power supply and substrate noise analysis; reference tool experience with silicon validation yoji...

24
Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4 , Daisuke Kosaka *4 , Goichi Yokomizo *2 , Kunihiko Tsuboi *2 , Ying Shiun Li *3 , Shen Lin *3 , Makoto Nagata *1 *4 Kobe University *1 , STARC *2 , Apache Design Solutions, Inc. *3 , A-R-Tec C orp. *4

Upload: colin-higgins

Post on 15-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

Power supply and substrate noise analysis; Reference tool experience with

silicon validation

Yoji Bando*1*4, Daisuke Kosaka*4, Goichi Yokomizo*2, Kunihiko Tsuboi*2,

Ying Shiun Li*3, Shen Lin*3, Makoto Nagata*1*4

Kobe University*1, STARC*2, Apache Design Solutions, Inc.*3, A-R-Tec Corp.*4

Page 2: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -2-

Power supply (PS) noise impacts on circuits - digital: timing variation, leakage increase - analog-MS: substrate crosstalk, substrate coupling

Digital PS integrity technology, with enhancements of substrate coupling/noise analysis

On-chip measurements connect EDA analysis with reality

Motivation

Page 3: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -3-

Multi-party collaboration for validated noise analysis Chip designer, IP provider, EDA tool provider

Fully integrated power and substrate noise analysis A high capacity solver for a single large matrix unifying on-chip power grids and current sources, chip-level substrate meshes, and off-chip board networks

On-chip noise measurements for silicon correlation Noise monitors with very many probing channels for thorough correlation of simulation and measurements

Technical contribution

Page 4: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -4-

Multi-party collaboration for confidence noise analysis

Power library: Logic cell characterization

Dynamic and staticPS noise analysis

Substrate networkand noise analysis

Verification planningand test chip design

On-chip noise meas.and correlation

Physical design andsign-off flow

Integrity design tool developer(cf. Apache Design Solutions)

Integrity design consultant(cf. A-R-Tec)

User company(cf. IDM, design house)

Page 5: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -5-

Key technology contributions #1

PSA and SNA

Power library: Logic cell characterization

Dynamic and staticPS noise analysis

Substrate networkand noise analysis

Verification planningand test chip design

On-chip noise meas.and correlation

Physical design andsign-off flow

Page 6: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -6-

Key technology contributions #2

Simulation andSilicon correlation

Power library: Logic cell characterization

Integrated PS andsubstrate noise simulation

Verification planningand test chip design

On-chip noisemeasurements

Physical design andsign-off flow

Page 7: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -7-

Substrate noiseprobe arrayin left top area

PS noise probe array for 32-bit P

5.0 mm

32-bit Pcore

SRAM macros

Noise evaluation chip overview

Substrate noiseprobe arrayin right btm. area

A 32-bit processor (SH-4*) with 210 kB memory capacity Densely distributed on-chip dynamic noise monitors 90-nm CMOS, 5LM, 1.0 V technology SH-4* Renesas technology

Page 8: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -8-

Noise probing locations in P core

32-bit uP core

2.5 mm

2.0 mm

Page 9: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -9-

Noise probing locations on substrate

P+ GR(guard ring)

deep NwellGR

P+ probing points

1.6 mm

0.5 mm

Substrate noise evaluation area (120 probing points in total)

deep Nwellpocket

Page 10: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -10-

On-chip noise monitor circuitry

Off-chip

n-SF

p-SF VoutDigital

Vdd

Gnd Iout

p-SF

p-SF

n-Gm

psub

Vout

Subs

trat

e (P

+) n

oise

prob

ing

arra

yPS

noi

sepr

obin

g ar

ray

On-chip

Page 11: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -11-

Probing @SH-4 center, Fclk = 50 MHz

PS noise waveform measurements

Vdd

Gnd

0.94

0.96

0.98

1.00

200 nsec-0.02-0.010.000.010.02

Volta

ge (V

)Vo

ltage

(V)

Page 12: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -12-

0

20

40

60

80 #1 #2 #3 #4 #5 #6 #7 #8 #9#10#11#12#13#14#15#16#17#18#19#20#21#22#23#24#25#26#27#28#29#30#31#32#33#34#35#36#37#38#39#40

V (mV)

0

10

20

30

40

uP Vdd Static drop Dynamic Vpp

uP Gnd Static drop Dynamic Vpp

# test code with higher level of internal logic activity

PS noise intensity: code dependenceVnominal Static

drop

Dynamic Vpp

Volta

ge

Page 13: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -13-

Unified matrix of chip-level noise analysis

Vdd/Gnd grids

PS current sources

Vertical impurity profile

Off-chip networks

Silicon substrate modelResistive as well as capacitiveelements involved(e.g. pwell, nwell, deep well)

Page 14: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -14-

Full chip PS and substrate noise analysis: flow overview

SoC LayoutLEF/DEF

Macro GeometryGDSII

Macro Netlistspice netlist

Cell Library.lib, spice

Totem_SEExtraction, Simulation

Pkg ModelRLC or S-Para

Debugging, What-if and FAO

RedHawk-EV

Substrate Model

Digital

Technology

file

Page 15: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -15-

Noise source modeling

Apache Power Library (APL)- SPICE simulation: I(t) LUT for in/out condition, load caps- Post-layout extraction logic cell level: Cesc, Resr

Standard cell library (LEF/DEF)

Vss wiring

Vdd wiring

well network

Cesc

I(t) ResrCpg

Cwell

Page 16: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -16-

Substrate network modeling

Noise Sources

n-well(in deepNwell)

p-well(in deepNwell)

Deep n-well

p-sub

n+ n+ p+ p+ p+ p+ n+n+p+

n+p+

n+

•DGnd

•DVdd•DGnd

•DVdd

n-well(in deepNwell)

Pwell_CAP

Pwell_CAP

Psub CAP Psub CAP

Pwell RES

deepNwell RES

Nwell RES

Bulk RES

Pwell_CAP

p-well

Page 17: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -17-

Off-chip network modeling

L

C

Off-chip power delivery network (PDN)- FR4 board, package, bonding wires – macroscopically seen by a chip - Lumped LCR extraction between Vdd and Gnd terminals- Considerable impacts on noise components from DC to a few 100 MHz

Page 18: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -18-

Unified matrix for quality noise analysis

Substrate coupling analysis enhances accuracy of noise analysis in digital as well as mixed-signal circuits.

Ground noise in SH-4 processor @ 50 MHz, comparing simulation with on-chip measurements

2345

1 SH-4 core

only w/ off-chip model

45

50

55

60

65

75

0 2 4 6

Vgnd-pp (mV)

Probe point

80

meas.

w/ off-chip and substrate models

70 w/o off-chip modelw/o substrate model

Page 19: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -19-

Dynamic PS noise waveforms

0.900.920.940.960.981.00(V)

-0.020.000.020.040.060.08(V)

10040 60 80200 (ns)

10040 60 80200 (ns)

Vdd noise @ Fck = 50 MHz

Gnd noise @ Fck = 50 MHzMeasuredSimulated

Page 20: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -20-

Gnd/Psub noise: chip-wide Vpp mapSimulated drop of uP Gnd/Psub @ Fck = 50 MHz

Measured, left top

Measured, right bottom

40(mV)

30

20

10

0

500

600

700

800

900

1000

y(m)

-1600 -1400 -1200 -1000 -800 -600 -400 -200 x(m)

-500

-600

-700

-800

-900

-1000 y(m)

-1600-1400-1200-1000-800-600-400-200 x(m)0

30(mV)

20

10

0yL yR

xU

xL

Page 21: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -21-

Substrate noise (Vpp) trend: yL axis

Distance(mm)

-2.0 -1.0 0.0 1.0

uP Gnd Psub

Vpp

(mV)

sim.

y-left (yL) meas.

0

20

40

60

yL yR

xU

xL

Fck = 50 MHz

Page 22: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -22-

Substrate noise (Vpp) trend: xL axis

yL yR

xU

xL-1.0 2.00.0 1.0

uP Gnd Psub

Distance(mm)

Vpp

(mV)

0

20

40

60

sim.

x-lower (xL) meas.

Fck = 50 MHz

Page 23: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -23-

Cost of Simulation

Chip to simulate

Mesh size CPU timeMemory usageMachine spec.

SH-4 core: 670k gates, SRAM cells: 11.2M trs.,# of I/O: 208 pins, chip area: 5.0 mm x 5.0 mm750 kextraction 1.0 h, simulation 1.5 h (for 120 nsec)extraction 6.6 GB, simulation 3.5 GB2-core Opteron x 2 @ 2.8GHz, 64 GB memory

Page 24: Power supply and substrate noise analysis; Reference tool experience with silicon validation Yoji Bando *1*4, Daisuke Kosaka *4, Goichi Yokomizo *2, Kunihiko

DAC2009-UT#8.2 -24-

Summary

Unification of on-chip power grids, substrate, and off-chip network realizes dynamic PS and substrate noise simulation with high accuracy

Comprehensive on-chip noise measurements establish reference experience of silicon validation

Close correlation of simulation and measurements achieves designers’ confidence of noise analysis