacity  cathodes  (sulfide  or  oxide  cathode)  and  with  a  lithium-­‐ion  conduc9ng  solid  electrolyte.  

–  Operate  at  ~25-­‐450°C  –  Cell  Reac9on  (with  FeS2):  

               4  Li        +    FeS2        =          Fe  +  2Li2S                          2.6  V  –  Solid  Electrolytes:  

•  lithium  9tanium  phosphate  (LixTiy(PO4)z).,  •  lithium  sulfide  glasses  (Li2S–P2S5),    or    •  lithium  garnet  oxides  (e.g.,  Li7La3Zr2O12).  

–  Cathodes:  •  FeS2,  TiS2,  Li2TiS3,  LiCoO2,  Li(Ni,MN,Co)O2  

•  Performance  –  High  specific  energy  (600  Wh/kg  vs.  200  Wh/kg  for  Li-­‐ion)      –  Eliminates  most  safety  concerns  associated  w/  Li-­‐ion  

•  Status  –  Advanced  components  ,mainly  solid  electrolytes  as  well  as  

new  cell  designs  are  being  developed.  •  Issues  

–  Low  conduc9vity  of  the  electrolytes  •  TRL  

–  1-­‐2  both  for  terrestrial  applica9ons  as  well  as  for  applica9ons  requiring  high  temperatures  (450oC).  

•  Team  –  Solid  Power,  Univ.  of  Iowa,  Ceramatec,  UT  Aus9n,  ORNL  

   

   

 

Solid  State  Lithium  Cell  

Why solid state battery?

? Advantages Disadvantages

No flammable liquid electrolyte Æ Ultimate safety Æ No thermal runaway

Slower kinetics due to • Low ionic conductivity • High interfacial resistance • Poor interfacial contact

High energy density

No safety devices required

Excellent cycling stability

Excellent shelf life 3

General Solid State Battery Construction

Two electrodes are separated by solid state electrolyte layer

– Electrolyte has high ionic conductivity and is electronically insulating Composite electrodes

– Incorporate solid electrolyte into composite for fast ion transport – Incorporate conductive additive into composite for fast electron transport

Anode Cathode

Lithium M

etal

Active Material

Conductive Additive

Solid Electrolyte

4

Cathode

SSE

Li anode

General Solid State Battery Construction

Two electrodes are separated by solid state electrolyte layer

– Electrolyte has high ionic conductivity and is electronically insulating Composite electrodes

– Incorporate solid electrolyte into composite for fast ion transport – Incorporate conductive additive into composite for fast electron transport

Anode Cathode

Lithium M

etal

Active Material

Conductive Additive

Solid Electrolyte

4

Cathode

SSE

Li anode

Summary  &  Conclusions  

•  Venus  environment  poses  significant  challenges  for  power  systems    

•  SOP  power  system  technologies  (with  some  modifica9ons)could  be  used  for  orbital  missions  with  

•  SOP  power  system  technologies  have  limited  opera9onal  capability  for  long  dura9on  Venus  aerial  and  surface  missions.  

•  SOP  power  system  technologies  can  be  used  with  some  engineering  modifica9ons  for  short  dura9on  Venus  aerial  and  surface  missions.  

•  Some  of  the  terrestrial  power  system  technologies  could  be  adopted  with  moderate  funding.  

•  Currently  no  funding  is  available  for  the  development  of  power  system  technologies  for  Venus  missions.  

Backup  Slides  

Project Name

40  

National Aeronautics and Space Administration!Jet Propulsion Laboratory!California Institute of Technology!JPL/Caltech Proprietary – Not for Public Release!!

Degradation mechanism We  need  to  iden9fy  the  cause  of  solar  cell  degrada9on  under  extreme  environment  

Venus  environment  challenges  for  photovoltaic  cells:  1.  Solar  intensity  2.  Solar  spectrum  3.  Temperature.  4.  Corrosive  environment  

An  SEM  micrograph  of  a  circuit  that  failed  due  to  electromigra9on  and  a  schema9c  illustra9ng  the  influence  of  temperature  and  current  density  on  electromigra9on.  Extreme  Environment  

Electronics,  Industrial  Electronics,  CRC  Press  (2012)  

Characteris8cs  of  Space  Fuel  cells    

0

50

100

150

200

250

300

Gemini 1962-1968 Apollo 1966-1978 Shuttle, 1981-current Future ProgramsMissions

Spec

ific

Pow

er, W

/kg

Early PEM Fuel Cell

Alkaline Fuel Cell

Gen II Alkaline Fuel Cell

Advanced PEM Fuel Cell(Proposed)

High Temperature Batteries for Venus Missions