positive tubular electrodes for lead acid batteries with 180 ah kg -1, specific capacity j. de...

13
POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1 , SPECIFIC CAPACITY J. de Andrade* , P. R. Impinnisi, J. T. Tortteli Institute of Technology for Development – LACTEC – PR, Brazil *e-mail address: [email protected]

Upload: eddy-bertram

Post on 01-Apr-2015

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg-

1, SPECIFIC CAPACITY

J. de Andrade*, P. R. Impinnisi, J. T. TortteliInstitute of Technology for Development –

LACTEC – PR, Brazil

*e-mail address: [email protected]

Page 2: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

1. Objective

Feasibility of using nanostructured chemically

formed PbO2 on tubular electrodes.

Page 3: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

Presentation Structure

• 2. Introduction

• 3. Results and Discussions

• 3.1 Coefficient of PAM Utilization for Different Previous Treatment• 3.2 Deep Discharge/Pulsed Charge Cycles

• 4. Conclusions

• 3.3 Potential vs SOC Curves During Pulsed Charge

Page 4: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

2. IntroductionLead acid 30 - 40 Wh Kg-

1

Ni-MH 40 – 80 Wh Kg-1

Li-Ion 150 – 200 Wh Kg-1

M.S. Tabaatabaai, et. al., Journal of Power Sources, 158 (2006) 879-884.

Foam Grids

Page 5: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

2. Introduction (continuation)

Chemically formed material pasted on conductive polyethylene bipolar plates.

H. Karami, et. al., Journal of Power Sources, 164 (2007) 896-

904.

Mini tubular electrodes with previously chemically formed active material. 100 Ah Kg-1 and more than 150 cycles.

M. Bervas, et. al., Journal of Power Sources, 173 (2007) 570-577.

Page 6: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

2. Introduction (continuation)

Nanometric PbO2 chemically synthesized as active material for tubular electrodes.

A. Caballero, et. al., Journal of Power Sources, 113 (2003) 376.

A. Winsel, et. al., Journal of Power Sources, 30 (1990) 209-226.

Page 7: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

3. Results and Discussions 3.1 Coefficient of PAM Utilization for Different Previous

Treatment

Figure 1.Electrode without previous treatment.

0 5 10 15 20 25

0

40

80

120

160

200

240

Cycle number

Sp

ecif

ic c

apac

ity

/ Ah

Kg

-1

Typical tubular electrodes

Maximum theoretical

Figure 2. 2h 2.0 M H2SO4 solution immersion, washed and dried.

0 2 4 6 8 10 12 14 16 18

0

40

80

120

160

200

240

Typical tubular electrodes

Sp

ecif

ic c

apac

ity

/ Ah

Kg

-1 Maximum theoretical

Cycle number

Page 8: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

3.1 – TEM images of the active material

Figure 3. Active material before electrode assembly.

Figure 4. Active material after previous treatment and cycles shown in Fig 2.

Page 9: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

3.3 Deep Discharge/Pulsed Charge Cycles

ton = toff = 500 ms

I = 1C30 A

(2 h for theoretically complete charge)

180 Ah g-1

130 cycles

Figure 6. Deep discharge/pulsed charge cycles for PbO2 and electrodes.

0 20 40 60 80 100 120 140

40

60

80

100

120

140

160

180

200

Sp

ecif

ic c

apac

ity

/ Ah

Kg

-1

Discharge number

Page 10: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

3.4 Potential vs SOC Curves During Pulsed Charge

Figure 8. PbO electrode, ton = toff = 500 ms and I = 2C30.

0.0 0.2 0.4 0.6 0.8 1.0 1.20.5

1.0

1.5

2.0

2.5

3.0

3.5

State of chargeP

ote

nti

al v

s H

g/H

g2S

O4

/ V

Figure 7. Nanometric PbO2 electrode, ton = toff = 500 ms and I = 2C30.

0.0 0.2 0.4 0.6 0.8 1.0 1.20.5

1.0

1.5

2.0

2.5

3.0

3.5

Po

ten

tial

vs

Hg

/Hg

2SO

4 / V

State of charge

Page 11: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

PAM Electrical Resistance

D. Pavlov, Journal of Power Sources, 53 (1995) 9-21.

PAM 30 m2

g-1

Page 12: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

4. Conclusions

• Positive tubular electrodes can be assembled with nanometric PbO2 if suitable methods are used to aggregate the particles.

• Stable capacity, until the number of cycles verified.

• Highly resistive electrodes.

• High utilization coefficient trough cycles.

• Necessity to evaluate the ‘active mass collecting layer’ in electrodes with previously chemically formed nanometric active material.

Page 13: POSITIVE TUBULAR ELECTRODES FOR LEAD ACID BATTERIES WITH 180 Ah Kg -1, SPECIFIC CAPACITY J. de Andrade*, P. R. Impinnisi, J. T. Tortteli Institute of Technology

Acknowledgements

Financial support - Paranaense Energy Company – COPEL

Laboratory structure - Technology Institute for Development – LACTEC